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Summary

1. The growing wealth of genomic data is yielding new insights into the genetic basis of adaptation, but it also
presents the challenge of extracting the relevant signal from multi-dimensional datasets. Different statistical
approaches vary in their power to detect selection depending on the demographic history, type of selection,

genetic architecture and experimental design.

2. Here, we develop and evaluate new approaches for combining results from multiple tests, including multivari-
ate distance measures and methods for combining P-values. We evaluate these methods on (i) simulated land-
scape genetic data analysed for differentiation outliers and genetic-environment associations and (ii) empirical
genomic data analysed for selective sweeps within dog breeds for loci known to be selected for during domestica-
tion. We also introduce and evaluate how robust statistical algorithms can be used for parameter estimation in

statistical genomics.

3. On the simulated data, many of the composite measures performed well and had decreased variation in out-
comes across many sampling designs. On the empirical dataset, methods based on combining P-values generally
performed better with clearer signals of selection, higher significance of the signal, and in closer proximity to the
known selected locus. Although robust algorithms could identify neutral loci in our simulations, they did not uni-
versally improve power to detect selection. Overall, a composite statistic that measured a robust multivariate dis-

tance from rank-based P-values performed the best.

4. We found that composite measures of selection could improve the signal of selection in many cases, but they
were not a panacea and their power is limited by the power of the univariate statistics they summarize. Since gen-
ome scans are widely used, improving inference for prioritizing candidate genes may be beneficial to medicine,
agriculture, and breeding. Our results also have application to outlier detection in high-dimensional datasets and
to combining results in meta-analyses in many disciplines. The compound measures we evaluate are implemented

in the R package MINOTAUR.

Key-words: composite signals of selection, genome-wide associations, Mahalanobis distance,

meta-analysis, minimum covariance determinant

Introduction

The rapid improvement of high-throughput sequencing
technologies has stimulated studies that examine the geno-
mic basis of adaptation and of phenotypic traits. This pro-
gress has been paralleled by the development of new
genome scan methods aimed at detecting selection. Genome
scans have implicated many genomic variants with effects
on adaptive traits in plants (e.g. Savolainen, Lascoux &
Merila 2013), animals (e.g. Hoekstra er al. 2006; Barrett,
Rogers & Schluter 2008), and humans (e.g. Hindorff ef al.
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2009). All genome scans are based on the premise that loci
affected by selection will be ‘outliers’ relative to the gen-
ome-wide distribution. The loci uncovered by genome
scans, however, generally explain a small portion of pheno-
typic variation (Yang et al. 2010; Brachi, Morris & Bore-
vitz 2011). Thus far, the field has been unable to fully
characterize the genetic basis of adaptive traits, hampering
our ability to understand adaptation.

The major limitation of genome scans is that different meth-
ods return inconsistent results (Lotterhos & Whitlock 2015;
Schlamp et al. 2016; Vatsiou, Bazin & Gaggiotti 2016). Most
genome scan methods fall into a univariate framework, in
which outliers are identified as a function of one statistic
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(Hoban et al. 2016; Schlamp et al. 2016; Vatsiou, Bazin &
Gaggiotti 2016). Variation in results occurs because of differ-
ential sensitivity to sampling design (De Mita et al. 2013; Lot-
terhos & Whitlock 2015), to details of the selective sweep (e.g.
Schlamp et al. 2016; Vatsiou, Bazin & Gaggiotti 2016), and to
the demographic history (De Villemereuil e al. 2014; Lotter-
hos & Whitlock 2015; Luu, Bazin & Blum 2016; Schlamp et al.
2016). Thus, the complex and largely unknown evolutionary
histories of most species make it unlikely that a single statistic
can fully capture the genomic signal of interest in the majority
of cases (Verity & Nichols 2014; Vatsiou, Bazin & Gaggiotti
2016).

Another limitation of current genome scan methods is
that parameter estimates used to control inflation of the test
statistic may be biased by genomic regions that are affected
by selection (e.g. ‘outliers’ in the data). For example, back-
ground selection on neutral loci linked to deleterious alleles
can bias demographic inference (Ewing & Jensen 2016). If
the species has widespread linkage disequilibrium, it is still
unclear how non-independence among loci, especially in the
presence of selection, can change statistical outcomes. Few
methods have been developed with the goal of reducing the
effects of outliers on parameter estimation (but see Whitlock
& Lotterhos 2015).

