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ABSTRACT

A methodology is proposed for efficient processing of sea wave field data via compressive sensing (CS),
and joint time-frequency analysis via harmonic wavelets (HWs) based evolutionary power spectrum
(EPS) estimation. In this regard, it is possible to record and store relatively long wave data sequences,
whereas the commonly adopted in-practice assumption of stationary data is abandoned. Currently, most
wave records are measured by buoys, which acquire data for a time interval representative of stationary
time series. Next, following a Fourier transform processing, only few spectral parameters are stored. Thus,
detailed information about localized-in-time phenomena are completely lost. Herein, it is shown that CS
can be adopted for efficiently compressing and reconstructing wave data, while retaining localized infor-
mation. For this purpose, CS is used in conjunction with a HW basis for processing long time series. In
particular, storage capacity demands are drastically decreased as only the HW coefficients need to be
saved. These are determined from a randomly-sampled record by invoking a L;;; norm minimization
procedure. The resulting reconstructed record, being longer than conventional wave time series, can no
longer be regarded as stationary; thus, a HW based EPS estimate is employed for describing the joint
time-frequency features of the record. Finally, the reliability of the methodology is assessed by analyzing
wave field data measured at the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria. Specif-
ically, comparisons between original and reconstructed records demonstrate a satisfactory agreement
regarding the time-histories, and the estimated EPS and relevant statistical quantities, even for up to 60%
missing/removed data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nevertheless, the underlying assumption of stationarity has
never really been questioned by the majority of researchers. In this

The concept of sea state has been instrumental in marine engi-
neering, as it has facilitated the development of most modern
analysis techniques within the context, for instance, of wave statis-
tics, structural reliability, and mechanics of extreme waves. The
primary assumption behind this concept relates to the fact that the
free surface displacement recorded during a certain time interval
(of order of 100-200 waves) can be construed as part of a realiza-
tion of a stochastic process with given probability density function
(pdf) and power spectral density (psd) [1]. In this context, although
Gaussian processes have certainly been the most utilized for deter-
mining sea wave statistics, non-Gaussian models are also quite
established for describing non-linear phenomena [2,3].
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regard, some observations were noted by Liu et al. [4,5]. Specifically,
they observed that conventional approaches used for describing
the wave growing process are limited in the sense that they are
unable to describe time-localized mechanisms such as wave group-
ing or wave breaking. This inadequacy of the approaches also
relates to the fact that conventional observation intervals are lim-
ited to 20-30 min windows, a widely utilized sea state duration
[6]. Extending the recording time window is certainly attractive
because of the possibility of acquiring more information about the
recorded physical processes. However, this extension must cope
with additional challenges. First, new tools are necessary for pro-
cessing longer data sequences due to the increased storage capacity
demands, and second, the measured extended signal may exhibit
time-varying statistics, and thus, cannot be construed as a realiza-
tion compatible with an underlying stationary stochastic process.

To address the above challenges, this paper employs and
assesses the capabilities of two potent tools/concepts for treating
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long, non-stationary, free surface data sequences; that is, compres-
sive sensing (CS), and evolutionary power spectrum (EPS).

Compressive sensing circumvents the limitation posed by the
Nyquist-Shannon sampling rate theorem [7,8] and can be used for
acquiring/sampling and storing longer free surface time histories.
Currently, wave data are recorded mainly by buoys equipped with
accelerometers, which measure the acceleration and provide the
free surface displacement by numerical integration [9]. Typically,
data are recorded with a sampling interval that varies between 0.5
and 1s (depending on wave characteristics at the considered site)
for a duration of 20-30 min, whereas the time interval between
successive records may vary from half an hour to three hours. Next,
the Fourier transform is applied on each record of sea surface eleva-
tion, and only spectral data including significant wave height Hg and
peak spectral period T, are provided to the final users. The choice
of the record duration relates to the definition of sea state. In this
regard, it is long enough to be representative of the sea state condi-
tions, but short enough at the same time to guarantee stationarity of
the process. Further, the time interval between successive records
is chosen to be short enough to capture adequately the long-term
variability of the sea conditions. Obviously, this procedure is theo-
retically consistent with the sea state concept, but it is also dictated
by the need for limiting the amount of stored data, and ultimately,
lowering the equipment cost.

