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Abstract

Genome scans are widely used to identify “outliers’ in genomic data: loci with different patterns compared with the
rest of the genome due to the action of selection or other nonadaptive forces of evolution. These genomic data sets
are often high dimensional, with complex correlation structures among variables, making it a challenge to identify
outliers in a robust way. The Mahalanobis distance has been widely used, but has the major limitation of assuming
that data follow a simple parametric distribution. Here, we develop three new metrics that can be used to identify
outliers in multivariate space, while making no strong assumptions about the distribution of the data. These metrics
are implemented in the R package MINOTAUR, which also includes an interactive web-based application for visualiz-
ing outliers in high-dimensional data sets. We illustrate how these metrics can be used to identify outliers from sim-

ulated genetic data and discuss some of the limitations they may face in application.
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Introduction

Knowledge of the genetic architecture of biological
traits—the number of loci that affect a phenotype, the
magnitude of their effect and their distribution across the
genome—not only illuminates the evolutionary processes
that shape genomes, but also has important implications
for complex diseases (Mccarthy & Hirschhorn 2008), con-
servation (Kohn et al. 2006; Allendorf ef al. 2010; Funk
et al. 2012) and breeding programmes (Goddard & Hayes
2009; Varshney et al. 2009). With the advent of next-gen-
eration sequencing, we now have the ability to examine
genomes at a fine scale, and, as a result, we have identi-
fied a large number of genomic variants that are impli-
cated in complex diseases (Carlson et al. 2004; Hindorff
et al. 2009) and adaptation to the local environment
(Savolainen et al. 2013). This wealth of data is likely to
yield new insights, but it also brings with it the challenge
of extracting the relevant signal from noisy, complex,
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multidimensional data sets. This is perhaps one reason
why most of the variants detected so far have only man-
aged to explain a very small proportion of the observable
phenotypic variation (Yang et al. 2010; Brachi et al. 2011).

The preferred method for detecting genomic variants
is via genome scans. There are many different
approaches towards scanning genomes, but all are based
on the same premise: that the loci of interest to the inves-
tigator are likely to be statistical outliers when compared
with the rest of the genome. The particular choice of
statistic will depend on the question being asked and the
experimental design and may include one or more statis-
tics from the following categories: tests for genetic differ-
entiation (Lotterhos & Whitlock 2014; Hoban ef al.
in press), scans for strong positive selection and/or selec-
tive sweeps (Hohenlohe et al. 2010; Vatsiou et al. 2016),
genomewide association studies for phenotype-asso-
ciated loci (GWAS, reviewed in Carlson et al. 2004 and
Mccarthy et al. 2008), linkage mapping for quantitative
trait loci (QTL, Savolainen et al. 2013), genetic—
environment associations (reviewed in Rellstab et al.
2015) and scans for differentially expressed genes (Wang
et al. 2009). A number of different genome scan test
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statistics may be calculated for a single genomic data set,
and these are usually examined one at a time (i.e. in uni-
variate analyses). Some test statistics may be highly cor-
related, while the power of other test statistics may vary
for different regions of the genome depending on the
details of selection, recombination, mutation and migra-
tion rates (Tiffin & Ross-Ibarra 2014). Additionally, the
power of different approaches may vary among species
because of demographic history, and within a species
because of sampling design (De Mita et al. 2013; De Ville-
mereuil ef al. 2014; Lotterhos & Whitlock 2015). Finally,
loci with intermediate probabilities of detection will
often exhibit the highest variance in results from genome
scans.

Given the complex evolutionary histories of most spe-
cies, it is doubtful whether any single statistic can fully
capture the genomic signal of interest in the majority of
cases (Verity & Nichols 2014). Furthermore, the uncer-
tainty in demographic history, coupled with the varia-
tion in statistical outcomes in different scenarios, makes
it difficult to know which statistics have the greatest
power to detect selection and which have the highest
false-positive rates. These issues point to a need for com-
posite, multivariate outlier methods that integrate infor-
mation across multiple test statistics.