Given that various methods have different strengths and
weaknesses and may be differentially susceptible to outliers,
it is difficult to decide how to prioritize candidates for further
investigations (Frangois et al. 2015). A common approach is
to prioritize candidate loci that are outliers in all of the uni-
variate methods (i.e. take the overlap among all univariate
statistics), but this approach may miss loci affected by weak
selection (Lotterhos & Whitlock 2015). Recently, several
composite measures have been proposed based on combining
P-values and these measures generally perform better than
univariate single statistics, but evaluation of their perfor-
mance has been limited to relatively simple scenarios (Gross-
man et al. 2010; Evangelou & loannidis 2013; Utsunomiya
et al. 2013; Randhawa et al. 2014, 2015; Francois et al.
2015; Ma et al. 2015).

Here, we describe new approaches for combining signals
across test statistics in multivariate space and compare them
to other composite measures of selection. We also explore
the potential of so-called ‘robust’ algorithms, which aim to
identify a subset of data points that are not outliers in mul-
tivariate space, as a way of improving power and reliability.
We compare the performance of composite measures to
univariate methods for detecting selection on two sets of
data (simulations and empirical data), with and without the
robust algorithms for parameter estimation. The benefit of
the simulated dataset is that the neutral and selected loci
are known, although loci are unlinked and so methods
based on haplotype structure cannot be evaluated. The ben-
efit of the empirical dataset is that methods can be evalu-
ated on their ability to detect loci known to be selected for
during domestication against realistic patterns of linkage
disequilibrium and haplotype structure, although neutral
loci are unknown.

Materials and methods

COMPOSITE MEASURES BASED ON MULTIVARIATE
DISTANCES

Multivariate-distance measures identify points that are distant from
the main mass of points. These composite measures are directionless
(meaning the idea of upper and lower tails does not apply) and so they
are most appropriate for identifying points that deviate from the mass
of points by a large amount in any direction. In multivariate statistics,
the multivariate mean is known as the ‘location’ (denoted x in Fig. S1,
Supporting Information) of the data and the covariance among uni-
variate statistics is called the “scatter’ (matrix denoted S'in Fig. S1).

Multivariate distance measures: Mahalanobis distance (M),
harmonic mean distance (H,), nearest neighbour distance
(Na)

The Mahalanobis distance (M, Mahalanobis 1936) is a widely used
distance measure relating a point to the multivariate location
(Fig. Sla). The M differs from the ordinary Euclidean distance due to
the correction for covariance among observations. Because the Maha-
lanobis distance assumes the data can be described by a multivariate
ellipsoid, it will tend to perform poorly when observations have a
nonparametric or multi-modal distribution (see Verity et al. 2017 for
visualization).

Previously we developed other multivariate distance metrics that are
closely related to M, in that they correct for covariance among vari-
ables, but unlike M, they relax the assumption that data must be para-
metric (Fig. S1, Verity e al. 2017). Here, we evaluate two of these
measures. The first measure is the harmonic mean distance (Hy,
Fig. S1b) from a focal point to all other points in the dataset, which
tends to perform similarly to M, (Verity et al. 2017). The second mea-
sure is the nearest neighbour distance (N,, Fig. S1d), which measures
the shortest distance from the focal point to any other data point. N,;
behaves differently than M, and H, because it is much more sensitive
to the density of local points around the focal point (Verity ez al. 2017).
A third measure of deviance based on kernel density was not used
because it was too slow to calculate (Fig. S1c).

Hierarchical clustering (Hclust)

Clustering algorithms identify outliers as data points that do not cluster
with other data points. Among available clustering algorithms, a pre-
liminary evaluation found that Ward’s minimum variance method had
the highest performance (results not shown). Agglomeration by Ward’s
method joins points into clusters recursively, by choosing the merge
that causes the minimum increase in total within-cluster variance at
successive stages in the clustering process (Ward 1963; Murtagh &
Legendre 2014). The distance between two clusters is calculated from
the ANOVA sum of squares, i.e. the sum of the squared pairwise dis-
tances across all points in the two clusters. We implemented Hclust
using the function outliers.ranking() in the R package Dmwr 0.4.1
(Togo 2010).

