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ABSTRACT. Let r > 3. Given an r-graph H, the minimum codegree 6,—1(H) is the largest
integer ¢ such that every (r — 1)-subset of V(H) is contained in at least ¢ edges of H. Given
an r-graph F', the codegree Turdn density v(F') is the smallest v > 0 such that every r-graph
on n vertices with §,—1(H) > (7 + o(1))n contains F' as a subhypergraph. Using results on the
independence number of hypergraphs, we show that there are constants ci,c2 > 0 depending

only on 7 such that

Int » Int
17C2t1~7—1 <H(K{) < 1761#"7*17

where K| is the complete r-graph on t vertices. This gives the best general bounds for v(K7).

1. INTRODUCTION

An r-uniform hypergraph (r-graph) H consists of a vertex set V(H) and an edge set E(H),
which is a family of r-subsets of V(H). A fundamental problem in extremal combinatorics is to
determine the Turdn number ex(n, F'), which is the largest number of edges in an r-graph on n
vertices not containing a given r-graph F' as a subhypergraph (namely, F-free). When r > 3,
we only know ex(n, F), or its asymptotics 7(F) := lim,_ ex(n, F)/(7) for very few F. Let
K] denote the complete r-graph on ¢ vertices. Determining m(K7) for any ¢t > r > 3 is a well
known open problem, in particular, Turdn [18] conjectured in 1941 that 7(K3) = 5/9. The best
(general) bounds for w(K}) are due to Sidorenko [17] and de Caen [1]

- r—1
1-(2_%) gw(K;“)g—(:lll). (1.1)

For more Turdn-type results on hypergraphs, see surveys [7, 9].

A natural variation on the Turan problem is to ask how large the minimum ¢-degree can be
in an F-free r-graph. Given an r-graph H, the degree deg(S) of a set S C V(H) is the number
of the edges that contain S. Given 1 < ¢ < r, the minimum ¢-degree d,(H) is the minimum
deg(S) over all S C V(H) of size . Mubayi and Zhao [14] introduced the codegree Turdn
number ex,_1(n, F'), which is the largest §,_1(H) among all F-free r-graphs on n vertices, and
codegree (Turdn) density mp—1(F) = lim, o0 €x,—1(n, F')/n (it was shown [14] that this limit
exists). The corresponding ¢-degree Turan number exy(n, F') and density my(F') were defined
similarly and studied by Lo and Markstrém [12].1

Most codegree Turan problems do not seem easier than the original Turdn problems. We
only know the codegree densities of the following r-graphs. Let Fano denote the Fano plane
(a 3-graph on seven vertices and seven edges). Mubayi [13] showed that my(Fano) = 1/2
and Keevash [8] later showed that exa(n,Fano) = |n/2]| for sufficiently large n (DeBiasio and
Jiang [2] gave another proof). Keevash and Zhao [10] studied the codegree density for other
projective geometries and constructed a family of 3-graphs whose codegree densities are 1 — 1/t
for all integers t > 1. Falgas-Ravry, Marchant, Pikhurko, and Vaughan [5] determined exa(F3 2)
for sufficiently large n, where F3 o is the 3-graph on {1,2,3,4,5} with edges 123,124, 125, 345.
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1A simple averaging argument shows that 7 (F) = 7 (F) for every F.
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Falgas-Ravry, Pikhurko, Vaughan and Volec [6] also proved that ma(K: ™) = 1/4, where K}~ is
the (unique) 3-graphs on four vertices with three edges.

In this note we obtain asymptotically matching bounds for m,_1(K7}) for any fixed r > 3 and
sufficiently large ¢. Since its value is close to one, it is more convenient to write 7,1 (K]) in the
complementary form. Given an r-graph H and ¢ < r, let Ay(H) denote the mazimum £-degree
of H and «(H) denote the independence number (the largest size of a set of vertices containing
no edge) of H. Define

Ty(n,t,r) = min {A,(H) : H is an r-graph on n vertices with a(H) < t}

and 7y(t,r) = lim, 00 Tg(ﬂ,t,”f’)/(:}:ﬁ). It is clear that Ty(n,t,r) = (Z:f) — exy(n, K) and
Te(t,r) =1 — m(K]). Falgas-Ravry [4] showed that m(t,3) < 1/(t —2) for ¢ > 4 while Lo and
Markstrém [12] showed that 7,_1(¢,7) < 1/(t —r 4+ 1) for ¢t > r > 3. Recently Sidorenko [16]
used zero-sum-free sequences in Zg to get m(t,3) < O(+17).

