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a b  s  t  r a  c t

A  methodology is proposed  for  efficient processing  of sea  wave field  data  via  compressive sensing (CS),

and  joint  time-frequency  analysis  via  harmonic  wavelets  (HWs) based  evolutionary  power  spectrum

(EPS) estimation.  In  this regard, it is  possible  to  record and store relatively  long  wave  data  sequences,

whereas  the  commonly  adopted  in-practice assumption  of stationary  data  is  abandoned. Currently,  most

wave records are  measured  by  buoys, which  acquire data  for  a time  interval representative  of stationary

time  series.  Next, following  a Fourier transform processing,  only few spectral  parameters are  stored. Thus,

detailed information about localized-in-time  phenomena  are  completely  lost.  Herein, it is shown that CS

can  be  adopted for efficiently compressing and reconstructing wave  data, while  retaining  localized infor-

mation.  For this  purpose, CS is used  in conjunction with  a HW basis for processing  long  time  series. In

particular,  storage capacity demands  are  drastically decreased  as only  the  HW  coefficients  need  to  be

saved.  These are  determined  from  a randomly-sampled  record  by invoking  a L1/2 norm  minimization

procedure.  The resulting  reconstructed  record,  being  longer than conventional  wave time series,  can no

longer be  regarded as  stationary; thus,  a  HW based  EPS  estimate is employed  for  describing the  joint

time-frequency features of  the  record.  Finally,  the  reliability of the  methodology  is assessed by  analyzing

wave field data  measured  at  the  Natural Ocean Engineering Laboratory  (NOEL)  of Reggio Calabria. Specif-

ically,  comparisons  between original  and  reconstructed records demonstrate  a satisfactory agreement

regarding  the  time-histories, and  the  estimated EPS  and relevant statistical  quantities,  even for  up to  60%

missing/removed  data.

© 2017 Elsevier  Ltd. All  rights  reserved.

1. Introduction

The concept of sea state has been instrumental in marine engi-

neering, as it has facilitated the development of most modern

analysis techniques within the context, for instance, of wave statis-

tics, structural reliability, and mechanics of extreme waves. The

primary assumption behind this concept relates to the fact that the

free surface displacement recorded during a  certain time interval

(of order of 100–200 waves) can be construed as part of a  realiza-

tion of a stochastic process with given probability density function

(pdf) and power spectral density (psd) [1].  In this context, although

Gaussian processes have  certainly been the most utilized for deter-

mining sea wave statistics, non-Gaussian models are also quite

established for describing non-linear phenomena [2,3].
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Nevertheless, the underlying assumption of stationarity has

never really been questioned by the majority of researchers. In this

regard, some observations were noted by Liu et al. [4,5]. Specifically,

they observed that conventional approaches used for describing

the wave growing process are limited in the sense that they are

unable to describe time-localized mechanisms such as wave group-

ing or wave breaking. This inadequacy of the approaches also

relates to the fact that conventional observation intervals are lim-

ited to  20–30 min  windows, a widely utilized sea state duration

[6].  Extending the recording time window is certainly attractive

because of the possibility of acquiring more information about the

recorded physical processes. However, this extension must cope

with additional challenges. First, new tools are necessary for pro-

cessing longer data sequences due to the increased storage capacity

demands, and second, the measured extended signal may  exhibit

time-varying statistics, and thus, cannot be  construed as a  realiza-

tion compatible with an underlying stationary stochastic process.

To address the above challenges, this paper employs and

assesses the capabilities of two  potent tools/concepts for treating
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long, non-stationary, free surface data sequences; that is, compres-

sive sensing (CS), and evolutionary power spectrum (EPS).

Compressive sensing circumvents the limitation posed by the

Nyquist-Shannon sampling rate theorem [7,8] and can be used for

acquiring/sampling and storing longer free surface time histories.

Currently, wave data are recorded mainly by  buoys equipped with

accelerometers, which measure the acceleration and provide the

free surface displacement by numerical integration [9].  Typically,

data are recorded with a  sampling interval that varies between 0.5

and 1 s (depending on wave characteristics at the considered site)

for a duration of 20–30 min, whereas the time interval between

successive records may  vary from half an hour to three hours. Next,

the Fourier transform is applied on each record of sea surface eleva-

tion, and only spectral data including significant wave height Hs and

peak spectral period Tp are provided to the final users. The choice

of the record duration relates to the definition of sea state. In this

regard, it is long enough to  be representative of the sea state condi-

tions, but short enough at the same time to guarantee stationarity of

the process. Further, the time interval between successive records

is chosen to be short enough to capture adequately the long-term

variability of the sea conditions. Obviously, this procedure is  theo-

retically consistent with the sea state concept, but it is also dictated

by the need for limiting the amount of stored data, and ultimately,

lowering the equipment cost.