However, if only synthetic parameters are stored, information
aboutlocal phenomena, such as freak waves, is completely lost [10]:
for this reason, storing full data records is desirable. In this context,
considering that sea waves are characterized by a relatively small
number of dominant frequencies when expanded in the frequency
domain, the CS approach [11,12] can be applied to reconstructing
signals that contain sampling gaps (either deliberately for storage
capacity purposes or due to equipment failure) in the time domain
by selecting an appropriate basis [13-16].

Further, EPS were introduced for describing the time-varying
frequency content of non-stationary stochastic processes [17]. The
problem of treating non-stationary signals was initially addressed
by the short time Fourier transform [18-20] and, later, by the
wavelet transform (WT) [21,22] among other alternatives. In this
regard, Newland [23-25] introduced the family of generalized har-
monic wavelets (GHWs), which was employed in Spanos et al.
[26] to estimate the EPS of non-stationary stochastic processes
from available realizations. Thus, a GHW-based EPS estimation
technique was developed. Further, GHWs have proven to be effi-
cacious for structural dynamics-related applications due to their
non-overlapping, box-shaped frequency spectra, their orthogonal-
ity properties, and the convenience of combining harmonic balance
with statistical linearization techniques [27,28]. Applications of
wavelets to ocean engineering related problems are increasing
considerably, due to their versatility. For instance, the work of Mas-
sel [29] demonstrated the capability of the wavelet transform to
provide a time-frequency representation of wave signals. Other
contributions relate to studies on wave breaking [30], occurrence
of abnormal waves [31] and time series forecasting [32,33].

In the ensuing sections, it is demonstrated that a) GHWs can be
used in conjunction with the concept of EPS for processing and cap-
turing time-varying features of free surface elevation records, and
b) CS can be combined with a GHW basis for compressing free sur-
face records. Finally, the theoretical developments are exemplified
by analyzing long experimental free surface displacement data.

2. Processing and analysis of non-stationary time series
In this section the key elements related to the implementa-

tion of the EPS estimation and the CS based reconstruction are
delineated. These two tools are strictly connected to each other

in the ensuing implementation via the representation adopted for
the time series analyses. Indeed, the EPS estimation is pursued via
the GHWT, which is invoked also during the signal reconstruction.
Other representations can be utilized, as well. However, this one is
adopted because it ensures non-overlapping intervals at different
scales along the frequency axis, and thus, desirable orthogonality
properties hold true.

2.1. Evolutionary power spectrum estimation via the GHWT

The wavelet transform of a finite energy stochastic process f{t)
provides a time-frequency representation of f{t). Its calculation
relates to the determination of a series of wavelet coefficients at dif-
ferent scales j and time positions k. Note that the scale parameter is
related to the frequency, whereas the general form of a continuous
wavelet transform of a stochastic process f{(t) is given by

+0o
. 1 L (t—k
Wof N, ) = iy /f(t)ll/ (J—,)dt. 1)

In Eq. (1) [Wgf](, k) is the wavelet coefficient at scale j and time
position k, the function v/(t) is the mother wavelet and the symbol
(*) denotes the complex conjugate of ¥(t). Eq. (1) represents a con-
volution operation between f{t) and the basis functions obtained by
properly scaling and translating the mother wavelet. The wavelet
coefficients provide a measure of the similarity between f{t) and the
wavelet. Thus, the higher the correlation is, the larger the coefficient
will be.

Focusing on the specific family of harmonic wavelets, they are
defined to have a band limited spectrum, whereas two indices
(m,n) are used to define the frequency bands and to control their
frequency content. Herein, the generalized harmonic wavelet is
considered, which is expressed in the frequency domain as [24]:
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0; elsewhere
where Ty is the total time duration of the signal under consider-
ation, m and n are integer numbers defining the frequency band

(n>m), and Aw=27m|Ty. The complex harmonic wavelet coeffi-
cients are given by:
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and the evolutionary power spectrum can be estimated as [26]
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The estimation of the EPS of a non-stationary stochastic process
flt) via Eq. (4) requires the calculation of the wavelet coefficient
by means of Eq. (3) based on an available ensemble of process
realizations. From a practical point of view it is worth noting that
the GHWT can be numerically determined by utilizing the Fast
Fourier Transform (FFT), which offers significant computational
advantages [34].
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2.2. Compressive sensing

