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ABSTRACT

For changing opinion, represented by an assignment of probabilities to propositions, the
criterion proposed is motivated by the requirement that the assignment should have, and
maintain, the possibility of matching in some appropriate sense statistical proportions in
a population. This ‘tracking’ criterion implies limitations on policies for updating in
response to a wide range of types of new input. Satisfying the criterion is shown equiva-
lent to the principle that the prior must be a convex combination of the possible poster-
iors. Furthermore, this is equivalent to the requirement that prior expected values must
fall inside the range spanned by possible posterior expected values. The tracking criterion
is liberal; it allows for, but does not require, a policy such as Bayesian conditionalization,
and can be offered as a general constraint on policies for managing opinion over time.
Examples are given of non-Bayesian policies, both ones that satisfy and ones that violate
the criterion.
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1 Introduction

What is generally called Bayesian conditionalization is a policy for updating
probability assignments. It specifies as admissible input (‘evidence’) elements
of the domain of the prior probability function, and allows as possible pos-
teriors the conditionalizations on such elements (‘propositions’). Under
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726 Bas C. van Fraassen and Joseph Y. Halpern

certain ideal conditions, this is the only coherent policy (Teller and Fine
[1975]; Teller [1976]; Diaconis and Zabell [1982]; van Fraassen [1999]).
When those conditions are not met, other policies might be appropriate.
Putative examples include updating by Richard Jeffrey’s generalized condi-
tionalization (‘Jeffrey conditionalization’) or Edwin T. Jaynes’ rule to maxi-
mize relative entropy (‘MAXENT’). This raises the question of what general
constraints any such policy should satisfy. We will propose an answer, guided
initially by some intuitive considerations that also motivate the Bayesian
policy.

It is no coincidence that the probability calculus is typically introduced with
examples of urns full of red and black, or marble and wooden, balls. The
relations between the statistical proportions of finite sets, with their intersections
and unions, introduce the basic principles that are extrapolated to present
probability theory, and that extrapolation is motivated by the insistence
that a probability assignment should in principle be able to track, in some
appropriate sense, the relevant statistics. It is well known that the extrapola-
tion goes far beyond the theory of finite proportions, and beyond the theory of
limits of relative frequencies, but there are also far-reaching theorems to show
that the relationship of these to probability theory remains appropriately
close!

That this possibility of tracking the relevant statistics should be preserved
under updating also provides a motivation for the Bayesian policy. If the
proportions are known, and we are given the information that a ball drawn
from the urn is marble, then the probability that it is red should be updated
from the proportion of red balls in the urn to the proportion of red balls
among the marble ones in the urn. And if the proportions are not known,
but the prior probabilities were assigned on the basis of opinion or evidence,
then the updating should take the same form, in order to guarantee the fol-
lowing: if the prior probability assignment had the possibility that it was
tracking the relevant statistics for draws of balls from the urn, then that pos-
sibility was not lost for updating to draws of balls from among the marble
balls in the urn.

2 Alternative Updating Policies

Alternatives to the Bayesian policy have been discussed for two main reasons.
The first is that the input that triggers a change in probabilities may not be of
the sort this policy takes into account. Both the above examples,of Jeffrey

" For example, the strong law of large numbers implies that if G is a finitely generated field of
subsets of S, and p a probability function defined on G, then there exists a countable sequence, s,
of members of S such that for each element E of G, p(E) equals the limit of the relative frequency
of Eins.
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Tracking Statistics 727

conditionalization and Jaynes’ MAXENT, were introduced in this way.
Richard Jeffrey proposed allowing for input beyond the propositional, with
the following example:

In examining a piece of cloth by candlelight one might come to attribute
probabilities 0.6 and 0.4 to the propositions G that the cloth is green and
B that it is blue, without there being any proposition E for which the
direct effect of the observation is anything near changing the observer’s
degree of belief in E to |. (Jeffrey [1968], p. 172)

The proper transformation of probability he offered, now known as Jeffrey
conditionalization, redistributes the probability over a partition whose cells
are the affected alternatives:

P®AP % iqPSAIGP;

with {C : i ¥ 1,2, ... n} the relevant partition, such as ‘green’, ‘blue’, . . .,
red’,and {q;:i% 1, 2, ..., n}, the weights of the new posterior probabilities
of those alternatives.