Multivariate methods have been utilized extensively
in many biological applications, although in application
to genome scans, the power of the multivariate approach
for detecting outliers has not yet been fully evaluated.
Because some dimension reduction methods such as
principal component analysis rely on assumptions about
the data that may be unjustifiable in the context of gen-
ome scans (O'Reilly et al. 2012), these methods are not
ideally designed for the identification of multivariate
outliers (Patterson et al. 2006). Some GWAS analyses
have successfully employed multivariate approaches to
identify genetic associations with multiple phenotypes
(O'Reilly et al. 2012; Galesloot et al. 2014). Additionally,
multivariate approaches have also been used in GWAS
meta-analysis to simultaneously consider multiple
genetic or phenotypic variables (reviewed in Evangelou
& loannidis 2013). It is evident, however, that more
opportunities exist for the use of multivariate approaches
in outlier detection than are currently being capitalized
on.

While there are dedicated software tools for calculat-
ing a variety of test statistics, there does not currently
exist a unified platform for the filtering, visualization
and integration of test statistics in multivariate space.
Here, we describe a new R package called MINOTAUR
(Multivariate vIsualisatioN and OuTlier Analysis Using
R) built specifically for this purpose. This software pack-
age—initiated during a hackathon for population genet-
ics in R (https://github.com/NESCent/r-popgen-

hackathon)—provides functions for detecting outliers in
multivariate space alongside procedures to manipulate,
summarize and visualize these data. The R software
environment (R Core Team 2015) is free, open source
and hosts a large collection of tools for statistical analy-
sis, making it the ideal host for the development and
uptake of such a platform. Furthermore, because data
visualization is an important part of verifying and identi-
fying outliers, the R Shiny and Shiny Dashboard environ-
ments (Chang 2015; Chang et al. 2016) have been
employed to provide MINOTAUR users with an interactive
interface that streamlines the process of data input, sta-
tistical analysis and graphical exploration. Together,
these tools have the potential to increase the efficiency
with which the results of genome scans are interrogated.

Approaches to identifying multivariate outliers

In the MINOTAUR package, we implement four composite
measures that can be used to integrate information over
multiple univariate statistics: the Mahalanobis distance,
harmonic mean distance, nearest neighbour distance and
kernel density deviance. We developed the latter three
measures, which are related to Mahalanobis distance,
but make no strong assumptions about the parametric
form of the data, meaning they can be applied to multi-
variate statistics that have complex correlated or even
multimodal distributions. Some of these measures are
heavily influenced by the distance of points from the
multivariate centroid (Mahalanobis and harmonic mean
distance), while others are mainly influenced by the
sparseness of points in the local vicinity (nearest neigh-
bour distance and kernel density deviance), and so we
would expect the measures to behave differently from
one another and to vary in their behaviour depending on
the data at hand.

The calculation of these composite measures has been
optimized for genome-scale data using precompiled rou-
tines, written in C++ and integrated into R using the
package Rcpr (Eddelbuettel & Frangois 2011; Eddelbuet-
tel 2013). Several packages devoted to multivariate statis-
tics that may be appropriate for genome-scale data
already exist in R (see Table S1, Supporting information),
and thus, users are free to utilize both existing statistical
methods and the more targeted functions included
within the MINOTAUR package.

Mahalanobis distance

The Mahalanobis distance is a multidimensional measure
of the number of standard deviations that a point lies
from the mean of a distribution. The Mahalanobis
distance of a d-dimensional observation x; = (x;1, Xi,
..., x;»T from a distribution of N variables with mean
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X=(x,%,..., id)T and covariance matrix S is defined as
follows (Mahalanobis 1936):

Du(x) =/ (x — %) (xi - %) (eqn1)

This distance differs from the ordinary Euclidean
distance due to the correction for covariance among
observations, making it a better distance measure for
genome scan summary statistics because it does not
assume that statistics are independent (i.e. Euclidean
distance equals Mahalanobis distance when S is a
diagonal matrix). However, this distance does make
the assumption that points disperse smoothly from a
single multivariate centroid, and so it will tend to per-
form poorly when observations have a complex or
multimodal distribution.