However, if only synthetic parameters are stored, information

about local phenomena, such as freak waves, is completely lost [10]:

for  this reason, storing full data records is desirable. In this context,

considering that sea waves are characterized by a  relatively small

number of dominant frequencies when expanded in  the frequency

domain, the CS approach [11,12] can be applied to reconstructing

signals that contain sampling gaps (either deliberately for storage

capacity purposes or due to equipment failure) in the time domain

by selecting an appropriate basis [13–16].

Further, EPS were introduced for describing the time-varying

frequency content of non-stationary stochastic processes [17].  The

problem of treating non-stationary signals was initially addressed

by the short time Fourier transform [18–20] and, later, by the

wavelet transform (WT) [21,22] among other alternatives. In this

regard, Newland [23–25] introduced the family of generalized har-

monic wavelets (GHWs), which was employed in Spanos et al.

[26] to estimate the EPS of non-stationary stochastic processes

from available realizations. Thus, a GHW-based EPS estimation

technique was developed. Further, GHWs have proven to  be effi-

cacious for structural dynamics-related applications due to their

non-overlapping, box-shaped frequency spectra, their orthogonal-

ity properties, and the convenience of combining harmonic balance

with statistical linearization techniques [27,28].  Applications of

wavelets to ocean engineering related problems are  increasing

considerably, due to their versatility. For  instance, the work of Mas-

sel [29] demonstrated the capability of the wavelet transform to

provide a time-frequency representation of wave signals. Other

contributions relate to studies on wave breaking [30],  occurrence

of abnormal waves [31] and time series forecasting [32,33].

In the ensuing sections, it is demonstrated that a) GHWs can be

used in conjunction with the concept of EPS for processing and cap-

turing time-varying features of free surface elevation records, and

b) CS can be combined with a GHW basis for compressing free sur-

face records. Finally, the theoretical developments are  exemplified

by analyzing long experimental free surface displacement data.

2. Processing and analysis of non-stationary time series

In this section the key elements related to the implementa-

tion of the EPS estimation and the CS  based reconstruction are

delineated. These two tools are strictly connected to each other

in the ensuing implementation via the representation adopted for

the time series analyses. Indeed, the EPS estimation is pursued via

the GHWT, which is invoked also during the signal reconstruction.

Other representations can be  utilized, as well. However, this one is

adopted because it ensures non-overlapping intervals at different

scales along the frequency axis, and thus, desirable orthogonality

properties hold true.

2.1. Evolutionary power spectrum estimation via the GHWT

The wavelet transform of a finite energy stochastic process f(t)

provides a time-frequency representation of f(t). Its  calculation

relates to the determination of a  series of wavelet coefficients at dif-

ferent scales j and time positions k. Note that the scale parameter is

related to the frequency, whereas the general form of a continuous

wavelet transform of a  stochastic process f(t) is  given by

[W� f ](j, k)  =
1

|j|1/2

+∞
∫

−∞

f  (t)� ∗

(

t −  k

j

)

dt. (1)

In Eq. (1) [W� f](j,  k) is  the wavelet coefficient at scale j and time

position k, the function  (t) is the mother wavelet and the symbol

(*) denotes the complex conjugate of  (t). Eq.  (1) represents a con-

volution operation between f(t) and the basis functions obtained by

properly scaling and translating the mother wavelet. The wavelet

coefficients provide a measure of the similarity between f(t) and the

wavelet. Thus, the higher the correlation is,  the larger the coefficient

will be.

