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1. Introduction

Decision-making in an uncertain environment is a fundamental component of game theory: players must choose what 

to do without necessarily knowing what their opponents will do. Under certainty, decision-making is straightforward: one 

simply chooses the course of action that leads to the most preferred outcome. Under uncertainty, however, a player must 

evaluate many possible outcomes in a manner that somehow takes into account her relative degrees of belief. There are 

many ways to do this. The maximin decision rule, for example, focuses entirely on worst-case scenarios. An expected utility 

maximizer, on the other hand, weights each outcome according to her (subjective) assessment of its probability and chooses 

the course of action that maximizes the corresponding expected value.

One can argue about which decision rules are reasonable and which are not, and the word “rational” might be invoked 

to denote this very divide. However, this is not the debate that concerns us here. Rather, assuming that we have fixed a 

decision rule for a given player, we can ask whether that player is, in fact, making choices in accordance with it, and call 

her rational precisely when she is. In classical game theory, for example, rationality is typically identified with expected 

utility maximization: a player is rational if and only if she is acting to maximize her expected utility.

Rationality in this sense plays a crucial role in the analysis of games; indeed, standard foundations of many solution 

concepts require not only that each player is rational, but also that each player believes that her opponents are rational, 

believes that her opponents believe that their opponents are rational, and so on. Formal logic furnishes a powerful and 

versatile framework for representing such complex epistemic reasoning; namely, modal logics of belief and the Kripke 

structures typically used to give semantics to these logics. However, while the notion of rationality has been incorporated 

* Corresponding author.
E-mail addresses: abjorn@andrew.cmu.edu (A. Bjorndahl), halpern@cs.cornell.edu (J.Y. Halpern), rafael@cs.cornell.edu (R. Pass).

http://dx.doi.org/10.1016/j.geb.2017.03.006

0899-8256/ 2017 Elsevier Inc. All rights reserved.



A. Bjorndahl et al. / Games and Economic Behavior 104 (2017) 146–164 147

into these models both syntactically and semantically, no axiomatization of the resulting logical systems has been provided. 

This paper fills this gap.

Axiomatization is a way of distilling the mathematical properties of a given class of models into a few core principles 

from which all the rest follow deductively. This provides valuable insight into the logical assumptions implicit in these mod-

els. Moreover, in abstracting away from the full mathematical structure, axiom systems serve to illuminate commonalities 

between different kinds of models and provide logical tools to reason systematically about them.

Consider the standard KD45 axiomatization of the basic modal language of belief (see Sections 2.1 and 3). Intuitively, 

the axioms of this system represent the foundational properties of a certain conception of belief: the core principles from 

which all and only the true statements about belief follow. It is standard to employ probability measures to model belief (see 

Section 2.2), and KD45 axiomatizes certain classes of such models. But this system also axiomatizes classes of models that 

employ binary relations rather than probability measures to interpret belief, thereby establishing a precise mathematical 

connection between such so-called “qualitative” models and their “quantitative” or “probabilistic” counterparts.

The main axiomatization result we present in this paper extends KD45, and is defined with respect to a logical language 

expressive enough to talk about rationality as well as belief. We take as our point of departure axioms for rationality in the 

sense of expected utility maximization first articulated in Bjorndahl et al. (2011). We then extend these axioms to arbitrary

decision rules; this allows us to reason about other standard rules beyond expected utility maximization, such as maximin

and minimax regret (see Halpern, 2003 for a discussion of all the decision rules mentioned in this paper). Though the full 

range of decision rules we consider is quite wide, our axiomatization results for the corresponding notions of rationality are 

all essentially the same, revealing a common thread running through all these formalizations of rational decision making. Of 

course, the nature of any axiomatization depends on the expressivity of the underlying logical language, a point we return 

to throughout the paper, particularly in Section 3.2. In essence, we work with a language that is rich enough to capture 

rationality and belief without being so rich as to require probabilistic models for its interpretation. As such, our results 

hold in both quantitative and qualitative frameworks (see Sections 2.2 and 3). We also consider the effect of representing 

uncertainty by a set of probability measures rather than a single one; this allows us to capture well-known decision rules 

such as maxmin expected utility and minimax expected regret.

Finally, having developed these logics for reasoning about different notions of rationality, we turn our attention to mod-

eling situations where players might be uncertain about which decision rules their opponents are using. Endogenizing 

decision rules in this way broadens not only the notion of rationality, but also that of iterative rationality; this, we argue, 

provides a better epistemic foundation for a number of solution concepts.

The rest of this paper is organized as follows. In Section 2, we define the core concepts formally: games, modal logics 

of belief appropriate for reasoning about games, and the incorporation of rationality into these logics. Section 3 presents 

the main axiomatization together with a proof of soundness and completeness; we also extend these core results to logics 

in which the players’ uncertainty is represented by sets of probabilities, and discuss the role of language. In Section 4, we 

consider logics in which players may be uncertain about the decision rules used by their opponents, and provide a natural 

application of this framework in the form of a new solution concept, D-rationalizability, as well as an axiomatization. 

Section 5 concludes with a discussion of future work. Proofs are collected in Appendix A.

2. Reasoning about games

Given a tuple (Xi)i∈I over some finite index set I = {1, . . . , n}, we adopt the usual notational convention of writing

X :=
∏

i∈I

Xi and X−i :=
∏

j �=i

X j.

We also write X ′
i
× X−i for

X1 × · · · × Xi−1 × X ′
i × Xi+1 × · · · × Xn

and similarly (x′
i
, x−i) for (x1, . . . , xi−1, x

′
i
, xi+1, . . . , xn).

A (normal-form) game is a tuple � = (I, (�i)i∈I , (ui)i∈I ) where I = {1, . . . , n} is the set of players, �i is the (finite) set of 

strategies available to player i, and ui : � → R is player i’s utility function, where � =
∏

i �i denotes the set of strategy profiles.

2.1. Syntax

One way of reasoning formally about a game is to build a logical language that is expressive enough to capture the 

aspects of play that we are interested in analyzing. To this end, given a game �, we begin by defining a propositional modal 

language of belief and then specializing the primitive propositions to correspond to the strategies available to the players.

Given an arbitrary set � of primitive propositions, let LB(�) be the language consisting of those formulas obtained by 

closing off the set � of primitive propositions under logical negation (¬), conjunction (∧), and the unary modalities B i (for 

i ∈ I), where B iφ is read “player i believes φ”. We define other connectives such as disjunction (∨), the material conditional 

(→), and the biconditional (↔) as usual in terms of ∧ and ¬, and write B̂ iφ for ¬B i¬φ (“player i consider it possible that 

φ”). We also write
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E1φ ≡ B1φ ∧ · · · ∧ Bnφ and

Ekφ ≡ E1(Ek−1φ)

for “everyone believes φ” and its k-fold iteration, respectively. Let

�� := {playi(σi) : i ∈ I, σi ∈ �i},

where we read playi(σi) as “player i is playing strategy σi”; we write

play(σ ) ≡ play1(σ1) ∧ · · · ∧ playn(σn) and

play−i(σ−i) ≡
∧

j �=i

play j(σ j)

for “the players are playing according to the strategy profile σ ” and the analogous statement regarding the players other 

than i. The language LB (��) is thus appropriate for reasoning about the beliefs of the players with respect to the strategies 

they are playing.

2.2. Semantics

A language of belief can be interpreted using Kripke-style possible world semantics, where associated to each world ω
and each player i is a probability measure on the set of all worlds, used to interpret player i’s beliefs at ω. In the case of a 

language like LB(��), we also must take care to interpret the primitive propositions appropriately.

A (countable) �-structure is a tuple M = (�, (Pri)i∈I , s) satisfying the following conditions:

(C1) � is a nonempty, countable set;

(C2) Pri associates with each ω ∈ � a probability measure Pri(ω) on �;

(C3) if Pri(ω
′) �= Pri(ω), then Pri(ω)(ω′) = 0;

(C4) s : � → � is such that if s(ω′) �= s(ω), then Pri(ω)(ω′) = 0.

Conditions (C1) and (C2) set the stage to interpret player i’s beliefs at ω by the measure Pri(ω). Condition (C3) then 

ensures that at each world ω, each player is sure of (i.e. assigns probability 1 to) her own beliefs. Finally, condition (C4) 

establishes that the strategy function s assigns to each world ω a strategy profile s(ω) in game �—intuitively, the strategy 

that each player is playing at ω—and moreover, that each player is sure of her own strategy.

A �-structure M induces an interpretation [ [·] ]M :LB(��) → 2� defined recursively as follows:

[[playi(σi)]]M := {ω ∈ � : si(ω) = σi}

[[φ ∧ ψ]]M := [[φ]]M ∩ [[ψ]]M

[[¬φ]]M := � [[φ]]M

[[B iφ]]M := {ω ∈ � : Pri(ω)([[φ]]M) = 1}.

Thus, the primitive propositions are interpreted in the obvious way using the strategy function (si denotes the ith 

component function of s), the Boolean connectives are interpreted classically, and the formula B iφ holds at all and only 

those worlds ω at which Pri(ω) assigns probability 1 to φ. Dually, it is easy to check that

[[B̂ iφ]]M := {ω ∈ � : Pri(ω)([[φ]]M) > 0}.

