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ARTICLE INFO ABSTRACT

Estimating the space-time characteristics of a sea state is of crucial importance to a number of engineering ap-
plications, such as the ones involving three-dimensional waves interacting with marine structures. In this context,
developing a technique that allows extrapolating information about the wave field utilizing only a relatively small
number of records is highly impactful, as it allows minimizing the use of expensive and sophisticated measure-
ment techniques. In this paper, a Compressive Sampling (CS) based technique is developed for extrapolating free
surface displacement data. The technique relies on a directional spectrum compatible sparse representation in
conjunction with formulating and solving an L;-norm optimization problem. Further, the accuracy of the
developed technique is significantly enhanced via the use of an adaptive basis re-weighting procedure. Pertinent
numerical examples demonstrate that the technique is capable of reconstructing the time history of a free surface
displacement record successfully, while capturing the main features of the target frequency spectrum and of the
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cross-correlation function satisfactorily.

1. Introduction

Determining the spatial characteristics of a sea state is pivotal for
ensuring that marine structures operate safely when subjected to rare
extreme events. For instance, commonly utilized large body structures,
such as breakwaters (both fixed and floating), are excited by wave fields
exhibiting a well-defined spatial configuration in case of extreme events
(Isaacson and Nwogu, 1987; Boccotti, 2014) that must be accounted for
to prevent structural failures (Oumeraci, 1994). Another relevant
example pertains to the emerging field of wave energy converters, where
single point (buoy-like) energy harvesters are aimed to be installed in
arrays with a specified spatial distribution. In this context, a given array
is typically regarded as one system providing the grid network with
electrical power. Therefore, determining the response of all harvesters
simultaneously is of significant importance to optimizing the perfor-
mance of both the energy harvesters and the electrical grid (Folley and
Whittaker, 2009). A final example relates to the field of sea wave sta-
tistics. Recent research work (Fedele et al., 2009, 2011; Naess and Bat-
sevych, 2010; Fedele, 2012; Romolo and Arena, 2015; Romolo et al.,
2016) demonstrated that conventional time-domain analyses underesti-
mate real sea wave statistics in space-time domain, and thus, introduce
unsafe input data in the design process. In this regard, knowledge of
spatial data is clearly indispensable for estimating the appropriate design
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wave height to be adopted in the design of a marine structure.

A number of instruments/methods have been developed for quanti-
fying sea state spatial characteristics, such as wave gauges, ultrasonic
instruments, wave buoys, synthetic aperture radar (Schulz-Stellenfleth
and Lehner, 2004; Li et al., 2010), satellites (Chelton et al., 2001) and
variational stereo cameras (Gallego et al., 2011; Fedele et al., 2013).
Wave gauges and ultrasonic instruments can be used for retrieving in-
formation about the frequency spectrum or, in case of multiple sensors,
about the directional spectrum of the free surface displacement. Similar
information is provided by individual wave buoys via acceleration data
post-processing (Tucker, 1989). These data are utilized for acquiring only
local information (free surface data at a certain point in the time
domain). Thus, they cannot be used for obtaining space-time informa-
tion, unless affording the high cost associated with the installation of a
quite large number of instruments over a certain area. Radars and sat-
ellites allow covering quite large areas, but they are unavoidably affected
by limited resolution when it comes to relatively small spatial scales. To
overcome the above limitations, stereo wave imaging has been proposed
by the implementation of variational stereo cameras (Benetazzo et al.,
2015). These techniques involve the use of two or more cameras
recording free surface images over a certain area, which are
post-processed via 3-D reconstruction algorithms for recovering mea-
surements of the free surface displacement. In this context, the main
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drawback of the technique relates to the significant processing power
required. This has an impact on the quality of the reconstruction algo-
rithms that are designed considering a trade-off between speed and ac-
curacy. Further, an additional drawback relates to the occasional
inability to record some areas. For instance, the occurrence of a large
wave crest may impede a given camera to have visual contact with a part
of the wave field, and thus, the stereo technique cannot reconstruct the
associated portion of the wave field. Therefore, the record shows small
“holes” in the measured wave field (Gallego et al., 2011).

This paper addresses the problem of extrapolating the time history of
the free surface displacement at a certain location (%;,y;) given recorded
time histories at various other different known locations (x;, y;). The
solution to this problem can be regarded as a tool for overtaking some of
the limitations associated with the aforementioned methodologies. For
example, given the free surface data recorded by few ultrasonic probes
placed at relatively distant locations, we may determine free surface data
at other locations without the need of several (expensive) sensors.
Another example relates to the variational stereo technique: given a
successfully recovered time history, we may extrapolate information
pertaining to the “holes” directly from the already available data at no
additional cost in terms of camera requirements.

