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a b s t r a c t

We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A =

AT, which is based on a two-step algorithm involving generalized Householder reflections based on

the indefinite inner product 〈u, v〉∗ =
∑

iui vi. This inner product is linear in both arguments and

avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form

using generalized Householder transformations (first step). An iterative, generalized QL decomposition

of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step).

The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered

‘‘prematurely’’ on the super-/sub-diagonal. The algorithm allows for a reliable and computationally

efficient computation of resonance and antiresonance energies which emerge from complex-scaled

Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian

and PT -symmetric Hamilton matrices. Numerical reference values are provided.

Program summary

Program Title: HTDQLS

Program Files doi: http://dx.doi.org/10.17632/x24wjxtrsg.1
Licensing provisions: GPLv3

Programming language: Fortran 90 using fixed form notation

Nature of problem: Calculating the eigenvalues and optionally the eigenvectors of complex symmetric

(non-Hermitian), densely populated matrices.

Solution method: The complex symmetric (not Hermitian) input matrix is diagonalized in two steps. First

step: The matrix is tridiagonalized via a series of (n − 2) generalized Householder reflections, where n

is the rank of the input matrix. Second step: The tridiagonal matrix is diagonalized via a generalization

of the ‘‘chasing the bulge’’ technique, which is an iterative process utilizing an implicitly shifted initial

rotation followed by (n − 2) Givens rotations. This technique is an implementation of QL factorization,

and converges roughly as [(λi−σi)/(λi+1−σi)]
j whereλi is the eigenvalue located in the (i, i) position of the

final diagonal matrix and the eigenvalues are ordered (|λ1| < |λ2| < . . . < |λn|), and j is the iteration. The

‘‘educated guess’’ σi for the eigenvalue λi is obtained from the analytic determination of the eigenvalues

of (k × k)-submatrices of A, in the vicinity of the ith element, where k = 0, 1, 2, 3 (here, k = 0 means

that the implicit shift vanishes, σi = 0). The routine optionally calculates the rotation matrix Z , such that

Z−1 A Z = D where A is the input matrix and D is the diagonal matrix containing the eigenvalues. The ith

column of Z then is the eigenvector of A corresponding to the eigenvalue found at the element D(i, i), in

the ith position on the diagonal of the matrix D.

Unusual features:

For simplicity, the ‘‘wrapper’’ program which contains an example application and the HTDQLS routine

are distributed in the same file.

© 2017 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer

Physics Communication homepage on ScienceDirect (http://www.sciencedirect.

com/science/journal/00104655).
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1. Introduction

The development of algorithms for the diagonalization of

matrices is the subject of a number of standard monographs

[1–3]. The degree of specialization of an algorithm depends on two

http://dx.doi.org/10.1016/j.cpc.2017.06.014

0010-4655/© 2017 Elsevier B.V. All rights reserved.



J.H. Noble et al. / Computer Physics Communications 221 (2017) 304–316 305

factors: (i) the properties of the input matrix, and (ii) the subset of
eigenvalues and eigenvectors one is interested in. E.g., the Jacobi
method [4] is based on iterative rotations affecting off-diagonal
elements of a matrix (‘‘Jacobi rotations’’), with the goal of zeroing
(eventually all) off-diagonal elements to machine precision after a
sufficient number of iterations. The QL and QR algorithms iterate
similarity transformations of a matrix [5–7] based on decomposi-
tions of the input matrix into orthogonal (Q) and upper triangular
(R) or lower triangular (L) matrices. Variants of this method con-
cern the original LR decomposition found by Rutishauser [8], and
the iterative Cholesky decomposition; all of these methods (and
generalizations therefore) have been summarized in Refs. [9,10]
under the name of GR decompositions (for general G). When the
matrix is diagonalized to machine precision, a fixed point of the
similarity transformation is reached, and the algorithm stops. If
the input matrix is tridiagonal, one can show [1,11] that the rate
of convergence in each iteration goes as λi/λi+1, for an ordered
sequence of eigenvalues |λ1| < |λ2| < · · · < |λn| of an
(n × n)-input matrix. Other methods include divide-and-conquer
strategies (Sec. 8.5.4 of Ref. [2]) and bisection algorithms (Sec. 8.5.1
of Ref. [2]). The Lanczos method (Sec. 9.3 of Ref. [2]) uses so-called
Krylov subspaces, which are tailored to represent approximations
to eigenvectors of large eigenvalues. The algorithm typically finds
the first 10% of the eigenvalues of largest modulus of a matrix
with ease. The power method (Sec. 7.3.1 of Ref. [2]) is designed to
converge to the largest eigenvalue of a matrix.

Here, we are concerned with algorithms for the complex sym-
metric eigenproblem, remembering that any square complex sym-
metric matrix is similar to a complex symmetric matrix, as pointed
out by Gantmakher (see Corollary I. in Chap. 11.3 Ref. [12]). Let
us assume that it is possible to transform a complex symmet-
ric input matrix A using similarity transformations into the form
A = Q DQ−1, where D is a diagonal matrix and Q is orthogonal,

i.e., Q T = Q−1 (this is at variance with Hermitian matrices where

we would otherwise have Q + =
(

Q T
)∗ = Q−1). In view of the

relation AQ = Q D = (DQ T)T, the column vectors of the matrix
Q contain the eigenvectors of A, whereas the diagonal elements
of D are the eigenvalues of A. Furthermore, the eigenvector in
the i th column of Q corresponds to the eigenvalue in the i th
column or row of D. The matrix Q which diagonalizes the input
matrixA (typically, tomachine precision) is constructed iteratively.
In its most basic version, the QL algorithm [2,3] implements the
similarity transformations by first calculating the decomposition
of a real input matrix A, as given by A = Q L where Q is an

orthogonal matrix (Q T = Q−1), and L is a lower left triangular
matrix. One then implements the similarity transformations by
simply calculating A′ = L Q = Q−1 AQ in the next step of the
iteration. This corresponds to an iterative similarity transformation
A = Q A′ Q−1 = Q Q ′ A′′ Q ′−1Q−1 and so on. Finally, A converges to
a diagonal matrix. QL factorization is known to be a rather efficient
algorithm for wide classes of input matrices [2,3].

Indeed, decompositions of the above mentioned types will be
used in our algorithm which is based on a combination of gen-
eralized Householder transformations (first step) together with
Givens rotations (second step) in order to diagonalize an input
matrix. Both the generalized Householder transformations as well
as the Givens rotations describe similarity transformations in-
volving orthogonal ‘‘rotation’’ matrices. In the calculation of the
eigenvalues and eigenvectors of the input matrix A, we proceed as
follows. (i) The matrix A is iteratively tridiagonalized by a series of
generalized Householder reflections based on the indefinite inner
product (c-product). The indefinite inner product avoids complex
conjugation in both arguments. This first step of the algorithm can
be paradigmatically summarized in the equation T = Z−1 A Z ,
where Z = Hn−1 Hn−2 . . . H2 is a product of n − 2 generalized

Householder reflections (Z is orthogonal, with ZT = Z−1). Also, T is
a tridiagonal matrix, while A is the input matrix. In the generalized
transformations, one replaces the canonical inner product

〈

u, v
〉

=
∑

iu
∗
i vi by the expression

〈

u, v
〉

∗ =
∑

iui vi. (ii) After obtaining T ,
there are a number of algorithms available in order to carry out
the remaining diagonalization step. One possibility consists in an
iterative ‘‘chasing the bulge’’ strategy (see Sec. 8.13 of Ref. [3]),
using an implicit shift with Givens rotations in order to calculate
the eigenvalues of the tridiagonalmatrix T . Roughly, one calculates
a guess σ for a specific eigenvalue λ of T . One then calculates the
QL decomposition of the tridiagonal matrix T minus the guess σ
for the eigenvalue, T − σ 1n×n = Q L. Here, Q is calculated as a
product of Givens rotations. The iteration proceeds by calculating
T ′ = L Q + σ 1n×n = Q−1 T Q . This procedure eventually leads to
a diagonalization of T (up to machine precision), while preserving
the tridiagonal structure in every iteration; this is achieved by
restoring the tridiagonal form after a ‘‘bulge’’ introduced by an
initial rotation is ‘‘chased’’ and annihilated by a series of Givens ro-
tations (see Section 3.2). If an element of the super- or sub-diagonal
of T other than the ‘‘targeted’’ eigenvalue λ ≈ σ is accidentally
zeroed to machine precision, during an intermediate iteration of
the QL decomposition, then the technique of ‘‘deflation’’ is used
in order to subdivide the input matrix into two smaller matrices,
each ofwhich is diagonalized separately. For largematriceswith an
irregular structure, it is sometimes necessary to apply the deflation
procedure recursively (see Section 3.3).

