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Abstract Time-optimal control theory provides recipes to achieve quantum opera-
tions with high fidelity and speed, as required in quantum technologies such as quantum
sensing and computation. While technical advances have achieved the ultrastrong driv-
ing regime in many physical systems, these capabilities have yet to be fully exploited
for the precise control of quantum systems, as other limitations, such as the genera-
tion of higher harmonics or the finite response time of the control apparatus, prevent
the implementation of theoretical time-optimal control. Here we present a method to
achieve time-optimal control of qubit systems that can take advantage of fast driv-
ing beyond the rotating wave approximation. We exploit results from time-optimal
control theory to design driving protocols that can be implemented with realistic,
finite-bandwidth control fields, and we find a relationship between bandwidth limita-
tions and achievable control fidelity.

Keywords Time-optimal control · Quantum control · Quantum information
processing

1 Introduction

Precise control of quantum systems is a requirement for many applications of quantum
physics, from quantum information processing to quantum metrology and simulation.
Fast control is highly desirable to beat decoherence and improve performance of these
quantum devices. This desire has spurred much research on the ultimate control speed
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[1] for unitary [2–5] and dissipative [6–8] dynamics, as well as shortcuts to adiabatic
control [9]. At the same time, technological advances have enabled driving quantum
transitions faster than the natural transition frequency, in systems ranging from atoms
[10,11] to quantum wells [12], from superconducting qubits [13–17] to mechanical
oscillators [18,19] and isolated spin defects [20–22]. In this ultrastrong driving regime,
the design of control protocols can no longer rely on the usual intuition, based on the
rotating wave approximation (RWA). While geometric control theory gives prescrip-
tions to achieve time-optimal (TO) control, often the ideal control schemes cannot be
applied in practice, due to bounds in the control strength, phase or bandwidth. Bounds
in the control strength impose a quantum speed limit [1,4,23–26] on the system evo-
lution, which is related to an energy–time uncertainty relation [6,8]. Limitations on
the control of the driving field phase or polarization preclude the application of many
TO control schemes. For example, it has been shown [27–29] that for a two-level
system (qubit), the TO solution is given by an “on-resonance” driving, if the phase
or polarization of the driving field is under experimental control [30,31]. When this
is not possible, the internal Hamiltonian (the drift term) cannot be eliminated and
the TO solution takes the form of a bang–bang (BB) control [32–36]. This optimal
solution assumes that there are no limitations in the control bandwidth; however, in
practice the control fields cannot be switched on and off instantaneously. For exam-
ple, the reactive elements used to construct a tuned circuit for resonant driving of
electric and magnetic fields always have a finite response time that gives rise to dis-
tortions when one attempts to implement square pulses [37,38]. Here we show that
we can approach time-optimal driving of qubits, given a bound, real driving field
along a single axis, |Ω(t)| ≤ Ω , even when the Fourier transform of Ω(t) is defined
over a finite range [0,Δω]. With the goal of keeping the gate time equal to the BB
optimal time, we construct an analytical control strategy based on a Fourier series
approximation to the ideal control. Our Fourier-approximated time-optimal (FATO)
control strategy achieves several key results. First, it provides an analytical recipe to
design high-fidelity, time-optimal control sequences in the regime of ultrastrong driv-
ing, when the RWA breaks down. Even in the case of weak driving, where the RWA is
applicable, it achieves shorter gate times than conventional (on-resonance) methods.
Just as importantly, we identify bandwidth as a limiting resource in the compromise
between fidelity and time optimality [39]. Even if a Fourier approximant is not the
only solution, it allows us to easily analyze bounds on the control fidelity that band-
width limitations impose, with analytical solutions describing the dependence of gate
fidelity on the bandwidth. In addition, we show that the FATO scheme is robust against
errors in the control field and it can be further extended to the control of more than
one qubit.

