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Abstract

We study the Green function of the Poisson equation in two, three and four dimensions. The solution g
of the equation %Zg @ — %) = 6P (X — X’),where X and X’ are D-dimensional position vectors, is
customarily expanded into radial and angular coordinates. For the two-dimensional case (D = 2), we
find a subtle interplay of the necessarily introduced scale L with the radial component of zero magnetic
quantum number. For D = 3, the well-known expressions are briefly recalled; this is done in order to
highlight the analogy with the four-dimensional case, where we uncover analogies of the four-
dimensional spherical harmonics with the familiar three-dimensional case. Remarks on the SO(4)
symmetry of the hydrogen atom complete the investigations.

1. Introduction

Solutions of the equation
Vig@E — &) = 6V — &) 6))

enter a myriad of physical problems, from the elementary Coulomb problem in electrostatics (D = 3), to the
attraction among vortices in two-dimensional systems (D = 2), and on to the four-dimensional formulation of
the hydrogen Green function (D = 4, see[1]). Here, we shall attempt to provide a unified treatment of the radial
and angular decompositions of the two-, three- and four-dimensional Green functions, which are solutions to
equation (1).

In D = 2,ascale has to be introduced, which corresponds to a physically irrelevant oversall constant term,
whilein D = 3, the formulas are very familiar (see [2, 3]). In D = 4, we attempt to reveal a structure of (re-)
defined associated ultraspherical polynomials (Gegenbauer polynomials), which highlights analogies to the
associated Legendre functions that enter the case D = 3.

2. Two-dimensional case

Spherical coordinates in two dimensions have a cylindrical symmetry; hence, for definiteness, we denote the
two-dimensional position vectors as p and p’, and their modulias p = |g|and p’ = |p’|. The Green function
solution of the Poisson equation,

- . . . . R . 1 D — 0
Ve - ) = 60G ) g )= 1n(u), @
27 L

introduces a scale L, which ensures that the argument of the natural logarithm is dimensionless. In terms of the
Green function, the scale L adds nothing but an overall constant term,

g—>g—2L7rlnL. 3)

In order to show that g fulfills the Poisson equation, one specializes the divergence theorem to an infinitesimal
area A. For example, A might be chosen as the inner area of a circle of infinitesimal radius €, about the centre 5.
With 0A denoting the boundary of A, i.e., the circle of radius e about p’, one must have
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[ VG- dS= [ VG- dp= [ 60— =1 )
0A A A

Using the formula (2) and the radial component of the gradient operator in two-dimensional coordinates, one
verifies that indeed,

S < [ 0
Ve(@—7p)-dS = —¢(p— 7
faA g(p—p") j; 8pg(p P

= |=c

independent of e.
Let us now turn to the angular-momentum decomposition of equation (2). The spherical representation of
the two-dimensional Dirac-8 s

. 1
0P (p — p) = B 6(p — p") o(p — . (5)
An appropriate ansatz for the Green function is
§B == > fulpp ) e (©)

The two-dimensional representation of the Laplacian is

= 0? 1 0 1 92
V2:{—+—(—+—{—- (7)
op*  p Op  p? Oy’
It acts on the Green function as follows,
=2 L, > (92 10 m? e 1
Vep—= 3 (—2 + - == —z)fm(p, pls @') e = —b(p — p") (p — ¢'). (8)
me—o\Op°  p Op p p
Now, one multiplies both sides with the factor

1 -~
— ey, 9
P )
and integrates over dy, resulting in the equation
82 1 0 m’2 1 sl o
—t—— =) =—0(p—pHe ™. 10
(3p2 > o pz]fm(pp ©") 270 (p—p") (10)
Setting
o (s P59 = g5 p) €7, (11)
and renaming m’ — m after this operation, one obtains the radial equation
19 9 m? , 1
— = - ,p) = —68(p — p). 12
(papp o )gm(p 9] 2mp (p—p") (12)