In our implementation,we strive for a good balance of efficiency
and transparency of the FORTRAN code. We do not imply that the
implemented algorithm is necessarily the optimal solution for any
computational problem involving complex symmetric matrices.
For example, if only a specific eigenvalue, say the ground state
energy, of a sparsely populated matrix is desired, then ‘‘shooting’’
techniques, such as the Arnoldi method or its variants [13,14] can
be employed. By contrast, in many applications, it is necessary to
find the entire pseudo-spectrum; a particularly important example
is the Green’s function of a quantum system, expressed in terms
of resonance and anti-resonance eigenvalues [15,16]. According
to common wisdom, the spectrum of simple atoms like hydrogen
or helium consists of (an infinite number of) discrete ‘‘bound-
state’’ eigenvalues with E < 0 and a continuum of ‘‘free’’ states
with E > 0. Canonically, the zero of the energy is normalized to
a free particle at rest, with momentum eigenvalue zero [17,18].
When the Hamiltonian of the system is represented numerically
by a (necessarily finite-dimensional) matrix, obtained by the pro-
jection of a basis set of quantum mechanical trial functions onto
the Hamiltonian operator (see Section 4.2 of this article) or by a
lattice representation [19], the ‘‘pseudo-spectrum’’ typically yields
excellent approximations for the energy of the ground state, and
of low-lying states, whereas very highly excited (‘‘Rydberg’’) states
and the continuum are approximated by a series of discrete energy
eigenvalues and corresponding eigenvectors. Nevertheless, the en-
tire ‘‘pseudo-spectrum’’ can be used for the calculation of one-loop
and two-loop Bethe logarithms [20,21], and other physical pro-
cesses in helium [22]. In these calculations, the ‘‘pseudo-spectrum’’
approximates the intermediate, ‘‘virtual’’ states of the atom. Our
algorithm is particularly effective for the calculation of the entire
spectrum of eigenvalues of densely populated matrices, which
includes cases where an entire ‘‘pseudo-spectrum’’ is needed for
physically motivated reasons.

We describe an algorithm which we refer to as HTDQLS, which
stands for ‘‘Householder-based tri diagonalization followed by
(generalized) QL decomposition for complex symmetric matrices’’.
The general utility of algorithms of this type has been envisaged
before [23–26]. In Refs. [23,25], generalized Householder reflec-
tions for complex symmetric matrices have been discussed, with
the aim of tridiagonalizing a complex symmetric input matrix. In
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the second step, the authors suggest to diagonalize the tridiagonal
matrix using an efficient algorithm, e.g., QL and QR decomposi-
tions, or the Lanczos method. In order to save computer memory,
the algorithm described in Ref. [23] is implemented in such a
way as to treat the real and imaginary parts of the input matrix
separately. The authors of Ref. [23] mention a limiting factor due
to an upper limit of 400 MB main storage, which is not relevant
for currently available computer systems. Full complex arithmetic
rather than arithmetic involving separate real and imaginary parts,
as used in Ref. [23], is standard on modern computer systems.
Hence, the general concept of the paper [23] is outdated in view
of technological advances. Generalized Householder reflections
are proposed in Eq. (1) of Ref. [23]. We should mention that the
expressionwwt in the Eq. (1) of Ref. [23] should be understood as
the dyadic product w ⊗ wT (in our notation), and the normaliza-
tion denominator in the definition of w can be omitted, because
w = v/‖v‖2 already is normalized (in the notation of Ref. [23]).
In Refs. [24,26], algorithmic implementation details are left out
from the discussion. Here, in addition to discussing a practically
useful implementation, we attempt to augment the discussion
by iterative deflation techniques which take care of ‘‘premature’’
convergence of certain off-diagonal entries in the second step of
the algorithm, andwe study variants of the implicit shift σ which is
used to accelerate the convergence of the QL factorizations toward
the eigenvalues. A multi-precision implementation and possibili-
ties for a parallelization of the algorithm are also discussed (see
Appendices B and C).

The organization of this paper is as follows. In Section 2, we
briefly review generalized Householder reflections. We then pro-
ceed to generalizedHouseholder tridiagonalization (HTD),which is
followed by the QL decomposition with implicit shift (QLS) in Sec-
tion 3. An overviewof aFORTRAN implementation of the algorithm,
as well as numerical reference values, are provided in Section 4.
Finally, conclusions are drawn in Section 5. The appendices are
devoted to the lack of positive-definiteness of the indefinite inner
product, and to multi-precision implementations and paralleliza-
tion.

2. Generalized Householder reflections

For complex symmetric matrices (these are not Hermitian),
one cannot use the usual definition of the Householder reflection,
which is designed for (potentially complex) Hermitianmatrices. In
order to apply theHouseholder reflections to a complex symmetric
matrix, we turn to the indefinite inner product, which avoids
complex conjugation,

〈

x, y
〉

∗ = xT · y ,
〈

x, A y
〉

∗ =
〈

AT x, y
〉

∗, (1)

where AT is the transpose of A. A Householder matrix employing
the indefinite inner product (1) is

Hv = 1n×n − 2
〈

v, v
〉

∗
v ⊗ vT , Hv x = x − 2 v

〈

v, x
〉

∗
〈

v, v
〉

∗
,

|v|∗ =
√

〈

v, v
〉

∗,

(2)

where ⊗ is the tensor (dyadic) product. The transpose is indicated
for the second vector for absolute clarity and in order to distinguish
the formalism from the one used for Hermitian matrices. The
branch cut of the square root function is chosen to be along the
negative real axis. This definition is in agreement with the first
(unnumbered) equation in [25], as well as Eq. (1) of Ref. [23]. The
generalized Householder reflection matrices are symmetric, Hv =
HT
v . Furthermore, while complex, the generalized Householder

matrices are orthogonal (as opposed to unitary),

H2
v = 1n×n − 4

|v|2∗
v ⊗ vT + 4

|v|4∗
v ⊗

(

|v|2∗ vT
)

= 1n×n. (3)

As in Ref. [23,25], the vector v = y± |y|∗ên is chosen such that |v|∗
is maximal, thus

v = y ± |y|∗ ên , Hv y = ∓|y|∗ ên. (4)

The projection property is easily verified,

Hv y = y − 2

|v|2
(

vT · y
)

v

= y − 2 v

(y ± |y|∗ ên)
T · (y ± |y|∗ ên)

[

(

y ± |y|∗ ên
)T

· y
]

= y − v = ∓|y|∗ ên. (5)

Note that the generalized modulus |y|∗ is a complex number. The
generalized Householder reflection projects onto the n th unit
direction of the argument vector y.

3. Description of the HTDQLS algorithm

3.1. Householder reflections and tridiagonalization

In principle, it is possible to use a variety of methods to bring
complex symmetric matrices into tridiagonal form. For instance,
Cullum and Willoughby have shown that it is possible to use
the Lanczos method to tridiagonalize complex symmetric matri-
ces [27,28], yet we have chosen to employ generalized House-
holder reflections to accomplish the same goal. In Refs. [27,28],
the elegant Lanczos methods have been described and analyzed
in detail. These methods are primarily useful when a subset of
eigenvalues (e.g., those of largestmagnitude) are to be determined.
Here, we are specifically concerned with the full tridiagonalization
of the input matrix, and choose a generalization of the method of
Householder transformations.

While the concept of using the generalized Householder re-
flections to tridiagonalize a complex symmetric matrix has been
mentioned in Refs. [23,25], the implementation of the precise cal-
culational procedure is not alwaysmade clear. In Ref. [23], because
of a lack of true complex arithmetic, the complex symmetricmatrix
is separated into real and imaginary parts, causing each step to
require two Householder reflections, as well as an additional uni-
tary transform. By contrast, we here use an algorithmwith a single
generalized Householder reflection in each step. In the following,
we endeavor to clarify the procedure utilized by our algorithm.

The tridiagonalization of an (n × n)-complex symmetric input
matrix A within the HTDQLS algorithm is accomplished by im-
plementing (n − 2) generalized Householder reflections. In the
beginning, one chooses y

n−1
to be the column vector containing

the first (n − 1) elements of the last row of the input matrix A,

A =









Bn−1 y
n−1

yT
n−1

An,n









, y
n−1

=









A1,n

A2,n

...

An−1,n









. (6)

We then set according to Eq. (2),

vn−1 = y
n−1

± |y
n−1

|
∗
ên−1 ,

Hvn−1
= 1n×n − 2

〈

vn−1, vn−1

〉

∗
vn−1 ⊗ vTn−1.

(7)

Possible complications due to non-positive-definiteness of the

norm |vn−1|∗ =
√

〈

vn−1, vn−1

〉

∗ are discussed in Appendix A. The
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(n × n)-matrix Hn−1, as well as the first similarity transform are
then defined as

Hn−1 =









0

Hvn−1

...

0
0 . . . 0 1









, (8a)

A′ = H−1
n−1 A Hn−1 = Hn−1 A Hn−1

=















0

B′ = Hvn−1
BHvn−1

...