COMPOSITE MEASURES BASED ON COMBINING
P-VALUES

Methods based on P-values have the advantage of quantifying outliers
using the familiar concepts of probability and statistical significance.
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They also exist on an absolute scale, making comparisons between
methods straightforward. The composite measures we employ are
based on P-values created by ranking the data. These rank-based
P-values are not P-values in the classical statistical sense, but reflect
quantile values from the empirical distribution of the test statistic. The
drawback of the ranking approach is that the P-value distribution is
uniform and loci with a strong signal of selection may be less significant
when ranked compared to a well-calibrated statistical test, while on the
other hand the rank transformation may be beneficial if the statistical
test is not well calibrated (shown conceptually in Fig. S2).

Composite selection signals (CSS)

This approach employs Stouffer’s method for combining P-values,
which assumes independence among the statistics being summarized
(Stouffer et al. 1949; Whitlock 2005). The CSS statistic is calculated
from univariate measures as follows: (i) convert univariate statistics to
fractional ranks between 1/(n + 1) and n/(n + 1), where n is the number
of observations, (i) convert fractional ranks to Z-values using the
inverse normal cumulative distribution function, (iii) take the mean
Z-score and convert to a P-value using the normal N(0, ") distribu-
tion, where m is the number of univariate statistics, (iv) the CSS statistic
is defined as —log) of the P-value (Randhawa et al. 2014, 2015). Note
that this method does not account for covariance among signals in uni-
variate statistics, nor directionality in the signal.

De-correlated composite of multiple signals (DCMS)

The DCMS is similar to CSS, but does not assume independence among
univariate statistics. DCMS is based on the sum of log;o((1—p)/p) over
all univariate statistics divided by a weighting vector for each locus (Ma
et al.2015). The weights are determined by the genome-wide correlation
between all pairs of univariate statistics, such that highly correlated
statistics contribute less to the calculation. For example, if two statistics
are perfectly correlated and a third statistic is uncorrelated with the first
two, the respective weights will be (%5, %, 1). For DCMS, we trans-
formed raw statistics into P-values via fractional ranks between
1/(n+1) and n/(n+1), using one-tailed or two-tailed rankings as
required.

Mahalanobis distance based on negative-log rank-based P-
values (Md-rank-P)

Md-rank-P is computed as the Mahalanobis distance on the negative
logyo on the transformation of raw statistics into rank P-values (as
described for DCMS) from a multivariate location of 0 (a non-signifi-
cant value) in all dimensions. Md-rank-P differs from CSS and DCMS
because it measures the distance of an observation from a universally
non-significant value in multivariate space, and unlike Mahalanobis dis-
tance is it based on P-values and not the test statistic or other effect size.

DEFAULTVS. ROBUST APPROACH

Many of the methods that we evaluate take into account the covariance
structure among test statistics. The presence of outliers, however, may
bias estimation of this covariance matrix. For instance, a small propor-
tion of loci under very strong selection with strong signals across multi-
ple test statistics would increase the overall covariance and bias the
multivariate mean, while there would be no correlation (i.e. no bias) if
only neutral regions were considered (e.g. Grossman ez al. 2010).

Composite measures of selection 719

We evaluated the minimum covariance determinant (MCD) algo-
rithm for identifying ‘robust’ points (i.e. points that are not outliers in
any one dimension) in multivariate genomic data and used these points
in the calculation when relevant. The MCD identifies robust points as
the set of points that minimize the volume of an ellipsoid surrounding
the data in multidimensional space (mathematically the ellipse is
described by the determinant on the covariance matrix, Rousseeuw &
Driessen 1999). The MCD requires the user to input the proportion of
the dataset that will be used for the algorithm with the requirement that
the proportion is between 0-50 and 1. We implemented the MCD using
the proportion 0-75, as recommended by Rousseeuw & Driessen (1999;
preliminary analyses revealed that the results were not sensitive to this
proportion), with the function CovNAMcd in the R package RRCOVNA
(Todorov & Filzmoser 2009). In preliminary analyses, the MCD out-
performed a different robust method called the projection congruent
subset (Schmitt, Oellerer & Vakili 2014; Vakili & Schmitt 2014, results
not shown).