As is standard, we often write (M, ω) |= φ or just ω |= φ to indicate that ω ∈ [ [ϕ] ]M . Similarly, we write M |= φ, and say that 

φ is valid in M , if [ [φ] ]M = �, and when (M, ω) �|= φ, we say that M refutes φ (at ω), or just that ω refutes ϕ .

�-structures come equipped with full-fledged probability measures, but this may seem like overkill since the belief 

modalities are interpreted only by reference to events of probability 1. One way to make this intuition precise is by defin-

ing a simpler kind of model: a (countable) qualitative �-structure is a tuple M = (�, (Si)i∈I , s) satisfying the following 

conditions:

(C1′) � is a nonempty, countable set;

(C2′) Si associates with each ω ∈ � a subset Si(ω) ⊆ �;

(C3′) if Si(ω
′) �= Si(ω), then ω′ /∈ Si(ω);

(C4′) s : � → � is such that if s(ω′) �= s(ω), then ω′ /∈ Si(ω).

Think of Si(ω) as the set of worlds agent i considers possible at ω. Define an interpretation as before except replacing the 

clause for the belief modalities with the following:

[[B iφ]]M := {ω ∈ � : Si(ω) ⊆ [[φ]]M}.
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It is not hard to see that every �-structure induces a qualitative �-structure by replacing each probability measure with its 

support: that is, by setting Si(ω) = {ω′ ∈ � : Pri(ω)(ω′) �= 0}. It is also easy to see that this transformation preserves the 

truth value of all formulas at all worlds. Despite this equivalence, we focus in this paper on the richer class of �-structures. 

This is because, as we will see in the next section, many of the notions of rationality we seek to represent in our logic 

depend crucially on quantitative information about the players’ probabilistic beliefs; this information simply is not available 

in qualitative �-structures.

2.3. Rationality

Informally, a player is rational if the strategy she is playing is a best response to her beliefs about the outcome of the 

game, given her preferences. But there is no single conception of what constitutes a “best response”; a wide variety of 

principles of decision-making have been proposed and studied.

One influential notion, particularly in game theory, is that of expected utility maximization. Given a game � and a 

probability measure μ on �−i (thought of as representing player i’s beliefs about the strategies her opponents will play), 

the expected utility of a strategy σi ∈ �i is just the expected value of the function ui(σi, · ) : �−i → R with respect to μ:

EUi(σi;μ) :=
∑

σ−i∈�−i

ui(σi,σ−i) · μ(σ−i).

A best response for an expected utility maximizer is a strategy that maximizes this value. Abstractly, we might identify the 

mandate “maximize expected utility” for player i (in the game �) with a function deu
i

that takes as input a belief μ on �−i

and returns as output the set of strategies σi ∈ �i that maximize player i’s expected utility given μ:

d
eu
i (μ) := {σi ∈ �i : (∀σ ′

i ∈ �i)(EUi(σi;μ) ≥ EUi(σ
′
i ;μ))}.

Let �(�−i) denote the set of all probability measures on �−i . Then, generalizing the above, we define a decision rule for 

player i (in �) to be a function di : �(�−i) → 2�i {∅}. Intuitively, σi ∈ di(μ) just in case σi is a best response for player i

to the belief μ according to the decision rule di . For another example, the “maximin” mandate for player i, which says to 

maximize the worst-case outcome among those considered possible, corresponds to the decision rule defined as follows: 

let

WCi(σi;μ) := min{ui(σi,σ−i) : μ(σ−i) > 0},

and set

d
m
i (μ) := {σi ∈ �i : (∀σ ′

i ∈ �i)(WCi(σi;μ) ≥ WCi(σ
′
i ;μ))}.

Decision rules can be interpreted in �-structures; roughly speaking, for each world ω, we can define the set of di -best 

responses for player i at ω, and thus determine whether or not player i is being di-rational (i.e., acting in accordance with 

the decision rule di ) at ω. Formally, given a �-structure M , for each player i and each world ω, the probability measure 

Pri(ω) induces a probability measure μi,ω defined on �−i as follows:

μi,ω(σ−i) := Pri(ω)([[play−i(σ−i)]]M).

Mathematically, μi,ω is the pushforward of Pri(ω) by s−i ; it captures what are sometimes called the first-order beliefs of 

player i at ω. Since Pri(ω) is interpreted as representing player i’s beliefs at ω, it makes sense to apply her decision rule to 

μi,ω . This leads us to define the set of di-best responses for player i at ω to be di(μi,ω). We say that player i is di-rational 

at ω just in case si(ω) ∈ di(μi,ω).

Since we wish to reason formally about rationality in games, we expand our logical language to include primitive propo-

sitions denoting rationality of the players. Given a profile of decision rules d = (di)i∈I , let

�d
� := �� ∪ {RAT

di

i
: i ∈ I},

where RAT
di

i
is read “player i is di-rational”. Henceforth, except where noted otherwise, we work with an arbitrary but 

fixed profile of decision rules d. For notational convenience, we omit the di when possible, referring to “best responses” and 

“rationality” instead of “di-best responses” and “di-rationality”, and writing RAT i instead of RAT
di

i
. We also make use of the 

syntactic abbreviation

RAT ≡ RAT1 ∧ · · · ∧ RATn

for “everyone is rational”.

Given a �-structure M , the interpretation [ [·] ]M is extended to LB(�
d
�) in the obvious way, by setting

[[RAT i]]M := {ω ∈ � : si(ω) ∈ di(μi,ω)}.

When d = d
eu , so each player’s decision rule is given by expected utility maximization, we regain the traditional notion of 

rationality in game theory. Rationality so defined can be used to characterize several well-known solution concepts in terms 
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Table 1

Bach or Stravinsky?

Bach Stravinsky

Bach 3,2 0,0

Stravinsky 0,0 2,3

of �-structures. For example, as shown by Tan and Werlang (1988) and Brandenburger and Dekel (1987), given a game �, 

a strategy σi is rationalizable if and only if there exists a �-structure M and a state ω therein such that ω |= playi(σi) and 

for every k ∈ N, ω |= Ek(R AT ) (i.e., it is common belief that everyone is rational). Thus, the languages LB (�d
�) we have 

defined are expressive enough not only to capture any given notion of rationality, but also to characterize rationalizability 

with a countable set of formulas (the infinitary nature of this characterization can be removed by adding a common belief

modality, though we do not pursue this theme here).

It is worth noting that decision rules are general enough to represent processes that fall outside the traditional purview 

of “rationality”. For example, suppose that player i is a computer system and �i is a collection of actions it can execute. 

Suppose also that the system maintains a database consisting of estimates of the values of certain variables, which can be 

represented as beliefs about the strategies of “opponents”. In this context, a decision rule can be thought of as a (nondeter-

ministic) process that the computer system might use to choose which action to execute on the basis of the information in 

its database. In particular, R AT
di

i
asserts that the system has executed an action consistent with the process di .

1

Example 1. In order to help solidify the framework just introduced, we present a simple example. Consider the standard 

Bach-or-Stravinsky game �BoS (Osborne and Rubinstein, 1994), in which each of two players must choose which of two 

concerts to attend this evening: one featuring the music of Bach, and one of Stravinsky. Player 1 prefers to attend the Bach 

concert, while player two prefers the Stravinsky; moreover, each much prefers to attend the same concert as the other. We 

can represent these preferences with the utility functions summarized in Table 1.

We now describe a �BoS-structure in which we can reason about the beliefs and rationality of the players. Of course, 

there are many such �BoS-structures, each representing a different configuration of facts and beliefs; the one we consider 

here is chosen simply to provide a concrete illustration of the connection between the logical formalism and the game.

Let � = {ω0, ω1, ω2} and let Pr1(ω0) be the uniform distribution on {ω1, ω2}, so player 1 considers ω1 and ω2 equally 

likely. Consider a strategy function s defined such that s2(ω1) = Bach and s2(ω2) = Stravinsky. It is easy to see that in this 

case, the induced measure μ1,ω0
assigns probability .5 to Bach and .5 to Stravinsky. It follows easily that player 1’s expected 

utility on choosing Bach is 1.5, while her expected utility on choosing Stravinsky is 1. Thus,

ω0 |= RAT
d
eu
1

1 ↔ play1(Bach).

On the other hand, the worst-case outcome for player 1 on choosing either Bach or Stravinsky yields a utility of 0, so we 

have

ω0 |= RAT
d
m
1

1 ,

regardless of which strategy player 1 actually chooses at ω0 . �

3. Axiomatization

Although reasoning formally about beliefs and rationality has long been recognized as important to game theory (see, 

e.g., Aumann, 1999), to the best of our knowledge, rationality has not been axiomatized in a logic of belief. In this section 

we provide an axiomatization and prove that it is sound and complete.

Recall that an axiom system consists of a collection of axiom schemes (which are just families of formulas) and rules of 

inference (which give a way of deriving new formulas from a collection of formulas already proved). An axiom system AX is 

a sound axiomatization of a given language L with respect to a class of models M if every formula in L that is provable 

from AX is valid in every model in M. Conversely, AX is a complete axiomatization of L with respect to M if every formula 

in L that is valid in every model in M is provable in AX. In our case, M will consist of the countable �-structures.

