A DEGREE VERSION OF THE HILTON-MILNER THEOREM
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ABSTRACT. An intersecting family of sets is trivial if all of its members share a common element. Hilton
and Milner proved a strong stability result for the celebrated Erdés-Ko-Rado theorem: when n > 2k, every

non-trivial intersecting family of k-subsets of [n] has at most (Z:i) — ("gfil) + 1 members. One extremal

family HM,, , consists of a k-set S and all k-subsets of [n] containing a fixed element x ¢ S and at least one
element of S. We prove a degree version of the Hilton—Milner theorem: if n = Q(k?) and F is a non-trivial
intersecting family of k-subsets of [n], then §(F) < §(HM,, ), where §(F) denotes the minimum (vertex)
degree of F. Our proof uses several fundamental results in extremal set theory, the concept of kernels, and
a new variant of the Erdés—Ko—Rado theorem.

1. INTRODUCTION

A family F of sets is called intersecting if ANB # () for all A, B € F. A fundamental problem in extremal
set theory is to study the properties of intersecting families. For positive integers k, n, let [n] = {1,2,...,n}
and (Z) denote the family of all k-element subsets (k-subsets) of V. We call a family on V' k-uniform if it is a
subfamily of (Z) A full star is a family that consists of all the k-subsets of [n] that contains a fixed element.
We call an intersecting family F trivial if it is a subfamily of a full star. The celebrated Erdés—Ko—-Rado
(EKR) theorem [3] states that, when n > 2k, every k-uniform intersecting family on [n] has at most (} ;)

members, and the full star shows that the bound (Zj) is best possible. Hilton and Milner [14] proved the
uniqueness of the extremal family in a stronger sense: if n > 2k, every non-trivial intersecting family of
k-subsets of [n] has at most (Z:i) - (”;EIl) + 1 members. It is easy to see that the equality holds for the
following family, denoted by HM,, ., which consists of a k-set S and all k-subsets of [n] containing a fixed
element = ¢ S and at least one vertex of S. For more results on intersecting families, see a recent survey by
Frankl and Tokushige [10].

Given a family F and x € V(F), we denote by F(x) the subfamily of F consisting of all the members
of F that contain z, ie., F(z) := {F € F : ¢ € F}. Let dg(x) := |F(x)| be the degree of z. Let
A(F) := max, dr(x) and §(F) := min, dz(z) denote the maximum and minimum degree of F, respectively.
There were extremal problems in set theory that considered the maximum or minimum degree of families
satisfying certain properties. For example, Frankl [7] extended the Hilton—Milner theorem by giving sharp
upper bounds on the size of intersecting families with certain maximum degree. Bollobés, Daykin, and Erd6s
[1] studied the minimum degree version of a well-known conjecture of Erdds [2] on matchings.

Huang and Zhao [15] recently proved a minimum degree version of the EKR theorem, which states that,
if n > 2k and F is a k-uniform intersecting family on [n], then §(F) < (}~2), and the equality holds only
if F is a full star. This result implies the EKR theorem immediately: given a k-uniform intersecting family
F, by recursively deleting elements with the smallest degree until 2k elements are left, we derive that

7| < n—2 n n—3 T 2k —1 n 2k—=1\  (n-1
“\k-2 k—2 k—2 k-=1) \k—-1)
Frankl and Tokushige [I1] gave a different proof of the result of [I5] for n > 3k. Generally speaking, a

minimum degree condition forces the sets of a family to be distributed somewhat evenly and thus the size
of a family that is required to satisfy a property might be smaller than the one without degree condition.
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Unless the extremal family is very regular, an extremal problem under the minimum degree condition seems
harder than the original extremal problem because one cannot directly apply the shifting method (a powerful
tool in extremal set theory).

In this paper we study the minimum degree version of the Hilton—Milner theorem.