Harmonic mean distance

In this context, the ‘harmonic mean distance’ of an
observation x; refers to the harmonic mean of the dis-
tances between this point and all other points. The
distance measure used here is the Euclidian distance
normalized by multiplying by the inverse covariance
matrix. This ensures that results are not dominated
by a few statistics with a large spread and also
accounts for any potential correlation between statis-
tics, analogously to the Mahalonobis distance. Mathe-
matically, we can define the harmonic mean distance
as follows:

-1

-1/2

Dy(xi) = N[> _[(xi — %)™ (xi — x7)] (eqn2)

J#i

The harmonic mean is heavily influenced by small
values, which in this context means local effects are
amplified. However, more distant points also have some
effect on the final value (unlike the nearest neighbour
distance described below), and so the harmonic mean
strikes a balance between local and global effects. This
has some advantages in outlier detection, as observations
that are both distant from the main mass of the data and
have few neighbours in the local vicinity will tend to be
outliers.

Nearest neighbour distance

The nearest neighbour distance of the observation x;
gives the minimum distance between this point and
any other point. As with the harmonic mean distance,
we use the Euclidian distance normalized by the
inverse covariance matrix. Mathematically, we can
write
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Dy (xl-) = min#i (\/(Xi - xj)S—l (xi - x/)> (eqn 3)
This statistic exclusively measures local effects, being lar-
gest when an observation is a long way from any other
point. Because this distance is only based on two points
(the focal point and its nearest neighbour), it is not influ-
enced by the global distribution of the data, unlike the
harmonic mean distance.

Kernel density deviance

Kernel density-based methods attempt to capture mathe-
matically the distribution of the data as the sum of a
number of simple parametric distributions. Here, we
apply these methods to identifying multivariate outliers,
defined as those points with a low density of data
around them in multivariate space. We assume a multi-
variate normal kernel G(x;|x;, J25) centred at the point xj,
where / is the bandwidth of the kernel, which is scaled
in each dimension by the covariance matrix of the data.
We then calculate the leave-one-out log-likelihood
(Leiva-Murillo & Artés-Rodriguez 2012) of the point x; as
follows:

1
m§ G(x1|x], /IZS)
JAi

L(xi|4) = log (eqn4)

In other words, this is equal to the log-probability
density of the point x; under the kernel density distribu-
tion constructed from all points apart from x;. Our final
density-based measure is defined as follows:

Dx(x;) = —2L(x;]4), (eqn5)
which is sometimes referred to as the Bayesian deviance.
This will be large whenever the density of the point x; is
low, and so the kernel density deviance can be thought
of as a measure of the sparseness of points around the
focal point.

One challenge when using kernel density methods is
choosing an appropriate value for the bandwidth. Here,
we simply use the bandwidth for which the total
deviance of all points is minimized, that is

(eqn6)

N
At =argmin, <Z —2L(x,v|i))

i=1

It can be shown that this is equivalent to the maxi-
mum-likelihood value of 4 under the leave-one-out
criterion. The value 4* can be found using the MINOTAUR
function kernelDeviance (), which takes a vector of
bandwidths as input and returns the total deviance of
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each. This function can be used to search for the mini-
mum value of 2 manually, or via an optimization routine
such as optim(). Users are also free to use any other
bandwidth, entered manually, or in the absence of a
user-defined bandwidth, a simple method based on Sil-
verman'’s rule is implemented as a default (this assumes
that data are normally distributed and are a simple func-
tion of the standard deviation of the samples (Silverman
1986)).

The miNoTAUR R package—an R Shiny graphical
user interface for multivariate outlier analysis
and visualization

The MINOTAUR package performs two main functions:
(i) it calculates the compound multivariate outlier
statistics described above and (ii) it enables users to
harness the interactive graphical power of the R
Shiny environment to manipulate and visualize their
data within the MINOTAUR graphical user interface
(GUI). The GUI allows users to perform the former
task with the click of a button; however, outlier iden-
tification can also be performed on the R command
line using stand-alone functions available in MINOTAUR,
if preferred. Directions for downloading and installing
the package can be found at the end of this
manuscript.

The MvoTAUR GUI is designed to streamline the pro-
cess of genomic data analysis and outlier identification,
taking users from data input to graphical output within
a single platform. Distinct panels are used for each stage
of the analysis, including data input and filtering, outlier
detection via the methods described above and plotting
results (e.g. histograms, scatter plots and Manhattan
plots). An overview of the mmnoraur GUI workflow is
show in Fig. 1.