A sound and complete axiomatization is a way of understanding a class of models by condensing their various features 

into a more digestible form: a (short) list of core principles from which all other truths follow deductively. Consider the 

following axiom schemes and rule of inference:

K. B i(φ → ψ) → (B iφ → B iψ),

D. B iφ → B̂ iφ,

1 In this sense, we can think of a decision rule as a knowledge-based program (Fagin et al., 1995). Knowledge-based programs have previously been used 
to characterize rationality and solution concepts (Halpern and Moses, 2007).
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4. B iφ → B iB iφ,

5. ¬B iφ → B i¬B iφ,

N. From φ deduce B iφ.

Adding these to any axiomatization of classical propositional logic produces the system called KD45, which is sound and 

complete with respect to several important classes of models for belief. The axioms help us understand the nature of belief 

in these models; they also make plain the implicational relations between the various properties of belief. For instance, 

the requirement that agents be “introspective” about their beliefs—that is, sure of their own beliefs—is revealed to be a 

conjunction of two related but logically independent principles: a positive and a negative version of introspection as captured 

by axioms 4 and 5, respectively.

All the axiomatizations we present in this paper are extensions of the basic KD45 system. The logics we are concerned 

with have been specialized to express statements about a given game �, and have been extended to include the primi-

tive propositions RAT i , interpreted as rationality with respect to a given decision rule di . Each of these features requires 

additional axioms.

Fix a game � and a profile of decision rules d. To begin, we encode the fact that each player must play exactly one 

strategy:

G1.
∨

σi∈�i

playi(σi),

G2. ¬(playi(σi) ∧ playi(σ
′
i
)), for σi �= σ ′

i
.

Next come introspection conditions for both strategies and rationality: each player is certain of her strategy and of whether 

or not she is rational:

G3. playi(σi) ↔ B i playi(σi),
2

G4. RAT i ↔ B i(RAT i).

G1–G4 are easy to state and understand. What remains are the axioms that capture the specific nature of rationality 

as expressible in the language; G4 identifies it as the kind of thing players are always sure about, but is silent about any 

further properties it might have. In order to state the final axioms of our system, we require some preliminary definitions. 

Given a subset S ⊆ �−i , let

δi,S ≡
∧

σ−i∈S

B̂ i play−i(σ−i) ∧
∧

σ−i /∈S

¬B̂ i play−i(σ−i).

Intuitively, the formula δi,S says that player i considers possible all and only the strategy profiles for her opponents that are 

elements of S . It is easy to see that for each player i and any world ω, exactly one of the formulas δi,S holds.

Given a measure μ on a countable set X , let

supp(μ) := {x ∈ X : μ(x) > 0},

the support of μ. For each player i and each σi ∈ �i , let S
+
i (σi) denote the collection of all S ⊆ �−i such that there exists 

a probability measure μ with supp(μ) = S and with respect to which σi is a best response; that is, σi ∈ di(μ). Similarly, 

define S−
i

(σi) to be the collection of all S ⊆ �−i such that there exists a probability measure μ with supp(μ) = S and 

σi /∈ di(μ). Consider the following axiom schemes:

G5. (playi(σi) ∧ RAT i) →
∨

S∈S+
i

(σi)

δi,S ,

G6. (playi(σi) ∧ ¬RAT i) →
∨

S∈S−
i

(σi)

δi,S .

Intuitively, G5 says that if R AT i holds and player i is playing σi , then player i must consider possible a collection of strategy 

profiles3 on which she could place a probability that would justify her playing σi . G6 is interpreted analogously. Since 

exactly one of the formulas δi,S holds for each player i, one might also read these axioms “in reverse”: if i considers all and 

only the strategy profiles in S possible and is playing σi , then G5 and G6 taken together either (a) demand that player i

rational, (b) demand that player i is irrational, or (c) make no demands, depending (respectively) on whether

2 In fact, it is not hard to see (in light of G1 and G2) that the reverse implication B i playi(σi) → playi(σi) is redundant here. We state this axiom scheme 
as a biconditional merely to emphasize the introspective nature of this principle. We thank an anonymous reviewer for pointing this redundancy out to us.
3 Note that the sets S+

i
(σi) and S−

i
(σi) could be empty; by convention, we define the empty disjunction to be ⊥ (or false). If, for example, S+

i
(σi) = ∅, 

this means that σi is not a best response to any beliefs, in which case the corresponding axiom (playi(σi) ∧ RAT i) → ⊥ is intuitively correct.
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Table 2

Utility values for outcomes in the game �.

L M R

T 1 0 3

B 2 1 2

(a) S ∈ S
+
i

(σi) S
−
i

(σi),

(b) S ∈ S
−
i (σi) S

+
i (σi), or

(c) S ∈ S
+
i

(σi) ∩ S
−
i

(σi).

Example 2. We define a simple game for the purpose of elucidating axioms G5 and G6. In this example we fix the inter-

pretation of rationality for all players as expected utility maximization. Consider a game � with I = {1, 2}, �1 = {T , B}, 

�2 = {L, M, R}, and utility functions u1 = u2 defined as shown in Table 2.

For each player i and each available strategy σi ∈ �i , we must determine membership in the corresponding sets S+
i

(σi)

and S
−
i

(σi); we consider a handful of particular examples in order to illustrate the general process.

First we observe that {L} ∈ S
−
1 (T ) S

+
1 (T ); this is because the only probability measure that has support equal to {L} is 

one for which T is not a best response. Next we check that {L, R} ∈ S
+
1 (T ) ∩S

−
1 (T ); this follows from, for example, the fact 

that T is a best response to beliefs that place probability 1
4

on L and 3
4

on R , whereas T is not a best response to beliefs 

that place probability 3
4

on L and 1
4

on R . For a final example, it is not hard to see that S+
2 (M) = S

−
2 (R) = ∅, since no 

matter what beliefs player 2 has, M cannot be a best response and R must be a best response.

One can check that

S
+
2 (L) = {{B}}

and

S
−
1 (B) = {{R}, {L, R}, {M, R}, {L,M, R}}.

It follows that the formulas

(play2(L) ∧ RAT2) → δ2,{B}

and

(play1(B) ∧ ¬RAT1) → (δ1,{R} ∨ δ1,{L,R} ∨ δ1,{M,R} ∨ δ1,{L,M,R})

are instances of G5 and G6, respectively. The first formula is equivalent to

(play2(L) ∧ RAT2) → B2 play1(B),

so it expresses the fact that if player 2 is rationally playing L, then he must be sure that player 1 is playing B . The second 

formula is equivalent to

(play1(B) ∧ ¬RAT1) → B̂1 play2(R),

which says that if player 1 is irrationally playing B , then she must consider it possible that player 2 is playing R . �

Notice that player i’s actual (i.e., quantitative) beliefs are not fully specified in G5 or G6. This may be somewhat surpris-

ing, given that the semantic interpretation of R AT i depends (in principle) on the quantitative probabilities that constitute 

player i’s beliefs: how can it be that a notion of rationality induced by a quantitative decision rule is fully captured by a 

pair of axioms that make no reference to probabilities? Of course, for decision rules that are purely qualitative—i.e., defined 

solely in terms what each player considers possible, rather than the probabilistic weights they assign to the different possi-

bilities (as, for example, with maximin)—this is a non-issue. The mismatch arises precisely when rationality depends on the 

quantitative nature of belief, because the belief modalities themselves do not (see Section 2.2, especially the definition of a 

qualitative �-structure).

In this case a richer language may well be of interest; we explore this point further as it pertains to expected utility 

maximization in Section 3.2. Nonetheless, the language LB (�d
�) is an important one for the analysis of rationality in games 

despite (and, in some senses, because of) its expressive limitations. For one thing, as we have already noted, it is expressive 

enough to characterize iterative rationality. Moreover, for those concerned with purely qualitative decision rules d, the 

simpler class of qualitative �-structures are natural models to work with, and while it is easy to see that LB (�d
�) is 

interpretable in such structures, a richer language that could express quantitative beliefs would not be. At a high level, what 

axioms G5 and G6 offer us is a qualitative perspective on arbitrary decision rules. That these principles must hold is perhaps 

not terribly surprising; on the other hand, that they constitute all that can be said about rationality in this framework is 

quite notable.

Let GL
d
� be the axiom system that results from adding G1–G6 to the KD45 axioms and rules of inference. These axioms 

completely characterize the logical properties of rationality as expressible in the language LB (�d
�).
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Theorem 1. GL
d
� is a sound and complete axiomatization of the language LB(�

d
�) with respect to the class of all �-structures.4

Corollary 2. Let d be a profile of qualitative decision rules. Then GL
d
� is a sound and complete axiomatization of the language LB(�

d
�)

with respect to the class of all qualitative �-structures.