Edwin T. Jaynes introduced his maximum entropy updating rule; a typical
motivating example takes the following sort of input:

We have a table which we cover with black cloth, and some dice, but [. . .]
they are black dice with white spots. A die is tossed onto the black table.
Above there is a camera [that] will record only the white spots. Now we
don’t change the film in between, so we end up with a multiple exposure;
uniform blackening of the film after we have done this a few thousand
times. From the known density of the film and the number of tosses, we
can infer the average number of spots which were on top, but not the
frequencies with which various faces came up. Suppose that the average
number of spots turned out to be 4.5 instead of the 3.5 that we might
expect from an honest die. Given only this information[...] what
estimates should [we]make of the frequencies with which n spots came
up? (Jaynes [2003], p. 343)

Transferring this problem into one of probability updating, the prior prob-
ability assignment—assuming a fair die—included an expectation value of 3.5
for the number of dots, and the input is a new expectation value of 4.5. There
is no proposition in the domain of the prior on which to conditionalize; this
input is of a different sort. What should be the posterior probability assign-
ment? Jaynes’ rule gives a precise answer that implies, for example, that the
outcome with one spot has posterior probability 0.05 and the outcome with six
spots has posterior probability 0.35.

The second reason that has entered the discussion of alternative policies is
that there may be conditions seen as triggering a more radical change than can
be accommodated by conditionalization. It may be a case, as it is often put, to
‘throw away the prior’, but even so the change would not be a choice at
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random; the agent could be guided by prior experience and theoreticalpre-
suppositions that appear phenomenologically only as intuition and instinct,
limiting the acceptable choices.

What we will investigate is a way to place requirements on any policy for
updating that remains well motivated by the intuitive considerations offered
above in terms of the possibility of tracking relevant statistics and of preser-
ving that possibility. As Jaynes’ example illustrates, such motivation remains
salient when departures from the Bayesian policy are envisaged.

3 Modelling the Situation for Normal Updating

A policy for updating probabilities needs to start with a description of the sort

of situation to which it applies. Such a situation will be one where the subject

or agent has at each time a state of opinion represented by a probability
function on a space (representing a range of possibilities or possible circum-
stances). Second, it must be specified how, in this sort of situation, there can be
input of various sorts. Third, the policy must offer a prescription of what that
prior probability function is allowed to be changed into, in response to a given
input, to form a posterior probability function.

The Bayesian policy, applicable here, starts with a prior probability, takes the
inputs to be elements of a finite partition of the possibilities, and, given an
element of the partition, updates the prior to a posterior by conditionalization.
We will not assume that in general a policy must prescribe a unique posterior for
each possible input, nor that that the posteriors correspond to cells in a partition.

To accommodate not just the Bayesian policy but also the cases presented
by, for example, Richard Jeffrey and Edwin Jaynes, we must not concentrate
on the special case in which the input is an ‘evidential’ proposition in the
domain of the prior probability assignment. Indeed, Jeffrey’s example intro-
duces an agent who has no way of expressing what triggers the change in
probability assignment, hence no input to which a conscious policy could
apply. Nevertheless,t can be specified that this change,and the agent’s re-
sponse when managing his overall opinion, takes a very special form. We note
that in this case too, given a prior, the input—whether explicit or unformulated—
places a constraint on the posterior. An input, whatever it may be, acts as a
function that takes any given prior into a set of possible (admissible, accept-
able) posteriors. As the most general form of input, we must therefore count
any constraint that the agent may accept as limiting the candidates for the
posterior probability function. Whatever types of input there can be can thus
be represented by functions that take any element of the space (a prior) into a
subset of that space (its set of possible posteriors).

A little more formally: a policy for updating (whether or not in response to
inputs representable in terms of the elements of the space of possibilities)
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Tracking Statistics 729

specifies for each probability function p (the prior), a set R of possible pos-

teriors (of cardinality greater than 1), or equivalently, a constraint on the
functions into which p can change by updating. We place only one condition

on how these responses are formed. Since we view the process of going from p
to R as normal updating, not revolutionary change, we assume absolute con-
tinuity: updating does not raise any probability from 0. For succinctness, a
model (of a doxastic situation, in the present context) is a triple M %4 <p, S, R >,
where p is a probability measure on S and R is a set of probability measures on S
that assign 0 wherever p assigns 0. As stipulated above, the number of possible
posteriors, the members of R, is greater than?.

4 Tracking: A Criterion for Updating Policies

Following upon the intuitive motivation presented above, = we propose a
formal criterion to be met by updating policies. The motivating considerations
included two main points: opinion represented in terms of a probability as-
signment should at least possibly track the relevant statistics, and updating the
probability assignment on new input should preserve that possibility. We
added that under certain ideal conditions, Bayesian conditionalization is pre-
cisely the policy that satisfies these requirements.