In the Data panel, the minotaur GUI allows users to
either upload their own data sets or select among a set of
four in-built example data sets. Data can be uploaded in
a number of file formats, including comma- or tab-sepa-
rated text files, and Rdata. Regardless of the file format,
MINOTAUR expects all incoming data sets to be arranged in
data frames, with each row representing a different
genetic locus and each column representing a different
univariate genome scan statistic (e.g. Fsr, Tajima’s D) or
other piece of locus-specific metadata (e.g. SNP identi-
fiers, chromosomes/scaffolds and positions). Raw data
objects can be filtered within the GUI, meaning, for
example, that columns not related to outlier analysis can
be dropped at an early stage.

Four example data sets are made available to users
within the miNOTAUR package and GUI The ‘HumanG-
WAS’ data set contains example output from an
unpublished human genomewide association study.

The simulated ‘NonParametricInverse’ and ‘NonPara-
metricMultimodal’ data sets each contain an example
of nonparametric data, one with an inverse relation-
ship and one that is highly multimodal. The “TwoRef-
Sim’ data set contains population genetic data
simulated under a model of expansion from two refu-
gia (Lotterhos & Whitlock 2015). Note that the exam-
ple data sets can also be accessed outside the GUI by
running the data() command with the appropriate
data set name. For example, to load the ‘HumanG-
WAS’' data set, type data(HumanGWAS) and hit
ENTER. To learn more about a data set while in the
R terminal, add a question mark before the data set
name to load the relevant Help page; for example,
type ?HumanGWAS and hit ENTER.

In the Multivariate Measures panel, multiple univariate
statistics can be integrated to produce the compound dis-
tance measures described above. These measures can be
appended to the data frame and visualized interactively
in the Produce Plots panel, which includes several sub-
menus with useful plots for visualizing high-dimen-
sional data sets, including Manhattan plots, 1D
histograms and density-based 2D scatter plots. The plot-
ting methods are designed with large genomic data sets
in mind; for example, the plot2d() function included
with the package calculates the density of points for a
given bin size and shades bins according to the density
of points within them and then optionally adds user-sup-
plied points (ideally a small subset of points, for example
the outliers only) to the plot. Additional options allow
users to log-scale statistics and control various other
visual settings commonly used when plotting data in R
(Fig. 2).

Example applications of multivariate outliers

Evaluation of computational speed

First, we evaluated the speed of calculating the four com-
pound distance measures for data sets with increasing
numbers of loci (rows) and univariate statistics (col-
umns). For this example, variables were randomly gener-
ated from a multivariate normal distribution. Table 1
gives the ‘order’ of complexity of these algorithms,
together with measured run times for a data set com-
posed of 50 000 loci and 10 variables (see Table S2, Sup-
porting information). Overall, the Mahalanobis distance
is calculated in a matter of seconds, even with particu-
larly large data sets. The harmonic mean distance, near-
est neighbour distance and kernel density deviance each
scale approximately equally with increasing data set
sizes, although the maximume-likelihood estimate of the
ideal bandwidth for the latter measure can add signifi-
cant computation time.

© 2016 John Wiley & Sons Ltd
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Fig. 1 Graphical overview of the miNo-
TAUR GUI workflow.
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Example on simulated nonparametric distributions

Some kinds of genomic data—for example gene expres-
sion data—may generate complex nonparametric distri-
butions. Genes that have high expression in one
environment may have low expression in another envi-
ronment, while investigators may be interested in identi-
fying genes that have moderate expression in both
environments. To test the performance of the multivari-
ate outlier statistics in nonparametric situations, we sim-
ulated two examples of nonparametric distributions.

In the first example, we simulated a distribution of
two variables that follow an inverse relationship, with
some additional noise. We used contour plots to visual-
ize the different ways in which each of the compound
distance measures changes over the two-dimensional
plane (Fig. 3). In these plots, the darker red lines indicate
less-significant values of the test statistic and lighter yel-
low lines indicate more-significant values of the test
statistic. We also looked at two manually chosen points
on the plane—indicated by a square and a triangle—
chosen to represent different sorts of outliers. The
triangle would not be considered an outlier from the per-
spective of either one-dimensional distribution despite
being a clear outlier from the two-dimensional

© 2016 John Wiley & Sons Ltd

Multivariate Measures

distribution, while the square would be considered an
outlier in the first dimension but not the second. In this
example, the nonparametric distribution affects the rela-
tive ability of the four statistics to identify each of these
outliers (Fig. 4). The blue triangle would not have the
largest value (i.e. not be the most outlying point) by the
Mahalanobis or the harmonic mean distance, while it
would have the largest value by nearest neighbour dis-
tance or kernel density deviance. In contrast, the blue
square has the largest value of the test statistic by all four
methods.