Focusing on the specific family of harmonic wavelets, they are

defined to have a  band limited spectrum, whereas two  indices

(m,n) are used to  define the frequency bands and to control their

frequency content. Herein, the generalized harmonic wavelet is

considered, which is  expressed in the frequency domain as [24]:

� (m,n),k(ω) =

⎧

⎪

⎨

⎪

⎩

1

(n − m)�ω
e

−
iωkT0

n − m ; for m�ω  ≤ ω < n�ω

0; elsewhere

(2)

where T0 is the total time duration of the signal under consider-

ation, m and n are integer numbers defining the frequency band

(n > m), and �ω  =  2�/T0. The complex harmonic wavelet coeffi-

cients are  given by:

[WG
(m,n),kf (t)] =

(n − m)

T0

+∞
∫

−∞

f (t)� ∗
(m,n),k (t) dt, (3)

and the evolutionary power spectrum can be estimated as [26]

Sf (ω, t) = Sf
(m,n),k

=
E(|[WG

(m,n),k
f (t)]

2
|)

(n −  m)�ω
;

with

{

m�ω ≤ ω < n�ω,

kT0

(n − m)
≤  t <

(k +  1)T0

(n −  m)
.

(4)

The estimation of the EPS of a  non-stationary stochastic process

f(t) via Eq. (4) requires the calculation of the wavelet coefficient

by means of Eq. (3) based on an available ensemble of  process

realizations. From a practical point of view it is worth noting that

the GHWT can be numerically determined by utilizing the Fast

Fourier Transform (FFT), which offers significant computational

advantages [34].
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2.2. Compressive sensing

Compressive sensing [35,12] is a recently developed technique

widely utilized in signal and image processing subject to  vastly

under-sampled data. Further, it has proven to  be a potent tech-

nique for data reconstruction when recorded signals exhibit gaps

or missing data in the time domain [13]. This framework provides

the potential to circumvent the standard sampling theorem that

states that a time signal can be  fully determined only if  sampled

at time intervals smaller or equal to half its maximum frequency

[7,8]. In this regard, under certain assumptions, CS allows for sig-

nal reconstruction even if  the maximum frequency is  greater than

half the sampling rate [36].  The technique essentially relates to

expanding the time recorded signal in  a  known basis, and solving an

undetermined linear system of equations via an Lp –norm (0 <  p  ≤ 1)

minimization procedure for obtaining the sparsest representation

of the signal in the selected basis. In general, the resulting system

of equations takes the form

y = Ax, (5)

where y is the sample record with missing data, A is  the so-called

sampling matrix and x  is  the vector of the expansion coefficients.

Vectors x and y have dimension N0 and N0-Nm respectively, N0 being

the original signal length and Nm is  the number of missing data,

while A is a (N0-Nm)  by N0 matrix.

The technique requires that both the signal and the sampling

matrix satisfy certain properties [37]. Specifically, the signal must

be sparse in the selected basis. That is, it can be represented

by a number of coefficients smaller than that determined at the

Shannon-Nyquist rate. Further, the sampling and transformation

domains must have high incoherence, which implies a  non-sparse

representation of the signal in the sampling domain. In addition

to  signal sparsity and incoherence, the sampling matrix must sat-

isfy the restricted isometry property (RIP) which implies that if the

signal has sparsity K (i.e. it can be represented by K non-zero coef-

ficients) any matrix obtained by K  randomly selected columns of A

should have full rank and be nearly orthonormal.

Irrespective of the specific basis chosen, the implementation of

CS consists of the following two main steps:

1.  Construction of the sampling matrix A;

2. Lp-norm (0 <  p ≤ 1)  minimization for determining the sparsest

representation of the signal.

Herein, the case of non-stationary signals is considered for

which GHWs are inherently well-suited as a  basis due to their joint

time-frequency resolution capabilities; see also Comerford et al.

[13–15] and Zhang et al. [16]. The sampling matrix A is  obtained by

firstly generating a N0 by N0 matrix. Then, Nm rows corresponding

to  the position of the missing data are removed. The GHW basis are

generated by inverse FFT following the procedure shown in  Fig. 1.

A single GHW is shifted (n–m) times in the time domain to  form

an orthogonal basis. Then, once the construction of A is completed,

the rows corresponding to the missing data are removed and Eq.

(5) is solved via Lp-norm (0 < p ≤ 1) minimization and the spars-

est solution for x is  determined. Finally, the signal is reconstructed

by multiplying the original sampling matrix A by the expansion

coefficients x.