LANDSCAPE SIMULATIONS

To test the power of multidimensional outliers for genome scans, we
applied them to published simulated datasets sampled from landscape
simulations (Lotterhos & Whitlock 2014, 2015). Briefly, a landscape
simulator was used to simulate haploid loci in four demographic histo-
ries: island model (IM), isolation by distance (IBD), expansion from
one refuge (IR), and expansion from two refugia (2R). Selected loci
were simulated under varying strengths of selection (sp) to a heteroge-
neous latitudinal cline in an environmental variable that affected fit-
ness. Datasets consisted of 9900 neutral and 100 selected loci in
individuals randomly sampled from the landscape in six different ways.
The distributions of the strengths of selection were varied to make the
response to selection more equivalent across datasets. For IBD, the
dataset included four strengths of selection in each demography at the
following percentages: s;, = 0-001 (40% of the loci), sy = 0-005 (30%),
s = 0-01 (20%) and s;. = 0-1 (10%). For IM, IR and 2R, the dataset
included three strengths of selection at the following percentages:
s. = 0-005 (50%), s = 0-01 (33%) and s = 0-1 (17%). For details see
Lotterhos & Whitlock (2015).

Lotterhos & Whitlock (2015) used these datasets to perform univari-
ate genome scans in the programs BayeExv2 (Giinther & Coop 2013)
and LrmM (Frichot et al. 2013; Frichot & Frangois 2015). These pro-
grams were designed for landscape genetic datasets with environmental
data. A total of four univariate statistics from these two programs were
combined to produce composite measures: (i) log-Bayes Factor (BF,
association between allele frequency and the environment, BAYENV2),
(i) Spearman’s p (association between allele frequency and the environ-
ment, BAYENV2), (iii) X7X (genetic differentiation among populations,
Bavyenv2), and (iv) Z-score (association between genotype and the envi-
ronment in LFMM). The power of these four univariate statistics varied
with sampling design and demographic history (Lotterhos & Whitlock
2015). Note that given recent improvement to the algorithm in
Bavenv2 has been implemented in the program BayPass (Gautier
2015), we compared output from these programs and found only slight
differences in performance (see Dryad Repository). Here, we use the
Bavenv2 results so that this manuscript can be directly compared to
Lotterhos & Whitlock (2015).

Comparison of robust points and neutral loci

For each dataset, we evaluated the mean absolute difference between
the actual multivariate location or scatter of the neutral points, and an
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Fig. 1. For a single dataset simulated under the two refugia model,
comparison of 95% confidence intervals on the two dimensional ellipse
given by the determinant on the covariance matrix between these two
variables calculated from: all the data (dashed-dotted blue line), neutral
loci only (solid black line), and the minimum covariance determinant
(MCD) estimate (dashed magenta line). Loci simulated under selection
are triangles, while loci identified as robust by the MCD are highlighted
in magenta.

estimate of the location and scatter based on either all the data or the
MCD subset of points. We also evaluated whether the robust points
contained fewer loci simulated under selection than would have been
expected by chance.

Calculation of empirical power

True positive rate or power is the proportion of loci simulated under
selection that are identified as candidates. The empirical power is calcu-
lated as follows: (i) use all known neutral loci to generate a null distribu-
tion; (i) for each locus calculate an empirical P-value based on its
cumulative frequency in this null distribution (for details see Lotterhos
& Whitlock 2015). Empirical power minimizes the false positive rate
and makes it equal across all comparisons, such that test statistics are
compared on common grounds in their ability to separate signals of
neutral vs. selected loci. To control for false discovery rate, we con-
verted P-values to g-values using the Benjamini & Hochberg algorithm,
and retained loci with a g-value < 0-05 as candidates (a g-value of 0-05
has a desired rate of 5 false positives out of 100 positive hits; Benjamini
& Hotchberg 1995). Using the neutral loci as an empirical distribution,
our P-values are perfectly calibrated and therefore meet the assump-
tions for transformation into g-values. Empirical power also has the
advantage of being inversely related to false discovery rate. Empirical
power is explained in more detail in Fig. S3.

EMPIRICALDATASET: DOGBREEDS

We employed a recently published study that evaluated scans for selec-
tive sweeps in 25 dog breed genomes. Schlamp ez al. (2016) evaluated
eight selective sweep statistics and found variation in their ability to
detect 12 quantitative trait loci (QTL) with effects on dog phenotypes
known to be under positive selection during domestication. These
statistics measure within-breed haplotype structure and sequence

50
5 40 5
£ '
ER :
[ONNO] | *
8¢ 30
S
5
53 204
c E
8 F
=3 10
c
—e— r
04 | -
I
§ % |
£®
38 gad
c ®©
0 —
g2 0% e
FE —
=
8§ 027 ;
=35 :
[0] l T
c 01_ - :
I I
MCD All data

Fig. 2. Mean difference between the neutral estimate and the other esti-
mates of multivariate scatter (top) and multivariate location (bottom),
summarized over all demographies and sampling designs. ‘MCD’ refers
to the minimum covariance determinant estimate (using only the
robust points), and ‘All’ refers to all the data (including selected loci).
Lower values indicate that the given estimate is closer to the true value.
MCD, minimum covariance determinant.

diversity, and thus represent an application of composite measures in a
different situation from the simulations (and thus the univariate statis-
tics are not cross-compatible).