In the second example, we simulated a highly multi-
modal distribution from a normal mixture model. In this
example, it can be seen how the parametric assumption
of the Mahalanobis distance fails to capture the complex-
ity of the data (Fig. S1, Supporting information). In con-
trast to the previous example, the harmonic mean
distance behaves similarly to the kernel density
deviance, and nearest neighbour distance has the most
complex contour landscape.

Example on simulated genomic data

To test the power of multivariate statistics for genome
scans, we applied them to a published simulated data set
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Fig. 2 Screenshot of MminotaUR GUI highlighting the overall interface and the ability to visualize multivariate distributions. The plot is a
Manbhattan plot of the nearest neighbour distance across loci for all traits in the ‘HumanGWAS’" example data set provided as part of
MINOTAUR. The base scatter plot demonstrates the binned visualization, where the density of data in an area is apparent from the colour.
About 99.5 percentile outliers are indicated with solid orange circles. Visualization menus have been collapsed to simplify the image.
Additional plots can also be stacked below to enable comparisons across multiple plots (not shown).

Table 1 Multivariate outlier detection methods implemented in MINOTAUR and associated computational run times

Computation
Elapsed Time
Computational for 50 000 loci
complexity and 10 variables
Compound measure Description R Function (big O notation) (hh:mm:ss.ms)
Mabhalanobis distance Distance from multivariate Mahalanobis() O(NK) 00:00:00.095
centroid
Harmonic mean distance Inverse-weighted distance harmonicDist() ONK?) 00:04:13.620
from all other points
Nearest neighbour distance Distance to nearest neighborDist() ONK?) 00:04:07.020
neighbour
Kernel density deviance Local density of points kernelDist() ONK?) 01:40:03.600

Computational complexity is given in ‘big O’ notation, with N referring to the number of observations and k the number of statistics (di-
mensions). Run times were determined using an Apple iMac with a 3.1 GHz Intel Core i5 processor and 32 GB of RAM running Apple
05X 10.9.5 and R version 3.2.3. Note that for computation time, the kernel density deviance includes both the maximum-likelihood esti-
mation of the optimal bandwidth and the density calculations based on the optimal bandwidth

that was used to test different genome scan methods
(Lotterhos & Whitlock 2014, 2015). Briefly, a landscape
simulator was used to simulate haploid neutral and
selected loci that adapted to an environmental cline (Lot-
terhos & Whitlock 2015). The landscape consisted of
360 x 360 demes, and the allele frequency of each deme
changed each generation according to recurrence equa-
tions for mutation, migration, selection (if applicable)
and drift (Lotterhos & Whitlock 2015). For the data set

used in this example, a total of 9900 neutral and 100
selected loci (simulated under varying strengths of selec-
tion: 12 loci with s = 0.1, 38 loci with s = 0.01 and 50 loci
with s =0.005) were simulated under a two-refuge
demographic expansion. Individuals were then sampled
from the landscape according to the allele frequency in
each deme at 30 randomly chosen locations on the land-
scape at 20 individuals per location. For additional
details, see Lotterhos & Whitlock (2014, 2015).

© 2016 John Wiley & Sons Ltd
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Fig. 3 Comparison of multivariate dis-

tance measures for nonparametric exam-
ple data. Black dots show the simulated
data, in which the two statistics (dimen-
sions) are assumed to follow an inverse
relationship with some additional noise.
Solid lines show the distance measure
computed at each point in the plane,
arranged in 10% quantiles (e.g. the inner
ring shows the 10% of locations with the
smallest distance). The blue square and
triangle show particular outlier points
referred to in the main text.