What the ideal conditions are, and how more practical conditions could be
related to the ideal case, is illustrated in the following (partly fictional) example.
In 1994 the distribution, by party and gender, in the United States Senate

was as follows:

Men Women Row total
Republican 42 2 44
Democrat 51 5 56
Column total 93 7 100

Suppose a fully informed ideal agent, A*, makes all the relevant distinctions
and actually has the information about each individual Senator: about
their gender, age, party affiliation, and more, like their state of health, and
so on. Assume that his probabilities match these statistics, for example,

P(x is a womanijx is a Republican Senator) %4 2/44.

A certain agent, A, who is not a fully informed ideal agent, let us assume, has
no information about state of health, age, or even gender; only about party
affiliation in the Senate at that time. Within this very limited space, his

2 |f there is only one possible posterior, we take it that this would correspond to something like a
test for which the outcome is certain beforehand. In that case the prior should not change, and
the posterior must be the same as the prior.
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probabilities match the statistics too, but lack the male—female distinction; he
just has, for example,

P{x is a Republicanijx is a Senator) % 44/100.

Thus the probabilities that A assigns are the marginal probabilities assigned
by A*, matching the marginal distribution in the above table with the division
by gender removed.

Now the fully informed ideal agent A* gets the new information that there
are no more women Senators, they were all removed from office for such
reasons as fraud, health, or other personal circumstances.Being an ideally
well-informed agent, one that not only has all the relevant statistical informa-
tion for his subject matter, but is also making all the relevant distinctions, the
Bayesian policy is not only applicable but the uniquely right policy to follow.
Thus A* conditionalizes on this information, reclassifying those women as no
longer in the Senate. His posterior probabilities match:

Men Women Row total
Republican 42 0 42
Democrat 51 0 51
Column total 93 0 93

Suppose now that the non-fully informed ideal agent A, who does not make all
the same distinctions as A* and lacks either information or opinion about at
least some of the aspects to which A* is privy, nevertheless has a prior and
posterior opinion that remain correctly represented by marginals of the prior
and posterior of the fully informed ideal agent. This means that we see him
updating (through whatever impulse or choice) to the corresponding marginal
distribution: Republican 42, Democrat 51. So now both A* and A have, for
example, the probability 42/93 for a Senator being a Republican.

Watching this subject A, who is not ideally well-informed, we see that his
change of opinion was not one done by conditionalization. All we seeis a
redistribution over the same alternatives. From the outside, it was just an
abrupt change in the probabilities for party affiliation inthe  Senate.
However, since his posterior probability is the marginal of an updating by
conditionalization by the fully informed ideal subject, the virtue of matching
the actual statistics was preserved.

So the criterion for updating policies that we propose will be that however
the agent assigns his probabilities and updates them, there exists in principle
an ideal take on his situation, and his own opinion is in a relevant sense ‘part
of’ the evolving probability assignment of an ideally well-informed (hence
Bayesian) agent. Echoing the intuitive discussion, we shall call this criterion
‘Tracking’. Under what conditions is this criterion satisfied?
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The question is reminiscent of discussions of hidden variable interpretations
of quantum mechanics, in which unfamiliar sorts of stories, involving strange
or unpredictable changes, are shown to be compatible with larger stories that
follow a familiar pattern. Specifically, conditions are investigated in which an
assignmentof probabilities of outcomes can have an underlying classical
probability model. Taking our cue from the above example, we take it that
for a model to satisfy the Tracking criterion, its probability functions must be
the marginals of probability functions in a larger associated model on which
much stricter constraints may be imposed.

In what follows, we shall first show that Tracking is satisfied if and only if
the prior probability assignment is a convex combination of the possible pos-
terior assignments. Second, we will formulate a distinct criterion, Spanning, to
govern evolving expectation values, and show that it is equivalent to Tracking.
With those results in hand, we will then show the diversity of updating
policies that can satisfy those criteria, but also that there are policies that
violate them.

5 Tracking: Precise Formulation and Relation to Convexity

In our example, we were looking at a single possible updatingFor the fully

informed ideal subject,there were many possible posteriorseach of them a

conditionalization on some proposition that changes one of the four numbers

for his four ‘cells’. And the intuitive Tracking criterion requires that the non-fully

informed ideal subject’s prior and possible posteriors should be the marginals of

some such (imaginary) fully informed ideal subject’s prior and possible posteriors.
We can concentrate on a representative simple form for  such a case.