0
∓|y

n−1
|∗

0 . . . 0 ∓|y
n−1

|∗ An,n ,















, (8b)

whereA′ is tridiagonal in the last columnand row. In practice, there
is no need to calculate the whole matrix product A′ = H AH .
Instead consider the following expression

B′ = Hv B Hv = B − v ⊗ uT − u ⊗ vT + 2q v ⊗ vT

= B − v ⊗ wT − w ⊗ vT, (9)

where we introduce the notation

p = 1

2
|v|2∗ , u = B v

p
, q = vT · u

2p
, w = u − qv. (10)

In order to calculate the transformed matrix A′, one calculates the
Householder vector v, then p, u, q, w, B′ and finally (trivially) A′.
Once these calculations are complete, and A′ has been found, the
matrix is deflated to B′ which will be an (n − 1) × (n − 1) matrix.
After a total of (n − 2) similarity transforms, the input matrix A

becomes tridiagonal,

T = Z−1 A Z , Z = Hn−1 Hn−2 . . . H2 ,

Z−1 = H2 H3 . . . Hn−1.
(11)

3.2. Recursive algorithm and generalized Givens rotations

Cullum and Willoughby have treated the QL decomposition in
Refs. [27,29], as well as provided an algorithm in Ref. [28]. Here
we attempt to provide a more illustrative discussion. After the
tridiagonalization, the final diagonalization is accomplished via a
combination of implicitly shifted initial rotations with a series of
generalized Givens rotations. The combination leads to a compu-
tationally efficient implementation of iterated QL decompositions.
For each super-/sub-diagonal element, progressing from the top
left corner down to the bottom right corner, we iterate the trans-
formation

T (k,i) − σi 1n×n = Q (k,i) L(k,i) , (12a)

T (k+1,i) = L(k,i) Q (k,i) + σi 1n×n = Q (k,i)T T (k,i) Q (k,i) , (12b)

until the super- and sub-diagonal elements Ti,(i+1) and T(i+1),i are
zeroed to machine accuracy. Here, i = 1, . . . , n − 1 covers the
eigenvalues to be found (the n th eigenvalue is obtained ‘‘for free’’
in view of the tridiagonal character of T ), and k denotes the order
of the iteration. The shift σi constitutes a ‘‘guess’’ for the eigenvalue
λi, and is optimized in order to enhance the rate of convergence of
the algorithm. The idea is to iterate the transformation in higher
orders of k, until convergence of the i th eigenvalue λI of T to
machine accuracy is reached. After that, i is advanced, i → i + 1.
The algorithm starts at i = k = 1. The iterated QL decomposition is
equivalent to a set of generalized Givens rotations [2,3], which can
be implemented with the help of a ‘‘chasing the bulge’’ technique,
to be described below. The rotations first create and then chase
a ‘‘bulge’’ (non-vanishing element on the second super-diagonal)

from the lower right corner to the upper left corner, as detailed in
the following.

The recursive algorithm begins with the initial tridiagonal form

T ≡ T (1,1) =















D1 E1
E1 D2 E2

E2
. . .

. . .

. . . Dn−1 En−1

En−1 Dn















. (13)

For the ‘‘educated guess’’ σi ≈ λi of an eigenvalue, we implement
the following approximations. The first and perhaps most trivial
choice would assume that the iterations have already resulted in
small absolute values of the off-diagonal terms, so that σi = Di.
The so-called Wilkinson shift [1,11] is derived from one of the
eigenvalues of the (2× 2)-submatrix covering the indices (i, i+ 1)
of T . A suitable choice is as follows,

M i =
(

Di Ei
Ei Di+1

)

,

σ±
i = Di + Ei





Di+1 − Di

2 Ei
±

√

(

Di+1 − Di

2 Ei

)2

+ 1



 ,

(14)

where we choose the shift σi to be closest to Di, minimizing |Di −
σ±
i |. Theminimization of |Di −σ±

i | is indicated because the ‘‘target
eigenvalue’’ is Di. For large matrices, we observe that an improved
shift based on the exact eigenvalues of the (3 × 3)-submatrix (i ≤
n − 2),

M
(3)
i =

(

Di Ei 0
Ei Di+1 Ei+1

0 Ei+1 Di+2

)

, (15)

may, under certain conditions, overcompensate the additional
computational cost involved in solving the cubic eigenvalue equa-
tion. By the standard formulas for the solutions of a cubic (eigen-
value) equation, the eigenvaluesΛi,m ofM

(3)
i (withm = 1, 2, 3) are

given as follows,

Λi,1 = 1

3
(Di + Di+1 + Di+2)+ 21/3

3

Y
[

Z +
√
Z2 + 4Y 3

]1/3

−

[

Z +
√
Z2 + 4Y 3

]1/3

3 · 21/3
, (16a)

Λi,2 = 1

3
(Di + Di+1 + Di+2)− (1 + i

√
3) Y

3 · 21/3
[

Z +
√
Z2 + 4Y 3

]1/3

+
(1 − i

√
3)
[

Z +
√
Z2 + 4Y 3

]1/3

6 · 21/3
, (16b)

Λi,3 = 1

3
(Di + Di+1 + Di+2)− (1 − i

√
3) Y

3 · 21/3
[

Z +
√
Z2 + 4Y 3

]1/3

+
(1 + i

√
3)
[

Z +
√
Z2 + 4Y 3

]1/3

6 · 21/3
, (16c)

Y = − (Di + Di+1 + Di+2)
2 + 3 [Di+1 Di+2

+ Di (Di+1 + Di+2) − E2
i − E2

i+1

]

, (16d)

Z = − (Di + Di+1 − 2Di+2) [(2Di − Di+1 − Di+2)

× (Di − 2Di+1 + Di+2)+ 9 E2
i

]

+ 9 (2Di − Di+1 − Di+2) E
2
i+1. (16e)
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The shift σi is chosen as the eigenvalue Λ of M
(3)
i closest to Di

(minimizing the modulus |Di −Λ|).
The generalization of theWilkinson shift to larger sub-matrices

is also utilized in Ref. [30]. The algorithm advocated in Ref. [30]
is rather based on ‘‘chasing’’ a (k × k)-bulge than modified shift
parameters [see Eq. (2.1) of Ref. [30]], but algorithm S4 on p. 101 of
Ref. [30] generalizes Wilkinson’s shift. The use of the eigenvalues
of the trailing (k × k)-matrix is a natural extension of the multi-
shift program. In extensive tests of the algorithm, we found that
different shifts seem to be optimal for different classes of inputma-
trices. In typical cases, the ‘‘cubic’’ shift (based on the eigenvalues
of a 3 × 3 submatrix) seems to be better suited for ill conditioned
matrices, while the Wilkinson shift (based on the eigenvalues of a
2 × 2 submatrix) performs better for banded input matrices, with
a regular (smooth) dependence of the matrix elements on their in-
dices. Forwell conditionedmatrices, the difference in performance
between the ‘‘cubic’’ and the Wilkinson shifts is negligible. Due to
the convergence gained by using certain shifts based on the type of
matrix to be diagonalized, the distributed FORTRAN code includes
the variable SHIFTMODE, with possible values SHIFTMODE = 0
(no shift, σi = 0), as well as SHIFTMODE = 1 [derived from the
(1×1)-submatrix, σi = Di ], and also theWilkinson (SHIFTMODE =
2) and cubic shifts (SHIFTMODE = 3). The linear shift and the
option to neglect having a shift at all are included for completeness.
In typical cases, we observe that the total elimination of a shift
(SHIFTMODE = 0) is computationally disadvantageous.

For the first rotation of the tridiagonal input matrix T ≡ T (1,1),
one starts from the element σ1 and calculates the first rotation
matrix R as follows,

R =













1
. . .

1
c s

−s c













, c2 + s2 = 1 ,

RT R = 1n×n , (17a)

c = Dn − σ1
√

(Dn − σ1)2 + E2
n−1

, s = En−1
√

(Dn − σ1)2 + E2
n−1

. (17b)

In the initial step of the ‘‘chasing of the bulge’’ (which eventually
leads to the calculation of T ′ = RT T R), one creates an tridiagonal
(super-super- and sub-sub-diagonal) elements in T .