Inspired by textbook treatments [2, 3] of the three-dimensional Green function, one uses the following ansatz
for nonzero m,

[m]
2
gm(p, ,0') =C (_<] > m = 0, (13)
P>
where p. = min(p, p’)and p_. = max(p, p’), and integrates equation (12)from p = p’ — etop = p' + ¢,
p=p'+e ( O ) m2 p=p'+e 1
f —0 —— = — |80 PN dp = f — 6(p — p') dp. (14)
p=p'-c \Op Op P p=p'—c 2w

This results in the relation

p=p'+e

1o} 1
[p & (P> p’)] = (15)
op , 2w
p=p'—e
and amounts to the condition
|m] |m]
o (p 0 Iml 1
c [p —(p—] ] - [p —(ﬁ,] ] = C(=lml = Iml) p L = —, (16)
op\ p ) op\p ) p 2w
p=p p=p
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with the result
C= .
2w 2|m|
(18)

The case m = 0 requires special treatment. One sets
p
&u(ps p)) =D ln(f),

because this term matches the asymptotic limit of equation (2) for p — 00, p’ — 0. In this case, equation (15)
(19)

/
, 2w
=p

translates into the condition
L

[p—ln

D [p ailn
o

L
with theresult D = 1/(2m). Adding the terms for m = 0and m = 0, one has
1 [m]
(p_<] el m (p—¢)

Gl

P>
P>

L

(20)

)

B m=—00 47r|m|
m=0

1 oy Xife ) ,

— |[In[=] = > ——=] cos(m (¢ — ¢ |

27 L m=1M\ P>

A numerical check of this relations is successful. For p = 0.2 & + 0.1 é,and p' = 1.1 é, + 1.5 é,, the
(21

(

o o 1
gp—p)= —In
27

expression in equation (2) evaluates to
= _ Al
T—g(—p)= - ln(u) — —0.296 159
2 L
(22)

—0.278 459.

while the m = 0 term from equation (20) is
1 ( P~

)

T,=—1In

27
(23)

Adding the sum over the nonzero 1, one obtains
m
—_— ] cos[m (¢ — ¢’)] = —0.017 700.

<01
L= - [&
m:127rm P>

We have checked the equality T} = T, + T; for anumber of example cases. It is interesting to note that
equation (20) does not seem to have appeared in the literature before.

! (24)

3. Three-dimensional case
Let 7 and 7/ denote coordinate vectors in three-dimensional space. It is well known that
11
==,
k

1 > 7
B = — [@re ke —
£ am [ 7

1
f7/|’

=
£ 47 |7

(25)

Ve - 7) = 607 — 7).

fulfills the Poisson equation
(26)

00 4
. o 1 T "
g =7 == Y ————— Y0, ©) Y}, (0, ¥,
fmom=——r 20+ 1 rf“

The well-known expansion into (three-dimensional) spherical harmonics reads as follows,
¢
where . = min(r, r’), . = max(r, r’). The Laplacian in three dimensions reads as

(27)

20 I°
_2)

—

2 07
-

\VAla
or>  ror
where L = —iF x V.Theradial part of the Green function (26) is assembled from homogeneous solutions of

the radial equation, in much the same way as in the derivation extending from equations (13) to (17). The
3
(28a)
(28b)

transformation from Cartesian to spherical coordinatesis, with ¥ = 37| x;¢&;,
x1 = r sinf cos p,

X = r sinf sin ¢,

3
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x3 = r cosf. (28¢)

The infinitesimal solid angle element is
d?Q = sin6 d6 de. (29)

The well-known spherical harmonics are given as

20 +1 (£ — m)! .
Y, (0, = Pl (cos (0)) e, 30
em(0, ¥) \/M @+ m)! ¢ (cos (0)) (30)
with the orthonormality and completeness properties
fsz Y;k’ m’(oi SD) Yfm(0> QO) = 6ff’ 6mm’) (31a)
1
D YemO )Y (0, ) = ——6(0 — 0)8(p — ¢). (31b)
o sin
The summation limitsare # = 0, ..., coand m = —¢, ..., £.The generating function for the Legendre
polynomials [4] is
1 o0
Pl(x) = Pr(x), =Y B®t, (32)