Throughout we will take the set of possible posteriors to be finite. But as

will be clear in retrospect, the updating policy could allow for all the convex

combinations of a given finite set as the set of possible posteriors.

Definition: A model M* % <p*, S*, R*>is an associate of model
M Y4 <p, S, R > if and only if there is an integer, n, such that:

i R%{p, ..., &
i. S*%S%{1,...,n}
iii. pisthe marginal of p* on S, thatis, p(E) % p*(E {1, ..., n}) for each

measurable subset E of S;

iv. R*%{pi, ..., @} defined by:
a.piS {ih) %1 (forj¥at, ... n);

3 For prior results concerning the conditions under which a single prior to posterior shift involves
a hidden conditionalization, see (Diaconis and Zabell [1982]; Skyrms [1980]).
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732 Bas C. van Fraassen and Joseph Y. Halpern

b. for each Pin R there is a single memberpof R* such that PPis the
marginal of p%, that is, p4E) % #(E {1, ..., n}).

At this point, we have assumed nothing about the relation between p* and the
family {p3, . . ., i} beyond the fact that the latter are absolutely continuous with
respect to the former. This implies that p*(S {j})>0forj% 1,...,n.

The set {1, ..., n} could represent a partition of a larger space (the hidden
parameters), but what these integers represent is not relevant to the argument;
in our proofs, they function simply as an index set. We can think of the
members of R as also indexed by these integers in a corresponding fashion.
Let p; be the member of R such that p | is the probability function in R*
indicated in clause (iii.b). Then (E) % §(E {j}) for each subset E of S.

The only constraint on the measure p* in the definition above is given by
clause (iii), so it is clear that each model, M, will have many associate models.
This allows the introduction of the guiding constraint ‘Tracking’ in these terms:

Model M V4 < p, S, R> satisfies Tracking if and only if M has an associated
model M* % <p*, S*, R*>in which p* is a probability function on S*

such that the members of R* are conditionalizations of p*, specifically,
pi(E {ip) 4 p*(EjS {i}) forj'a1,...,n).

Let us spell out precisely what this involves"
Suppose that M, as described,satisfies Tracking, with M* the associate
model, and that R is countable. Then p* is a convex combination of the
members of R*, the weights being the probabilities p*(S {j}) forj'a 1, ...,
n, each of these being positive.
Since p* gives positive probability to each set {n}, and n has at least two
members,it follows that these are strict convex combinations—thatis, the
values of p for elements of S* are neither infimum nor supremum of the corres-
ponding values assigned by members of R*, unless those values are all tRe same.
The marginal p of p* on S is:

p&EP Y pdE f1;...;ngP
s ;pOEj P
Va jpOE | jSj PpoS j p
Yo jpOEj PpoSj P
Ya jp&EPPOS j b

4 The policy of conditionalization satisfies this criterion. But our focus here is on the more inter-
esting question of how the criterion applies to updating policies allowing for a larger variety of
inputs, and a less restrictive specification of allowable posteriors in response.

5 We include here infinite (countable) combinations as convex, when the coefficients are real,
positive, and sum to 1.
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So p is that same convex combination of the members of R. Therefore:

Theorem 1
If M % <p, S, R>, with R countable, satisfies Tracking, then p is a strict
convex combination of the members of R.

The converse to Theorem 1 also holds.Suppose that p % ;¢ pj;, with the
weights ¢non-negative and summing to 1. We can then construct an associate
model M* as above, filling in the single ‘blank’ left in the definition by setting
p* % g pf, taking p*(S {j}) Yac j,forj% 1,...,n.Itis easy to see then that p
is the marginal of p* on S since that is how the probabilities p*(S {j}) were
chosen. Thus:

Theorem 2
Ifin M % <p, S, R>, with R countable, the prior p is a strict convex combin-
ation of the members of R, then M satisfies Tracking.

6 The Spanning Criterion

It would be preferable to have a formulation of the criterion that can be
applied directly to the relation between the prior and the possible posteriors
(allowed by the policy in question, in the situation in question), without re-
course to a study of other models.

For this we offer the following criterion,  which has some history in the
literature:

Model M % <p, S, R> satisfies Spanning if and only, for each random
variable g, E,[g], the expected value of g with respect to p, lies strictly
inside the interval spanned by Eqg] for p°e R.