We notice that the initial rotation matrix R constitutes a Givens
rotation, as defined on p. 100 of Ref. [3] in terms of the elements
that it eliminates from amatrix. Essentially, a Jacobi rotation elim-
inates the same matrix element that was used in the construc-
tion of the rotation matrix, whereas a Givens rotation eliminates
a different element. The rotation matrix R constitutes a Givens
rotation in the sense that the matrix RT (T (k,i) − σi 1n×n) has a zero
entry on the last element of the superdiagonal; however, in the
course of the algorithm discussed here, we are interested in the
matrix T ′(k,i) = RT T (k,i) R. In T ′(k,i), the rotation R creates rather than
eliminates a super-super- and sub-sub-diagonal matrix element,
temporarily converting the matrix to pentadiagonal form, creating
a ‘‘bulge’’. Both here as well as in the FORTRAN implementation,
we are using the notation from Eq. (13), i.e., D is an n-dimensional
vector containing the diagonal elements of our matrix and E is an
(n − 1)-dimensional vector containing the sub-diagonal elements
of our matrix. We are calculating the initial rotation along with the
Givens rotations (which eventually describe the orthogonal matrix
Q ) on the basis of the ‘‘shifted’’ matrices [in the sense of Eq. (12)],
avoiding the necessity to calculate the shiftedmatrix T (k,i)−σi 1n×n

itself. Indeed, the shift [2,3] may be applied to the rotation matrix
only, justifying the name ‘‘implicit shift’’.

The first transformed matrix T ′(k,i) = RT T (k,i) R has the form

T ′(k,i) =



















. . .
. . .

. . . D′
n−3 E ′

n−3
E ′
n−3 D′

n−2 E ′
n−2 F ′

E ′
n−2 D′

n−1 E ′
n−1

F ′ E ′
n−1 D′

n



















, (18)

with anobvious ‘‘bulge’’ (the off tridiagonal element F ′ = T ′(k,i)
n−2,n =

T ′(k,i)
n,n−2 is not equal to zero). The notational identification

Gn−1 ≡ R (19)

is consistentwith the Givens rotations that follow [see also Eq. (23)
below]. In order to annihilate T ′(k,i)

n,n−2 = T ′(k,i)
n−2,n, one now uses

a Givens rotation [31]. In full consistency with the discussion
on p. 100 of Ref. [3], the Givens rotation eliminates the element
T ′(k,i)

n,n−2, while the Givens rotation matrix itself has a nonzero entry
at position (n − 1, n − 1),

Gn−2 =

















1
. . .

1
c s

−s c

1

















, c2 + s2 = 1 ,

GT
n−2 Gn−2 = 1n×n . (20a)

c = E ′
n−1

√

E ′2
n−1 + T ′2

nn−2

, s = T ′
n n−2

√

E ′2
n−1 + T ′2

n n−2

. (20b)

Notice that c2+s2 = 1, while for Hermitianmatrices the condition
would otherwise read |c|2 + |s|2 = 1. We generalize the Givens
rotations to preserve the complex symmetric (not Hermitian)
structure of the matrix. Applying this rotation to our matrix we
eliminate the ‘‘bulge’’; however, a new ‘‘bulge’’ has been created
one element up along the off tridiagonal T ′′(k,i)

n−1,n−3 = T ′′(k,i)
n−3,n−1 6=

0. A total of (n − 2) Givens rotations are used to eliminate the
‘‘bulge’’ completely and return to tridiagonal form. In each step,
the matrix elements are updated as

D′
i+1 = c2Di+1 + 2 c s Ei + s2Di ,

D′
i = c2Di − 2 c s Ei + s2Di+1 ,

E ′
i+1 =

√

E2
i+1 + F 2 ,

E ′
i = (c2 − s2)Ei + c s (Di − Di+1) ,

E ′
i−1 = c Ei−1 , F ′ = s Ei−1 ,

(21)

where F is the (single nonvanishing) off tridiagonal element. For
the initial rotation (i = n − 1), we note that Ei+1 = En is not really
an element of thematrix, and thus, it can be set equal to zero in the
scheme given in Eq. (21). The equations for c and s for the initial
rotation are given in Eq. (17), while the general equations for the
following Givens rotations are

c = Ei+1
√

E2
i+1 + F 2

, s = F
√

E2
i+1 + F 2

. (22)

Finally, one obtains the transformation Q = Q (k,i) (first transfor-
mation for the first element to be zeroed) from Eqs. (12) and (19),

T (k+1,i) = Q (k,i)T T (k,i) Q (k,i) ,

Q = Q (k,i) = R Gn−2 Gn−3 · · · G1 =
n−1
∏

j=1

Gj.
(23)
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The transformed matrix T (k+1,i) again has tridiagonal form; the
bulge has been ‘‘chased’’ upward until it disappears. We reem-
phasize that a single update of T (k,i) → T (k+1,i) requires an initial
rotation R and (n−2) further Givens rotations. One can show [1,11]
that the convergence toward the eigenvalue σ → λi = Di (where
the equality holds to machine accuracy in the final iteration) is
governed by a factor χ = (λi − σ )/(λi+1 − σ ) with each iteration.
The ordered sequence of eigenvalues reads as |λ1| < |λ2| < · · · <
|λn|. Originally, this result was derived in Refs. [1,11] for real ma-
trices, and an ordered sequence consisting of eigenvalues λi. Our
numerical calculations provide evidence for the expectation that
a similar rate of convergence is achieved, in typical applications,
for complex symmetric (not Hermitian) tridiagonal matrices. In
typical cases, less than 30 iterations (similarity transformations)
are required to reach machine accuracy (which we understand as
FORTRAN quadruple precision with roughly 32 decimals, with data
type REAL*16) for a target eigenvalue λi ≈ Di (where λi = Di to
machine accuracy after the algorithm has converged, i.e., formally,
in T (∞,i)).

3.3. Deflation and partitioning: Reducing the matrix size

When chasing the bulge as described in Section 3.2, one strives
to calculate the eigenvalues of the tridiagonal matrix T from the
upper left to the lower right, i.e., one subsequently zeros (to ma-
chine accuracy) the elements Ei with i running from 1 to n − 1.
In the sense of Eq. (12), one iterates in ascending transformation
orders k with the aim of zeroing the element Ei in the matrix
T (k,i). Let us assume that in this process an element Ej, with j >

i, accidentally becomes equal to zero within machine accuracy,
before Ei is zeroed. This constitutes an early, or ‘‘premature’’, zero
which requires special treatment. Namely, if we were to continue
the recursive algorithm of Section 3.2 without any changes, then
the bulge, which ‘‘starts in the right low corner of the matrix T

and thenmoves upward’’ would always be annihilated prior to the
point where it would affect Ei. In order to overcome the lock-up,
we divide, or ‘‘partition’’ the matrix T into two smaller matrices,

T =
(

T 1 0
0 T 2

)

, (24)

where T 1 and T 2 are tridiagonal matrices, with columns and rows
running over the indices i = 1, . . . , j−1 for T 1 and i = j, . . . , n for
T 2. We assume that Q

1
and Q

2
diagonalize the matrices T 1 and T 2,

Q T

1
T 1 Q 1

= D1 , Q T

2
T 2 Q 2

= D2, (25)

where Q
1
and Q

2
are the similarity transforms and D1 and D2 are

the corresponding diagonalmatrices of T 1 and T 2, respectively.We
can then almost trivially construct the orthogonal transformation

Q =
(

Q
1

0
0 Q

2

)

,

Q TT Q =
(

Q T

1
0

0 Q T

2

)(

T 1 0
0 T 2

)(

Q
1

0
0 Q

2

)

=
(

D1 0
0 D2

)

.

(26)

One needs to invoke the iterated, implicitly shifted QL decompo-
sition on both of them, individually. As such we have ‘‘deflated’’
the matrix T into two smaller matrices. Quite surprisingly, this
problem is rather scarcely treated in the literature. It is discussed
very briefly in Sec. 7.11 of Ref. [3]. There are further unpublished
notes that address the issue [32–34]. The solution is referred to as
‘‘deflation’’ in Sec. 11.4 of Ref. [33] and near the end of Sec. 3.6.2
of Ref. [34]. In Sec. 4.7 of Ref. [32], the same procedure is called
‘‘partitioning’’.

4. Program description and numerical reference data

4.1. Program description

The programs distributed with the CPC program library
are written in FORTRAN with COMPLEX*32 arithmetic. This corre-
sponds to roughly 32 digits (quadruple precision) for both real and
imaginary parts. This enhanced arithmetic precision has been com-
monly available within the freely available gfortran compiler
(we use version 4.9.2, see Ref. [35]), and other recent compilers,
such as the IBM XL FORTRAN compiler [36]. Quadruple
precision is used for the input matrix as well as for the eigenvalues
and eigenvectors. Our algorithm is written transparently, with the
aim of allowing for easy generalizability. In addition to the HTDQLS
program, we also distribute a reference version of HTDQRS, the
only difference being that the QL factorization step in Section 3.2
is replaced by QR factorization.

In the provided example cases for the algorithms (HTDQLS and
HTDQRS), a (10 × 10)-generalized non-Hermitian complex sym-
metric generalized Hilbert matrix of the form

Ai,j = exp[−i θ (i + j − 1)]
(i + j − 1)

, θ = π

5
, (27)

is diagonalized. This matrix is densely populated and is ill-
conditioned even for low dimensionality of the input matrix.
Specifically, the ratio of the modulus of the largest as compared
to the smallest eigenvalue is of the order of 1013 for a (10 × 10)-
generalized complex symmetric Hilbert matrix.