Compressive sensing [35,12] is a recently developed technique
widely utilized in signal and image processing subject to vastly
under-sampled data. Further, it has proven to be a potent tech-
nique for data reconstruction when recorded signals exhibit gaps
or missing data in the time domain [13]. This framework provides
the potential to circumvent the standard sampling theorem that
states that a time signal can be fully determined only if sampled
at time intervals smaller or equal to half its maximum frequency
[7,8]. In this regard, under certain assumptions, CS allows for sig-
nal reconstruction even if the maximum frequency is greater than
half the sampling rate [36]. The technique essentially relates to
expanding the time recorded signal in a known basis, and solving an
undetermined linear system of equations viaan L, -norm(0<p<1)
minimization procedure for obtaining the sparsest representation
of the signal in the selected basis. In general, the resulting system
of equations takes the form

y=AX7 (5)

where y is the sample record with missing data, A is the so-called
sampling matrix and x is the vector of the expansion coefficients.
Vectorsxand y have dimension Ny and No-N;, respectively, Ng being
the original signal length and Ny, is the number of missing data,
while A is a (Ng-Nm ) by Ny matrix.

The technique requires that both the signal and the sampling
matrix satisfy certain properties [37]. Specifically, the signal must
be sparse in the selected basis. That is, it can be represented
by a number of coefficients smaller than that determined at the
Shannon-Nyquist rate. Further, the sampling and transformation
domains must have high incoherence, which implies a non-sparse
representation of the signal in the sampling domain. In addition
to signal sparsity and incoherence, the sampling matrix must sat-
isfy the restricted isometry property (RIP) which implies that if the
signal has sparsity K (i.e. it can be represented by K non-zero coef-
ficients) any matrix obtained by K randomly selected columns of A
should have full rank and be nearly orthonormal.

Irrespective of the specific basis chosen, the implementation of
CS consists of the following two main steps:

1. Construction of the sampling matrix A;
2. Ly,-norm (0<p <1) minimization for determining the sparsest
representation of the signal.

Herein, the case of non-stationary signals is considered for
which GHWs are inherently well-suited as a basis due to their joint
time-frequency resolution capabilities; see also Comerford et al.
[13-15] and Zhang et al. [ 16]. The sampling matrix A is obtained by
firstly generating a Ng by Ng matrix. Then, N;,; rows corresponding
to the position of the missing data are removed. The GHW basis are
generated by inverse FFT following the procedure shown in Fig. 1.
A single GHW is shifted (n-m) times in the time domain to form
an orthogonal basis. Then, once the construction of A is completed,
the rows corresponding to the missing data are removed and Eq.
(5) is solved via Ly,-norm (0<p <1) minimization and the spars-
est solution for x is determined. Finally, the signal is reconstructed
by multiplying the original sampling matrix A by the expansion
coefficients x.

3. Field data analysis

In this section, a long non-stationary record of free surface ele-
vation is considered. The first objective of the analysis relates to
proposing a way for sampling sea surface elevation data without
the constraint of stationarity. Related to this is the objective of

— For j=0 to No/2(n-m)-1

{(n-m) (n-m)
Y()=[000...01111...110 0 0...0]

No

For /=0 to (n-m)-1 @

Noreal(IFFT(¥()))/(n-m) Norimag(IFFT(¥()))/(n-m)

Time-shift by k(No/(n-m)) Time-shift by k(No/(n-m))

Insert both as new columns in the basis matrix 4
end

— end

Fig. 1. Flowchart of the algorithm for constructing the sampling matrix with HW
basis.

storing many more data than those acquired by the conventional
approach involving an FFT data analysis and storage of synthetic
spectral parameters (e.g. Hs and Ty,) [38]. The constraint of station-
arity implies record durations between 20 and 30 min. By removing
it, the record duration can be increased from few tens of minutes
to the order of hours. In this manner, the signal under considera-
tion can no longer be regarded as stationary, and thus, resorting to
the concept of EPS is necessary. Obviously, an increased duration
implies many more data in a given record. To overcome the prob-
lem of storing an excessive number of data points, a CS technique
is applied for compressing data via expanding them in a certain
basis in which the signal is sparse. Thus, the signal can be read-
ily reconstructed by employing a very small number of non-zero
coefficients. The main idea is to record all the data for the given
duration and then to remove randomly a certain fraction of them
and produce a signal with time gaps. The new “incomplete” signal
is then expanded by the CS technique and only the values and the
position of the non-zero expansion coefficients are stored and used
for recovering the original signal when time-domain analyses are
to be performed.