2 Fourier-approximated time-optimal control

Assume we have a qubit with internal (drift) Hamiltonian H0 = ω0σz/2 and we can
apply a control Hc = Ω(t)σx/2, with Ω real and bounded by |Ω(t)| ≤ Ω . This
situation is relevant to many experimental systems, from nuclear and electronic spin
resonance to atomic systems and superconducting qubits. The control Hamiltonian is
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then generated by, e.g., radiofrequency or microwave fields applied along one physical
axis by a wire or antenna in the experimental setup, which can control the time-
dependent amplitude of the field source. The goal is to perform a desired unitary
evolution in a time-optimal way.

The usual strategy to achieve precise control on a qubit is to rely on the rotating wave
approximation: for example, to achieve a rotation about x , we set ΩRWA �ω0 and drive
on resonance, Ω(t) = ΩRWA cos(ω0t). More general rotations can be obtained by
choosing the frequency and phase of the driving, thus making it possible, for example,
to effectively drive along the perpendicular direction (y-axis) even if the driving field
is along the laboratory x-axis. This solution is, however, not time-optimal: indeed,
one effectively only uses half of the driving strength, as the other half is the counter-
rotating field. More precisely, Pontryagin’s minimum principle [40] can be used to
prove that for this control problem a BB sequence with Ω(t) = {±Ω, 0} is the TO
solution [32,41]. In addition, if experimental conditions allow Ω � ω0, the RWA is
not applicable and on-resonance driving is no longer a good control strategy.

For both cases (ultrastrong or weak driving), the ideal TO control strategy for one-
axis driving is to always evolve at the maximum “speed”, assuming one can switch the
sign of the function f (t) = Ω(t)/Ω infinitely fast (BB control). The total Hamiltonian
then takes the form

H± = 1
2 [ω0σz ± Ωσx ] = ω

2 (σz cos ϑ ± σx sin ϑ),

H0 = 1
2ω0σz,

(1)

where we defined ω =
√

ω2
0 + Ω

2
and tan(ϑ) = Ω/ω0. The control is obtained by

switching between these three Hamiltonians inducing rotations about three different
axes. The SU(2) gate synthesis problem then reduces to finding the times t (+,0,−)

j
for each “bang”. Strong conditions on these times and the number of bangs have
been recently found using an algebraic solution [33–35]. Only three parameters are
necessary to describe the TO solution [33], an initial and final time ti and t f , while
middle times t±m are related to each other. In particular, when the rotation speed about
the two axes is equal, which is the case here, the middle times are all equal. Properties
of the TO decomposition can be classified based on the angle 2ϑ between the two
rotation axes, and in particular whether ϑ ≶ π/4, corresponding to weak (Ω < ω0)
or strong (Ω > ω0) driving. For example, for ϑ > π/4 finite solutions have at
most 4 bangs, while for ϑ < π/4 they can have an increasing number of bangs with
decreasing ϑ 1. These constraints (see also Appendix A) can be used to efficiently
search for TO solutions to the synthesis of any desired unitary in SU(2). Indeed, these
solutions have a finite information bandwidth [42] and thus can be easily obtained
in a numerical search (or even analytically) with only three search parameters, in
agreement with previous results on the complexity of control optimization [43–45].
Still, these optimal control solutions assume an infinite bandwidth of the driving field

1 Infinite decompositions are also possible. However, here an infinite sequence with equal times is a rotation
about σz ; thus, an infinite decomposition can be speedily obtained by a singular control (setting Ω = 0).
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Fig. 1 Left: Time-optimal control on the Bloch sphere. The figure shows the two axes of rotation (red
arrows) separated by the angle 2ϑ =π/5. We plot a representative trajectory (blue-black line) from |0〉 to
|1〉 achieved with the TO BB control shown on the right. Right: FATO waveform. Here we considered the
BB solution (solid black line) to achieve a π rotation about X, for ϑ = π/10 and ω0 = π and its Fourier
Series (red solid line) truncated at k = 57 (9 nonzero coefficients). The dashed line is the waveform for
on-resonance driving (notice that its period does not match the BB period) (Color figure online)

(infinitely fast switching between ±Ω). In the following we show how, even when the
control field bandwidth is limited, the BB solution forms the basis for an excellent TO
control scheme that we call Fourier-approximated time-optimal (FATO) control.