The algorithm is implemented using separate subroutines for
the tridiagonalization anddiagonalization steps, alongwith several
other supporting subroutines and a master subroutine. There are
two versions of the routine HTDQLS, used to find the eigenvalues
or the eigenvalues and eigenvectors of the input matrix. In the
FORTRAN source code, these routines are denoted by either a ‘‘1’’
(for the eigenvalue implementation) or a ‘‘2’’ (for the eigenvalue
and eigenvector implementation) at the end of the subroutine’s
name. The master subroutine directs the flow of the algorithm so
that the desired option is implemented. Here we briefly describe
all the subroutines.

The master subroutine HTDQLS(JOBZ, N, A, D, Z,
SORTFLAG, SHIFTMODE) is used to call other subroutines, and
determines the order in which they are used. If JOBZ=‘N’, then
only the eigenvalues are calculated, while if JOBZ=‘V’ then the
eigenvalues and eigenvectors are calculated. The rank of the in-
put matrix and the input matrix itself are denoted by N and A
respectively. The eigenvalues and eigenvectors are returned in D
and Z respectively, where the i th column of Z is the eigenvector
corresponding to the i th eigenvalue stored in D(i). The original
matrix A is unchanged by HTDQLS and may be used in order to
check, e.g., the eigenvector property of the column vectors of Z, if
desired, after the completion of the algorithm. Note that this ‘‘pol-
icy’’ is different from the one used, e.g., in LAPACK (see Ref. [37]).
The boolean variable SORTFLAG determines if eigenvalues (and
corresponding eigenvectors) are sorted according to the real part
of the resonance energy, and the integer variable SHIFTMODEmay
attain the values 0, 1, 2, 3 depending on whether the implicit shift
in the diagonalization routine is called in zero-shiftmode, in linear,
quadratic or cubic mode [see the discussion surrounding Eqs. (14)
and (15)].

The routines HTD1(N, Z, D, E) and HTD2(N, Z, D,
E) implement the tridiagonalization step of the program. Each
routine takes the input matrix Z of rank N and tridiagonalizes it
as described in Section 3.1. The tridiagonal matrix is then stored in
the vectors D and E. If HTD2 is used, then Z acts both as an input as
well as an output variable: at the start of the algorithm, it contains
the input matrix, while Z, upon output, contains the matrix used
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to tridiagonalize the input matrix. Note that the Z variable here
contains a matrix different from the matrix Z used in the output of
themaster subroutine HTDQLS(JOBZ, N, A, D, Z, SORTFLAG,
SHIFTMODE), where it otherwise contains the eigenvectors. In
typical applications, the matrix used to tridiagonalize the input
matrix is of no use for further calculations. If thismatrix is required
in an application, then one has twopossibilities; either, one can call
HTD2 separately, or, in the master subroutine HTDQLS, one would
‘‘intercept’’ the Z matrix that results from the call to HTD2, store
this variable in a differentmatrix, e.g., ZP (for Z-prime), and output
the matrix ZP in an added output variable of a modified routine
HTDQLS.

The routines QLS1(N, D, E, SHIFTMODE) and QLS2(N, D,
E, Z, SHIFTMODE) diagonalize the tridiagonal input matrix
stored in D and E. The calculated eigenvalues are stored in D. If
and when premature zeros occur the routine detects them and
performs the deflation step. Finally, QLS2 stores the similarity
transforms in Z.

The calculation of the implicit shift evaluated in the routine
SHIFT(N, K, V, D, E, S, SHIFTMODE) depends on the num-
ber of nonzero off-diagonal elements left in the matrix/submatrix
which the algorithm is working to diagonalize. Indeed, the routine
SHIFTmakes an educated guess onwhether the quadratic or cubic
shift is appropriate; we found that the cubic shift is generally
advantageous for dense matrices larger than (5 × 5) while it
is always advantageous to gauge the utility of all four methods
(SHIFTMODE = 0, 1, 2, 3) for a particular problem at hand. Finally,
the routine SHIFT then solves for the possible values of the shift,
and chooses the one whose value is closest to that of the diagonal
element toward which we aim to converge. The guess for the
eigenvalue is returned to the appropriate version of QLS.

Finally, the routines SORT1(N, D) and SORT2(N, D, A)
sort the N complex resonance eigenvalues stored in D in ascending
order of their real parts. SORT2 additionally sorts the eigenvectors
to match the position of the associated eigenvalues. They are only
called if the boolean variableSORTFLAG in the initial call toHTDQLS
evaluates to TRUE.

4.2. Numerical reference data

In a typical atomic physics calculation, complex symmetric ma-
trices, A = AT, arise in a number of contexts. One rather straight-
forward example stems from the projection of a PT -symmetric
anharmonic oscillator Hamiltonian onto an appropriate set of basis
states, as well as from complex scaled Hamiltonians [26,38–41].
The eigenvalues of the former are real (PT -symmetry) or come
in complex conjugate pairs (‘‘broken’’ PT -symmetry). The latter
case may be an artifact due to the finite dimension of the basis
set [42,43]. In natural units (h̄ = c = ǫ0 = 1), the energies take
the form E = Re(E) − iΓ /2, where Γ is the decay width [40].
We have checked our numerical results against published data for
PT -symmetric oscillators as well as various resonance and anti-
resonance energies of anharmonic oscillators, for which accurate
semi-analytic approximations (‘‘resurgent expansions’’) have been
found [38–41].

As an example, we consider both the real and the imaginary
cubic anharmonic oscillators,

H3 = −1

2
∂2x + 1

2
x2 + iG x3 , (28)

h3 = −1

2
∂2x + 1

2
x2 + g x3 , x → x ei θ ,

∂x → ∂x e
−i θ , 0 < θ <

π

5
, (29)

where the momentum operator is p = −i∂x and both G as well
as g are real coupling constants. Hamiltonians of the type (28)

have been extensively studied [38–44] and provide for numerically
verifiable and reproducible example cases; they have been con-
jectured by Bessis and Zinn-Justin (1992) to have a real spectrum.
The eigenvalues E

(3)
i of H3 are functions of G [with E

(3)
i ≡ E

(3)
i (G)],

while the eigenvalues ǫ
(3)
i of h3 are functions of the coupling g

[with ǫ
(3)
i ≡ ǫ

(3)
i (g) ]. Projecting the Hamiltonians onto the first

few thousand eigenstates of the Harmonic oscillator, and using a
multi-precision implementation of HTDQLS, we obtain 40-figure
results for the lowest two eigenvalues of the cubic Hamiltonians
for G = g = 0.8, 1.0, 1.2 (see Table 1). Extended arithmetic
precision (Bailey’s MPFUN package [45–47]) is used in order to
calculate the 100-decimal reference value

E
(3)
0 (G = 0.8) = 0. 74094 89714 82359 67140 99523 87680

56298 96492 18672 78632 20295 06972

65779 86489 95262 29285

78562 62734 77203 42411 , (30)

which constitutes the real (rather than complex) eigenvalue of a
manifestly complex PT -symmetric Hamiltonian. It is determined
from a matrix representation of the Hamiltonian H3 of relatively
modest size ( 700 × 700), in a nonorthogonal basis, with details to
be discussed below. Along similar lines, Macfarlane implemented
a procedure using the Lanczosmethod to calculate the eigenvalues
of the anharmonic-oscillators of the form H = 1

2
(p2 + x2) +

λ x2m, with m ranging form 2 to 6 [48]. Using the Lanczos method,
Macfarlane found the energies of the ground states using basis sets
of around 100 to 700 functions, reaching a final numerical accuracy
of about 32 digits in typical cases. The Lanczos methods employed
in Ref. [48] require a good estimate of the energy prior to the im-
plementation of the algorithm. HTDQLS on the other hand requires
no prior knowledge of the spectrum to solve for the eigenvalues. A
multi-precision implementation of the Lanczos algorithmhas been
demonstrated in Ref. [48] to reach 80-digit precision. The 100-
figure result in Eq. (30) provides for a numerical verification of the
unbroken PT -symmetry of the cubic anharmonic oscillator, and
strong numerical evidence for the Bessis–Zinn-Justin conjecture
(see also Ref. [43]) that its eigenvalues are indeed real rather than
complex.

As a further example of a PT -symmetric and complex rotated
Hamiltonian, we consider the real and imaginary quintic perturba-
tions, which give rise to the Hamiltonians

H5 = −1

2
∂2x + 1

2
x2 + iG x5 , (31)

h5 = −1

2
∂2x + 1

2
x2 + g x5 , x → x ei θ ,

∂x → ∂x e
−i θ , 0 < θ <

π

7
. (32)

These Hamiltonians have been studied in Ref. [40]. The eigenvalues
ofH5 and h5 are functions ofG and g , andwe denote them as E

(5)
i (G)

and ǫ
(5)
i (g), respectively. As with the cubic perturbations, we find

the ground state energies and the first excited state energies for
G = g = 0.8, 1.0, 1.2. These values are given in Table 2. The
accuracy of the 40-figure results in Table 2 is estimated based on
the apparent convergence of the numerical data as the size of the
matrix is increased.