For each of the 25 breeds, we evaluated composite signals based on
four of the single measures applied within breeds: iHS (Voight et al.
2006), H12 (Garud et al. 2015), Tajima’s D (Tajima 1989a), and
nucleotide diversity (m; Nei & Li 1979). iHS is a measure of the extent
of haplotype homozygosity, and infers selection by identifying haplo-
types that are much larger than expected under neutrality. H12 repre-
sents a composite haplotype frequency of the first and second most
abundant haplotypes and is designed to detect soft selective sweeps.
Tajima’s D is a variance-standardized measure that may indicate a
selective sweep when it is negative. 7 is the nucleotide diversity and is
also expected to have low values under a selective sweep. We excluded
four other measures evaluated by Schlamp ez al. from our analysis:
HAPFLK (Fariello et al. 2013), because the statistic is calculated across
breeds and we were interested in evaluating power within each breed;
nSL (Ferrer-Admetlla et al. 2014), because the univariate statistic
showed no meaningful signal; and the measures H (Messer 2015) and
composite likelihood ratio (CLR; calculated, using method of Pavlidis
et al. 2013; but also see Kim & Stephan 2002 and Nielsen et al. 2005),
because of minimal overlap with other statistics, resulting in large
amounts of missing data. Schlamp ez al. (2016) compared calculation
of these statistics under different window sizes (based on the number of
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segregating sites) and found that window sizes of 25 or 51 single-
nucleotide polymorphisms (SNPs) generally had clearer signals of
selection. We therefore used the 51-SNP window sizes to leverage this
increased power while deriving smoother results.

Evaluation of statistics

Because neutral loci in this dataset are unknown, we cannot calcu-
late empirical power in the same manner as the simulated data.
Instead, we compared the ability of different measures to detect
known QTL that had risen to a frequency of at least 50% in each
breed (following Schlamp er al. 2016, hereafter: focal SNP), based
on whether there was a signal in the region surrounding the focal
SNP. We quantified the signal of selection in three ways (shown
conceptually in Fig. S4):

1. The significance of the signal was measured as the observed quantile
of the SNP with the most extreme signal (maximum or minimum,
depending on the tail of the test) within a 51-SNP window centred on
the focal SNP. The quantile of the extreme SNP was calculated from
ranking all SNPs on that chromosome and transformed to a —logj
P-value as described in the DCMS section.

2. The clarity of the signal in the window on either side of the extreme
SNP was quantified based as a steepness measure (hereafter: steepness,
Fig. S4). The slope (1) on either side of the extreme SNP was calculated
from a linear model for a 20-SNP window either upstream or down-
stream of the extreme SNP, and averaged as steep-
ness = (myp X Iy + Magwn X laown)/2, Where I, is an indicator
variable depending on whether the test is in the upper or lower tail of
the test statistic (visualized in Fig. S4). This steepness value has the
desirable property that it is large and positive if there is a peak near the
extreme SNP (indicating a signal of selection), that it is near zero if
there is no signal, and it is negative if the concavity of the signal is in the
opposite direction (Fig. S4). For the calculation of steepness, for each
slope we tested if it was significant at P < 0-01 and if it was not signifi-
cant then the slope was assigned a value of 0 (to avoid averaging spuri-
ously large slopes with large standard error). Note that steepness
should be interpreted with caution because LD will affect the steepness
of the sweep.

3. The distance (in Kb) between the extreme SNP and the focal SNP
(Fig. S4).

Results
LANDSCAPE SIMULATIONS

Comparison between robust and neutral estimates

A typical comparison between the MCD estimate of the
covariance, the neutral estimate of the covariance, and the esti-
mate using all the data is visualized in Fig. 1 for the 2R model.
In this case, the MCD estimates of location and scatter more
accurately captured the neutral estimates compared to the esti-
mates that used all the data. Figure 1 also shows how many
neutral loci were not identified as robust points by the MCD
because of statistical noise.