It bears emphasizing that GL
d
� is parametrized by two variables: the underlying game � that determines the players, 

their strategies, and their preferences, and the profile of decision rules d that determines the meaning of “rationality” for 

each player. Thus, what we are axiomatizing here is not a single logic but a class of logics. For each fixed � and d, the 

corresponding axiom system GL
d
� is trivially decidable (i.e., we can effectively determine whether a formula is an instance 

of an axiom scheme) because KD45 is decidable and there are only finitely-many instances of the axiom schemes G1–G6

(the implicit quantification in these schemes ranges in some cases over players and in others over strategies, all of which 

are finite sets).

3.1. Belief as lower probability

In the above we take for granted that each player’s uncertainty is represented by a probability measure. While this is 

a very standard assumption, it is by no means the only framework that has been considered; see Halpern (2003) for an 

overview of different ways of modeling uncertainty. Here we show that, with very minor modifications, the axiomatization 

given above also works in the more general context where beliefs are represented using sets of probability measures.

Given a set P of probability measures, the lower probability of an event E , denoted P∗(E), is defined to be the infimum 

of the probabilities assigned to E by members of P :

P∗(E) := inf{μ(E) : μ ∈ P }.

Fix a game �. A (countable) lower �-structure is a tuple M = (�, (PRi)i∈I , s) satisfying the following conditions:

(L1) � is a nonempty, countable set;

(L2) PRi associates to each ω ∈ � a set PRi(ω) of probability measures on �;

(L3) PRi(ω)∗({ω
′ ∈ � : PRi(ω

′) = PRi(ω)}) = 1;

(L4) s : � → � satisfies PRi(ω)∗({ω
′ ∈ � : si(ω

′) = si(ω)}) = 1.

These conditions are simply the analogues of conditions (C1) through (C4) where uncertainty is represented by sets of 

probability measures and certainty is identified with lower probability 1. Accordingly, we define the interpretation [ [·] ]M as 

before, except for the clause corresponding to the belief modalities, which is replaced by the following:

[[B iφ]]M := {ω ∈ � : PRi(ω)∗([[φ]]M) = 1}.

Finally, a decision rule for player i in this context is a function di : 2
�(�−i) → 2�i {∅}, since player i must make her choice 

based on the uncertainty given by a set of probability measures. For example, the “maximin expected utility” decision rule 

for player i would be given by the following:

d
meu
i (P ) :=

{
σi ∈ �i : (∀σ ′

i ∈ �i)
(
min
μ∈P

{EU i(σi;μ)} ≥ min
μ∈P

{EU i(σ
′
i ;μ)}

)}
.

Other rules, such as minimax expected regret (Hayashi, 2008), can also easily be defined in this setting.

As before, such decision rules makes sense in a �-structure M: for each player i and each world ω, the probability 

measures in the set PRi(ω) can be pushed forward by s−i to probability measures on �−i . Let Pi,ω denote the set of all 

such pushforwards:

Pi,ω := {μi,ω : μ ∈ PRi(ω)}.

Then we can define di-rationality for player i at ω in the obvious way, namely, by the requirement that si(ω) ∈ di(Pi,ω).

The axiomatization of Section 3 can be generalized as well. First observe that the dual belief modality, B̂ i ≡ ¬B i¬, is 

interpreted as positive upper probability, where the upper probability of an event E with respect to a set P of probability 

measures, denoted P ∗(E), is given by

P
∗(E) := sup{μ(E) : μ ∈ P }.

Accordingly, given a set P of probability measures on a countable space X , we define

supp(P ) := {x ∈ X : (∃μ ∈ P )(μ(x) > 0)}.

4 Our proof shows that completeness holds even with respect to finite �-structures. That is, we do not get any extra axioms if we restrict to finite 
�-structures.
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For each σi ∈ �i , let S
+
i

(σi) denote the collection of all S ⊆ �−i such that there exists a set of probability measures P

with supp(P ) = S and σi ∈ di(P ). Similarly, define S−
i

(σi) to be the collection of all S ⊆ �−i such that there exists a set 

P of probability measures with supp(P ) = S and σi /∈ di(P ). It is not hard to see that all of these definitions generalize 

what was presented in Sections 2 and 3; indeed, by considering the special case where all sets of probability measures are 

singletons, we recover that framework exactly. Moreover, the axiom system GL
d
� , interpreted in this more general setting 

using the definitions above, remains sound and complete.

Theorem 3. GL
d
� is a sound and complete axiomatization of the language LB(�

d
�) with respect to the class of all lower �-structures.

3.2. The role of language

In this section we focus on the profile of decision rules d = d
eu , with respect to which each player is rational precisely 

if they are playing a strategy that maximizes their expected utility. As noted, it is somewhat surprising that G5 and G6 are 

sufficient to capture this notion of rationality. Whether or not a player is maximizing their expected utility depends on their 

quantitative beliefs; however, while G5 and G6 specify the possible supports for player i’s beliefs, they say nothing about the 

actual weights placed on the individual outcomes. Nor could they—the language LB (�d
�) cannot express anything beyond 

such qualitative properties of the measures Pri(ω).

Expressivity, however, is a double-edged sword: when working with a less expressive language, though we are more 

limited in the possible axioms we have available, there are also fewer validities to worry about proving. This, in essence, 

is why GL
d
� can be a complete axiomatization: the properties of rationality it fails to encode are precisely those properties 

that are not expressible in the language at all.

A richer language—in particular, one with a finer-grained representation of belief—may not be axiomatizable at all, or at 

least not using the techniques in this paper. Consider, for example, a language with belief modalities Bα
i

for each α ∈ [0, 1], 

where Bα
i
φ is interpreted as saying that player i assigns probability α to φ. In this case, GL

d
� (replacing B i by B

1
i
) is sound 

but certainly not complete. It can easily happen, for example, that in the game � it is rational only for player i to play σi if 

she assigns probability 1
2
to σ−i ; however, the corresponding validity

(playi(σi) ∧ RAT i) → B
1
2

i
play−i(σ−i)

is clearly not a theorem of GL
d
� . Moreover, extending GL

d
� to this richer language runs into difficulties. The axiom schemes

G5 and G6 essentially work by insisting that the players’ beliefs be compatible with rationality or its negation, respectively. 

In the language LB(�d
�), this amounts to specifying the possible supports for the players’ beliefs, which can be written 

using finite formulas since each �−i is finite and therefore has only finitely-many subsets. By contrast, in the language with 

belief modalities Bα
i

for every α ∈ [0, 1], the “formula” that says that player i’s beliefs are compatible with rationality may 

be infinitely long.

A still richer language, however, can circumvent these difficulties entirely. Fix a game � and consider the language of 

linear likelihood inequalities defined by the grammar

φ ::= p |¬φ |φ ∧ ψ |a1�i(φ1) + · · · + ak�i(φk) ≥ b,

where p ∈ �� , i ∈ I , k ∈ N, and a1, . . . , ak, b ∈ R. The likelihood terms �i(φ) are meant to be read as “the probability of 

φ according to player i”, and a likelihood formula a1�i(φ1) + · · · + ak�i(φk) ≥ b should be thought of as asserting the 

corresponding inequality. More precisely, we interpret such formulas in a �-structure M as follows:

[[a1�i(φ1) + · · · + ak�i(φk) ≥ b]]M := {ω ∈ � :

k∑

j=1

a jPri(ω)([[φ j]]M) ≥ b}.

For example, the formula �i(φ) ≥ 1 says that player i assigns probability at least (and therefore exactly) 1 to φ, while 

the formula (�i(φ) ≥ 1
2
) ∧ (�i(¬φ) ≥ 1

2
) says that player i assigns probability 1

2
to φ. See Halpern (2003) for a thorough 

discussion of this and related logics; a sound and complete axiomatization is given in Fagin et al. (1990).

In this language, rationality in the sense of expected utility maximization can be defined, thus obviating the need for a 

separate axiomatization. Indeed, if we let σi � σ ′
i be an abbreviation for the formula

∑

σ−i∈�−i

ui(σi,σ−i)�i(play−i(σ−i)) −
∑

σ−i∈�−i

ui(σ
′
i ,σ−i)�i(play−i(σ−i)) ≥ 0,

which says that the expected value according to player i of playing σi is no less than the expected value of playing σ ′
i
, then 

it is easy to see that

RAT
d
eu
i

i
↔

∨

σi∈�i

(
playi(σi) ∧

∧

σ ′
i
∈�i

σi � σ ′
i

)
(1)

is valid. Since rationality is expressible in this language, it is axiomatized as well.
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It is not hard to see that a variety of other decision rules (such as maximin and minimax regret) can be likewise 

captured in this language, so the corresponding notions of rationality can be axiomatized in a similar way. However, these 

axiomatizations are not particularly informative: the axioms of this language capture general principles of probabilities, 

leaving the specific nature and properties of rationality completely (and opaquely) wrapped up in definitions as in (1). One 

might as well point out that the foundational axioms of set theory “axiomatize” rationality in the sense that expected utility 

maximization can be defined in this general mathematical setting. Languages rich enough to define the notions of rationality 

we care about give no specific insight into these notions beyond the definitions themselves. Depending on the language, of 

course, these definitions may be interesting or informative in their own right. For instance, in recent work, Lorini (2016)

shows that a simple logic capable of expressing knowledge, belief, and “strong belief” can be used to define strong and 

weak dominance, as well as various solution concepts based on iterative deletion of dominated strategies. Part of the value 

of Lorini’s work therefore lies in the relationship it exposes between the foundational notions of knowledge and (strong) 

belief and these solution concepts. Our contribution, by contrast, lies not in exploring the relationship between rationality 

and more “primitive” concepts, but in treating rationality itself as a primitive concept and analyzing its properties.