We show that 7,1 (¢,7) = O(Int/t""!) as t — co.

Theorem 1.1. For all r > 3, there exist c1,cy > 0 such that
cilnt/t" <11 (t,r) < eplnt/t L

In fact, the upper bound immediately follows from a construction of Kostochka, Mubayi and
Verstraéte [11] (see Construction 2.1). The lower bound can be deduced from either the main
result of [11] or a result of Duke, Lefmann, and R6dl [3]. However, since both results require
A,_1(H) = o(n), we need to extend them slightly by allowing A,_;(H) to be a linear function
of n (see Theorem 2.2).

We prove Theorem 1.1 in the next section and give concluding remarks and open questions
in the last section.

2. PROOF OF THEOREM 1.1

A partial Steiner (n,r,{)-system is an r-graph on n vertices in which every set of ¢ vertices
is contained in at most one edge. R6dl and Sinajova [15] showed that there exists aa > 0 such
that for every m, there is a partial Steiner (m,r,7 — 1)-system S with a(S) < ag(m Inm)Y/ =1,
Kostochka, Mubayi and Verstraéte [11, Section 3.1] used the blowup of this Steiner system to
obtain the following construction. A similar construction (but not using the result of [15]) was
given in [4].

Construction 2.1. [11] Let S be the partial Steiner (m,r,r — 1)-system given by Rodl and
gmajovd. Let 'V be a union of disjoint sets Vi,...,Vy each of size d. For each edge e =
{ir,... ir} of S, let Ee := {viva... v v5 €V, for j € [r]}. Let H be the r-graph with vertex
set V' and edge set J;cpy,; (‘T/}) UUeeg Ee- It is easy to see that

Ar1(H)=d and o(H) = (r — )a(S) < az(r — 1)(mInm)=1.

Construction 2.1 will be used to prove the upper bound of Theorem 1.1. The lower bound
of Theorem 1.1 follows from the following theorem, which will be proved at the end of the
section.

Theorem 2.2. For all r > 3, there exist co,d9 > 0 such that for every 0 < § < dp, the
following holds for sufficiently large n. Every r-graph on n vertices with A,_1(H) < dn satisfies

a(H) > co(31In %)1/(7“71).

Proof of Theorem 1.1. Fix r > 3. Without loss of generality, we assume that ¢ is sufficiently

large. We first prove the upper bound with ¢o = (r— l)Tag_l, where ao is from Construction 2.1.

Our goal is to construct r-graphs H on n vertices (for infinitely many n) with a(H) < t and

A,_1(H) < canlnt/t"1. To achieve this, we apply Construction 2.1 with m = [t"71/(caInt)]

and d = n/m < conlnt/t"~! obtaining an r-graph H on n vertices with A,_1(H) = d and
2



a(H) < az(r — 1)(mInm)/"=D_ Since t is sufficiently large, it follows that In h;nlt—‘ <
Int"~! — 1 and

tT’—l tT’—l t’r—l -1 t?“—l
mlnm = [ —‘ln[ —‘ < < —i—l) (lnt’"*l—l)<u.

colnt colnt colnt Co

Consequently o(H) < ag(r — 1)(M)1/(’”*1) =t by the choice of cs.

c2

We now prove the lower bound. Suppose ¢, dy are as in Theorem 2.2. Let ¢; = (r — 1)06_1/2
and § = c;Int/t"~1. Since t is large, we have § < . Let n be sufficiently large. We need to
show that every r-graph H on n vertices with o(H) < t satisfies A,_1(H) > dn. Indeed, by
Theorem 2.2, any r-graph H on n vertices with A,_1(H) = d < dn satisfies

1 1\ V=D g1 1/(r-1)
a(H) > ¢ < In > > cg ( lntr_:l) =t

6 0 2c1Int

because ¢ is large and and ¢; = (r — 1)cj /2. O

The rest of the section is devoted to the proof of Theorem 2.2. We need [11, Theorem 1] of
Kostochka, Mubayi, Verstraéte and [14, Lemma 2.1] of Mubayi and Zhao.?