For all the simulated datasets, the robust estimates of
location and scatter from the MCD was generally a more
reliable estimate of neutral location and scatter (Fig. 2,
‘MCD’) than the estimate, using all the data (Fig. 2, ‘All’).
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Fig. 3. The difference in empirical power of the statistic to detect selec-
tion with the minimum covariance determinant minimum covariance
determinant (MCD) minus the default value for the four demogra-
phies: island model (IM), isolation by distance (IBD), range expansion
from one refuge (1R), range expansion from two refugia (2R). (a)
Mahalanobis distance, (b) harmonic mean distance, (c) nearest neigh-
bour distance, (d) de-correlated composite of multiple signals (DCMS,
combines rank P-values), (¢) Mahalanobis distance based on rank
P-values.

The difference, however, was quite variable across all simu-
lations and sampling designs (Fig. 2). The MCD gave better
estimates of neutral location and scatter because it con-
tained a smaller proportion of selected loci than expected
by chance (Fig. S5). The probability that the locus was
included in the list of MCD robust points was negatively
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refugia. The univariate statistics include Bayes factor (BF) and Spearman’s p from a genetic-environment association, a measure of genetic differenti-
ation (XTX), and the Z-score from the program LFMM. The compound measures based on multivariate distances include: Mahalanobis distance
(M ), harmonic mean distance (), nearest neighbour distance (N,), and hierarchical clustering (Hclust Ward). The compound measures based on
combining P-values include: decorrelated composite of multiple signals (DCMS), composite signal of selection (CSS), and Mahalanobis distance
based on rank P-values (Md-rank-P). Note that for M, H;, N, DCMS and Md-rank-P we plot the minimum covariance determinant (MCD) esti-

mate because it either improved or did not affect the overall average power.

correlated with the simulated strength of selection on that
locus, and the MCD never identified loci simulated under
strong selection as robust (Fig. S5).

Comparison of empirical power with and without a robust
approach

Incorporating the MCD algorithm into the calculation
could improve power to detect selection, but this effect was
not universal (Fig. 3). For Mahalanobis distance and har-
monic mean distance, the MCD improved power in the 1R
and 2R models (cases with stronger correlations among
loci), and had variable effects on power in the IM and IBD
models (cases with weaker correlations among loci)
(Fig. 3a,b). For nearest neighbour distance, the increase in
power was most pronounced (from a 10% to 100%
increase, Fig. 3c) because with the MCD the closest neigh-
bour to a locus under selection would be a robust point

(i.e. a neutral locus with high probability), whereas without
the MCD, the closest neighbour to a locus under selection
would be another locus under selection (visualized in
Fig. 1). For DCMS, the MCD improved power for the
IBD case (Fig. 3d), which is the case with the most variable
power in univariate statistics (see next section), and did not
substantially change power for the other demographies. For
Md-rank-P, the MCD always had a moderate improvement
in power (5% to 35% increase, Fig. 3e).

Comparison of empirical power for univariate vs. composite
measures

For the univariate statistics, power varied greatly among the
demographies. For example, X”X had high empirical power
under the IBD model compared to the IM (Fig. 4, grey boxes).
Each of the bars plotted in Fig. 4 is summarized over the 6 ran-
dom population sampling designs, and so the height of the
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chromosomes 15 (left column) and 32 (right -2
column) in the maltese dog breed. The vertical
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P-value <0-01 in a general linear model. The
horizontal grey line is the appropriate 95%
quantile for that statistic on the chromosome
(an upper tail for iHS, H12, and Mahalanobis;
alower tail for mand Tajima’s D).

boxplots illustrates how sampling design can cause variation in
outcomes. For instance, Z-score and BF had higher variance
in results under IBD but lower variance under the 2R model,
while XX showed the opposite pattern (compare height of
grey box plots in Fig. 4b—d).