Theorem 1. Suppose k > 4 and n > ck?, where ¢ = 30 for k = 4,5 and c = 4 for k> 6. If F C ([Z]) s a

non-trivial intersecting family, then §(F) < 6(HM i) = (Z:;) - (";E;z)

Han and Kohayakawa [12] recently determined the maximum size of a non-trivial intersecting family that
is not a subfamily of HM,, , which is (Zj) - (”;Ezl) - (”2552) + 2. Later Kostochka and Mubayi [I7]
determined the maximum size of a non-trivial intersecting family that is not a subfamily of HM,, ;, or the
extremal families given in [I2] for sufficiently large n. Furthermore, Kostochka and Mubayi [I7, Theorem 8]
characterized all maximal intersecting 3-uniform families 7 on [n] for n > 7 and |F| > 11. Using a different
approach, Polcyn and Ruciniski [I8, Theorem 4] characterized all maximal intersecting 3-uniform families
F on [n] for n > 7, in particular, there are fifteen such families, including the full star and HM,, 5. It is
straightforward to check that all these families have minimum degree at most 3 — this gives the following
proposition.

Proposition 2. If n > 7 and F C ([g]) is a non-trivial intersecting family, then §(F) < 6(HM,, 3) = 3.

In order to prove Theorem [} we prove a new variant of the EKR theorem, which is closely related to the
EKR theorem for direct products given by Frankl (see Theorem .

Theorem 3. Given integers k > 3, £ > 4, and m > k¢, let Ty, T, T3 be three disjoint {-subsets of [m)].
If F is a k-uniform intersecting family on [m] such that every member intersects all of Ty, T, T5, then
IFl < 2(725)-

Theorem [3| becomes trivial when £ = 1 because every family F of k-sets that intersect 17,75, T3 satisfies
|F| < (7::;) Our bound in Theorem [3|is asymptotically tight because a star with a center in T3 U Ts U T3

contains about ¢2 (7,?:5’) k-sets that intersect 14,75, T5.

It was shown in [I5] that one can derive the minimum degree version of the EKR theorem for n = Q(k?)
by using the Hilton—Milner Theorem and simple averaging arguments (thus the difficulty of the result in
[15] lies in deriving the tight bound n > 2k 4+ 1). However, we can not use this naive approach to prove
Theorem [1I] for sufficiently large n. Indeed, let F be a non-trivial intersecting family that is not a subfamily
of HM,, ;. The result of Han and Kohayakawa [12] says that |F| is asymptotically at most (k—1)(}3), and

. . . k(k—1) (m—3
in turn, the average degree of F is asymptotically at most ~—— ( o

than 6(HM, 1) ~ k(773 as k is fixed and n is sufficiently large.

Our proof of Theorem [1] applies several fundamental results in extremal set theory as well as Theorem
The following is an outline of our proof. Let F be a non-trivial intersecting family such that 6(F) >
§(HM,, ). For every u € [n], we obtain a lower bound for |F \ F(u)| by applying the assumption on §(F)
and the Frankl-Wilson theorem [5l [19] on the maximum size of t-intersecting families. If kK = 4,5, then we
derive a contradiction by considering the kernel of F (a concept introduced by Frankl [6]). When k > 6, we
separate two cases based on A(F). When A(F) is large, assume that |F(u)| = A(F) and let Fo := F\ F(u).
A result of Frankl [9] implies that F(u) contains three edges F; := {u} UT;, i € [3], where T3, Ty, T5 are
pairwise disjoint. Since F5 is intersecting and every member of F> meets each of 11,75, T3, Theorem |3| gives
an upper bound on |F3|, which contradicts the lower bound that we derived earlier. When A(F) is small,
we apply the aforementioned result of Frankl [7] to obtain an upper bound on |F|, which contradicts the
assumption on 6(F).

). Unfortunately, this is much larger

2. TooLs

2.1. Results that we need. Given a positive integer ¢, a family F of sets is called t-intersecting if |ANB| > t
for all A,B € F. A t-intersecting EKR theorem was proved in [3] for sufficiently large n. Later Frankl [5]
(for t > 15) and Wilson [19] (for all ¢) determined the exact threshold for n.
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Theorem 4. [5,[19] Let n > (t+1)(k—t+1) and let F be a k-uniform t-intersecting families on [n]. Then
Fl < G-

As mentioned in Section 1, Frankl [7] determined the maximum possible size of an intersecting family
under a maximum degree condition.

Theorem 5. [7] Suppose n > 2k, 3 <i<k+1, FC ([Z]) is intersecting. If A(F) < (Z:%) - (Z:i), then
n—1 n—i n—i
[F| < (k—l) o (k—l) + (k—i+1)‘
Given a k-uniform family F, a matching of size s is a collection of s vertex-disjoint sets of F. A well-known

conjecture of Erdés [2] states that if n > (s+ 1)k and F C ([Z]) satisfies | F| > max{(}) — (";°), (k(s+kl)_1)}7

then F contains a matching of size s + 1. Frankl [9] verified this conjecture for n > (2s + 1)k — s.