We assume that the control field can only be switched with a finite speed; this sets
an upper bound Δω to its bandwidth. The ideal TO solution, with total sequence time
T and switching times {ti , tm, t f }, effectively defines a piecewise constant function
f (t) = Ω(t)/Ω = {±1, 0}. It is always possible to express f (t) over the interval
[0, T ] as a Fourier series (see Fig. 1):

f (t) = c0

2
+

∞∑
k=0

[sk sin(2πkt/T ) + ck cos(2πkt/T )]. (2)

Imposing the bandwidth constraint on the control function is equivalent to truncating
the sum to k = K with 2πK/T ≤ Δω. In turn, this will reduce the control fidelity,
while preserving its duration at the optimum time.

3 Fidelity and robustness of FATO control

For a given bandwidth Δω, two properties of the time-optimal BB solution will
determine how well it can be approximated by FATO: the minimum nonzero time
among {ti , t f , tm} (shorter times requiring larger bandwidths) and the number of
switches (larger n requiring in general larger k for a better approximation). In gen-
eral, the middle times are constrained by tm ≥ π/ω = π cos(ϑ)/ω0; they define
a square wave with n ≤ �π

α
� + 1 switches. The minimum bandwidth is then

Δω ≥
√

ω2
0 + Ω

2 = ω0/ cos(ϑ), that is, it depends not only on the “resonant”
frequency ω0, but also on the driving strength, as stronger driving allow for faster
control, thus requiring larger bandwidth for time optimality.

To make our method more concrete, we focus on exemplar target gates, π rotations
about the x- and y-axis. These gates are particularly important (they are “NOT” quan-
tum gates) and describe an evolution under the control operator only, eliminating the
effects of the drift. While focusing on these gates allows us to find explicit analytical
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Fig. 2 Left axis (lower curves with diamonds): Normalized time ω0T required for π rotations along X
(red) and Y (black). Diamond symbols are for the weak driving solution, while solid lines are for the
ultrastrong driving regime. Right axis (upper curves with circles): Comparison between the time required
for a π rotation with the FATO method and the RWA on-resonance driving as a function of driving strength
(parametrized by the angle ϑ). Note the comparison is only possible for ϑ ≤ π/4. The arrows point toward
the axis each curve is plotted against (Color figure online)

solutions for the BB TO problem, even for any other unitary gate we could easily
find solutions [46], which would then be the starting point for the bandwidth-limited
construction. For the chosen gates, we can more easily analyze the performance of
FATO control in terms of gate time, fidelity as a function of bandwidth, and robustness
to imperfections.

3.1 Gate time

We distinguish between weak and ultrastrong driving, as they have different BB solu-
tions. In the case of weak driving, the angle between the two axes of rotation is
small and we expect generally longer control sequences (large T ) with many bangs
(large n). While specific solutions for arbitrary ϑ must be found numerically, analyt-
ical solutions are available for specific values. In particular, we find that the optimal
solution has n = π

2ϑ
bangs for X(Y) π rotations, whenever n is an odd(even) inte-

ger number (Appendix A). All the bang times are equal and such that ωtm = π .
The function f (t) is then a simple square wave with period 2π/ω. The total time
is TTO = nπ/ω = π2 cos(ϑ)/(2ϑω0). In Fig. 2, we compare this optimal time
to the time required with on-resonance driving, TRWA = 2π/Ω (as the effective
Rabi frequency in the RWA is Ω/2). The ratio of the two strategy times is given
by TTO/TRWA = Si(π) sin ϑ

2ϑ
(with Si the sine integral function), where we took into

account that due to Gibbs phenomenon [47], the Fourier series approximation yields
an effective larger maximum driving frequency, Ω ′ ≈ 2Si(π)

π
Ω .