VI—2xt+ 1t =
while the associated Legendre polynomials are given by

d"E (x)

P() = (1" (=2 = (33)
They have the property
1 0 0 m?
—sinf— — ——|P/'(cost) = —¢ (£ + 1) P}’ (cos0). 34
(sin0 Y, sin29) ¢ (cos6) (& + 1) F'{cost) G4

These formulas are recalled with the notion of clarifying the analogies with the four-dimensional case, as will be
done in the following.

4, Four-dimensional case

Let us denote four-dimensional vectors like € and &’ in bold face. Just for clarity, we should stress that we are
assuming a Euclidean metric. The formula analogous to equation (24) is

ey L1 — [ gic o—ikie—€)
$€-O=s ¢ [atce

where &, &' € R*. The Green function g(¢& — &) fulfills the equation
Vg€ — &) =6W(E - ¢ (36)

The expansion into (four-dimensional) spherical harmonics [1] introduces an additional quantum number,
which we denote as #, and the analogue of equation (26) is

O S
g — &)= %2(H+1) g

1 1 1
e 49

Yorm(Xs 0, ©) Y:fm(X/’ o, 4/9/)) (37)

where the Y,4,, (X, 0, ) are four-dimensional spherical harmonics, and {_ = min(|€|, |£']),and
& = max(|£], |€]). The summation limitsaren = 0, ..., 00, = 0, ..., n,and m = —¢, ..., £. Thefour-
dimensional Laplacian is

, 9 380 11 o8 ., 8 L’
==+ -——=+ 5| —7si"x— — = ,
0 pogE & \sin’y Oy Ox  sin’y
and the radial part of the decomposition (37) is assembled from homogeneous solutions of the radial

component of the four-dimensional Laplacian. The transformation from Cartesian to spherical coordinates is,
with £ = Z?:l x; €,

(33)

X; = r cos  sinf siny, (39a)
X = r sinp sinf siny, (39D)
X3 = r cos® siny, (39¢)
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X4 =T COSX. (39d)
The infinitesimal solid angle element is
&P*Q = sin? x sin dOde. (40)
The four-dimensional spherical harmonics can be given in terms of the analogue of equation (30) as
om0 ) = |2 \/% Qf (cos ) (6, 9, (an)
with the orthonormality and completeness properties
fdsQ Yot O 05 ©) Yuem(Xs 05 @) = S S0 Sty (42a)
o n £ . 1
nZ::O ;::0 m;f YoemOG 0, ©) Yo' (X5 0/ @) = mﬂx = X0 —0)6(p— ). (42b)

The generating function for the Gegenbauer-type Q polynomials is an analogue of equation (32),

L -y ot (43)

o R
Q,(x) = Qu(x), 1 —2xt+ 1t

The associated Gegenbauer-type polynomials can be defined in complete analogy with equation (33),

¢
Qf) = (17 (1 — x> L2, (44)
They have a property analogous to equation (34),
1 9 ., & &+
————sin’x— — ———>
sin? x Ox Ox sin? y

)Q,{ (cosx) = —n (n + 2) QF (cos x). (45)

Steps toward a unified treatment of the four-dimensional spherical harmonics were made in [5], but it appears
that the normalization prefactor in equation (41) was not given in explicit form. The connection to the usual
associated Gegenbauer polynomials C,f (x) (in the canonical form, see [4]) is found as

Qu(x) = Crll(x)a (46a)
Qi) = (-2 1 (1 — xH)2CI M (—x). (46b)
Finally, we should mention the addition theorem
+1
D Yarn 05 9) Vlon0s 0, 9) = = Qo - ¥, 47)

ném

Connections of these formulas to the hydrogen wave functions are discussed in the appendix.