Theorem 6. [9] Let n > (2s+ 1)k — s and let F C ([Z]). IfIF] > (}) = (".°). then F contains a matching
of size s+ 1.

Frankl [8] proved an EKR theorem for direct products.

Theorem 7. [§] Suppose n =ny + -+ +ng and k = k1 + -+ - + kq, where n; > k; are positive integers. Let
X1 U---U Xy be a partition of [n] with |X;| = n;, and

H{Fe (["]) :|FﬂXl-|kifom‘1,...,d}.

k
If n; > 2k; for all i and F C H is intersecting, then
@ < max —
[H

Note that the d = 1 case of Theorem [is the EKR theorem.

2.2. Kernels of intersecting families. Frankl introduced the concept of kernels (and called them bases)
for intersecting families in [6]. Given F C (‘2), aset S C V is called a cover of F if SN A # () for all A € F.
For example, if F is intersecting, then every member of F is a cover. Given an intersecting family F, we
define its kernel IC as

K:={S:Sis acover of F and any S’ C S is not a cover of F}.

An intersecting family F is called maximal if F U{G} is not intersecting for any k-set G ¢ F. Note that,
when proving Theorem [T} we may assume that F is maximal because otherwise we can add more k-sets to
F such that the resulting intersecting family is still non-trivial and satisfies the minimum degree condition.
We observe the following fact on the kernels.

Fact 8. Ifn > 2k and F € ([Z]) is a mazimal intersecting family, then IC is also intersecting.

Proof. Suppose there are K, K5 € K such that K; N Ky = (. Since n > 2k, we can find two disjoint k-sets
Fy, F5 on [n] such that K; C F; for i = 1,2. For i = 1,2, since K; is a cover of F, F; intersects all members
of F. Since F is maximal, we derive that Fy, F5 € F. This contradicts the assumption that Fy, F; are
disjoint. O

For i € [k], let KC; := KN ([?]). If an intersecting family F is non-trivial, then Ky = (). Below we prove an
upper bound for |K;|, 3 <i <k, where the ¢ = k case was given by Erdds and Lovész [4].

Lemma 9. For 3 <i <k, we have |K;| < k.

In order to prove Lemma @ We use a result of Hastad, Jukna, and Pudldk [I3], Lemma 3.4]. Given a
family F, the cover number of F, denoted by 7(F), is the size of the smallest cover of F.

Lemma 10. [I3] If F is an i-uniform family with |F| > k%, then there exists a set Y such that 7(Fy) > k+1,
where Fy :={F\Y :FeF,F2Y}.



Proof of Lemma[9 Suppose |K;| > k' for some 3 < i < k. Then by Lemma there exists a set Y such
that 7((K;)y) > k + 1. In particular, (K;)y is nonempty, namely, there exists K € K; such that Y C K.
By the definition of K, this implies that Y is not a cover of F, so there exists F' € F such that FNY = ().
Since each member of K; is a cover of F, each of them intersects F. This implies that 7((K;)y) < |F| = k,
a contradiction. ]

3. PROOF OF THEOREM [3]
In this section we derive Theorem Bl from Theorem
Proof of Theorem[3 Let F, consist of all the subsets of F that intersect with 7} U T» U T3 in exactly

elements. Then F = ]:3 U./T"4 U--- U]:k Let X1 = Tl, X2 = Tg, X3 = T3, X4 = [m] \ (Tl UT2 U,‘T3)7 and
ki =kys =ks =1, ky =k — 3. Since m > k¢, we have 1/¢ > (k — 3)/(m — 3(). Since ¢ > 2, we can apply

Theorem [T to conclude that
) -3¢\ 1 m — 3¢
<™ R :
73l < <k—3> i (k—3>

Note that a set S € F, intersects 11,15, T3 with either 1,1,2 or 1,2,1 or 2,1,1 elements. We partition
F4 into three subfamilies accordingly. Our assumption implies

k—4

m — 3¢

2
< -<
=7 =

|~

We can apply Theorem [7] to each subfamily of 4 and obtain that

O\ of(m—30\ 2 ofm — 30
< 23— _
m<s(y)e () =se-ve(h2Y)