In the ultrastrong driving regime, a direct comparison with the time required for
on-resonance driving is not possible, since the RWA is violated. Our method still
provides a constructive strategy to achieve control beyond the RWA and does so in a
time-optimal way. The TO solution for strong driving consists of n = 3 bangs, with
the middle bang singular (Ω = 0) to obtain a π pulse about Y. The times are given by

t x1 = t x3 = 2arccsc[2 sin(ϑ)]
ω

, t y1 = t y3 = 2arccot
[√−cos(2ϑ)

]
ω

t x2 =2π− 2arccsc[2 sin(ϑ)]
ω

, t y2 = 2 arctan
[√

tan(ϑ)2−1
]

ω0

(3)
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These times define the piecewise constant function f (t) that we approximate with a
Fourier series expansion to obtain the FATO control driving field shape.

3.2 Fidelity

Because of the finite bandwidth of the control field, the ideal gate propagator cannot be
perfectly implemented in the optimal time. In our FATO approach, we keep fixed the
gate time at its optimum value; we can then evaluate the effects of the finite bandwidth
by calculating the entanglement fidelity [48]. Truncating the Fourier expansion to
order K implements the propagator UK satisfying

iU̇K (t)= ω0

2
[σz + tan(ϑ)[ f (t) − RK (t)]σx ]UK (t), (4)

where we defined the remainder of the truncated Fourier series of f (t),

RK (t) =
∞∑

k=K+1

[sk sin(2πkt/T ) + ck cos(2πkt/T )]. (5)

The fidelity F =|Tr[U †
id(T )UK (T )]|/2 with respect to the ideal propagator, Uid(T ),

can be computed in terms of a remainder propagator, UR(t) = U †
id(t)UK (t). UR(t)

can be evaluated by moving to the ideal Hamiltonian toggling frame, where the Hamil-
tonian is H̃(t) = U †

id(t)[H(t) −Hid(t)]Uid(t). Assuming the remainder is small, we
can approximate ŨR with a first-order Magnus expansion given by the effective Hamil-
tonian HR = ∫ T

0 H̃(t ′)dt ′. In the weak coupling regime, for example, we obtain (see
Appendix A)

HR = ω0ϑ

π
tan(ϑ)EK [σx − tan(ϑ)σz], (6)

where we introduced the mean error of the truncated Fourier series:

EK = 2

T

∫ T

0
R2
K (t)dt = 1

2

∞∑
k=K+1

(c2
k + s2

k ).

This yields the fidelities Fx,y
w ≈ cos[tan(ϑ)EKπ/4]. While in the strong driving

regime the exact calculation is more complex, we still find that the fidelities are well
approximated by a function of the mean errors, Fx

s ≈ cos[2/π sin(ϑ)EK ] and Fy
s ≈

cos[2/π tan(ϑ)EK ], yielding a (Δω/Ω)−2 scaling, as shown in Figs. 3 and 4.
We thus found a simple relationship between the fidelity and the Fourier series

mean error, EK , which encompasses the Fourier properties of the TO BB function
and the available control bandwidth. This relationship not only makes it possible to
easily find the required bandwidth for a desired fidelity, but also provides insight onto
which BB controls require larger bandwidth. For example, in the ultrastrong regime, as
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Fig. 3 Infidelity for a π -pulse about X (red) and Y (black) as a function of the driving strength, parametrized
by the angle ϑ . Open symbols are for a Fourier expansion with 5 nonzero coefficients and filled symbols
with 19 nonzero coefficients (the resulting bandwidth depends on the angle ϑ). The dashed lines are the
analytical expressions (not a fit) based on the Fourier series approximation error EK (Color figure online)
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Fig. 4 Infidelity for a π -pulse about X (left) and Y (right) as a function of the bandwidth Δω/Ω . We
consider ultrastrong driving, ϑ =π/3 (red), and weak driving, ϑ =π/10, π/8 (black) and ϑ =π/22, π/20
(blue) for X and Y respectively. The dotted lines are the infidelities (not a fit) calculated from the Fourier
series error EK . The solid lines are the infidelities (due to breaking of the RWA) of the on-resonance driving
strategy (the infidelity of a Y(π ) for π/3 is > .1, and thus it is not shown) (Color figure online)