3. Field data analysis

In this section, a  long non-stationary record of free surface ele-

vation is considered. The first objective of the analysis relates to

proposing a way for sampling sea  surface elevation data without

the constraint of stationarity. Related to this is the objective of

Fig. 1. Flowchart of the algorithm for constructing the  sampling matrix  with HW

basis.

storing many more data than those acquired by the conventional

approach involving an FFT data analysis and storage of  synthetic

spectral parameters (e.g. Hs and Tp) [38]. The constraint of  station-

arity implies record durations between 20 and 30 min. By removing

it, the record duration can be increased from few tens of  minutes

to the order of hours. In this manner, the signal under considera-

tion can no longer be  regarded as stationary, and thus, resorting to

the concept of EPS is  necessary. Obviously, an increased duration

implies many more data in  a  given record. To overcome the prob-

lem of storing an excessive number of data points, a  CS technique

is applied for compressing data via  expanding them in a  certain

basis in  which the signal is sparse. Thus, the signal can be read-

ily reconstructed by employing a  very small number of  non-zero

coefficients. The main idea is to record all the data for the given

duration and then to  remove randomly a certain fraction of them

and produce a  signal with time gaps. The new “incomplete” signal

is then expanded by the CS  technique and only the values and the

position of the non-zero expansion coefficients are stored and used

for recovering the original signal when time-domain analyses are

to be performed.

The analysis utilizes a set of sea surface elevation records mea-

sured at Natural Ocean Engineering Laboratory (NOEL) of Reggio

Calabria (Italy). In particular, the first one has a  total duration of

2500 s sampled at 10 Hz and has been recorded during the peak

stage of a  sea  storm occurred in September 2014. This particular

record is chosen because it is associated with severe wave con-

ditions characterized by the occurrence of quite large waves. In

addition, five short records of a duration of about ten minutes,

recorded during different wave conditions, are processed to  inves-

tigate the effectiveness of the methodology in a  variety of  sea states

and to  demonstrate the general validity of the results.

Note that at NOEL location the significant wave height ranges

between 0.2 and 1.2 m, with peak spectral periods between 2 and

3.6 s. The peculiarity of the lab is that local wind from NNW often

generates sea states consisting of pure wind waves that represent a

small scale model (1:5–1:20), in Froude similarity, of ocean storms

(see www.noel.unirc.it).

3.1. Compression and reconstruction of free surface elevation

data

The compression of sea surface elevation data is performed via

the CS technique using the GHW basis and following the procedure

described in Section 2.2.  For this purpose, L1/2 norm minimization

is considered due to its ability to promote solutions sparser than

the ones typically obtained by alternative L1 norm minimization

approaches [16].  In this context, the problem is recast in the form

min  |x|L1/2
subject to y = Ax. (6)

http://www.noel.unirc.it
http://www.noel.unirc.it
http://www.noel.unirc.it
http://www.noel.unirc.it
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Fig. 2. Flowchart for implementing the algorithm minimizing the L1/2 norm.

Next, to solve the minimization problem (6),  the Lagrangian L(x,

�) is introduced. Specifically,

L(x, �) =

∑

i

|xi|
1/2 + �T (Ax − y) , (7)

whereas the following equation is  obtained by setting the partial

derivatives of Eq. (7) with respect to x and � equal to zero:

x  = QA′(AQB′)
−1y, (8)

where Q = diag(|x|
2
3 ).

Eq. (8) may  be solved by  an iterative procedure involving

updated values of Q  determined from the solution of each previous

iteration as

xk = Qk−1A
′(AQk−1B

′)
−1x, (9)

with

Qk−1 = diag(|xk−1|
2
3 ). (10)

Further, to avoid division by zero as the algorithm converges,

a decreasing parameter � is  introduced for regularizing the opti-

mization procedure. That is,

Qk−1 = diag(|xk−1|2 + ˛jmean(|xk−1|2))
3
4 , (11)

˛j =
˛j−1

10
, (12)

where ˛0 = 1 and for each ˛j Eq. (9) is  evaluated until the following

condition is satisfied:

‖xk − xk−1‖2

‖xk−1‖2

<

√

˛j

100
. (13)

The iterative procedure delineated above (see Fig. 2)  is  imple-

mented for determining the sparsest solution for the expansion

coefficients vector x.  Next, the variability of the error between the

original and the reconstructed signals with increasing percentage

of missing/removed data  is investigated. For each record, ten dif-

ferent positions of missing data are randomly generated. Results

Fig. 3. Maximum, minimum and average error with for different percentage of

missing data, obtained considering ten different random positions of the missing

data.