The analysis utilizes a set of sea surface elevation records mea-
sured at Natural Ocean Engineering Laboratory (NOEL) of Reggio
Calabria (Italy). In particular, the first one has a total duration of
2500s sampled at 10Hz and has been recorded during the peak
stage of a sea storm occurred in September 2014. This particular
record is chosen because it is associated with severe wave con-
ditions characterized by the occurrence of quite large waves. In
addition, five short records of a duration of about ten minutes,
recorded during different wave conditions, are processed to inves-
tigate the effectiveness of the methodology in a variety of sea states
and to demonstrate the general validity of the results.

Note that at NOEL location the significant wave height ranges
between 0.2 and 1.2 m, with peak spectral periods between 2 and
3.6s. The peculiarity of the lab is that local wind from NNW often
generates sea states consisting of pure wind waves that represent a
small scale model (1:5-1:20), in Froude similarity, of ocean storms
(see www.noel.unirc.it).

3.1. Compression and reconstruction of free surface elevation
data

The compression of sea surface elevation data is performed via
the CS technique using the GHW basis and following the procedure
described in Section 2.2. For this purpose, L, , norm minimization
is considered due to its ability to promote solutions sparser than
the ones typically obtained by alternative L; norm minimization
approaches [16]. In this context, the problem is recast in the form

min \X\Ll/z subject to y = Ax. (6)
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xr-1=A'(AA") Yy
o=1
tolerance=( a>/100)
error=100

—> FOI’jzl tijax
Qj=a

—> While (error>tolerance)

Or-1= diag((|xk-11+ aymean(|xx-1|2))>*
xi= Qr1A'(A Qr1A) !y

error=|| xi- xk-1||2/||xk-1| |2

Xk-1= Xk
» end
o=0/10
tolerance=( a*3/100)
Ly end

Fig. 2. Flowchart for implementing the algorithm minimizing the L;;, norm.

Next, to solve the minimization problem (6), the Lagrangian L(x,
)) is introduced. Specifically,

Lx, )= xil'2 + AT (Ax - y), 7)
i
whereas the following equation is obtained by setting the partial
derivatives of Eq. (7) with respect to x and A equal to zero:

x = QA(AQB) 1y, (8)

where Q = diag(|x| 3 ).

Eq. (8) may be solved by an iterative procedure involving
updated values of Q determined from the solution of each previous
iteration as

X = Q1A (AQ 1B) 'x, (9)
with
Q1 = diag(1x,_113). (10)

Further, to avoid division by zero as the algorithm converges,
a decreasing parameter « is introduced for regularizing the opti-
mization procedure. That is,

3
Q1 = diag(|x,_1 % + aymean(|x_11*))*, (11)

Ol];l
%= 0
where ap =1 and for each ; Eq. (9) is evaluated until the following
condition is satisfied:

(12)

I~ X1l _ V% (13)
X111, 100

The iterative procedure delineated above (see Fig. 2) is imple-
mented for determining the sparsest solution for the expansion
coefficients vector x. Next, the variability of the error between the
original and the reconstructed signals with increasing percentage
of missing/removed data is investigated. For each record, ten dif-
ferent positions of missing data are randomly generated. Results

1
0.9

0.8 —— Maximum error

Minimum error

07 | e Average error

0.6
s
£0.5
04
03
02
0.1

0 10 20 30 40 50 60 70 8 90 100
Percentage of missing data

Fig. 3. Maximum, minimum and average error with for different percentage of
missing data, obtained considering ten different random positions of the missing
data.

are shown in Fig. 3, where minimum, maximum and average (cal-
culated from the 10 configurations) errors are represented as a
function of percentage of missing data. For the calculation, the
following definition of the error is considered:

1Yoriginal — ¥ tructed |
error — origina reconstructe 2 , (14)

||yorig1'nal ||2

where Yoiging 1S the original free surface record and Yreconstructed
is the one reconstructed by CS. It is seen that the error is almost
insensitive to the missing data positions, while it increases as the
percentage of missing data increases. Specifically, it is below 0.3
for up to 60% missing data, below 0.5 for missing data percent-
age between 60% and 80%, and then it increases rapidly for higher
percentage of missing data. Fig. 4 shows the comparison between
original and reconstructed signals with 20%, 40% and 60% missing
data for a time window of 50 s. The figure shows that no significant
differences in the reconstructed signals are detected for missing
data between 20% and 40%, while from 40% to 60% the differences
are limited. Fig. 5 shows a similar comparison. In this case, the fig-
ure shows the maximum recorded crest height and highlights the
fact that the technique also allows reconstruction of the extreme
waves. Fig. 6 shows the expansion coefficients x; estimated from
the record with 40% of missing data. It is seen that the majority
of the coefficients are close to zero. Therefore, the small number
of the non-zero elements reduces drastically the required memory
for storage in comparison with treating the original “complete” sig-
nal. Further analysis is conducted for quantifying the percentage of
coefficients that can be neglected and replaced by zeros without
compromising essentially the quality of the reconstruction. Fig. 7
shows the result obtained for the signal with 40% missing data as
a function of the percentage of neglected coefficients. The figure
emphasizes the fact that neglecting up to 80% of the coefficients
the error is lower than 0.1 and increases rapidly for percentages
greater than 90%. Thus, from a practical point of view, this suggests
that all the coefficients lower than a given threshold (in absolute
value) can be replaced by zeros. Following such an approach, it is
possible to store approximately only 20% of coefficients x;, without
losing any crucial information about the signal.

Further analysis is conducted by processing five sea states
characterized by different Hs-T, pairs. In addition, for each sea
state the parameter of the spectrum ¥*, indicative of how much
narrow-band the spectrum is and defined as the ratio between
the absolute minimum and the absolute maximum of the auto-
covariance function of the free surface elevation, is calculated for
inferring the nature of the recorded sea state [6]. For instance,
Y+ =0.73 relates to a JONSWAP spectrum [39], * =0.63 relates to a
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Original signal - Reconstructed signal-20% of missing data

20

25 30 35 40 45 50
time[s]

Original signal - Reconstructed signal-40% of missing data
10 15 20 25 30 35 40 45 50
timels]

Original signal - Reconstructed signal-60% of missing data
10 15 20 25 30 35 40 45 50
time[s]

Fig. 4. Comparison between original signal (no missing data) and reconstructed signal for a portion of the record of 50s.

Sea state characteristics and errors pertaining to various fractions of missing data.

Fraction of missing data

Hq [m] T, [s] W 20% 40% 60% 80%

0.52 341 0.62 0.063 0.113 0214 0.482
0.16 2.74 0.42 0.073 0.140 0.244 0.570
0.18 5.71 0.37 0.055 0.095 0.168 0.428
0.20 6.32 0.47 0.065 0.117 0.203 0.473
0.35 2.94 0.71 0.062 0.111 0.230 0.513

Pierson and Moskowitz [40] spectrum, while smaller values of the
parameter are representative of mixed sea states. Finally, for each
record the error (14) is estimated by considering various fractions
of missing/removed data. The results are summarized in Table 1
in conjunction with the sea states characteristics. It is seen that
although the accuracy of the reconstruction depends on the frac-
tion of missing data, it appears rather insensitive to nature of the
wave record. In this regard, it is observed that, for a specified record,
the error of the reconstruction increases as the percentage of the
missing data grows. The results are in agreement with the ones of
Fig. 3, which shows that the error is lower than 0.3 for percent-
ages of missing data up to 60% and less than 0.6 for percentages
up to 80%. Considering the low correlation between results and
the nature of the record, the successive analyses focus on the first
nonstationary record pertaining to the storm peak.

3.2. EPS estimation of original and reconstructed sea surface
elevation record

In this sub-section, the EPS of original and reconstructed signals
with 20%, 40% and 60% missing data are estimated and compared.
Results are shown in Fig. 8. The Figure shows that the EPS peaks
are underestimated as the percentage of missing data increases.
Further, the EPSs of both original and reconstructed signals show
several peaks in the time domain that describe the evolution of the
sea condition in time during the whole sea surface record. For each
EPS the highest peak occurs at the very beginning of the record.
This relates to the fact that the first half of the record pertains to
a storm peak stage, during which the energy content is larger. The
EPS estimated from the reconstructed and original signals at given
time instants are compared in Fig. 9. The first plot (t = 240 s) pertains
to the time instant of the peak of EPS, while the others are selected
every 480 s. Thus, covering the entire duration of the record. Results
exhibit a very good agreement between original and reconstructed
EPSs at each considered time instant, even in the cases of 40% and
60% missing data.