Ω/ω0 →∞ (ϑ→π/2), the times required for an X rotation go to zero, thus allowing
good fidelity; however, a Y rotation still requires a finite time, reducing the fidelity for
the same bandwidth (Fig. 3).

Still, as shown in Fig. 4, the infidelity, Inf = 1− F, decreases rapidly with the
control bandwidth. In addition, in the weak driving regime, FATO control beats the
fidelity obtained with on-resonance driving (taking into account the counter-rotating
field), even when considering a very small bandwidth (Δω ≈ ω0 ÷ 2ω0). Very good
fidelity is also obtained in the strong driving regime. We remark that since very high
bandwidth can be routinely reached in experiments, our construction could achieve
fidelity beyond the fault-tolerance threshold [49], while still operating at the maximum
quantum speed.
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Fig. 5 Infidelity for a π -pulse about X as a function of the error in frequency ω0 (filled symbols, left axis)
or driving strength Ω (open symbols, dashed line, right axis). We consider two exemplary cases for strong
(ϑ = π/4, red) and weak (ϑ = π/10, blue) driving. Although the fidelity of the gates decreases with the
inhomogeneities, the error is typically smaller than for the usual on-resonance driving (black lines) (Color
figure online)

3.3 Robustness to parameter variations

We further evaluate the robustness of the FATO control scheme with respect to errors
in either the frequency ω0 or the driving strength Ω . The first case corresponds to the
situation where either the internal Hamiltonian is not known with sufficient precision
or there are variations due to inhomogeneities. In the second case, we analyze the
possibility of an error or inhomogeneity in the driving power. Typical results are
shown in Fig. 5. We find that even for a few percent error, the fidelity of the gate is
good and it is typically higher than for the usual on-resonance driving, in agreement
with bounds derived from the control complexity [42,50]. In some cases, the fidelity
can be even higher than in the absence of error: this is due to the fact the error can
contribute to either driving fields or larger bandwidth. We note, however, that in these
cases the driving in the presence of errors might no longer be time-optimal.

4 Extension to two-qubit systems

Until now we focused on TO control of a single qubit. Our strategy can be, however,
extended to larger systems with the combined goals of finding TO control laws and
their fidelity dependence on available bandwidth. For example, the BB solutions we
found to generate NOT gates for a single qubit could also be used to drive two qubits
with opposite internal Hamiltonian [51]. Then all the results found here on the effects
of a limited bandwidth would still apply.

We can further analyze time-optimal sequences that have been proposed to generate
two-qubit gates [52] under the assumption of delta pulses. Using a Cartan decompo-
sition, it was found that TO control of two qubits can be achieved with singular
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Fig. 6 Infidelity for a SWAP gate on two qubits as a function of the bandwidth ω/J for varying driving
strengths Ω/J . The blue line is the fidelity of the ideal BB control (with finite pulses) and the red dots its
FATO approximation. In the inset: infidelity as a function of bandwidth for fixed driving strength, Ω = 100J
(Color figure online)

BB control. Adopting the TO solution and introducing finite-length pulses reduce
the fidelity; assuming a finite bandwidth (so that ideal, rectangular pulses cannot be
applied) further degrades the fidelity. We can use the FATO construction to evaluate
these limitations. We consider for example a quantum SWAP gate (see Appendix B),
given by three free-evolution periods under the Hamiltonian H0 = Jσzσz/2 inter-
rupted by π/2-pulses about x and y. Assuming a strength Ω of the driving fields, we
plot in Fig. 6 the FATO fidelity as a function of bandwidth, demonstrating the good
performance of our method. Similarly, other results in geometric control, either for
dissipative systems [53,54], larger [55] or infinite systems [56], or exploiting singular
optimal arcs [57,58], would be amenable to be implemented under experimentally
limited bandwidth using our FATO method.