4. Endogenizing decision rules

In general, we may wish to reason about players who are uncertain about which decision rules their opponents are 

using. For example, player i might believe that if player j is maximizing her expected utility, then she will play σ j , but 

if she plays σ ′
j
, then she might instead be minimizing the worst-case outcome. One way to try to model such uncertainty 

is to expand the logic so that there is a set Di of decision rules associated with each player i. Consider the collection of 

primitive propositions

�D
� := �� ∪ {RAT

di

i : i ∈ I, di ∈Di}.

Interpret RAT
di

i
as before. Then LB(�D

� ) is a language for reasoning about the strategies and beliefs of the players i ∈ I as 

well as their adherence to the various decision rules di ∈Di .

In Appendix A.3, we show how to modify G5 and G6 to obtain a sound and complete axiomatization of LB (�D
� ) with 

respect to the class of all �-structures. But there is something unsatisfying about using this language to model players’ 

uncertainty about decision rules: the propositions RAT
di

i
say that player i is playing a di-best-response, but not that player 

i is actually using the rule di to decide her strategy. To see the difference, consider a player i who is trying to maximize 

her expected utility (i.e. using deu
i
), and happens to also play a maximin strategy; contrast this with a scenario in which 

she is actively seeking to maximize the worst-case outcome (i.e. using dm
i
), and in so doing happens to play a strategy 

that maximizes her expected utility. Although player i is following different decision rules in these two cases, the language 

LB(�
D
� ) cannot express this difference; the formula RAT

d
eu
i

i
∧ RAT

d
m
i

i
holds either way. For instance, in Example 1, it is not 

hard to check that

ω0 |= play1(Bach) →
(
RAT

d
eu
1

1 ∧ RAT
d
m
1

1

)
.

In sum, the propositions RAT
di

i
do not say anything about how player i is making her decision, but simply record whether 

or not the decision she does make is compatible with the rule di . What we want is a different kind of proposition, say 

rulei(di), that says that player i really is using the rule di in deciding her strategy.

Decision rules interpreted in this sense are particularly relevant in a dynamic setting. When an opponent does something 

unexpected and seemingly irrational, there is the question of how to update your beliefs. One option is to abandon the belief 

that your opponent is rational, but this is unsatisfying both conceptually and methodologically. An alternative response is to 

update your beliefs about your opponent’s beliefs: what they did actually was rational with respect to their beliefs, you had 

just misjudged what those beliefs were (see, e.g., Battigalli and Siniscalchi, 2002). But in some cases, this too is unsatisfying: 

for example, “continuing” at the second-last stage of the centipede game (see Example 4) is rational only for a player who 

believes her opponent to be irrational. When decision rules are present in the model as objects of belief, however, a third 

option becomes available: abandon the belief that your opponent is di -rational, but not that they are behaving rationally 

with respect to some other decision rule. Though an analysis of decision rules in extensive-form games is beyond the scope 

of this paper, the groundwork for such a study can be laid by formalizing them in a static context.

Fix a game � and a profile D = (Di)i∈I of sets of decision rules for each player i ∈ I . Expand the set �� of primitive 

propositions that we considered earlier by taking

��,D := �� ∪ {rulei(di) : i ∈ I, di ∈Di}.

In order to interpret the primitive propositions rulei(di), we must extend the semantic model so that it associates with each 

world ω the decision rule that each player i is using at that world; furthermore, we must constrain the strategies used 

at each world so that they are compatible with the corresponding decision rules. Formally, a (�, D)-structure is a tuple 

M = (�, (Pri)i∈I , s, r) satisfying (C1) through (C4) as well as the following additional conditions:
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(C5) r : � →D satisfies Pri(ω)({ω′ ∈ � : ri(ω
′) = ri(ω)}) = 1;

(C6) si(ω) ∈ ri(ω)(μi,ω).

Condition (C5) says that the decision function r assigns to each world ω a profile of decision rules r(ω)—intuitively, ri(ω) ∈Di

is the rule that player i is using at ω—and moreover, that each player is sure of her own decision rule. Condition (C6) 

requires that, at each world ω, the strategy si(ω) is an ri(ω)-best response for player i; in other words, player i really is 

following the decision rule ri(ω) at ω.

The language LB(��,D) can be interpreted in a (�, D)-structure M as before, with the additional clause

[[rulei(di)]]M := {ω ∈ � : ri(ω) = di}.

The resulting logic can be axiomatized using essentially the same technique as in Section 3 (see Section 4.2). But perhaps 

more interesting than axiomatizing this logic is the prospect of applying it to the analysis of games.

4.1. D-rationalizability

It is quite natural in certain strategic contexts for players to reason not only about their opponents’ strategies and beliefs, 

but also the decision-making process that they might be using. A decision rule like minimax regret, for instance, can lead to 

very different behavior in games like the centipede game or the traveler’s dilemma (Halpern and Pass, 2012); it is reasonable 

in such games to wonder, for example, whether an opponent is motivated to maximize utility or to avoid regret.

Recall that strategies that are consistent with common belief of rationality are called rationalizable. Common belief of 

rationality in games—the requirement that every player is rational, believes their opponents are rational, believes their 

opponents believe their opponents are rational, and so on—is often conceived of as a kind of “minimal” condition for 

equilibrium. But games like the traveler’s dilemma, where the rationalizable strategies are far from optimal and quite distinct 

from the typical strategies employed by human players (Capra et al., 1999), belie this intuition of minimality. However, by 

decoupling the meaning of rationality from expected utility maximization, the notion of “rationalizability” can be expanded 

to other decision rules, thereby providing what is arguably a better epistemic foundation for equilibrium theory.

More precisely, generalizing the traditional epistemic characterization of rationalizability, we define a strategy σi to be

D-rationalizable (in �) just in case there exists a (�, D)-structure in which σi is played at some state. Of course, the 

standard notion arises as the special case where each Di = {deu
i

}. It is easy to see, using a straightforward iterated deletion 

argument, that when the strategy sets are finite, D-rationalizable strategies must exist.5 Moreover, if for each player i we 

have Di ⊆ D
′
i
, then clearly every (�, D)-structure is also a (�, D′)-structure; this immediately establishes the following:

Proposition 4. For each player i, let Di ⊆ D
′
i
. Then if σi is D-rationalizable, it is also D′-rationalizable.

We illustrate these concepts with two examples. It will be useful first to formally define the minimax regret decision 

rule in our setting. Given a game � and probability measure μ on �−i , let

MRi(σi;μ) := max{max
σ ′
i
∈�i

ui(σ
′
i ,σ−i) − ui(σi,σ−i) : μ(σ−i) > 0},

corresponding to the maximum “regret” player i might feel having played σi , where “regret” is interpreted as the difference 

between the best-case payoff and the actual payoff (with respect to the strategy profiles σ−i that player i considers possible). 

The minimax regret decision rule dr
i
seeks to minimize this value:

d
r
i (μ) := {σi ∈ �i : (∀σ ′

i ∈ �i)(MRi(σi;μ) ≤ MRi(σ
′
i ;μ))}.

Example 3. Consider the traveller’s dilemma: each of two players must name an amount in �1 = �2 = {2, 3, . . . , 100}, which 

is the reimbursement they are requesting for luggage that was damaged by their airline. The airline will reimburse them 

both by the minimum amount requested, with one catch: the person who asks for less receives a $2 bonus, while the 

person who asks for more receives a $2 penalty (if they ask for the same amount, no bonuses or penalties are applied). 

Thus, payoffs are defined as follows:

ui(σ ) =

⎧
⎨
⎩

σi if σi = σ−i

σi + 2 if σi < σ−i

σ−i − 2 if σi > σ−i .

Clearly the best payoff is achieved by undercutting one’s fellow traveler by 1 if possible, and otherwise (if the other traveler 

plays 2), playing 2. It is easy to see that playing 100 is never a deui -best response; an iterative deletion argument then shows 

5 Set �(0)
i

= �i , and inductively define �
(k+1)
i

=
⋃

di∈Di
{σi : (∃μ ∈ �(�

(k)
−i

))(σi ∈ di(μ))}. Then �(0), �(1), . . . is a nested decreasing sequence that 

cannot include the empty set, so it must stabilize if � is finite. From such a stable �(K ) , it is easy to construct a (�, D)-structure in which each σi ∈ �
(K )

i

is played at some state.
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Fig. 1. A (�,D)-structure for the traveler’s dilemma.

Fig. 2. The centipede game.

that the only rationalizable strategy is to play 2. By contrast, when each Di = {dr
i
}, playing 100 is D-rationalizable. To prove 

this, by definition, it suffices to exhibit a (�, D)-structure in which 100 is played at some state. Consider the structure 

presented in Fig. 1.