The HTDQLS algorithm is best suited to the diagonalization of
highly populated matrices, and this property can be exploited as
follows. In order to determine the eigenvalues of the Hamiltonians
given in Eqs. (28), (29), (31), and (32), we use a non-orthogonal
basis, spanned by the functions

ψm(x) = exp(−a m x2) , m = 1, . . .,
n

2
,

ψm′ (x) = x exp(−a m′ x2) , m′ = n

2
+ 1, . . ., n,

(33)
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Table 1

The ground and first excited state energies for H3 and h3 for a number of numerical values of G and g .

G E
(3)
0 (G) E

(3)
1 (G)

0.8 0.7409489714823596714099523876805629896492 2.5590936586842958343376307563949089590503
1.0 0.7973426075089061890390809607910131630972 2.7735249851953797154058170000155301423108
1.2 0.8490970668902580154379174082842571460628 2.9672735934426520660857303467045297287969

g ǫ
(3)
0 (g) ǫ

(3)
1 (g)

0.8 0.5610662089794047751169281664314226877384 1.9914566988986611948843845499653251200899
−0.3585998446912006735125754092705259839349 i −1.3697057362826455278415281551260634948348 i

1.0 0.6128884333077546242588175019886514137333 2.1804138375363487712301619635417411312471
−0.4085926669322672831594988687671605162709 i −1.5262076556930325100068539469674956244459 i

1.2 0.6594714167192991278977191341544971560252 2.3478983333070824846022718286990973531183
−0.4501500342623650463075657682443766055819 i −1.6599063605849237445480905285146366951680 i

Table 2

The ground and first excited state energies for H5 and h5 for different values of G and g .

G E
(5)
0 (G) E

(5)
1 (G)

0.8 0.7538912462158978609933775532342084755830 2.7258471994818566415297971863990817428031
1.0 0.7914017577786407615586085970201748850226 2.8758099358457563926878002062726687819972
1.2 0.8245585240850223675042849743183765377726 3.0070208873225285380733043986131850535828

g ǫ
(5)
0 (g) ǫ

(5)
1 (g)

0.8 0.6745032943970081829189635370754891554478 2.4549378718984231093803679286277858144687
−0.2449726124186149757957512509761085337474 i −0.9829411537893020294468141332950502873759 i

1.0 0.7087569995222231520608207445117535466939 2.5903671332960233396078887830438530601339
−0.2676294309064137508755944363053624208697 i −1.0605035070223256192259440001529715964391 i

1.2 0.7390099799315036546710370674842589148660 2.7087808781134946742045029275471890886408
−0.2868223223586144211742731207114971470971 i −1.1270189838417337836605936986920259238600 i

where n is the (even integer) total number of basis functions and
m,m′ serve as counters. This defines basis functions ψm(x) with
m = 1, . . . , n which have even parity for 1 ≤ m ≤ n/2 and odd
parity for n/2 < m 6= n. We find that the choice a = 0.04 is useful
for the calculations leading to the resonance energies in Tables 1
and 2. The (n×n) symmetric real overlapmatrix S and the complex
symmetric Hamiltonian matrix H have the elements

Sij =
∫ ∞

−∞
dxψi(x)ψj(x) = 〈ψi|ψj〉∗ ,

Hij =
∫ ∞

−∞
dxψi(x)H3 ψj(x) = 〈ψi|H3|ψj〉∗, (34)

where we use the imaginary cubic perturbation given in Eq. (28)
for our example, and the inner product is denoted as in Eq. (1). On
the basis of the HTDQLS algorithm, we first calculate the square
root of the overlap matrix,

S = Q DQ T . M = Q
√

DQ T , S = M2. (35)

The square root of the diagonal matrix D is easily calculated. We
now use the following ansatz for an eigenvector, expressed in the
non-orthogonal basis,

|ψ〉 =
∑

j

cj |ψj〉. (36)

The eigenvalue problem within the basis,
∑

jcj H |ψj〉 =
E
∑

jcj |ψj〉, can then be formulated as

∑

j

〈ψi|H|ψj〉 cj =
∑

j

E 〈ψi|ψj〉 cj, (37)

With the coefficient vector c begin composed of the cj, we have

H c = E S c , d = M c , M−1 H M−1 d = E d, (38)

where E is the resonance energy. A diagonalization of the effective
Hamiltonian matrix

Heff = M−1 H M−1 (39)

then leads to the reference values given in Eq. (30), and in Tables 1
and 2.

5. Computational performance of the algorithm

5.1. Numerical accuracy

In order to gauge the numerical accuracy of the HTDQLS al-
gorithm, we turn to a complex rotated version of the harmonic
oscillator Hamiltonian,

H0 = −1

2
∂2x + 1

2
x2 , x → x ei θ ,

∂x → ∂x e
−i θ , θ = π

16
. (40)

The ground-state eigenvalue of the harmonic oscillator is unaf-
fected by the complex scaling and reads as λ0 = 1

2
. On the other

hand, using a projection of the complex rotated H0 onto a suitable
basis, we can generate complex symmetric matrices in which at
least the first eigenvalue is known, namely, λ0. A measure of the
numerical accuracy of the method is given as follows,

err = |D1 − λ0|
λ0

, (41)

where err is the numerical error, and D1 is the ground-state
eigenvalue as found by the corresponding algorithm. The goal is
to compare HTDQLS to ZGEEVX, which is a LAPACK routine [37]
that diagonalizes complex matrices (in COMPLEX*16 precision,
i.e., with roughly 16 significant decimals). We note that ZGEEVX
does not specialize in complex symmetric matrices but is a more
general solver. Aside from a single outlier at n = 800, we found
that the HTDQLS algorithm is generally an order of magnitude
more accurate than the LAPACK routine ZGEEVX (see Fig. 1). In
typical cases, we find that the final numerical loss of ourmethod in
reproducing known eigenvalues of Hamiltonians does not exceed
4–5 decimals, consistent with the outlier in Fig. 1. For comparison,
we also plot in Fig. 1 the numerical accuracy obtained using a
COMPLEX*32 version of HTDQLS; such a high-precision version is
not available for ZGEEVX.
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(a) Numerical accuracy.
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(b) Speed.

Fig. 1. In comparing the HTDQLS algorithm with the LAPACK routine ZGEEVX,
the relative numerical accuracy of the ground state energy of the complex rotated
harmonic oscillator H0 given in Eq. (40) is plotted as a function of the size of the
matrices [see Fig. (a)]. In Fig. (b), the average ratio of the runtimes, tZ/tH (where
tZ is the runtime of ZGEEVX and tH is the runtime of HTDQLS), is plotted against
the rank of the matrices. Two types of matrices were used (densely populated and
banded). Further details are in the text.

5.2. Speed

In order to test the computational efficiency of HTDQLS, we
again compare the LAPACK routine ZGEEVX with a COMPLEX*16
version of HTDQLS. This is done with the help of two types of
matrices, the first being composed of random complex numbers,
leading to densely populated, complex symmetric matrices, while
the second type of matrices are generated using the harmonic
oscillator Hamiltonian with an imaginary cubic perturbation [see
Eq. (28)], with random values of G, resulting in banded, complex
symmetric matrices. We then average 150 trials for each rank (200
to 1000) and find the ratio of the run times (see Fig. 1(b)). For
smaller matrices we found that HTDQLS runs quite a bit faster,
but as the size of the matrices increases ZGEEVX’s performance
improves. By rank 750, ZGEEVX performs faster (albeit slightly)
than HTDQLS for the banded matrices. For the densely populated
matrices on the other hand, HTDQLS is faster for all the matrices
we tested, but again, the performance of ZGEEVX improves with
the size of the matrix.

5.3. Defective matrices

Defective matrices (see, e.g., p. 316 of Ref. [2]) do not have a
complete basis of eigenvectors. This particular situationmay occur
when an eigenvalue is duplicate but one cannot find two linearly
independent eigenvectors corresponding to the degenerate eigen-
value. The Hamiltonians studied here correspond to physical sys-
tems where naturally, every quantum state has to correspond to a

well-definedwave function. Even if, in a physical system, an eigen-
value is degenerate, then one can argue that the full Hamiltonian
of the system, acting on the infinite-dimensional Hilbert space of
wave functions, cannot be defective in nature because that would
be self-contradictory: Namely, it would imply the existence of a
duplicate eigenvalue (two energetically degenerate states)without
two corresponding eigenvectors, i.e., without two quantum states
that correspond to the two ‘‘physical states’’. The Hamiltonians we
study present finite-dimensional approximations to the full Hamil-
tonian operator which acts on the infinite-dimensional Hilbert
space. In principle, the finite-dimensional nature of the approxima-
tion could induce defectiveness in exceptional, unfortunate cases,
but we have encountered no computational problems caused by
this aspect in the applications discussed here. Larger matrices will
approximate the spectrum of the Hamiltonian which they model
more closely, and so, one could argue that the occurrence of an
accidental defectiveness in a finite-dimensional approximation to
a quantum Hamiltonian becomes less and less likely the larger the
dimension of the matrix is.