Finally, it is emphasized that the EPS provides information con-
sistent with the classical approach of the sea state theory. Indeed,
the peak frequency w, and the zero order moment my of the spec-
trum at a fixed time instant are quite similar to the ones obtained
by processing short time records of the wave data via FFT. Fig. 10
shows a direct comparison between them, where the correspond-
ing “stationary” quantities are calculated by processing only 5 min
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Sea surface elevation [m]

Original signal - Reconstructed signal-20% of missing data
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time[s]
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timels]

Sea surface elevation [m)

-.l Original signal -+ Reconstructed signal-60% of missing data
-1.2
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timel[s]

Fig. 5. Comparison between original signal (no missing data) and reconstructed signal for a portion of the record of 50s. Record pertaining to the maximum recorded crest

height.
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Fig. 6. Expansion coefficients x; estimated from the record with 40% missing data.

of data centered at the selected time instants. It is shown that these
key quantities agree reasonably well to each other.

3.3. Comparison between cumulative distribution functions of
wave height H of original and reconstructed signals

The previous comparisons highlighted the fact that there are
discrepancies between the original and reconstructed signals.
Therefore, it is deemed necessary to examine to what extent the
reconstructed signal can be used for pursuing typical statistical
analyses relevant to marine applications. This problem is addressed

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

2

Eri

10 20 30 40 50 60 70

Percentage of neglected coefficients

80 90 100

Fig. 7. Error between a reconstructed free surface and a reconstructed free surface
obtained by neglecting a certain percentage of expansion coefficients.

here by computing the cumulative distribution function of the
crest-to-trough wave height P(H). Specifically, P(H) is computed for
both original and reconstructed signals with 20%, 40%, 60% missing
data. The numerical results are shown in the semi-logarithmic plot
in Fig. 11.

The vertical axis shows the quantity [1 — P(H)], while the hori-
zontal axis is the wave height threshold H. The results show a quite
good agreement between P(H) of original and reconstructed signals,
especially for 20% and 40% missing data, while a slight deviation is
observed for 60% missing data.
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Fig. 8. Comparison between EPSs of a) original signal (no missing data), reconstructed signal with b) 20%, c) 40%, d) 60% missing data. The unit of the EPS is m? s/rad.
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Fig. 9. Comparison between EPSs at given time instants (t=240s corresponds to the peak of the EPS calculated starting from the original signal).
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Fig. 10. Comparison between a) the zero order moment mjg of the spectrum and b)
the peak frequency w, estimated by GHW and FFT spectrum.

4. Concluding remarks

This paper has focused on the field data analysis of a
non-stationary free surface elevation record by employing the
Evolutionary Power Spectrum (EPS) concept, and Compressive

Sensing (CS) techniques in conjunction with a Generalized Har-
monic Wavelets (GHW) basis. Specifically, the proposed analysis
aimed at assessing the efficiency and reliability of these methods
for storing, reconstructing and analyzing/interpreting water wave
data.

It has been shown that CS in conjunction with a GHW basis has
been efficacious in treating relatively long records by processing
only a small fraction of randomly selected data points and stor-
ing a very small number of coefficients. These coefficients are used
then for reconstructing the original record. This feature enables the
utilization of significantly less computer memory and, at the same
time, storing information about the entire record instead of few
synthetic spectral parameters only. In this regard, it has been shown
that by retaining only approximately 20% of the GHW coefficients,
an excellent signal reconstruction is still possible. The analysis has
involved the reconstruction of the original record and the estima-
tion of the associated EPS starting from the original/target with a
given percentage of removed data. The comparisons between the
original and reconstructed signals, as well as the corresponding EPS,
have shown that the errors between the original and reconstructed
signals are negligible for up to 40% removed data and are relatively
small for up to 60% removed data. Further, it is seen that the accu-
racy of the reconstruction appears rather insensitive to the nature
of the wave record and is quite satisfactory also in the vicinity of
very large waves.

Additional analysis has been conducted on the cumulative dis-
tribution function of the crest-to-trough wave heights. It has been
shown that these are satisfactorily estimated for removed data up
to 40%. These analyses suggest that the methods can be applied
to field data by considering a percentage of missing/removed data
lower or equal to 60%.
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