Each of the four states of this structure is labeled with the strategy profile being played at that state, while the edges 

labeled i represent which states player i considers possible (i.e., assigns positive probability to) from which other states. (Nu-

merical probabilities are irrelevant for this analysis—we are considering regret, not expected regret—and so are suppressed.) 

We must show that each player is playing according to minimax regret. Take player 1’s perspective (the argument for player 

2 is analogous); observe first that she considers 96 and 100 to be the only possible plays her opponent might make. Given 

this, player 1’s maximum regret when playing σ1 > 96 must be at least 3, since u1(σ1, 96) = 94, whereas u1(95, 96) = 97. 

Similarly, player 1’s maximum regret when playing σ1 ≤ 96 must be at least 3, since u1(σ1, 100) = σ1 + 2 ≤ 98, whereas 

u1(99, 100) = 101. Moreover, it is straightforward to check that player 1’s maximum regret when playing either 96 or 100

is exactly 3. It follows that each of 96 and 100 constitutes a dr1-best response. �

Example 4. Consider the normal-form version of the centipede game (Rosenthal, 1982) depicted in Fig. 2: each player must 

choose whether to quit at some stage or play to the end. Let �1 = {Q 1, Q 3, Q ∗} and �2 = {Q 2, Q 4, Q ∗}, where Q k stands 

for quitting at stage k and Q ∗ stands for playing to the end. Payoffs are determined by the minimal stage at which some 

player quit, as shown in Fig. 2. For instance, u(Q 1, Q 2) = u(Q 1, Q 4) = (1, 0), since in either case player 1 quits at the first 

stage (making player 2’s choice irrelevant); on the other hand, u(Q ∗, Q 4) = (2, 8), since player 1 never quits and player 2

quits at the fourth stage.

It is well known that in this normal-form version of the centipede game, all pure strategies are rationalizable; however, 

the only strategy that is rationalizable for player 1 under conservative beliefs—namely, beliefs that ascribe positive probability 

to the actual state—is Q 1 , quitting immediately (Halpern and Pass, 2013). By contrast, we now show that when Di =

{deu
i

, dr
i
} for i = 1, 2, all strategies are D-rationalizable even under conservative beliefs.

It is easy to see that Q 1 and Q 2 are D-rationalizable with conservative beliefs; indeed, the structure with exactly one 

state ω where s(ω) = (Q 1, Q 2) is a (�, D)-structure because each player i must be sure of the actual state, and is easily 

seen to be playing a deu
i
-best response to this belief. This observation is an instance of Proposition 4 applied to the fact that 

Q 1 and Q 2 are rationalizable (with conservative beliefs) in the traditional sense of rationalizability.

To show that the remaining strategies are D-rationalizable under conservative beliefs, it suffices to construct a 

(�, D)-structure in which each of these strategies is played and all beliefs are conservative. Consider the structure pre-

sented in Fig. 3.

As in Fig. 1, each of the four states ω1 , ω2 , ω3 , and ω4 of this structure is labeled with the strategy profile being played 

at that state, while the edges labeled i represent which states player i considers possible (i.e., assigns positive probability to) 

from which other states. In addition, the fractions adjacent to the arrowheads specify the numeric probability of each state; 

for example, the fractions 2
3
and 1

3
indicate that Pr1(ω1)({ω1}) = Pr1(ω2)({ω1}) =

2
3
and Pr1(ω1)({ω2}) = Pr1(ω2)({ω2}) =

1
3
, 

respectively.

We must show that at each state, each player i is playing according to either deui or dri . First we show that player 1 is 

maximizing expected utility in states ω1 and ω2 . In these states player 1 quits at stage 3, which yields an expected utility 

of 4 (since player 1 is sure that player 2 will not quit beforehand). Playing Q 1 has an expected utility of 1, so Q 1 is strictly 

dominated by Q 3 . Finally, playing Q ∗ results in a 2
3
chance of a utility of 2, and a 1

3
chance of a utility of 7, for an expected 

utility of 11
3
, so Q ∗ is dominated by Q 3 .
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Fig. 3. A (�,D)-structure for the centipede game.

Next we show that player 1 is minimizing her maximum regret in states ω3 and ω4 . In these states, player 1 plays Q ∗

and believes that player 2 will play either Q 4 or Q ∗ . In the first case, player 1’s payoff is 2, but it could have been as high 

as 4 had she played Q 3; in the second case, her payoff is 7, but it could have been as high as 8 had she played Q 4 . Thus 

her maximum regret is 2. How does this compare to her maximum regret on choosing an alternative strategy? If she plays 

Q 3 , her maximum regret is 3, which arises when player 2 plays Q ∗: in this case, her payoff is 4 but it could have been 7

had she played Q ∗ instead. Even worse, her maximum regret when playing Q 1 is 7 (arising as above when player 2 plays 

Q ∗). This shows that Q ∗ is indeed a dr1-best response in states ω3 and ω4 .

Similar arguments show that Q 4 is a deu2 -best response in states ω1 and ω3 , and Q ∗ is a dr2-best response in states ω2

and ω4 . Thus, we can set

r(ω1) = (deu1 ,deu2 )

r(ω2) = (deu1 ,dr2)

r(ω3) = (dr1,d
eu
2 )

r(ω4) = (dr1,d
r
2)

to make Fig. 3 into a (�, D)-structure and each of the strategies played in the structure D-rationalizable under conservative 

beliefs. �

4.2. Axiomatization

Consider the following axiom schemes:

P1.
∨

σi∈�i

playi(σi),

P2. ¬(playi(σi) ∧ playi(σ
′
i
)), for σi �= σ ′

i
,

P3. playi(σi) ↔ B i playi(σi),
6

P4.
∨

di∈Di

rulei(di),

P5. ¬(rulei(di) ∧ rulei(d
′
i)), for di �= d

′
i ,

P6. rulei(di) ↔ B i rulei(di),

P7. (playi(σi) ∧ rulei(di)) →
∨

S∈S+
i

(σi)

δi,S .

Here, as before, S+
i

(σi) denotes the collection of all S ⊆ �−i such that there exists a probability measure μ with supp(μ) =

S and such that σi ∈ di(μ). Note that there is no need for a symmetric axiom involving S−
i

(σi) for this logic, because the 

formula ¬rulei(di), unlike ¬RAT i , does not say that σi is incompatible with player i’s beliefs and the decision rule di ; it 

simply says that player i did not use the rule di to help choose her strategy σi (though she may, coincidentally, have beliefs 

with respect to which σi is a di-best response).

Let GL�,D be the axiom system that results from adding P1–P7 to the KD45 axioms and rules of inference of belief logic. 

Then we have the following result, the proof of which proceeds analogously to that of Theorem 6 given in Appendix A.1.

Theorem 5. GL�,D is a sound and complete axiomatization of the language LB(��,D) with respect to the class of all (�, D)-struc-

tures.

6 As with G3, the reverse implications for P3 and P6 are redundant, but we write these axioms as biconditionals to emphasize the introspective nature 
of strategies and rules in this setting. A similar remark holds for our later soundness and completeness results, although we do not mention it explicitly.
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5. Discussion

Almost all solution concepts in game theory are grounded in the idea of rationality and best responding. Thus, one 

natural application of a logic of rationality is to the analysis of solution concepts. But doing so raises a number of research 

issues.

One subtlety involves the use of mixed strategies. The language LB(��) has formulas that represent pure strategy 

choices, but not mixed strategies. In the context of Nash equilibrium, this difference turns out to be (at least formally) 

innocuous: one can view a mixed strategy �i ∈ �(�i) either as a conscious randomization on the part of player i, or as 

the common conjecture of the players j �= i about what pure strategy i will choose—either way, the set of mixed strategy 

Nash equilibria stays the same. However, this insensitivity is, in part, dependent on that fact that rationality in the sense 

of expected utility maximization “plays well” with mixing: �i ∈ �(�i) maximizes player i’s expected utility (with respect to 

some fixed beliefs) if and only if every pure strategy σi in the support of �i maximizes expected utility. But this correspon-

dence breaks down when “expected utility maximization” is replaced with the generalized notion of rationality presented 

in Section 2.3: in the context of an arbitrary decision rule di : �(�−i) → 2�i ∅, there is no principled way to extend the 

notion of “best response” from �i to �(�i). This suggests that further research into the interaction between pure and mixed 

strategies under general decision rules may be fruitful.

A second issue involves reconsidering what happens to various solution concepts when we replace maximizing expected 

utility by another decision rule. Consider, for example, Nash equilibrium. In principle, it makes sense to consider “d-Nash 

equilibria”, defined by replacing deu with an arbitrary profile of decision rules d in the definition of Nash equilibrium. It is 

certainly too much to hope that Nash’s famous existence theorem applies in full force to this wider concept; however, prop-

erties of d that suffice to guarantee the existence of equilibria are of interest, and potentially admit a logical characterization. 

Such questions are the subject of ongoing research.