The power of the compound measures compared to the uni-
variate statistics varied among demographies. For the IM, all
compound measures had similar power and variance to the
univariate statistics (Fig. 4a). For the IBD model, multivariate
distances and hierarchical clustering had higher power and
lower variance in power compared to methods that combine
P-values (DCMS, CSS, Md-rank-P) (Fig. 4b). Hclust per-
formed the best in this model by capitalizing on the perfor-
mance of the X”X statistic, which was highly informative (in
contrast to the IM case). Ward’s minimum variance method
clustered neutral loci together before merging any of the loci
under selection into this ‘neutral’ cluster, because this kept the
total within-cluster variance at a minimum. Methods that

41257020

4594165

combined P-values performed poorly in IBD, possibly because
of the large variation in the performance of the univariate
statistics (Fig. 4b). For the refugia models, all composite mea-
sures performed as well as or better than the univariate mea-
sures, with substantially lower variance in power across
sampling designs and demographies (Fig. 4c,d). The methods
that combined P-values performed slightly better in the refugia
scenarios than the multivariate distances.

EMPIRICAL DATASET: DOGBREEDS

Empirical signals of selection for steepness, significance, and
distance of the signal from two causal SNPs in the maltese
breed are show in Fig. 5 (also shown conceptually in Fig. S4).
Figure 5 also shows how a compound measure can reflect sig-
nals from different univariate statistics. In the first case (left
column Fig. 5), H12 and Tajima’s D had a signal at the focal
SNP, while in the second case (right column Fig. 5) Tajima’s D
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The compound measures include: the
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iHS 7
H12
DCMS -
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and 7 had a signal at the focal SNP. The Md-rank-P com-
pounded these signals into a single measure and captured sig-
nals from multiple statistics (the MCD was incorporated into
this calculation).

Incorporating the MCD had varying results on the signals
of selection, but the results for the empirical data were consis-
tent with the results from the simulations. The MCD generally
decreased the performance of M, H,, and N, had no effect on
DCMS, and resulted in more significant signals for Md-rank-
P (Fig. S6). For the remaining results, we use the default M,
the default DCMS, and the MCD with Md-rank-P.

For all the compound measures tested, we found that
Md-rank-P had the best signals of selection with more
significant signals (Fig. 6), steeper signals (Figs 7 and S7),
and closer signals to the causal SNP (Fig. S8). Although
DCMS performed well, Md-rank-P outperformed DCMS
at measures of steepness (Fig. S9). Generally Md-rank-P
and DCMS performed well when there was a signal in at
least two of the univariate statistics (Figs 6, S7 and S8).

tics (M, raw), and the composite signal of
selection (CSS). The row labels indicate the
dog breed, chromosome, base pair of the focal
single-nucleotide polymorphisms (Mb), and
the allele frequency of the focal SNP.

F
2]
(2]
O

Md raw -

On the other hand, CSS performed poorly across all met-
rics because it did not account for directionality of the Z-
score. Multivariate distances generally performed poorly
on the dog data, regardless of whether the MCD was
implemented.

Discussion

Our study took novel steps to compare compound measures
for genome scans and explore the utility of robust statistics in
the calculation of compound measures. Compound measures
can provide an objective criterion to prioritize candidates (in
contrast to taking the overlap among different methods) and
provide increased resolution to identify selected genomic
regions by integrating the signal provided by univariate test
statistics (Grossman et al. 2010; Ma et al. 2015). We found
that compound measures could improve the signal of selection
and decrease variation in results, though they are not a
panacea.
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BESTPRACTICES WHEN USING COMPOSITE MEASURES
FORGENOME SCANS

A single genome scan method may output many variables and
the first decision is to choose a variable to represent that
method in a composite measure. For example, a genome-wide
association study may output an effect size of an SNP, a test
statistic for significance of that SNP, and a P-value of that test
statistic. Ideally, the best variable to choose will measure evi-
dence against an effect size of zero, which is typically the test
statistic or the P-value. Once the investigator has decided
which values to combine, the next decision is which composite
measure to apply.

If the goal is to identify outliers regardless of directionality,
then a multivariate distance is a good choice for a composite
measure. When applying a multivariate distance, Mahalanobis
distance or harmonic mean distance should be used if data are
parametric and nearest-neighbour distance should be used if
data are non-parameteric.

However, for many variables directionality is meaningful
(e.g. larger test statistics and smaller P-values reflect higher sig-
nificance), and in this case combining P-values would capture
this directionality in the composite measure. Note, however,
that our demography simulations showed that methods for
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combining P-values may perform worse than multivariate dis-
tances when there is high variance in the signal among statis-
tics, as there was in the isolation-by-distance model. When
combining P-values, the next issue is whether to use
P-values calculated by the univariate method or to use a
rank-based P-value. If your data satisfy the assumptions of the
statistical method implemented in the program, then the
P-values will be well calibrated and this is the best case scenario
(Fig. S2b). On the other hand, if the univariate method does
not calculate P-values or makes liberal or conservative
assumptions (Fig. S2a.c), then using a rank-based P-value
would be a better approach (Fig. S2d). These assumptions can
be evaluated by both using QQ-plots to check the distribution
of P-values and by calculating the genomic inflation factor
(Francois et al. 2015).