are shown in  Fig. 3, where minimum, maximum and average (cal-

culated from the 10 configurations) errors are represented as a

function of percentage of missing data. For the calculation, the

following definition of the error is considered:

error =
‖yoriginal − yreconstructed‖2

‖yoriginal‖2

, (14)

where yoriginal is  the original free surface record and yreconstructed
is the one reconstructed by CS. It is  seen that the error is  almost

insensitive to  the missing data positions, while it increases as the

percentage of missing data increases. Specifically, it is below 0.3

for up to  60% missing data, below 0.5 for missing data percent-

age between 60% and 80%, and then it increases rapidly for higher

percentage of missing data. Fig. 4  shows the comparison between

original and reconstructed signals with 20%, 40% and 60% missing

data for a time window of 50 s.  The figure shows that no significant

differences in the reconstructed signals are  detected for missing

data between 20% and 40%, while from 40% to  60%  the differences

are limited. Fig. 5 shows a similar comparison. In this case, the fig-

ure shows the maximum recorded crest height and highlights the

fact that the technique also allows reconstruction of the extreme

waves. Fig. 6 shows the expansion coefficients xi estimated from

the record with 40% of missing data. It  is  seen that the majority

of the coefficients are close to zero. Therefore, the small number

of the non-zero elements reduces drastically the required memory

for storage in comparison with treating the original “complete” sig-

nal. Further analysis is conducted for quantifying the percentage of

coefficients that can be neglected and replaced by zeros without

compromising essentially the quality of the reconstruction. Fig. 7

shows the result obtained for the signal with 40% missing data as

a function of the percentage of neglected coefficients. The figure

emphasizes the fact that  neglecting up  to 80% of the coefficients

the error is lower than 0.1 and increases rapidly for percentages

greater than 90%. Thus, from a practical point of view, this suggests

that all the coefficients lower than a  given threshold (in absolute

value) can be replaced by zeros. Following such an approach, it is

possible to store approximately only 20% of coefficients xi,  without

losing any crucial information about the signal.

Further analysis is  conducted by processing five sea states

characterized by different Hs–Tp pairs. In addition, for each sea

state the parameter of the spectrum � ∗, indicative of how much

narrow-band the spectrum is  and defined as the ratio between

the absolute minimum and the absolute maximum of the auto-

covariance function of the free surface elevation, is calculated for

inferring the nature of the recorded sea state [6].  For instance,

� ∗ =  0.73 relates to  a  JONSWAP spectrum [39],  � ∗ =  0.63 relates to  a
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Fig. 4. Comparison between original signal (no missing data) and reconstructed signal for a portion of the record of 50 s.

Table 1

Sea state characteristics and errors pertaining to  various fractions of missing data.

Fraction of missing data

Hs [m] Tp [s] � ∗ 20% 40% 60% 80%

0.52 3.41 0.62 0.063 0.113 0.214 0.482

0.16  2.74 0.42 0.073 0.140 0.244 0.570

0.18  5.71 0.37 0.055 0.095 0.168 0.428

0.20  6.32 0.47 0.065 0.117 0.203 0.473

0.35  2.94 0.71 0.062 0.111 0.230 0.513

Pierson and Moskowitz [40] spectrum, while smaller values of the

parameter are representative of mixed sea states. Finally, for each

record the error (14) is estimated by considering various fractions

of missing/removed data. The results are summarized in  Table 1

in conjunction with the sea states characteristics. It is seen that

although the accuracy of the reconstruction depends on the frac-

tion of missing data, it appears rather insensitive to nature of the

wave record. In this regard, it is observed that, for a specified record,

the error of the reconstruction increases as the percentage of the

missing data grows. The results are in agreement with the ones of

Fig. 3, which shows that the error is lower than 0.3 for percent-

ages of missing data up to  60% and less than 0.6 for percentages

up to 80%. Considering the low correlation between results and

the  nature of the record, the successive analyses focus on the first

nonstationary record pertaining to the storm peak.

3.2. EPS estimation of original and reconstructed sea surface

elevation record

In  this sub-section, the EPS of original and reconstructed signals

with 20%, 40% and 60% missing data are estimated and compared.

Results are shown in Fig. 8. The Figure shows that the EPS peaks

are underestimated as the percentage of missing data increases.

Further, the EPSs of both original and reconstructed signals show

several peaks in the time domain that describe the evolution of the

sea condition in  time during the whole sea surface record. For each

EPS the highest peak occurs at the very beginning of the record.