Yet another issue involves understanding the implications for computability of using various decision rules. In Section 3, 

we observed that the axiom systems GL
d
� are finite extensions of the KD45 system and thus trivially decidable. Thus, we 

can, for example, compute whether a formula is a logical consequence of rationality in any given axiom system GL
d
� . But 

there is arguably a more interesting question as far as decidability goes. Up to now we have considered decision rules 

as functions defined with respect to some fixed game. But rules like expected utility maximization, maximin, or minimax 

regret can be applied in all games in a uniform way. To capture this, define a decision paradigm to be a function that maps 

each game � to a decision rule in �. Suppose that we are given decision paradigms Di for each player associating with 

each game � a decision rule Di(�) for that player in �. We might want to know, given the profile D = (Di)i∈I , whether 

the mapping

� �→ GL
D(�)
�

is decidable; in other words, given as input a game �, can we effectively determine whether a formula belongs to the axiom 

system GL
D(�)
� ? For each game �, this requires determining membership in the sets S+

i
(σi) and S

−
i

(σi), which are defined 

by existential quantification over simplices �(�−i), subject to constraints based on the decision rules Di(�). In the case 

of familiar decision paradigms like maximin or expected utility maximization, computing the sets S+
i (σi) and S

−
i (σi) boils 

down to solving systems of linear inequalities. In general, however, we must impose certain computability requirements on 

the decision paradigms in order to be able to decide whether a formula is an instance of an axiom. To take an extreme 

example, given a non-computable set H ⊆N, we could define Di(�) depending on whether the number of players in � lies 

in H .

This kind of example suggests that we want to be more restrictive in the form that Di can take. In particular, we may 

be able to get more traction on this problem if we restrict attention to decision paradigms that can be expressed in some 

limited language. All the standard decision rules—maximizing expected utility, minimax regret, maximin, and so on—are of 

the form “choose strategy σi only if γ ”, where γ is a collection of constraints expressible in some simple language involving 

quantification over strategies, linear inequalities, etc. We believe that by identifying appropriate languages and limiting the 

constraints that can be used to define decision paradigms to those expressible in these languages, we may well be able to 

establish general decidability results that apply to decision paradigms rather than merely decision rules.

Finally, through the introduction D-rationalizability in this paper, we hope to initiate a broader research program in-

vestigating the role of state-dependent decision rules in solution concepts. Belief update in strategic scenarios is widely 

recognized as a foundational issue in modern game theory; the additional structure of decision rules associated to each 

state allows a player to learn not just about her opponents’ strategy choices and beliefs, but about the mechanism by which 

they make decisions under uncertainty. As we have already suggested, this kind of belief update is particularly relevant 

in a dynamic setting. Thus, a natural extension of the present work would be to formulate an extensive-form version of 

D-rationalizability and investigate its relationship with standard extensive-form solution concepts and methods of belief 

update.
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Appendix A. Proofs

A.1. Axiomatizing LB(�
d
�)

Theorem 6. GL
d
� is a sound axiomatization of the language LB(�

d
�) with respect to the class of all �-structures.

Proof. Soundness of the axioms and rules of KD45 can be proved as usual. It therefore suffices to show that G1–G6 are 

valid in all �-structures.

Fix a �-structure M = (�, (Pri)i∈I , s). Soundness of G1 and G2 is an immediate consequence of the fact that s is a (total) 

function. Soundness of G3 is a straightforward consequence of condition (C4), while soundness of G4 follows easily from 

the combination of conditions (C3) and (C4).

Now suppose that ω |= playi(σi) ∧ RAT i ; then σi ∈ di(μi,ω). Set S := supp(μi,ω), and observe that S ∈ S
+
i

(σi). For each 

σ−i ∈ S , it is easy to see that ω |= B̂ i play−i(σ−i); therefore, we must have

ω |=
∧

σ−i∈S

B̂ i play−i(σ−i).

Similarly, for each σ−i /∈ S , we have ω |= ¬B̂ i play−i(σ−i), so

ω |=
∧

σ−i /∈S

¬B̂ i play−i(σ−i).

In other words, ω |= δi,S ; this establishes the soundness of G5.

Finally, suppose that ω |= playi(σi) ∧ ¬RAT i , which implies that σi /∈ di(μi,ω). Set S := supp(μi,ω); then S ∈ S
−
i

(σi) and, 

as above, we have ω |= δi,S , which establishes soundness of G6. �

We prove completeness by what is essentially the canonical model method, a standard method for proving completeness 

of modal logics (see, e.g., Fagin et al., 1995 or any standard text on modal logic). Of course, the full canonical model is not 

countable (for n > 1), so we modify the construction by restricting attention to finite sub-languages. More precisely, given a 

formula φ ∈ LB(�
d
�), we identify a finite sub-language of LB (�d

�) and a corresponding canonical model that refutes φ just 

in case GL
d
� � φ. This technique is sometimes called filtration; it will actually establish the slightly stronger result mentioned 

in footnote 4, namely, completeness with respect to the class of all finite �-structures.

Fix a formula φ ∈ LB(�
d
�). Let Sub�(φ) denote the collection of all subformulas of φ together with all subformulas of 

instances of the axiom schemes G1 through G6. Define

Sub+
� (φ) := Sub�(φ) ∪ {¬ψ : ψ ∈ Sub�(φ)}.

Note that there are only finitely many instances of G1 through G6, and therefore Sub+
� (φ) is finite.

Let �φ be the collection of all maximal, consistent (with respect to GL
d
�) subsets of Sub

+
� (φ). Clearly �φ is a finite set. 

Given X ⊆LB(�
d
�), set

X B i := {ψ : B iψ ∈ X};

and, for F ∈ �φ , define

Beli(F ) := {G ∈ �φ : G ⊇ F B i and GB i = F B i }.

For each i ∈ I and each F ∈ �φ , we will define a probability measure Pr
φ

i
(F ) on �φ such that the support of this measure 

is precisely Beli(F ). Loosely speaking, Beli(F ) is the set of all G ∈ �φ that are compatible with the beliefs of player i in F . 

More precisely, G ∈ Beli(F ) if and only if:

(a) B iψ ∈ F implies ψ ∈ G , and

(b) B iψ ∈ F iff B iψ ∈ G .
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Condition (a) just says that everything player i believes in F is true in G; condition (b) says that player i’s beliefs in F

are the same as her beliefs in G , which is reasonable in light of the fact that we are working in a system with positive 

and negative introspection. (In the full canonical model, (b) follows from (a); here we must impose this condition explicitly 

because of the way the language has been restricted.)

Since our aim is to define probability measures with the sets Beli(F ) as their supports, we must show that these sets 

are never empty.

Lemma 7. For each i ∈ I and F ∈ �φ , Beli(F ) �= ∅.

Proof. Given F ∈ �φ , set

� := {ψ : B iψ ∈ F } ∪ {B iψ : B iψ ∈ F } ∪ {¬B iψ : ¬B iψ ∈ F }.

It is easy to see that � ⊂ Sub+
� (φ). In addition, we show that � is consistent. For suppose not; then

GL
d
� � ¬

∧

ξ∈�

ξ =⇒ GL
d
� � B i¬

∧

ξ∈�

ξ

=⇒ GL
d
� � ¬B i

∧

ξ∈�

ξ

=⇒ GL
d
� � ¬

∧

ξ∈�

B iξ,

which is a contradiction, since each formula B iξ with ξ ∈ � is logically equivalent to a formula in F , and F is consistent.

From this we can conclude that there exists a G ∈ �φ such that G ⊇ �. It follows immediately that G ⊇ F B i and that 

GB i ⊇ F B i . Moreover, if ψ ∈ GB i , then B iψ ∈ G and so certainly ¬B iψ /∈ G , from which it follows that ¬B iψ /∈ � and 

thus ¬B iψ /∈ F . Maximality of F then guarantees that B iψ ∈ F , whence ψ ∈ F B i , and so GB i ⊆ F B i . This establishes that 

G ∈ Beli(F ), as desired. �

Lemma 8. Let F ∈ �φ . If ̂B iψ ∈ F , then there exists a G ∈ Beli(F ) with ψ ∈ G; if ¬B̂ iψ ∈ F , then for all G ∈ Beli(F ) we have ψ /∈ G.

Proof. First suppose that B̂ iψ ∈ F , and set

� := {χ : B iχ ∈ F } ∪ {B iχ : B iχ ∈ F } ∪ {¬B iχ : ¬B iχ ∈ F }.

Assume for contradiction that � ∪ {ψ} is inconsistent. We then have

GL
d
� �

∧

ξ∈�

ξ → ¬ψ,

from which it follows that

GL
d
� �

∧

ξ∈�

B iξ → B i¬ψ. (A.1)

As observed in Lemma 7, each B iξ is equivalent to a formula in F , and therefore (A.1) implies that B i¬ψ ∈ F , contradicting 

our assumption that B̂ iψ ∈ F . Thus � ∪ {ψ} is consistent, and so can be extended to some G ∈ �φ ; moreover, as we saw in 

Lemma 7, G ∈ Beli(F ). This proves the first statement of the Lemma. The second statement follows immediately from the 

definition of Beli(F ): if ¬B̂ iψ ∈ F , then also B i¬ψ ∈ F , and so for all G ∈ Beli(F ) we have ¬ψ ∈ G , whence ψ /∈ G . �

In the classical canonical model construction, it is sufficient to define Pr
φ

i
(F ) to be the uniform distribution on Beli(F ). 