Again, ‘strictly inside’ an interval means that it is neither infimum nor supre-
mum unless the interval is a single poinf

We note that Spanning is the same as the General Reflection Principle (van
Fraassen [1995],[1999]), except that in the present formulation there is no
reference to prior probabilities about what the future probabilities will be like.
With suitable assumptions, the requirement to satisfy Spanning implies the
original Reflection Principle (van Fraassen [1995], pp. 18-9) and under special
conditions coincides with the Bayesian updating policy (van Fraassen [1999],
p. 96).”

6 This is deliberately formulated in such a way that it would apply also to interval-valued prob-
ability, but here we focus solely on the sharp probability case.

7 For the special case in which the possible posteriors each assign 1 to distinct cells of a single
partition, the result on conglomerability in Theorem 1 of (Dubins [1975]) is closely related to the
following theorems. (Thanks to Teddy Seidenfeld for this reference.)
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Theorem 3
If M %4 <p, S, R> satisfies Tracking and both S and R are countable, then M
satisfies Spanning.

If M satisfies Tracking then, by Theorem 1, p is a convex combination
jen GPj of the members of R, with all coefficients positive. Suppose that g is a
random variable; since S is countable, the expected value of g with respect to p is

Epld s xespXP@P
% xes jGRKPEP
Va G xesPh&XP@»
Vs J'CJ'EPjyg:

So EJg] is a convex combination of the expected values of g with respect to the
members of R and, since all the coefficients are positive, it lies strictly inside the
interval spanned by the latter.

Theorem 4
If M %4 <p, S, R>, where S and R are finite and jRj > 1, satisfies Spanning then
M satisfies Tracking.

In view of Theorem 2, it suffices here to prove the following lemmé

Lemma
If M satisfies Spanning, where S and R are finite and jRj >1, then p is a strict
convex combination of the members of R

The random variables defined on S are the functions that map S into the
real numbers. These form a vector space (isomorphic to the familiar R the
vector space of n-tuples of real numbers), with addition and scalar multiplica-
tion defined point-wise:

cogxb V4 6 @ Hp; &g p f PoxP /B dxp faxb:
The probability measures form a convex subset of this vector space, defined by
qxb 0; xesAXP ¥4 1:

The fact that the set is convex follows from the observation that if p and q are
probability measures on S, then sois cp + (1 c)q, forcin [0, 1].

8 We would have a much simpler proof, using the Separating Hyperplane Theorem (Gruber
[2007], p. 59; Luenberger [1969], pp. 133-4) if we did not require the probability p to lie
strictly inside the interval ~ spanned by E dg] for p 0 e R. Our proof is for the case where
S and R are finite; we do not know if the result continues to hold if R is infinite (but see the
Appendix).

9 For the special case in which the posteriors have disjoint support, that was proved in (van
Fraassen [1999]). The argument there does not apply to the general case.
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The expected value of g with respect to a probability measure q is, in vector
space terms, just the scalar product:

a; P Vi xesdXPGib:

If R is finite, the convex hull [R] of R (that is, the set of all probability measures
that are convex combinations of the elements of R) is called a polytope. The
extreme points are those that are not convex combinations of other
members; a polytope has extreme points. Since R has more than one
member, it has at least two extreme points and also non-extreme points.
(The simplest case is the one where R has just two membersyhich are the
extreme points of [R].)

We need to show that unless p is in [R], but not an extreme point of [R], then
Spanning is violated. The latter means that there is some random variable, g,
such that the scalar product (g, p) is not strictly in the interval spanned by the
set {(g, P): p% [RI}.

Two vectors, g and h, are orthogonal if and only if (g, h) ¥4 0. In the familiar
three-dimensional vector space, the two-dimensional sub-spacesare the
planes,and a plane is the set of vectors orthogonal to a given vector. So a
plane is defined by an equation of the form (g, q) % 0 for a fixed vector g; that
is, q is in the plane if and only if ,csg(x)q(x) ¥4 0. In our context, where q is a
probability function, this means that the expected value of g with respect to q
is 0.

In general, the maximal proper sub-spaces of a vector space are called the
hyperplanes and, again, any such sub-space is the ortho-complementof a
single vector, defined in the same way. If H is the hyperplane {h: (g, h) ¥4 0},
then it divides the space into two half-spaces, overlapping only in H itself,
namely, {h: (g, h) 0} and {h: (g, h) 0}. A polytope is the intersection of a
finite set of half-spaces and, equivalently, the convex hull of a finite set of
vectors. Its extreme points are those that are not convex combinations of other
members. A polytope has a finite set of extreme points, all of which are in it,
and it is the convex hull of its set of extreme points.