5. Conclusions

The most important formulas of this brief paper can be found in equations (20), (26) and (37): we derive (and in
the case of equation (26), just recall) the decomposition of the two-, three- and four-dimensional Green
functions of the Poisson equation into radial and angular parts. For D = 2, only one ‘quantum number’ is
introduced, namely, the ‘magnetic’ (azimuthal) quantum number m; for D = 3, one has the orbital angular
momentum Zand its magnetic projection m, while in D = 4, a third additional quantum number has to be
introduced which can be associated with a ‘principal” quantum number #; it is associated with the additional
angular coordinate y in four dimensions (see equation (39)). The latter interpretation is ramified by the fact that
indeed, the momentum-space wave functions of the nonrelativistic hydrogen atom (for nuclear chargez = 1)
can be written as (see p 39 of [6])

4[h/ (agn)]’?
([7/(agm)]* + p 2)?

"bnfm(ﬁ) = (27T)3/2 an—l) em(X 0, 90)> (48)

where

_ [h/(@nP — p?
[h/(aem)]* + p
and 0 and ¢ are the polar and azimuth angles of the unit vector in the momentum direction, i.e., in the direction

ofthe unitvector p = p /|p|. The Bohr radiusin ay = A/ (cum,c), where o is the fine-structure constant, 11, is
the electron mass, and cis the speed of light. These wave functions are normalized

as (2m)~3 fd3p [nem (P = 1.

0S X (49)
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In our treatment of the four-dimensional Green function, we find it useful (see equations (43) and (44)) to
define polynomials Q,,(x), and associated function Q,f (x), which are related to, but not equal to, the
Gegenbauer, and associated Gegenbauer, polynomials [4]. Hence, we refer to them as ‘Gegenbauer-type’
functions. Analogies to the three-dimensional case (Legendre and associated Legendre functions) are
highlighted. The most intriguing problem in the calculation of the two-dimensional Green function lies in the
matching of the m = 0 term from equation (18) with the m = 0 term from equation (13); the consideration of
the asymptotic limit p, — oo helps in finding the matching coefficients (see equation (23)).

The angular-momentum decomposition (20) for D = 2 reveals that the dominant logarithmic term in the
interaction of vortices in the two-dimensional sine-Gordon model is exclusively due to S-wave interactions. The
result might become useful as one tries to augment previous studies on high- T, Josephson-coupled, and
magnetically coupled superconductors [7, 8] by the inclusion of higher-order derivative terms [9].
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Appendix. Remarks of Schwinger’s derivation

In this appendix, we provide the clarification of three points which we found to be in need of some further
explanation, in regard to Schwinger’s derivation [1, 10, 11] of the Schrédinger—Coulomb Green function, which
is based on the SO(4) symmetry. First, one may observe thata certain prefactor in the definition of the
Schrodinger—Coulomb Green function may be in need of a reconsideration. Namely, if we assume that the
defining equation of the Schrodinger—Coulomb Green function in coordinate space is

)
(p_ LV E) G(F, 7)) = 6OF — 71, (A1)
2m
where V = — ZTQ is the Coulomb potential, then the defining equation of the momentum-space Green function
incurs a prefactor (27)°, in comparison to [1]. The following conventions for the Fourier transforms
= 3. kT £ > & i
B = [ere @ 10 = [S5E, (A2)

with an ‘asymmetric’ distribution of the factors 27, are almost universally adopted in the physical literature.