The technique developed in the paper is based on Compressive
Sampling (CS) ideas in conjunction with sparse representations. CS was
first proposed in the field of seismology by Claerbout and Muir (1973),
and was recently revitalized due to the results of Candes et al. (2006a),
Candes and Tao (2006) and Donoho (2006) (see also Candes and Wakin
(2008) Candes and Wakin (2008)), which contributed extensively to
establishing a rigorous mathematical foundation for CS. Their results
fostered CS applications to quite diverse disciplines (Qaisar et al., 2013),
such as radar imaging (Baraniuk and Steeghs, 2007), face recognition
(Qiao et al., 2010) and magnetic resonance image reconstruction
(Trzasko and Manduca, 2009). Civil engineering applications have been
proposed, as well. For instance, the structural health monitoring com-
munity has exploited CS to reduce the number of data required for
monitoring and assessing the damage of civil infrastructures (Huang
et al., 2014; Di Ianni et al., 2015; Tau Siesakul et al., 2015; Wang and
Hao, 2015; Yang and Nagarajaiah, 2015; Zou et al., 2015; Klis and Chatzi,
2017). Further, Comerford et al. (2014, 2016) and Zhang et al. (2017a;
2017b) demonstrated that CS is effective also for reconstructing signals
describing random environmental processes such as winds, earthquakes
and sea waves, which are characterized by a relatively small number of
dominant frequencies. Specifically, they developed a technique for
determining the power spectral density function of a signal (either sta-
tionary or non-stationary) subject to missing data in the time domain,
and showed that power spectra can be successfully estimated even in
cases of highly limited data (even up to 80% missing data for some cases).

Although CS has already revolutionized the signal processing field,
the ocean engineering community has neglected so far the capabilities of
CS. In this context, the first applications were proposed by Bayindir
(2015, 20164, b) that utilized CS for conducting numerical simulations of
nonlinear gravity waves and for the early identification of crossing rough
seas, while Laface et al. (2017) proposed the technique for reconstructing
free surface data in time domain.

In the following sections, a CS technique is developed for recon-
structing a wave field based on a given set of recorded data. The tech-
nique involves a relatively sparse representation compatible with a
certain directional spectrum in conjunction with appropriate Lj-norm
minimization algorithms. It is demonstrated that the main features of
frequency spectra and spatial cross-correlations are preserved during the
extrapolation. It is noted that concepts and ideas developed in Comerford
et al. (2016) are extended herein to account for the significantly more
sophisticated case of directional spectrum, whereas it is demonstrated
that an adaptation of the iterative procedure enhancement proposed by
Comerford et al. (2014, 2017) is particularly beneficial to the herein
considered numerical examples.
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2. Overview on stochastic process representation of a sea state

This section reviews in a concise manner a typical stochastic process
representation used in the context of linear water wave mechanics for
describing the free surface displacement in an undisturbed wave field.
Next, it introduces the main statistical quantities involved in the
description of a random wave field.

A stationary homogeneous Gaussian random wave field is repre-
sented by the equation (Ochi, 2005)

N
n(x,y,1) = Z a; cos(k;y cos 6; + kx sin 0; — wit + &), @

i=1

where 75(x,y,t) is the free surface displacement calculated at a certain
location (x,y) at a given time instant ¢, a; are wave amplitudes, w; are
frequencies such that wi#wj if i#j, 6; are wave directions, k; are wave
numbers and ¢; are random phase angles uniformly distributed over the
interval 0 <¢; 2n. The wave numbers are directly related to the fre-
quencies w;. Specifically, in deep waters, they are calculated as (Mei et al.,
2005)

(2

g being the acceleration due to gravity.

Eq. (1) involves the superposition of a large number N of regular
waves each having a certain frequency and direction. However, their
amplitudes are related to w; and 6; via the directional spectrum S (@,0)
according to the relation

1
S(w, 0)5050 = Ziaf,for O < <o+dwandf < 6; < 6+ 80 3)

In this regard, note that the frequency spectrum E(w) of the process is

associated with the directional spectrum (3) by the equation

E(w) = [" S(»,0)do. (€]

The statistical characteristics of the free surface displacement are
directly estimated from the directional spectrum (Ochi, 2005; Boccotti,
2014). Specifically, the significant wave height H; is given by

Hy =4,/ [ [" S(w,0)dbdw,

where it is recognized that the quantity under the square root is the
variance of the free surface displacement process; and the spatial cross-
correlation is

)

CXY(T):E[”(xay:t)ﬂ(x+xvy+Y7t+T)L (6)

E [-] being the mathematical expectation operator; X and Y being
space lags; and 7 being a time lag. In this context, it is seen that Cy(7) is
the auto-correlation function and Cy (0) is the variance of the free sur-
face displacement process.