5 Conclusions

In conclusion, we devised a strategy to drive qubits in a time-optimal way, with high
fidelities limited only by the available bandwidth of the control. The technique is in
particular useful for ultrastrong driving fields, where intuitive approaches based on the
rotating wave approximation fail and only numerical approaches were available until
now [22,59–62]. In addition, our analytical solution provides a simple way to evaluate
the required control field bandwidth for a desired fidelity. The principles of FATO
design could be further extended to achieve control in larger systems, for example
to achieve the simultaneous time-optimal control of many qubits [51,63–66] or two-
qubit gates [52]. While our method already provides high-fidelity control, it could be
further used as an initial guess for numerical searches [60,62,67], if higher fidelity is
desired or to achieve control of 1-2 qubits embedded in larger systems. As ultrastrong
driving becomes attainable in a number of solid-state and atomic quantum systems,
from superconducting qubits to isolated spins, our control strategy will enable taking
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full advantage of these technical capabilities to manipulate qubits in a time-optimal
way. Beyond providing a recipe for TO control, our construction also allows us to
explore the compromise between fidelity and time optimality, by linking gate errors
to the available control bandwidth.

Acknowledgements This work was supported in part by the U.S. AFOSR Grant No. FA9550-12-1-0292
and by NSF Grant EECS1702716.

A Time-optimal bang–bang control

Bang–bang control has been shown to achieve time-optimal control of two-level sys-
tems. General bounds and prescriptions for the time-optimal bang–bang control have
been provided [29,32–34,51,68,69]. These results can be used to numerically obtain a
solution to the time-optimal problem with BB control for a general unitary. However,
for some target unitaries and Hamiltonian parameters it is possible to find analytical
solutions. In the main text we focused on these cases since they allow to more eas-
ily study trends in the fidelity and robustness of the FATO control strategy. Here we
describe how, exploiting known results in BB control, we obtained the specific TO
solutions for the two gates and two driving strength regimes considered.

The general goal is to find the optimal times such that a sequence of “bangs”
under alternating Hamiltonian H±,0 can achieve the desired unitary. Simple algebraic
arguments [33] impose constraints on the middle times of any TO decomposition. Then
the TO problem reduces to finding three times, ti , tm and t f , such that concatenating
the unitaries U0,±(t) = e−i tH0,± achieves the two desired gates, σx and σy . Since
we focused on achieving π rotations, we can apply (in addition to results found in
[33–35]) the results of [32] relating to a north-to-south pole transformation only. Their
constraints still need to be valid sufficient conditions (although not necessary) for the
TO unitary.

A.1 Weak driving

For weak driving, it was found in [32] that there should be no singular bangs in the TO
solution. In addition, for α = π/2n the solution UNS for the north-to-south transition
is obtained as

UNS = [U+(π)U−(π)]n (7)

We find that if n is even, UNS = σy , while if n is odd UNS = σx . Ref. [32] allowed
for a second type of solution, with n + 1 bangs. These are candidates solutions for σy

if n is odd and σx if n is even. While it is possible to find analytical solutions for the
optimal times in these cases as well, the expressions become more involved and thus
we limited our extended analysis in the main text to the simplest case.

We note that even for X rotations we consider an even number n + 1 of bangs to
build the FATO approximation. This ensures that the function f (t) is odd, yielding a
sine Fourier series which is zero at t = 0 for any bandwidth.
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A.2 Ultrastrong Driving

The strong driving occurs when ϑ > π/4. In this case, following [32] and [34], we
find that the TO solution is composed of at most three bangs. It is then easy to find
analytical solutions for the times {ti , tm, t f }, for example by following the construction
described in [70].