Finally, for 5 < r < k, we claim that |F,.| < £2 (?;ﬂe__;) ("é:ié). Indeed, let X1 = T1 UTo UTs, Xo = [m]\ X,

k1 =7 and k2 = k—r. Note that | Xo| =m—3(>2(k—r) and r/(30) > (k—r)/(m—30). If | X1| = 3¢ > 2r,

then Theorem [7] gives that
31\ /m—30\  ,(3¢—3\ (m—3¢
< .
|Fr|_(r—1>(l€—r><€(r—?))(k—r)

When 3¢ < 2r, we have r > 6 because £ > 4. Hence,

<?;~€> < —(ifzi ~9) @g—_ 33 > e ﬁf: —9) (3;«6—_ ; ) <£ <%~£—_ 33 ) !

and the trivial bound on |F,| gives that

30\ (m — 3¢ 530 —3\ (m—3¢
<
A= () <G ()

as claimed. Summing up the bounds for |F3|,|Fy4| and |F,| for r > 5, we have

k
Fl = sl + 1 Fal + D 1 Fl
r=>5
k
-3¢ m — 3¢ 30 -3\ (m—3¢ m—3
< 2™ LY 2 _ 42
<t (k3)+3(4 1)¢ (k4)+e §<T3)<kr) l (k3>
because (773) = S22 (775%) (*72). 0



4. PROOF OF THEOREM [II

We start with some simple estimates. First, for n > ck?, ¢ >1and 1 <t < k — 1, we have

"R (n—22%k+t—1)- (n—3k+1t+2) - (1_ 2k — 2t )k_Q

(Y (n—t-1) - (n—t—k+2) n—t—k+2
Similarly, one can show that ("*3?) > <L (723). Second, if §(F) > (772) — (".*5?), then we have
iG] (s )) (ls)
. (c—l ( g) N k 2)<k§> (4.2)

Lemma 11. Suppose k > 4 and n > 4k?, F C ( ) is a non-trivial intersecting family such that 6(F) >
S(HMp i) = (Z_S) - (nkf2 2). Then for any u € [n],
(1) there exists E,E" € F such thatw ¢ EUE’ and [ENE'| =1;
(i) 1P\ Flw)] > 52 (23).
Proof. Given u € [n], write F/1 = F(u) and Fp = F \ F1. If |Fo| = 1, then F C HM,, x, and thus
§(F) < 6(HM,, ), a contradiction. So assume that |Fa| > 2.

Let t = min |E' N E’| among all distinct E, E’ € F5. Obviously 1 <t < k — 1, and F» is a t-intersecting
family on [2,n]. Then since n > 4k? > (k —t + 1)(t + 1) + 1, we get [Fo| < (".";") by Theorem 4| Note
that there exist F, E’ € F3 such that |[E N E’| =t. Since every set in F; must intersect both E and E’, for
every z ¢ EU E’ U {u}, by the inclusion-exclusion principle, we have

n—2 n—k—2 n—2k+t—-2
< — . .
A (=) (1752 4 (22 ”
Let X = [n]\ (EUE'U{u}) and thus |X| =n —1— (2k —¢). Suppose z € X attains the minimum degree
in F» among all elements of X. Since |F(x)| = |F1(x)| + |Fa(x)| > 6(HM, k), by (4.3) we have

n—k—2 n—2k+t—-2
LT G B (i
By the definition of = we get

X ((n—k-2 n—2k+t—-2 | X|(k—t) fn—2k+t—2
_ il ASARY
P2l > = ks k-2 S — k-3
n—2k4t—1
— (k-2
c- ("),

where the factor k£ — t comes from the fact that every member F € F; is counted at most k — ¢ times —
because |F'N Ey| > t. By (4.1) with ¢ =4 and k > 4, we get

k—2(n—t—1\_ (n—t—1
—_— >
72l > = (k—2)<k—2 >

which, together with [F2| < (".’;"), implies that ¢ = 1, so (i) holds. Since t = 1, the first inequality above
gives (7). O

Proof of Theorem[1 First assume that k > 6 and n > 4k?. Suppose F C ([Z]) is a non-trivial intersecting

family such that 6(F) > 6(HM,, 1) = (Z:;) — (”2552) Suppose u € [n] attains the maximum degree of

F and write ' := F\ F(u). If [F(u)| > (}27) — (723), then by Theorem@, the (k — 1)-uniform family

{E\ {u} : E € F(u)} contains a matching M = {T1,T5,T3} of size 3. Every member of F’ must intersect

each of T1,T5,T5. By Theorem l we have |F'| < (k—1)%(}° ) On the other hand, Lemma Part (i7)
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implies that |F'| > 552(777) = 252 (773) > 2(k — 1)2(}_3) because n > 4k? > 4(k — 1)? + 2. This gives a
contradiction.