Kernel deviance

Second dimension

-1 0 1 2 3 4 5 6 -1 0 1 2
First dimension

The simulated data were used to create a single
nucleotide polymorphism (SNP) table, and these data
were used to perform genome scans in the programs
Bavyenv2 (Giinther and Coop 2013) and Lrvm (Frichot
et al. 2013; now implemented in the R package LEA: Fri-
chot & Frangois 2015). A total of four univariate statistics
from these two programs were used in the search for
multivariate outliers: (i) log-Bayes factor (log-BF, a mea-
sure of the association between allele frequency and the
environment in BAYENv2), (ii) Spearman’s rho (a measure
of the association between allele frequency and the
environment in Bayenv2), (iii) XTX (a measure of genetic
differentiation among populations in BAYENV2) and (iv)
Z-score (a measure of the association between genotype
and the environment in LFvmM). These four univariate
statistics, plotted in Fig. 4, were previously shown to
have different strengths and weaknesses depending on
sampling design and demographic history (Lotterhos &
Whitlock 2015).

To illustrate the flexibility of the outlier functions
implemented in MINOTAUR, we calculated multivariate
outliers in two ways, corresponding to two different
ways of calculating the covariance matrix S in equa-
tions (1) to (4). First, we used the traditional method of
calculating the covariance matrix based on all the data.
For high-dimensional data, estimation of the multivariate

© 2016 John Wiley & Sons Ltd

mean and covariance (location and scatter) is expected to
be robust to outliers as long as the proportion of outliers
in the data is less than 1/(k + 1), where k is the number
variables in the data frame (Rousseeuw & Van Driessen
1999). However, we found that even in this small data
frame of only four variables and 10 000 loci, the 1% of
selected loci (a fraction of which were true outliers)
affected the estimation of the covariance matrix. For this
reason, our MINOTAUR functions are designed to allow the
user to input their own covariance matrix. To illustrate
this use of the function, we also calculated a robust mul-
tivariate location and scatter estimate with a high break-
down point, using the ‘Fast MCD’ (minimum covariance
determinant) estimator with the function CovNAMcd in
the R package rrcovNA (Rousseeuw & Van Driessen
1999; Todorov et al. 2011).

To compare the ability of the univariate statistics and
the multivariate statistics to separate neutral from
selected loci, we calculated the empirical power. The
empirical power is based on using all known neutral loci
to generate a null distribution, and then, for each locus,
an empirical P-value is calculated based on its cumula-
tive frequency in this null distribution. To control for
false discovery rate, empirical p-values were converted
to g-values (in the R package qvalue:Dabney & Storey
2014) and loci with a g-value less than 0.05 were retained
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as positive hits (a g-value of 0.05 has a desired rate of five
false positives of 100 positive hits).

For the univariate statistics, the empirical power was
highest for log-BF (0.54) and lowest for Z-score (0.15),
with Spearman’s rho (0.46) and X'X (0.42) intermediate.
For the multivariate statistics with the default covariance
estimation, the empirical power was high for harmonic
mean distance and Mahalanobis distance (0.41 for both),
with kernel density and nearest neighbour distance per-
forming poorly in this case (0.09 for both) (Fig. S2, Sup-
porting information). For the user-input covariance
matrix estimated with a high breakdown point (i.e. less
influenced by outliers), the empirical power was highest
for harmonic mean distance and Mahalanobis distance
(0.58 for both), with kernel density and nearest neigh-
bour distance still performing poorly (Fig. 5). This final
example illustrates the potential of Mahalanobis and har-
monic mean distance to improve the signal-to-noise ratio
in genome scans, because the empirical power in this
case was higher than any univariate statistic alone.

Discussion

Although the number of packages for population genetic
data analysis in the R software is rapidly increasing

(http:/ /popgen.nescent.org/PACKAGES.html), basic

Fig. 4 Distributions of four univariate

A
. an ‘ . .
a8 statistics from the two-refuge data set
= = from Lotterhos & Whitlock (2015).
i
A

Pragy 9
- A

0 2

4 6 8 10 12
Z-score

tools for manipulating and visualizing genome-scale
data sets have so far been lacking. MINOTAUR fills this gap
using the R Shiny Dashboard package to implement a
GUI that makes it easy to upload, manipulate, analyse
and visualize genomic data.