Since R is finite, [R] is a polytop@.Let [R] thus be the intersection of a finite
set of half-spaces, H, . . ., H, defined by the inequalities

oh;xP 0O;...;&0, xp 0O:
The corresponding supporting hyperplanes,T+, . . . , T, which contain the
faces of [R], are defined by the equalities

oh; xP % 0; .. Gy xP % 0:

10 In fact, since [R] is part of the convex set of all probability functions on this space, it is bounded
(all members have a norm less than or equal to 1).
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Now suppose that p is not a strict convex combination of members of R. Then
p is either outside [R] or else is an extreme point of [R]. If p is outside [R], then
there is a half-space, I to which p does not belong. Hence (hp) is positive,
and thus greater than (), x) for any member x of [R].

If p is an extreme point of [R], then it is the unique intersection of a sub-
family of the hyperplanes above:

p %TH\---\Tik

(cf. Gruber [2007], pp. 246-7). So the random variable g 4 ik takes +h
value 0 on p. But if x is any other point in [R], it will lie in all the corresponding
half-spaces,but not on all of these hyperplanes,hence g(x) < 0.Hence the

expected value of g with respect to p is not strictly in the interval spanned

by the expected values of g with respect to members of R. Thus, in that case,

Spanning is violated.

7 Non-Bayesian Policies that Satisfy the Spanning and Tracking Criteria

The close connection between Tracking and conditionalization may give the
impression that the results proved here impose Bayesian conditionalization as
the sole admissible policy. That is not so, for a number of reasons.

The orthodox Bayesian policy is this:

accept as admissible input only propositions;

as response to such an input, the only admissible change is condition-
ing the prior on the proposition in question.

So an updating policy can depart from the Bayesian in one or more of three
ways:

1. Accept as admissible a wider variety of inputs (for example, expected
values).

2. An admissible response to such an input can be a change in the prior
that is not the result of conditioning.

3. An admissible response to such an input may be non-unique, that is,
the posterior may not be uniquely determined by the prior plus input.

For example, then, a policy could be non-Bayesian by differing in the third
way, even if the posterior is formed from the prior by conditionalizing. This
could be so if the updating involved a choice or, instead of a free choice,
involved some factor in addition to prior and explicit evidential input that
helps to determine the posterior—a ‘hidden variable’, of which the agent
might or might not be aware.
Second, we have included no initial assumption here about how the possible

posterior opinions relate to the possible inputs. It is not assumed that for each
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input there is only one admissible posterior opinion, nor that they are con-
ditionalizations of the prior.

Third, the embedding in a larger probability space (associate model) is in no
way unique. The ‘hidden variables’ are underdetermined. Nor is there any
reason to think that the same larger probability space would be pertinent
for transitions over subsequenttime intervals (t, t+a), (t+a, t+a+b),
(t,t+a+Db).

Fourth, the possible posteriors in a model that satisfies Tracking
are in general not conditionalizations of the prior. That was quite clear
in our ‘Senate’ example above. For the marginals of conditionalizations
of a probability function are only in special  casesconditionalizations of
a marginal. A special caseis the one in which the ‘hidden variables’
over which an average is taken are actually independent of the ‘surface’
variables.

Finally, the criteria can with minor modifications in phrasing be applied to
policies governing interval-valued rather than sharp probabilities, where it is
still even far from clear what the proper analogue to Bayesian conditionaliza-
tion must be.

It is helpful to look at some simple examples of how Spanning and Tracking
can be satisfied by non-Bayesian updating policiesOur first illustration al-
ready provided a good example:a policy that consists in adopting as prob-
abilities certain marginals of the probabilities assigned by Bayesian
conditionalization in a larger space. That sort of example can illustrate the
various differences. But we add here two more examples of updating policies
that involve some leeway,and are clearly not the Bayesian conditionalizing
policy, but satisfy Spanning and Tracking.

To begin, consider Jeffrey conditionalization. Recall Jeffrey’s example,
cited above, of the agent who examines a piece of cloth by candlelightand
acts on an input that does not take the form of a proposition on which he
could conditionalize his probability function. In response to this input, the
agent redistributes the probability over a partition whose cells are the affected
alternatives:

plAP % qipBAIGP;

with {C : i % 1,2, ... n} the relevant partition, such as ‘green’, ‘blue’, . . .,
‘red’, and the weights {q;: i %4 1,2, . . . n} the new posterior probabilities of
those alternatives. If the agent’s policy in this case dictates no constraints on
those new weights then Spanning is satisfied, since the prior, p, is itself among
the possible posteriors. Thus Jeffrey’s proposal, by itself, is for a policy that
satisfies our criteria.