Nevertheless, we should explicitly state here that we exclude
defective matrices from the scope of the HTDQLS routine. In or-
der to enhance the perspective, we have performed trial runs,
applying the algorithm to defective matrices. In diagonalizing
defective matrices, HTDQLS typically determines the eigenvalues
reliably, but the determination of the eigenvectors proves to be
troublesome; typically, the algorithm finds the correct eigenvector
and a nonsensical result is obtained for the non-existent one. In
principle, as defective matrices either have duplicate eigenvalues,
or at least one eigenvalue which is equal to zero it is simple
for the algorithm to check if the input matrix was defective. In
HTDQLS, in the event that a defective matrix is detected, an error
message appears advising the user to verify the eigenvalues. The
test is performed by verifying that the ratio of the modulus of
two subsequent eigenvalues does not deviate from unity by more
than EPS (epsilon), and that the absolute value of any particular
eigenvalue is greater than EPS (epsilon). Note that this check is
dependent on the eigenvalues having been sorted, as such if the
boolean variable SORTFLAG evaluates to FALSE then the check is
not performed (sorting the eigenvalues is computationally cheap).
Additionally, we recall that problems associated with defective
matrices relate to the eigenvectors, not eigenvalues. Hence, if the
program is run in eigenvalue mode (i.e. the eigenvectors are not
found) the check is not performed as it would be irrelevant.

6. Conclusions

In this paper, we use physically inspired generalized House-
holder transformations (see Refs. [23–26]) in order to construct
an efficient and scalable matrix diagonalization algorithm for
complex symmetric matrices. We follow the footsteps of other
attempts to generalize basic matrix algorithms to complex sym-
metric matrices (see, e.g., Ref. [49] where the Rayleigh quotient
is suitably generalized in the context of the Jacobi–Davidson al-
gorithm). To this end, we discuss the necessary generalizations to
the definition of theHouseholder reflection for complex symmetric
matrices (Section 2).

The algorithms discussed in this paper are mainly targeted at
applications in physics, and work best with densely populated
matrices whose entries depend smoothly on the matrix indices.
We therefore advocate a two-step approach which still allows
for a relatively compact implementation. In the first step, the
input matrix is tridiagonalized using (n − 2) generalized House-
holder transformations (Section 3.1 and Appendix A). In the second
step, the diagonalization is achieved by shifted QL decompositions
which are implemented via Givens rotations (‘‘chasing the bulge’’).
The Givens rotations are generalized to orthogonal as opposed to
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unitary form (cf. Refs. [2,3]). The implicit shift, which is known to
lead to higher computational efficiency, is constructed using an
improved variant of theWilkinson shift [1],which uses eigenvalues
determined from a cubic equation if appropriate. This is described
in Section 3.2. A similarity transform is performed, creating a
bulge, which is then ‘‘chased’’ out of the matrix. Finally, a new
tridiagonal matrix is obtained. The process is then repeated until
diagonalization to machine accuracy is achieved. The process is
summarized in Eq. (12). Necessary partitions due to ‘‘premature
zeros’’ along the super-/sub-diagonal of the tridiagonal matrix are
described in Section 3.3.

A program description is provided in Section 4.1. Our algo-
rithm calculates all eigenvalues of a complex symmetric matrix,
as required for, e.g., calculations of the complex scaled Green
function [50]. This is followed by numerical reference data for
anharmonic oscillators, partially obtained from a multi-precision
version of the algorithm, as given in Section 4.2. An illustration of
the procedure used in obtaining accurate PT -symmetric eigenen-
ergies from a matrix representation of the Hamiltonian of rather
modest size is given in Eqs. (33)—(39).

Finally, we compare to routines within publicly accessible li-
braries (e.g., LAPACK, Ref. [37]). For typical applications (matrices
around rank 500), we find that our HTDQLS routine is able to
compete well with LAPACK’s routine ZGEEVX (see Section 5).

We have tested the algorithm on matrices with random en-
tries (all elements are generated by a random number generator,
resulting in random entries distributed over a finite interval), on
anharmonic oscillators and helium (many-body atomic structure)
calculations (see Section 4.2). A multi-precision implementation is
discussed in Appendix B, while a discussion on the parallelization
of the algorithm is relegated to Appendix C.

In summary, we would like to emphasize that the purpose
of the current paper is not to compete with the highly versa-
tile LAPACK package [37] for matrices of arbitrary structure. We
rather aim to write an easily modifiable, and accessible routine
that can be modified by the user for use with any multi-precision
software, or as a testbed for other modifications of the algorithm
that are designed to aid in the diagonalization of input matri-
ces of a even more specific structure. For that purpose, we also
include our programs in the CPC program library. For complex
symmetric matrices, it seems that the potential of the indefinite
inner product (1) in the construction of numerical algorithms
has been somewhat underestimated, especially as it pertains to
the linear algebra of complex symmetric matrices. The complex
resonance energies calculated in Section 4.1 describe a quantum
particle trapped in a potential in which it is possible to tun-
nel out to infinity in a finite amount of time, within a cubic or
quintic anharmonic oscillator. Our high-precision numerical ref-
erence values obtained in Eqs. (30) and Tables 1 and 2 demon-
strate the utility of the algorithm discussed here; similar calcu-
lations have been the basis for the checking of a number of con-
jectures regarding generalized quantization conditions describ-
ing the spectrum of anharmonic oscillators [38–41]. The ability
of HTDQLS to handle densely populated matrices is sometimes
useful. For more complex physical systems, such as metastable,
doubly excited Rydberg states of the helium atom, modeled in
a Hylleraas basis [51,52], the Hamiltonian is not sparsely pop-
ulated, and the full power of a general matrix diagonalization
method that is suited for densely populated matrices becomes
useful.
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Appendix A. Indefinite inner product and zero norm

The indefinite inner product (1) is not positive definite, imply-
ing that the ‘‘length’’ |y|∗ of a vector can be zero even if the entries
of y are nonzero. Let us consider an n × nmatrix

P =



















1 0 0 0 · · · 1
0 1 0 0 · · · i
0 0 1 0 · · · 0

0 0 0
. . .

...

0 0 0 · · ·
. . . 0

1 i 0 · · · 0 1



















. (42)

According to Eq. (6), the vector y
n−1

which is used in the first
generalized Householder transformation, reads as

y = y
n−1

=













1
i
0
...

0













, |y|2∗ = yT
n−1

· y
n−1

= 0. (43)

The ‘‘length’’ of the vector y
n−1

, measured in terms of the complex
inner product, is zero. Furthermore, the Householder vectors v,
defined according to Eq. (4), have the properties

v = y ± |y|∗ ên = y , |v|∗ = |y|∗ = 0, (44)

and thus zero norm, independent of the sign choice (±). The
Householder matrix Hv thus diverges according to

Hv = 1n×n − 2
〈

v, v
〉

∗
v ⊗ vT → 1n×n − 2

|y|2∗
y ⊗ yT → ∞. (45)

The problem cannot be remedied by a permutation of the entries
in the matrix (42), as an inspection easily shows. The validity
of our approach thus is restricted to input matrices where the
norm of the Householder vectors does not accidentally vanish
during the tridiagonalization step. The regular, smooth pattern
of matrix entries in physical applications, such as anharmonic
oscillators and atomic structure calculations, prevents the occur-
rence of the Householder vectors with vanishing norm in typi-
cal cases. Our program stops with an error message if the norm
vanishes.

Furthermore, cases in which the norm |v|∗ is close to zero in
view of mutual cancellations in the calculation of the complex
inner product norm, may lead to numerical instabilities. In cases
where the algorithm is applied to input matrices with an irregular
pattern of matrix entries, is thus recommended to check the nu-
merical accuracy of the eigenvectors found in the diagonalization
of thematrix, by an explicit multiplication of the eigenvectorswith
the input matrix, at the end of the calculation, as is done in the
example programs that are distributed with the FORTRAN code
distributed with this article.

Appendix B. Multi-precision

Aswe have already stated, one of the advantages of the HTDQLS
algorithm as opposed to a similar LAPACK routine is the ease with
which the algorithm can be augmented in terms of arithmetic
precision. The original version of the algorithm is written in COM-
PLEX*32 precision, which already exceeds the accuracy utilized
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in LAPACK. We can increase the precision using a multi-precision
package, such as Bailey’s MPFUN90 (Refs. [45–47]). According to
the discussion in Section 4.2, this extension allows us to calculate
eigenvalues very accurately. We find that the ‘‘legacy’’ version of
the MPFUN package [53] offers the most straightforward possibil-
ities for an implementation. Here we briefly discuss how the im-
plementation is realized in the program HTDQLS_MP_EXAMPLE.f
distributed with the CPC program library.