When combining rank-based P-values, our analysis of the
dog data showed that Md-rank-P (with MCD) performed the
best of all the statistics, and DCMS performed the next best.
The higher performance of Md-rank-P over DCMS may have
occurred in this case because it is more sensitive to detecting a
signal that is significant by only a single univariate statistic,
whereas DCMS will tend to reflect signals that are significant
by more than one univariate statistic and exhibits odd beha-
viour depending on the correlation structure of the data (see
toy example in Fig. S10). Composite selection signal generally
performed poorly because it assumed independence and did
not take into account directionality. Take, for example, the
combination of a statistic in which a negative signal is indica-
tive of selection (such as Tajima’s D) with a statistic in which a
positive signal is indicative of selection (such as Fsr). The for-
mer statistic would have a negative Z-score and the latter statis-
tic would have a positive Z-score, yielding an average Z-score
for the CSS method near 0, which would not be significant.

Most importantly, all compound measures will reflect the
sensitivities of the statistics that they summarize. For instance,
extraordinarily large or small values of Tajima’s D can be
caused by changes in population size, and not by selection
(Tajima 1989b). While we used Tajima’s D in this study for the
purposes of illustration, investigators should take care when
choosing the statistics used in the calculation of the compound
measure.

INCORPORATING AROBUSTAPPROACH

Despite their apparent utility for identifying genomic outliers,
robust statistics have rarely been applied to genome scans. The
goal of applying a robust approach is to better capture the neu-
tral expectation, and we found that although the MCD could
identify neutral loci in our simulated datasets it did not univer-
sally improve the signal of selection in composite measures.
Incorporating the MCD typically improved performance of
the nearest neighbour distance and Md-rank-P, and had no
effect on DCMS. In the other cases, incorporating the MCD
could improve or decrease performance by as much as 30%.
This may have occurred because for many statistics the varia-
tion around neutrality is dominated by statistical noise rather
than signal, and hence inferring covariances from a too strict a
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‘robust’ set may result in too weak correlations. This may have
a profound influence on results and lead to many false posi-
tives. Consistent with this reasoning, we found that the MCD
generally improved power for Mahalanobis distance in the IR
and 2R models (stronger covariance patterns among loci) and
had variable effects on power for the IM and IBD models
(weaker covariance patterns among loci). Also consistent with
this reasoning, we found that the MCD decreased performance
of the multivariate distances in the dog data, where each data-
set was based on a single population (weaker covariance pat-
terns among loci). On the other hand, we found that the MCD
improved or did not affect power for methods that combined
rank P-values (Md-rank-P and DCMS) in both simulated and
empirical data, which suggests that incorporating a robust
approach into these methods would be an improvement. While
the work presented here has been an important first step into
incorporating robust algorithms into the statistical genomics
framework, we recommend that investigators evaluate robust
approaches for specific scenarios before incorporating them.

Conclusions

Compound measures may provide a tractable, powerful
approach for prioritizing candidate regions or loci for further
investigation. On the other hand, the univariate statistics that
they summarize typically test a specific null hypothesis based
on theoretical population genetic models, and therefore offer
information about an underlying evolutionary process. Com-
pound measures are naive to this information and simply infer
outliers based on their position in multivariate space. There-
fore, it is important for investigators to interpret multivariate
outliers in the light of the theoretical models that the univariate
statistics are based on, and use functional validation to gather
important information on the mode or strength of selection.
Given the stochasticity of natural selection and demography,
plus the complexities stemming from experimental design, data
collection, and univariate analyses, assessing the significance of
a compound measure alone is almost certain to remain a
difficult task.

Software

The Mahalanobis distance, harmonic mean distance, nearest
neighbour distance, CSS, and DCMS measures are imple-
mented in the R package MINOTAUR V1.1.0, which is available
via GitHub (https://github.com/NESCent/MINOTAUR) and
described in Verity et al. 2017. When relevant, the functions
also allow users to supply their own covariance matrix or a list
of robust points, thereby allowing them to take advantage of
robust algorithms.
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