We can imagine that certain other factors in the policy do place constraints
on the new weights, in which case Spanning could be violated.
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When observing cloth by candlelight this would happen, for example, if
the agent could only raise his probability that the cloth is green, and not
lower it.

We can imagine a more complex situation in which the transformation
requires not only a selection of new weights on a given partition, but also a
choice of relevant partition. This would increase the set of possible posteriors
accordingly. Jeffrey’s example would become something like this: In examin-
ing a piece of cloth by candlelight, one might come to attribute probabilities
0.6 and 0.4 to the propositions G, that the cloth is green, and B, that it is blue,
or alternatively come to attribute probabilities 0.7 and 0.3 to the propositions
C, that the cloth is cotton, and L, thatitis linen, without there being any
proposition E for which the direct effect of the observation is anything near
changing the observer’s degree of belief in E to 1.

The criterion that Spanning be satisfied applies to the policy that allows
these changes under those epistemic circumstances, rather than to the specific
or actual change of posterior weights in either partition. Thus, Spanning is
satisfied here.

As above, violation is possible if that policy has some further features that
prevent a change in probability in one direction, either upward or downward,
while allowing a change in the other. While on the face of it, it is hard to see
how a policy could appear rational while doing so, we shall see below that a
well-known updating policy does exactly that.

For the next two examples, staying rather close to the Bayesian format, we
consider the case where the agent is going to make an observation and knows
that the event to be observed is a member of the partition {E e J}. The first
policy dictates conditionalizing the prior, p, on event Eif the agent witnesses
that event. But if the agent is not sure whether the event withnessed was, say, E
or En, then the policy dictates that he Jeffrey conditionalizes—that is, adopt
as posterior a convex combination of pjk and pjE,. But the policy does not
dictate the weights in that convex combination, which can be chosen spon-
taneously from some given finite set. Hence R consists of certain convex com-
binations of the result of conditioning p on members of the partition, so
Spanning is satisfied. This example already involves all three of the departures
from the orthodox Bayesian mold: the input is not a proposition but some-
thing involving two propositions (with the agent’s attitude not belief but am-
bivalence) and a choice of weights, so that the posterior is not uniquely
determined by the input and prior.

A still different policy links posteriors to both the event witnessed and the
agent’s frame of mind, which is not determined by either the prior or the
witnessed events. Suppose thaj 5 the probability that the agent uses when
in frame of mind j, for j in some index set J. That is, the probability he assigns
to events depends on his mood or on the context, as characterized by his frame
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of mind. As long as he stays in frame of mind j, he updates by conditionalizing,
but if his frame of mind changes from frame j to frame k, he updates by
conditioning on px. The agent might not even be aware that he assigns differ-
ent probabilities in different frames of mind.

Does this last policy satisfy Spanning? It does. Suppose that the prior i p
and the agent is about to begin an experiment with outcomes that yield the
mutually exclusive propositions E,, for m e M. It is possible that the agent
stays in frame of mind 1, but it is also possible that he will shift into
some frame j in J before conditioning. The set of possible posteriors is
{Pj( JEm): j € J, m e M}, of which p4 is a convex combination.

8 Policies that Violate the Spanning and Tracking Criteria

We now turn to the limits set by the Tracking criterion.

A simple example will show that a violation of our criteria may be quite
salient in an ordinary, easily imaginable situation. Imagine a doctor who an-
nounces to a patient that the probability that he has a certain virus is x. He
prescribes a blood test that has no adverse effects of any sort.Then he an-
nounces that if the test outcome is positive he will conclude that probability is
at least twice as high, but if the outcome is negative they won’t know any more
than before, his current opinion will not change, and they will need more tests.
(Various acquaintances of ours readily imagined that their doctors might an-
nounce something of this form.)

Only a little reflection shows that the doctor’s probabilities, as they can
evolve over this interval of time, cannot possibly be in accordance with the
actual statistics throughout. If his prior probability, before the test is given,
matches the statistics, so that x% of the population has the virus, how could
the proportions in the three sub-populations (test positive, test negative, not
tested) be 2x%, x%, and x%? It is clear that to satisfy Spanning, the prior value
needs to fall strictly inside the interval spanned by the posterior values.