We thus assume that |A(F)] < (}7]) — (Z:f) By Theorem

n—1 n—3 n—3 3n—2k—2(n—2 n—2

< — - < .

|f|_<k—1> <k—1)+(k—2) - <k—2>—3(k—2>
Since §(F) > (173) — ("2552), by ([@2), we have |F| > 3(k —2)(7~5). The upper and lower bounds for |F|

together imply k£ < 6, a contradiction.

Now assume that k = 4,5 and n > 30k2. Since F is intersecting, each member of F is a cover of F and
thus contains as a subset a minimal cover, which is a member of the kernel K. Thus |F| < Zle Kl (R 75).
We know K; = () because F is non-trivial. We observe that |[KC3| < 1 — otherwise assume uv,uv’ € Ko

(recall that KCq is intersecting). By the definition of Kq, every E € F \ F(u) contains both v and v" so every
E,E' € F\ F(u) satisfy that |E N E’| > 2, contradicting Lemma [TT| Part (i). By Lemma [9]

k .
n—2 fn—1
< k" .
|]:|—(k—2>+zi3 (k—z’)
Since n > 30k?2, for any 3 < i < k, we have

i n—i\ _ n—2 'ki72'k—2.k—3.”k—i—|—1< n—2\ 1
k—i k—2 n—2 n—-3 n—i+1~ \k—2)302

Thus i
n—2 n—2 1 n—2 k2
< k2 — < 1+— .
A<y () S (oa) ()
On the other hand, by (£2)), we have [F| > 2(k —2)(}75) > 22(k — 2)(7~3). Hence, 28(k — 2) < 29 + k2,
contradicting 4 < k < 5. This completes the proof of Theorem O

5. CONCLUDING REMARKS

The main question arising from our work is whether Theorem [I] holds for all n > 2k + 1. Proposition [2]
confirms this for k¥ = 3. Another question is whether the following generalization of Theorems [3] and [7] is
true. We say a family H of sets has the EKR property if the largest intersecting subfamily of H is trivial.

Conjecture 12. Suppose n =ni+---+nqg and k > k1 + -+ + kg, where n; > k; > 0 are integers. Let
X1 U---U Xy be a partition of [n] with |X;| = n;, and

H = {Fg ([Z]):FﬁX,»|2kiforz':1,...,d}.

If n; > 2k; for all i and n; > k — Z?Zl k; + k; for all but at most one i € [d| such that k; > 0, then M has
the EKR property.

The assumptions on n; cannot be relaxed for the following reasons. If n; < 2k; for some 7, then H itself is
intersecting and [H(x)| < |H| for any = € [n]. If n; < k—Z;l:l k;+k; for distinct 41,42 such that k; , k;, > 0,
then for any = € [n], the union of H(x) and {F € H : X;, C F or X;, C F'} is a larger intersecting family
than H(z).

When k = ky + -+ + kg, Conjecture follows from Theorem [7} in particular, the d = 1 case is the
EKR theorem. A recent result of Katona [I6] confirms Conjecture for the case d = 2 and ny,ny >
9(k — min{k1, k2 })2. We can prove Conjecture |12|in the following case.

Theorem 13. Given positive integers d < k, 2 <t <tg < --- <tq withty > k—d+2, there exists ng such
that the followings holds for allm > ng. If Ty, ..., Ty are disjoint subsets of [n] such that |T;| = t; for all 1,
then

H o= {Fg ([Z]>:|Fm:i;|21fom:1,...,d}

has the EKR property.
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We omit the proof of Theorem [I3] here because the purpose of this paper is to prove Theorem [} Moreover,

wh

end=3and t; =ty =t3=Fk—1, our ng is Q(k*) so we cannot replace Theorem [3| by Theorem [13[in our

main proof. Nevertheless, it would be interesting to know the smallest ny such that Theorem [L3] holds.
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