First, one should note that, when implementing the multi-
precision version of the algorithm, care is required when defining
constants. To that end a simple module, MPCONST defines the
high precision constants used by the algorithm. The constants are
defined in the obvious way, i.e., ZERO = ’0.0’, ONE = ’1.0’,
TWO = ’2.0’, etc. The imaginary unit i is defined as II = MPCMPL
(ZERO, ONE). Finallyπ is defined asFOUR*ATAN(ONE), wherewe
note that the arctangent function has been extended for use with
high precision numbers.

The high-precision algorithm requires that the translationmod-
ules be used; so the statement USE MPMODULE follows all PRO-
GRAM, SUBROUTINE, and MODULE statements in the high precision
version of HTDQLS (see Ref. [47]). Immediately following this is the
statement USE MPCONST for all PROGRAM and SUBROUTINE state-
ments, including our previously defined constants. The parameters
in MPMODULE and the constants in MPCONST are initiated in the
main program, after all type declarations, using CALL MPINIT
and CALL ICONST. In order to utilize high precision variables in
HTDQLS all real and complex type declarations are replaced with
MPFUN90 type declarations, i.e.

REAL ∗ 16 → TYPE(MP_REAL) ,

COMPLEX ∗ 32 → TYPE(MP_COMPLEX) .

Finally, in order to output high precision numbers, the WRITE
and PRINT statements must be replaced with a call to the MP-
WRITE subroutine. In order to set the output precision, one
calls MPSETOUTPUTPREC. In the included example (HTDQLS_MP_
EXAMPLE.f) we have CALL MPSETOUTPUTPREC(57), meaning
that the first 57 digits of the highprecisionnumberswill be printed.
The output style is somewhat rigid, and in the event that one
wishes to adjust the style the following feature may prove useful:
Namely, a multi-precision complex number X can be converted to
a double precision complex number Y as follows,

Y = DBLE(MPREAL(X)) + DBLE(AIMAG(X)) ∗ II ,

where II is the imaginary unit i.
Finally, adjusting the precision of the code is achieved by open-

ing the file mpmod90.f and setting the parameter mpipl on line 46
equal to the desired precision. The file then needs to be recompiled
(i.e. gfortran -o mpmod90.f), and then linked to the desired
program that uses the multiprecision arithmetic.

Appendix C. Parallelization

When considering the possibilities for the parallelization of
HTDQLS it immediately becomes clear that priority should be given
to the tridiagonalization step as it dominates the runtime (see
Fig. C.1). As such, we limit this discussion of the parallelization
to the tridiagonalization step HTD1. As with the Hermitian ver-
sion written for ScaLAPACK [54], and the generalization to the
complex symmetric case, discussed in Ref. [25], we do not worry
about saving the similarity transforms. The algorithm described in
Section 3.1 is clearly designed as a sequential algorithmwhich can
be modified easily. This general setting somewhat limits our op-

✵ ✷✵✵ ✹✵✵ ✻✵✵ ✽✵✵ ✶✵✵✵
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Fig. C.1. The fraction of the total run time (tnet) HTD1 and QLS1 is plotted as a
function of the matrix size n. For larger n, the runtime is almost entirely taken up
by the tridiagonalization step HTD1.

Fig. C.2. This plot shows the relative execution time of OpenMP HTDQLS with
various thread-counts compared to the sequential version; the latter corresponds
to a single OpenMP thread. The results were taken on an Intel i5 processor, which
allows four threads to be executed in parallel. The relative execution time decreases
as a function of n; the optimum value for the absolute parallel execution time over
the sequential time tP/tS is 0.25 in view of the availability of four independent
cores on the processor used by us. The relative time spent in the parallelized part
of the computation (the tridiagonalization) increases with n [O(n3) as compared
to O(n2)]. The parallel and sequential execution times were compared for fully
occupied complex symmetric matrices with random entries; ten random matrices
were generated and the execution times were recorded and compared.

portunities for parallelization. We are then left with two possible
courses of action: We may either parallelize ‘‘inner’’ steps in the
existing code or redesign the entire tridiagonalization algorithm
with parallelization in mind. We discuss both possibilities.

Let us try to write pseudocode describing HTD1 is as follows,

HTD1

01 for i = n, 3, -1

02 d( i ) = A( i , i )

03 y = A( i , 1:i-1 )

04 e( i-1 ) = ∓|y|∗
05 v = y ± |y|∗êi-1
06 p = 1

2
|v|2

∗
07 u = 1

p
A( 1:i-1 , 1:i-1 ) v

08 q = 1
2p

vT·u
09 w = u - qv

10 A( 1:i-1 , 1:i-1 ) = A( 1:i-1 , 1:i-1 ) - v⊗wT - w⊗vT

11 d( 2 ) = A( 2 , 2 )

12 d( 1 ) = A( 1 , 1 )

13 e( 1 ) = A( 2 , 1 )

The operations inside the main loop depend on the previous steps,
meaning that the parallelization of the largest loop is prohibited.
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However, the operations on lines 07 and 10 in the above pseu-

docode each require doubly nested DO loops.We parallelized these

operations using OpenMP [55]. The resulting parallelized algo-

rithm was tested on a quad-core Intel i5 processor, and significant

speedup was achieved (see Fig. C.2). The OpenMP implementation

is limited in scope to shared memory architectures (multi-core

machines) and cannot easily be ported to distributed-memory

systems; the latter require the use of the MPI (message passing

interface) [56].
We may draw inspiration for a possible distributed-memory

implementation from the Hermitian equivalent pzhetrd which
is included in ScaLAPACK [54] and pzsytr2 [25]. This approach
is implemented using distributed memory MPI, and utilizes a
block cyclic memory distribution (for efficient communication),
where the matrix A is distributed using column blocking, i.e. it
is broken into m column blocks of size n × nb in a stripe-like
pattern, where m=n/ nb (see Algorithms 15 and 16 on p. 36 of
Ref. [54] and Ref. [57]). The tridiagonalization routine is converted
from Level 2 BLAS (vector–vector/vector–matrix operations) to
Level 3 BLAS (matrix–matrix operations), as outlined in Refs. [54]
and [57]. However, ScaLAPACK does not utilize the generalized
Householder reflection, which we use to tridiagonalize complex
symmetric matrices, and performs the tridiagonalization begin-
ning with the top left and moving down (the QR variant). We have
found that tridiagonalization starting from the bottom right (the
QL variation) is advantageous when dealing with physical systems,
because the lowest eigenvalues in a discrete representation of the
Hamiltonian tend to converge first.With both these considerations
in mind, we include the pseudocode for the Level 3 BLAS variation
of HTD1which we refer to as HTD3;

HTD3

01 for j = m, 2, -1

02 for i = j·nb, (j-1)·nb+1, -1

03 d( i ) = A( i , i ) -
∑j·nb

k=i+1 2 vk( i ) wk( i )

04 y = A( 1:i-1 , i ) -
∑j·nb

k=i+1( vk( i ) wk( 1:i-1 ) + wk( i ) vk( 1:i-1 ) )

05 e( i-1 ) = ∓|y|∗
06 vi = y ± |y|∗ êi-1
07 p = 1

2
|vi|

2∗
08 S =

∑j·nb
k=i+1( vk( 1:i-1 )⊗ wTk( 1:i-1 ) + wk( 1:i-1 )⊗ vTk( 1:i-1 ) )

09 u = 1
p ( A( 1:i-1 , 1:i-1 ) - S ) vi

10 q = 1
2p vTi ·u

11 wi = u - qvi

12 l = (j-1)·nb
13 S =

∑j·nb
k=l+1( vk( 1:l )⊗ wTk( 1:l ) + wk( 1:l )⊗ vTk( 1:l ) )

14 A( 1:l , 1:l ) = A( 1:l , 1:l ) - S

15 use HTD1 for A( 1:nb , 1:nb )

Note that while the superscript T in Refs. [54] and [57] denotes the

adjoint (transpose and complex conjugate), here it denotes only the

transpose.

The Level 3 BLAS operations in lines 08 and 13 provide an

opportunity for an efficient parallelization of the code, based on

MPI, for distributed-memory architectures [56]. However, from the

basic differences in the above pseudo-codes which perform the

tridiagonalization, it is clear that any implementation of the latter

approach would require a complete rewrite of HTD1, and might

diminish the overall accessibility of the code in view of the more

complex structure of HTD3. This exercise falls outside the scope of

this paper and is left for future research, perhaps, within the scope

of ongoing (but incomplete) efforts to write massively parallel,

multi-precision linear algebra packages with diverse functional-

ity [58].
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