With 7 = ¢ = € = 1, the Coulomb potential, in momentum space,is V(p — p’) = — (;iZ;)Z.The defining
equation for the Green function thus becomes, in momentum space,
p? S f &p"  AnZa oy o 5 oo
£ _ElGGp,p) - G, ) = 2m)? OB — B). A3
(2m ) (»>p") e’ G 77 ", p") = (2m) (P —-pr" (A3)

The factor (27)” is not present in the first (unnumbered) equation of [1].
The fifth (unnumbered) equation of [ 1] contains two nontrivial identities. It is useful to derive the equation

3
&0 = % for the area element on the three-dimensional unit sphere, embedded in four-dimensional space.
0

Here, one should remember that the three-dimensional components of the four-dimensional vector (&, E) may
have varying magnitude, but one considers them, according to [1], on the four-dimensional unit sphere

53 + Ez = 1. One needs to remember that the appropriate generalization to the three-dimensional ‘surface’ of a
manifold embedded into four-dimensional spaceis, withx = x(t}, t, t3), y = y(t1, o, 13), 2 = 2(t}, b, 13),

a = a(ty, t, t3) being the fourth coordinate, where a is the fourth coordinate,

& & & &
Ox Oy 0z Oa
o Oy o oy
&FQ= | det|ox 9y 0z Oa dy dt, dts. (A4)
on o6 0n O
Ox Oy 0z Oa
o O O Ot

One calculates first the four-dimensional vector described by the determinant, and then calculates its vector
modulus. The three-dimensional unit sphere, embedded in four-dimensional space, can be interpreted as a

6
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three-dimensional manifold, parameterized by the coordinatesx = &, = t1,y = {, = h,andz = §, = 13,
whilea = &, = \/1 — {i — ff, — Eﬁ.Oneﬁndsthat

de, d, ds. @
Jl—gi—gj—gﬁ 1€l

This finally shows the first identity in the fifth equation of [1]. In order to show the second identity, one has to
calculate a further Jacobian, transforming d*¢ into dp (in the conventions of [ 1], keeping the zeroth (or fourth)
component X = p, of the four-dimensional (Euclidean) momentum constant.

There is a second nontrivial point which we found to be not very well explained in [ 1], and it concerns the
fourth unnumbered equation (from the bottom) on the second page of [ 1]. The ‘version of the expansion’
referred to in [1] necessitates the use of the following trick, which is to enter the angular-momentum expansion
formula given for D(€ — &) = —g(& — &) with the following values for £ = n, and & = 1, as follows,

&$O = (A5)

n=p& l€l=1, Inl=p, #=§
n=2¢, |&=1 Inl=1 /=8, (A6)

with0 < p < 1,sothatr, = p = r_,andr, = 1 = r. . Theidentity
I — = + > —2pE&- &)
=1 —p?*+p-¢)> (A7)

then follows, leading to

1 1 p" N
12 = PN l,ﬂ m > 93 Y ,) 0’3 ! b A8
am2 (1 — p)? + p(& — €)? r;ﬂ 2n + 1) em(X ) Yoem(X ©") (A8)

which is the desired identity used in [ 1]. We note that a representation of the Y,,2,,,(x, 6, ©) in terms of elementary
functionsis not given in [1].
The calculations of [ 1] culminate in the integral representation (see also equation (B2) of [12])

s Ty ot 2
G(p, p') = 4mmx® (‘e—) [ avpr U= p)/e L (A9)
2sin(7r) 1 op I:Xz (ﬁ . I—;/)z + Q1 ;pp)z (X2 R 1_)'2) (X2 4 I_)"Z):I

where E = —X?/(2m)is the energy argument of the Green function (X = p),and v = Zam//—2mE.In
comparison to [1], the result for G adds the prefactor (27)’; in the latter form, it has been useful in Lamb shift
calculations [12, 13].

The hydrogen wave functions in momentum space can be expressed as (see equation (48))

oy \—2 n’adp?
16ma;n® [(n—1—2)! ntagp? P
1+ N —=—1 ¥, (0, ), Al0
z? (n+2)! z? Q- | 4 mash’ en(0> ) (A10)
ZZ

S

"/}né’m(ﬁ) =

where gy is the Bohr radius, and Z is the nuclear charge number. In comparison to p 39 of [6], we absorb the
n—1:

overall prefactor (—1)"" " into the global phase of the wave function.
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