This relates to  the fact that the first half of the record pertains to

a storm peak stage, during which the energy content is larger. The

EPS estimated from the reconstructed and original signals at given

time instants are compared in Fig.  9.  The first plot (t = 240 s) pertains

to  the time instant of the peak of EPS, while the others are selected

every 480 s.  Thus, covering the entire duration of the record. Results

exhibit a  very good agreement between original and reconstructed

EPSs at each considered time instant, even in the cases of  40% and

60% missing data.

Finally, it is emphasized that the EPS provides information con-

sistent with the classical approach of the sea  state theory. Indeed,

the peak frequency ωp and the zero order moment m0 of the spec-

trum at a  fixed time  instant are quite similar to  the ones obtained

by processing short time records of the wave data via FFT. Fig. 10

shows a  direct comparison between them, where the correspond-

ing “stationary” quantities are calculated by processing only 5 min
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Fig. 5. Comparison between original signal (no missing data) and reconstructed signal for a  portion of the record of 50 s. Record pertaining to the maximum recorded crest

height.

Fig. 6. Expansion coefficients xi estimated from the record with 40% missing data.

of data centered at the selected time instants. It  is shown that these

key quantities agree reasonably well to each other.

3.3. Comparison between cumulative distribution functions of

wave height H of original and reconstructed signals

The previous comparisons highlighted the fact that there are

discrepancies between the original and reconstructed signals.

Therefore, it is deemed necessary to examine to  what extent the

reconstructed signal can be used for pursuing typical statistical

analyses relevant to  marine applications. This problem is addressed

Fig. 7.  Error between a  reconstructed free surface and a  reconstructed free surface

obtained by  neglecting a certain percentage of expansion coefficients.

here by computing the cumulative distribution function of  the

crest-to-trough wave height P(H). Specifically, P(H) is  computed for

both original and reconstructed signals with 20%, 40%, 60% missing

data. The numerical results are shown in  the semi-logarithmic plot

in Fig. 11.

The vertical axis shows the quantity [1  −  P(H)], while the hori-

zontal axis is the wave height threshold H. The results show a  quite

good agreement between P(H) of original and reconstructed signals,

especially for 20% and 40% missing data, while a slight deviation is

observed for 60% missing data.
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Fig. 8. Comparison between EPSs of a) original signal (no missing data), reconstructed signal with b)  20%, c) 40%, d) 60% missing data. The unit of the EPS is m2 s/rad.

Fig. 9. Comparison between EPSs at given time instants (t =  240 s corresponds to  the peak of the  EPS calculated starting from the original signal).
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Fig. 10. Comparison between a) the zero order moment m0 of the spectrum and b)

the  peak frequency ωp estimated by  GHW and FFT spectrum.

4. Concluding remarks

This paper has focused on the field data analysis of a

non-stationary free surface elevation record by employing the

Evolutionary Power Spectrum (EPS) concept, and Compressive

Sensing (CS) techniques in  conjunction with a  Generalized Har-

monic Wavelets (GHW) basis. Specifically, the proposed analysis

aimed at assessing the efficiency and reliability of these methods

for storing, reconstructing and analyzing/interpreting water wave

data.

It  has been shown that CS in conjunction with a GHW basis has

been efficacious in  treating relatively long records by processing

only a small fraction of randomly selected data points and stor-

ing a  very small number of coefficients. These coefficients are used

then for reconstructing the original record. This feature enables the

utilization of significantly less computer memory and, at the same

time, storing information about the entire record instead of  few

synthetic spectral parameters only. In this regard, it has been shown

that by retaining only approximately 20% of the GHW  coefficients,

an excellent signal reconstruction is  still possible. The analysis has

involved the reconstruction of the original record and the estima-

tion of the associated EPS starting from the original/target with a

given percentage of removed data. The comparisons between the

original and reconstructed signals, as well as the corresponding EPS,

have shown that the errors between the original and reconstructed

signals are negligible for up to 40% removed data and are relatively

small for up  to 60% removed data. Further, it is seen that the accu-

racy of the reconstruction appears rather insensitive to the nature

of the wave record and is  quite satisfactory also in  the vicinity of

very large waves.

Additional analysis has been conducted on the cumulative dis-

tribution function of the crest-to-trough wave heights. It  has been

shown that these are satisfactorily estimated for removed data up

to 40%. These analyses suggest that the methods can be applied

to  field data by considering a percentage of missing/removed data

lower or equal to  60%.
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