The multivariate metrics calculated in MINOTAUR con-
tribute to a growing number of multivariate tools imple-
mented in the R environment (see Table S1, Supporting
information). Methods that are influenced heavily by
the distance of a point from the centroid in multivariate
space (such as Mahalanobis and the harmonic mean dis-
tance) will perform differently compared with methods
that are influenced mainly by the sparseness of points in
multivariate space (such as nearest neighbour distance
and kernel density), as illustrated in the examples here.
However, depending on how the data are distributed,
the harmonic mean distance may be influenced by both
these factors. For a single simulated data set, we found
that robust use of the Mahalanobis or harmonic mean
distance (i.e. when the covariance matrix used was esti-
mated with a high breakdown point) could have higher
power than any single univariate statistic alone.
Although nearest neighbour distance and kernel density
deviance performed poorly on the simulated genomic
data, they may be useful in application to other kinds of
nonparametric data, as illustrated in our examples

© 2016 John Wiley & Sons Ltd
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Fig. 5 Distributions of the four multivari-
ate compound statistics applied to the
four univariate statistics shown in Fig. 2.
The MCD calculation of the covariance

‘ s matrix was used. All 9900 neutral loci are
g G S plotted on indexes 0-100, and the selected
R v loci are plotted on indexes 100-200. Note

log transformation of each variable on the
y-axis for (A) Mahalanobis distance, (B)
harmonic mean distance, (C) kernel den-
sity and (D) nearest neighbour distance.
The empirical power of the statistic to dis-
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main text for details) is shown in the
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(Figs 3 and 51, Supporting information). Further evalua-
tion, however, will be needed on both simulated and
empirical data to determine whether multivariate outlier
approaches will improve the signal-to-noise ratio in gen-
ome scans.

The miNOTAUR package is designed to complement
existing tools for the analysis and integration of genome
scan data. Thus, in addition to providing its own tools
for genome-scale analyses, MINOTAUR can serve as a plat-
form for the further analysis and visualization of results
generated by other R packages. Examples include results
from differential gene expression (LiMma: Ritchie et al.
2015; DESEQ: Anders & Huber 2010; SEQGSEA: Wang &
Cairns 2014), outliers for genetic differentiation (Out-
FLANK: Whitlock & Lotterhos 2015; PCAparT: Luu &
Blum 2015), genetic—environment associations (LEA: Fri-
chot & Frangois 2015) or genomewide association studies
(e.g. GENABEL: Aulchenko et al. 2007; BLuESNP: Huang
et al. 2013).

Recent developments such as the R Shiny and Shiny
Dashboard environments (Chang 2015; Chang et al.
2016) dramatically aid in the development of R-based
user-friendly web interfaces. Taking advantage of these
tools, MINOTAUR is able to offer a new platform for visual-
izing and integrating genomic data that may appeal to
molecular ecologists, modellers, statisticians and public
health agencies.

© 2016 John Wiley & Sons Ltd
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Resources

Availability: Upon acceptance for publication, MINOTAUR
will be distributed on cran (http://cran.r-project.org/)
and be available for R on Windows, Mac OSX and Linux
platforms. Currently, MINOTAUR can be accessed via the
following steps:

e install.packages (“devtools”, dependencies
=TRUE)

e library(devtools)

e install github (“NESCent/MINOTAUR”, build
vignettes=TRUE)

e library (MINOTAUR)

e MINOTAUR ()

Note to reviewers: If you are facing issues with instal-
lation, try updating to the newest version of R and rein-
stalling devtools from source. MINOTAUR has been tested
on R version 3.3.0.

Licence: GNU General Public Licence (GPL) >2.

Documentation: Besides the usual package documen-
tation, MINOTAUR is released with a tutorial which can be
opened by typing VIGNETTE (“MINOTAUR”).

Development: The development of MINOTAUR is
hosted on GrirHus: (https:/ /github.com/NESCent/MIN-
OTAUR).
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Table S1 Table of multivariate outlier statistics in other R pack-
ages that could be used in the context of genomic scans.

Table S2 Computation times for the four multivariate outlier
detection methods in MINOTAUR for datasets up to 100 000 loci
(rows) and 20 variables (columns) in hh:mm:ss.ms format. Run
times were determined using an Apple iMac with a 3.1 GHz
Intel Core i5 processor and 32 GB of RAM running Apple OSX
10.9.5 and R version 3.2.3. Note that the kernel density deviance
includes both the maximum likelihood estimation of the optimal
bandwidth and the density calculations based on the optimal
bandwidth.

Fig. S1 Comparison of multivariate distance measures for multi-
modal example data.

Fig. S2 Analogue to Fig. 5 in the main paper, but with a default
estimate of covariance using all the data.