Orthodox Bayesians would have the same complaint against the doctor, for
this test situation, with its ‘definite’ propositional outcomes, is their paradigm
example, and he is supposed to conditionalize (and to know beforehand that
his possible posteriors will be conditionalizations on the outcomes). Thus the
orthodox Bayesian policy of conditionalizing on new ‘evidence’ propositions
satisfies Spanning. Currently, objective Bayesians recognize a wider array of
possible input forms, and follow the policy of maximizing relative entropy
(MAXENT), originally proposed by Jaynes (cf. Williamson [2011]). The
debate between orthodox and objective Bayesians goes back to the 1970s.
Specifically, Myron Tribus and Hector Motroni ([1972]) and Kenneth
Friedman ([1973]) debated an example in statistical physics where
MAXENT violates Spanning.
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Friedman insists on the criterion, though without naming it as a specific
criterion or elaboration, viewing it as corollary to the Bayesian policy:

According to a Bayesian account that a prior probability cannot be
revised upward [. ..] but will with probability p [>0] be revised
downward, implies that [...] the prior probability must  be too high.
(Friedman [1973], p. 266)

The currently more familiar, and simpler, ‘Judy Benjamin’ problem illustrates
the same difficulty (van Fraassen [1981]; van Fraassen et al. [1986]; Grove and
Halpern [1997]; Hartmann and Rad [unpublished]).

In such examples,where the input is a new value for a conditional prob-
ability of a given event A on assumption B, there will be an event C disjoint
from A [ B whose probability MAXENT will definitely raise or keep equal,
regardless of what that new input value is (cf. van Fraassen [1981]; the point is
generalized in (Seidenfeld [1987], Corollary 1, p. 283)). If those probabilities
are the relevant possible posteriors then Spanning is violateditherefore, by
Theorem 3, Tracking is violated as well.

Many discussions have shown how this difficulty can disappear if the situ-
ation is described differently, either by adding information to the input, or
constraining the range of possible inputs not ruled out by the prior, or con-
straining the range of possible posteriors allowed by the policy. Each of these
alters the situation; Jaynes’ prescription was specifically for the case in which
there is nothing else to go on. Even today MAXENT remains controversial
(see, for example, Gmwald and Halpern [2003]). On the one hand, there is an
explicit defense of MAXENT’s violation of ~ Spanning by Jon Williamson
([2011], pp. 68, 72, 80-1); on the other hand, Brian Skyrms concluded on
the basis of his results about the relation between MAXENT and conditiona-
lization that ‘MAXENT escapes dynamic incoherence by a hair’s breadth’
(Skyrms [2013], p. 82; see also his [1985], [1987]).

Appendix: Generalizing to the Countably Infinite Case

In the proof of Theorem 4, the underlying space, S, was assumed finite, so that
the set of random variables formed a finite-dimensional vector space. In the
case where S is countable, it becomes less clear how the criterion of possibly
tracking real statistics is to be understood. Presumably, ‘tracking the real
statistics’ would need to be cashed out in terms of matching limits of relative
frequencies in countable sequences of samplings or events.

However, the proof of Theorem 4 can be generalized to include the case of R
finite but S countable. In that case, the vector space whose elements are the
random variables defined on S, including the probability functions, must be
chosen such that the scalar products (hence, the expected values) are well defined.
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LetS%{x:j%1,2,3,...} We restrict to well-behaved random variables,
that is, the function g such that J-jg(xj)j2 is finite (‘square integrable func-
tions’). Then the random variables form a separable Hilbert space familiar
from quantum mechanics, standardly called 1. This includes the probability
functions defined on S, in the same way as before, and the scalar product is
well defined.

The definitions we gave above for the finite case carry over naturally. A
hyperplane is a set of vectors orthogonal to a given vector and, equivalently,
the set of vectors x such that for a certain vector, y, (x, y) % 0. A hyperplane H
divides the space into two half-spaces, H* % {x: (x, y) 0} and
H™ % {x: (x,y) O}.

Although S is now allowed to be countably infinite, we continue to require
that R be finite, so its convex hull is a polytope with the members of R its
vertices. Since a subspace dfd convex, all of this hull, together with the prior
p, is a subset of finite-dimensional sub-space.Nothing in the argument in
Theorem 4 required reference to the properties of the ambient space, so it
applies without change to this setting as well.
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