In the present context, however, we need to be more careful, since Pr
φ

i (F ) is used not only to interpret the belief modalities 

B i , but also the primitive propositions RAT i . In essence, we must define Pr
φ

i
(F ) in a manner that agrees with whether or 

not player i is best responding to her beliefs at F ; not surprisingly, this is precisely where the axiom schemes G5 and G6

come into play. At the same time, we have to define Pr
φ

i
on �φ in a systematic way so as to preserve the introspection con-

dition (C3). What follows is a formalization of this basic recipe, for which several more lemmas and definitions are needed.

For each σ−i ∈ �−i , define

Beli(F ;σ−i) := {G ∈ Beli(F ) : play−i(σ−i) ∈ G}.

Given F ∈ �φ , it is easy to see, using G1 and G2, that there is a unique σi ∈ �i with playi(σi) ∈ F . If, in addition, RAT i ∈ F , 

then by G5 we know that for some S ∈ S
+
i

(σi), δi,S ∈ F (or, in the case where S+
i

(σi) = ∅, we know that no such F exists). 

Otherwise, if RAT i /∈ F , then by G6 we know that for some S ∈ S
−
i

(σi), δi,S ∈ F (or again, in the case where S−
i

(σi) = ∅, that 

no such F exists). Thus, for each i ∈ I , there is a unique set S i(F ) ⊆ �−i such that δi,S i(F ) ∈ F , and moreover, S i(F ) ∈ S
+
i

(σi)

if RAT i ∈ F , and S i(F ) ∈ S
−
i

(σi) if RAT i /∈ F .
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Lemma 9. The collection {Beli(F ; σ−i) : σ−i ∈ �−i} partitions Beli(F ); moreover, Beli(F ; σ−i) �= ∅ if and only if σ−i ∈ S i(F ).

Proof. The first statement is a straightforward consequence of G1 and G2, while the second is an immediate corollary of 

Lemma 8 together with the fact that

δi,S i(F ) ≡
∧

σ−i∈S i(F )

B̂ i play−i(σ−i) ∧
∧

σ−i /∈S i(F )

¬B̂ i play−i(σ−i) ∈ F . �

For each σi ∈ �i and S ∈ S
+
i

(σi), let μ
+
σi ,S

be a fixed probability measure witnessing the fact that S ∈ S
+
i

(σi); that 

is, supp(μ+
σi ,S

) = S and σi ∈ di(μ
+
σi ,S

). Likewise, for each σi ∈ �i and S ∈ S
−
i

(σi), let μ
−
σi ,S

be a fixed probability measure 

witnessing the fact that S ∈ S
−
i

(σi).

Let F ∈ �φ , and suppose that playi(σi) ∈ F . In light of Lemma 9, we can define Pr
φ

i
(F ) to be the unique probability 

measure on Beli(F ) such that, for all σ−i ∈ �−i ,

Pr
φ

i (F )(Beli(F ;σ−i)) =

{
μ+

σi ,S i(F )
(σ−i) if RAT i ∈ F

μ−
σi ,S i(F )

(σ−i) if RAT i /∈ F ,

and which is uniform within each (nonempty) set Beli(F ; σ−i).

Proposition 10. Pr
φ

i
satisfies the following:

(a) Pr
φ

i
(F )(G) > 0 iff G ∈ Beli(F ), and

(b) GB i = F B i implies Pr
φ

i
(G) = Pr

φ

i
(F ).

Proof.

(a) The forward implication is immediate from the definition. For the reverse implication, suppose that G ∈ Beli(F ); then, by 

Lemma 9, we know that G ∈ Beli(F ; σ−i) for some σ−i ∈ S i(F ), from which it follows that Pr
φ

i (F )(G) > 0 by definition.

(b) If GB i = F B i then Beli(G) = Beli(F ). Moreover, axioms G3 and G4 guarantee that playi(σi) ∈ F if and only if playi(σi) ∈

G , and likewise R AT i ∈ F if and only if R AT i ∈ G . Finally, it is not difficult to see that S i(F ) is completely determined 

by Beli(F ), so S i(F ) = S i(G). Therefore, by definition of Pr
φ

i
, we can deduce that Pr

φ

i
(G) = Pr

φ

i
(F ). �

Finally, we define a strategy function sφ : �φ → � by assigning to each F ∈ �φ the unique strategy profile σ ∈ � such 

that play(σ ) ∈ F .

Lemma 11. The tuple Mφ := (�φ, (Pr
φ

i
)i∈I , s

φ) is a �-structure.

Proof. Conditions (C1) and (C2) have already been established. By Lemma 10(b), in order to see that (C3) holds it suffices to 

observe that Pr
φ

i
(F )(G) > 0 implies that GB i = F B i , which follows from Lemma 10(a). This same observation also establishes 

(C4), since by G3 we know that GB i = F B i implies s
φ

i (G) = s
φ

i (F ). �

Lemma 12. For all formulas ψ , for all F ∈ �φ , if ψ ∈ Sub+
� (φ) then F ∈ [ [ψ] ]Mφ if and only if ψ ∈ F .

Proof. The proof proceeds by induction on the structure of ψ . We prove here the base cases corresponding to the primitive 

propositions; the inductive steps can be proved in the standard way (see, e.g., Fagin et al., 1995).

First consider the primitive proposition playi(σi). We have

F ∈ [[playi(σi)]]Mφ iff s
φ

i
(F ) = σi

iff playi(σi) ∈ F ,

as a direct consequence of the definition of sφ . Next consider the primitive proposition RAT i ; we have

F ∈ [[RAT i]]Mφ iff s
φ

i
(F ) ∈ di(μi,F )

iff RAT i ∈ F ,

the last equivalence being a consequence of the definition of Pr
φ

i
, which ensures that s

φ

i
(F ) is a best response to (the 

pushforward of) Pr
φ

i
(F ) precisely when RAT i ∈ F . This completes the proof. �
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Theorem 13. GL
d
� is a complete axiomatization of the language LB(�

d
�) with respect to the class of all finite �-structures.

Proof. Suppose that GL
d
� � φ. Then {¬φ} is consistent and so can be extended to a maximal consistent set F ∈ �φ . By 

Lemma 12, this implies that F /∈ [ [φ] ]Mφ and so, in particular, that Mφ �|= φ, as desired. �

A.2. Belief as lower probability

Theorem 14. GL
d
� is a sound and complete axiomatization of the language LB(�

d
�) with respect to the class of all lower �-structures.

Proof. The proof given in Appendix A.1 works here as well, modulo the obvious minor alterations in keeping with the 

generalized definitions given in Section 3.1. In particular, for each σi ∈ �i and S ∈ S
+
i (σi), we define P +

σi ,S
to be a fixed 

set of probability measures such that supp(P +
σi ,S

) = S and σi ∈ di(P
+
σi ,S

); likewise, for each σi ∈ �i and S ∈ S
−
i

(σi), define 

P
−
σi ,S

to be a fixed set of probability measures witnessing the fact that S ∈ S
−
i

(σi). Then, given F ∈ �φ with playi(σi) ∈ F , 

define PR
φ

i
(F ) as follows: for each μ ∈ P

+
σi ,S

∪ P
−
σi ,S

, let μ̃ be the unique probability measure on Beli(F ) such that, for all 

σ−i ∈ �−i ,

μ̃(Beli(F ;σ−i)) = μ(σ−i),

and which is uniform on each set Beli(F ; σ−i); then set

PR
φ

i
(F ) :=

{
{μ̃ : μ ∈ P

+
σi ,S

} if RAT i ∈ F

{μ̃ : μ ∈ P
−
σi ,S

} if RAT i /∈ F .
�

A.3. Axiomatizing LB(�
D
� )

To obtain a complete axiomatization of this language, it is not sufficient to simply let G4–G6 range over all decision 

rules di ∈ Di for each player i; in general, this system is sound but not complete. Roughly speaking, this is because it is 

possible for both playi(σi) ∧RAT
di

i
and playi(σi) ∧RAT

d
′
i

i
to be consistent with δi,S for some S ⊆ �−i , yet no measure μ with 

supp(μ) = S is such that σi ∈ di(μ) ∩ d
′
i
(μ). In this case, the formula

playi(σi) ∧ RAT
di

i
∧ RAT

d
′
i

i
∧ δi,S

is not satisfiable, but there is no way to prove its negation from the axioms. However, provided that each set Di is finite, we 

can deal with this problem by replacing G5 and G6 with the following collection of axioms for each player i, each strategy 

σi ∈ �i , and every subset D ⊆ Di :

(
playi(σi) ∧

∧

di∈D

RAT
di

i
∧

∧

di /∈D

¬RAT
di

i

)
→

∨

S∈SD
i

(σi)

δi,S ,

where SD
i

(σi) is the collection of all S ⊆ �−i such that there exists a probability measure μ on S such that supp(μ) = S

and for every di ∈ D , σi ∈ di(μ), and for every di /∈ D , σi /∈ di(μ). G5 and G6 are special cases occurring when |Di | = 1, 

corresponding to D =Di and D = ∅, respectively.
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