We can first verify that two bangs are not enough to generate the desired rotations.
Defining v±,0 the vectors corresponding to the Hamiltonians H±,0 and R = X,Y the
rotations in SO(3) corresponding toσx , σy , we need to verify whethervi ·v j = vi ·R·v j .
However v+ · v− = cos(2ϑ), v± · v0 = cos(ϑ), while v0 · R · v± = − cos(ϑ),
v+ · Y · v− = − cos(2ϑ) and v+ · X · v− = −1.

Similarly, we can easily identify all the allowed three-bang constructions that
achieve the desired unitaries. We find that the central bang must be singular (Ω = 0)
for the σy gate. Then, since the desired σy gate cannot have a component along σx we
have to set

i

2
Tr{(U±U0U∓)σx }=sin(ϑ) sin

(
ω0t2

2

)
sin

[
ω0(t1−t3)

2

]
=0

by selecting t y1 = t y3 (since t2 = 0 has already been excluded). Finally, t y1 and t y2 can be
easily found algebraically, yielding Eq. (3) in the main text. For the σx gate, solutions
with and without a singular bang are allowed. In both cases the outer rotations are about
the same axis, e.g., U+U0U+ or U+U−U+, and of the same duration, t x1 = t x3 . We can
then calculate explicitly the times and compare the two possible solutions to select
the time-optimal one. We find that the shortest evolution is obtained by discarding the
singular solution, resulting in the times in Eq. (3) in the main text.

A.3 Time-optimal control of two qubits

Extending the results of BB TO control to more than one qubit is generally difficult, but
results have been found for some particular cases [51,63,65]. In particular, it has been
found [51] that for two qubits with opposite drift terms and under the same control,

H± = ω0

2
(σ 1

z − σ 2
z ) ± Ω

2
(σ 1

x + σ 2
x )

the TO problem can be solved simultaneously. In particular, for π rotations, we recover
the same solutions found for one qubit. Then we could repeat the analysis performed
for FATO control of one qubit; the fidelity is simply the square of the fidelity found
for one qubit.

We note that while these analytical results are restricted to particular cases, they
could be at the basis of numerical searches in more complex situations. For example,
knowing the control function and required bandwidth for two non-interacting qubits
could be used as initial guess for numerical searches of the control profile for two
interacting qubits.
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Fig. 7 SWAP Gate. We show the control profile for realizing a SWAP gate with the FATO control. In red is
the driving along the x axis and in blue along the y axis. For the bandwidth considered here (Δω = 400J )
the FATO control completely masks the BB control (solid black lines) (Color figure online)

Bang–bang control can as well be used to achieve two-qubit gates. Time-optimal
solutions for the steering of two qubits with Hamiltonian H = Jσ 1

z σ 2
z /2 were indeed

found under the assumption of delta pulses (zero-duration pulses at infinite driving
power). While the control solutions obtained when relaxing these assumptions might
not be time-optimal, we can still aim to preserve the optimal time and look for the
ensuing drop in fidelity. In the main text, we considered an exemplary gate, the SWAP
gate between two qubits (swapping their states):

Uswap =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

As shown in [52], this gate can be obtained in a time t = 3π/2J by applying instan-
taneous π/2 pulses about x and y. This ideal control can be in practice replaced
by finite-duration (rectangular) pulses, to account for finite control strength. In turn
rectangular pulses can be replaced by FATO driving to take into account the control
finite bandwidth. Figure 7 shows the control sequence we implemented to analyze the
fidelity behavior of FATO for two-qubit control, as shown in Fig. 6 of the main text.