Theorem 2.3. [11] For allr > 3, there exists by > 0 such that every r-graph with A,_1(H) < d

for some 0 < d < n/(In n)g(T*U2 satisfies a(H) > by (% 1In %)1/(“1),

Lemma 2.4. [14] Let r > 2 and € > 0. Let m be the positive integer such that m > 2(r —1)/e
and (T"fl)6*52(’”*’"*1)/12 < 1/2. Every r-graph H on n > m vertices contains an induced sub-r-
graph H' on m vertices with A,_1(H')/m < A,_1(H)/n +e€.

Proof of Theorem 2.2. Fix r > 3. Let 0 < §p < 1/4 such that

1 1 1 1\ 502
_ )<= ~ < — - )
24(r 1)1n<[54—‘> < 5 and 5 _exp<<26> > 1 (2.1)

for all 0 < § < §p. Let m = [1/6*]. We claim that m satisfies the assumption of Lemma 2.4
when £ = §. Indeed, it follows from the first inequality of (2.1) that
24(r —1)Inm - 2(r—1)

62 5

m =
which further implies that

1 2 1
<7«T 1) =02 (m—r+1)/12 < 5mrqe—% < .

Let ¢g = 4= Y(=Dp;  where by is defined in Theorem 2.3. Suppose H is an r-graph on n > m
vertices with A,_1(H) < dn. By Lemma 2.4, there exists an induced subhypergarph H' on m
vertices such that
m

(Inmn)3r—12

which follows from the second inequality of (2.1) and m = [1/§*]. We now apply Theorem 2.3
to H' with d = 20m and obtain that

1/(r—1) 1/(r—1) 1/(r—1)
a(H) > a(H') > by <215 In 216> > b (415 In (15) = ¢y <<1§ In ;)

by the choice of ¢y and the assumption that 6 < 1/4. (]

Ar_l(H,) < 20m <

2 Alternatively we could apply [3, Theorem 3] of Duke, Lefmann, and Rédl — we choose [11, Theorem 1] because
it provides a better constant.
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3. CONCLUDING REMARKS

Theorem 1.1 shows that ¢ lnt/tr*1 < 1p1(t,r) < e2ln t/t“l. Our proofs of Theorems 1.1
and 2.2 together give that ¢; = (r— 1)()71"_1/87 where b1 comes from Theorem 2.3. A slightly more
careful calculation allows us to take ¢; = (14 0¢(1))(r — 1)b7"! (where 0y(1) — 0 as t — o).
The equation (7) in [11] shows that b]~' = (14 0,(1))(r — 3)!/3 and thus

r—1

c1 = (1+o0-(1)) (r—3)L

On the other hand, our proof of Theorem 1.1 gives ca = (r — 1)"a} !, where ag comes from
Construction 2.1. Unfortunately, we do not know the smallest as such that there is a partial
Steiner (m, r,7 — 1)-system S with a(S) < az(mInm)Y =1 for every m. However, the random
construction in [11, Section 3.2] yields a constant that asymptotically equals by but requires
InA,_;(H) = o(Inn). Nevertheless, we can use the blowup of this construction and add some
additional edges when r > 4 to derive that?

(14 o0t(1))r - 7! if r is even,

2TVt o) if s odd.
When r is even, above refined values of ¢; and ¢y differ by a factor of 3r3 asymptotically. We

tend to believe that 7,_1(¢,7) ~ 7 -7!Int/t"~! when t > r > 1.

—¢
=
7y(t,r) is an increasing function of £. When t — oo, we have 71(¢,7) = 1 — 7(K]) = O(1/t"1)

from (1.1) and 71 (¢,7) = ©(Int/t"~!) from Theorem 1.1. Putting these together, we have

1 Int
[S) <tr—1> =7 (t,r) < 7mt,r) < <7_1(t,r) =0 (t:l_1> .

It is interesting to know if 7(t,r) = O(Int/t"~1) for all £ > 2.

Given any r-graph H on n vertices, Ay(H)/ ( ) is an increasing function of £. As a result,
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