B Fidelity

Here we provide further details on the calculations of the fidelity. Due to FATO control,
the system evolves under the Hamiltonian H=Hid(t) − HR(t), with

Hid(t)=ω0/2[σz + f (t) tan(ϑ)σx ]
HR(t)=ω0/2 tan(ϑ)RK(t)σx ,

Here f (t) is the BB control function f (t) = Ω(t)/Ω and RK (t) the remainder of the
truncated Fourier series of f (t),

RK (t) =
∞∑

k=K+1

[sk sin(2πkt/T ) + ck cos(2πkt/T )]. (8)
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In order to calculate the infidelity, we consider the propagator UK achieved by
implementing a control field according to FATO to order K , satisfying

iU̇K (t)= [Hid(t) − HR(t)]UK (t) (9)

and the propagator due to the ideal BB evolution, Uid(t) defined by

iU̇id(t) = Hid(t)Uid(t) (10)

The infidelity of the truncated FATO control can be evaluated using the entanglement
fidelity [48]

F = |Tr[U †
id(T )UK (T )]|/2

We can decompose the total propagator UK (T ) as UK (T ) = Uid(T )UR(T ), by defin-
ing the error propagator UR(t) = U †

id(t)UK (t). Then the fidelity is simply defined as
F = |Tr[UR(T )]|/2.

The error propagator can be evaluated by moving to the toggling frame defined by
the ideal control Hamiltonian. In this frame, the Hamiltonian becomes

H̃R(t) = U †
id(t)HR(t)Uid(t)

and the error propagator satisfies the Schrödinger equation

i ˙̃UR(t) = H̃R(t)ŨR(t)

We can approximate UR with a first-order Magnus expansion given by the effective
Hamiltonian

HR =
∫ T

0
H̃R(t ′)dt ′

Consider for example the weak driving regime. The contribution to HR from each
bang is given by the integral over the interval [t j , t j+1] of

H̃ j =ω0 tan(ϑ)RK(t)U
†
id(t j )[eiH±tσxe

−iH±t ]Uid(t j ) (11)

Each pair of ideal propagators U−U+ creates a rotation e−2iσyϑ . Since the angle ϑ

is small for weak driving, we can approximate this expression by ignoring the time
evolution due to Hid during the j th time interval and only considering its effects
stroboscopically. Then Eq. (11) reduces to

H̃ j = ω0

2
tan(ϑ)RK (t)Uid(t j+1)σxUid(t j+1) (12)

= ω0

2
tan(ϑ)RK (t)[(−1) j cos(2 jϑ)σx + sin(2 jϑ)σz]
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Note that the sign of the σx terms follows the same pattern as the BB function f (t).
Setting j (t) = �t/T �, we then need to evaluate the integrals

2

T

∫ T

0
f (t) cos[2 j (t)ϑ] sin(2πkt/T )dt = sk

ϑ

π

and

2

T

∫ T

0
sin[2 j (t)ϑ] sin(2πkt/T )dt = −sk

ϑ

π
tan(ϑ)

We thus obtain the average Hamiltonian

HR = ω0

2
tan(ϑ)

ϑ

π

∞∑
k=K+1

s2
k [σx − tan(ϑ)σz], (13)

where we recognize the mean error of the truncated Fourier series,EK = 1
2

∑∞
k=K+1s

2
k .

The fidelity is then given by F = cos(‖HR‖T ):

F = cos

(
ϑ

π

ω0T

2 cos(ϑ)
tan(ϑ)EK ‖ cos(ϑ)σx − sin(ϑ)σz‖

)

= cos
(π

2
tan(ϑ)EK

)
. (14)

A similar calculation can be done for the ultrastrong driving case. However, in that
case each “bang” has a long duration, and thus we need to start from Eq. (11) to find
the average Hamiltonian and only approximate or numerical solutions can be found.
Still, we find that the solutions depend on the mean Fourier error in a simple way,
Fx
s ≈ cos[2/π sin(ϑ)EK ] and Fy

s ≈ cos[2/π tan(ϑ)EK ].
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