The cross-correlation (6) is readily calculated from the directional
spectrum via the equation

Cxr(t) =[5 [" S(w,0)cos(kY cos @ + kX sin § — wr)dOdo. )

3. Compressive sampling

The celebrated Shannon's theorem states that the sampling rate of a
signal must be at least twice the maximum frequency present in the signal
(Shannon, 1949). CS allows recovering signals even in case of “under-
sampling”. That is, even if the sampling rate is smaller than the Nyquist
rate. In this section, the fundamental CS assumptions and conditions
(sparsity, incoherence and restricted isometry property) are reviewed for
completeness. Next, the optimization problem involved in the
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extrapolation of free surface data is formulated in conjunction with an
adaptive iterative procedure for enhancing the accuracy of the extrapo-
lated signal.

3.1. Sparsity, incoherence and restricted isometry property

Many signals associated with natural phenomena (such as sea wave
displacements) can be represented, via a convenient basis, with much
fewer coefficients than the ones required by the Shannon-Nyquist rate. In
this regard, consider a free surface displacement time history expanded
as

w =Y A0z, ®

where A; are the components of an orthonormal basis and z; are the co-
efficient sequences obtained by projecting 5 in the A;space. The free
surface displacement has a sparse representation if several of the z; co-
efficients have adequately small values, and thus, can be disregarded for
its reconstruction. Once the coefficients are identified via appropriate
optimization algorithms, sparsity allows pursuing efficient data
compression and statistical estimation (Comerford et al., 2016).

The choice of the basis is guided by the property of incoherence.
Specifically, CS is pursued by considering that the sampling domain and
the (sparse) transform domain have a high degree of incoherence. For
instance, regarding the Fourier basis, spikes in the frequency domain
correspond to sinusoids in the time domain, and vice versa. This pair is
maximally incoherent as a single coefficient characterizing the signal in
the transform domain corresponds to a harmonic signal spanning the
entire length of the sampling domain.

Next, the robustness of CS is guaranteed by the Restricted Isometry
Property (RIP) (Candes and Tao, 2005): the sampling matrix A satisfies
RIP if there exists a constant §g such that

(1= 30)ll2lly, < [IAz] < (1+6¢)l|z], 9

for every vector z = [21, 2y, ..., 2,] with at least K non-zero values.

This property ensures that z cannot be in the null space of A, or,
equivalently, that any matrix composed of K randomly selected columns
of A should have full rank and be nearly orthonormal. To demonstrate
that RIP holds for a given matrix A is NP-hard (Candes et al., 2006b),
however for some matrices, such as Gaussian random matrices (Fornasier
and Rauhut, 2011), RIP holds with a high probability.

3.2. Signal reconstruction by L;-norm minimization

Consider N free surface displacement time histories (each composed
by nsamples) available at certain locations (x;y;). Next, the objective is to
extrapolate and determine time histories at arbitrary M distinct points
(X;;). For this purpose, define 1 the (nN x 1) column vector containing
the known samples of the free surface displacement and A the (nN x n
(N+M)) sampling matrix. Then, the measurement vector z considered
sparse is determined by solving the problem

n=Az. (10)

Eq. (10) constitutes an underdetermined problem with infinite solu-
tions. Therefore, an additional constraint is imposed with the objective of
determining a unique solution that is as sparse as possible.

It is known that the sparsest solution occurs when the Ly-norm of z is
minimized. However, this optimization problem is non-convex with no
known exact solution (Candes et al., 2006a). Instead, a known solution is
available by minimizing the Ly-norm of z. In this context it can be readily
shown that

min||z|, :AT(AAT)ilnv 1n
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This solution minimizes z in a mean square sense, but, in general,
does not lead to a sparse solution.

A convenient alternative to these constraints is given by the mini-
mization of the Li-norm. Indeed, L;-norm still promotes sparsity and, in
addition, gives rise to a convex optimization problem that can be solved,
for instance, by a gradient based optimization method (Stankovic et al.,
2012). In this context, the optimization problem is recast in the linear
programming form

min||z|,, -subject-to-n = AZ (12)

Considering the fact that z is usually only approximately sparse and
that some noise is always included in the computed values, Eq. (12) takes
the form

min||z||,, -subject-to-|AZ —7||,, < e 13)
where e denotes a tolerance value. This modification has the effect of
applying intervals to the solution, further promoting sparsity.

3.3. Accuracy enhancement via an adaptive iterative procedure

As demonstrated in Comerford et al. (2014), eq. (12) (or eq. (13)) is
rather straightforward to apply, however, this kind of treatment comes
with certain limitations. One potential drawback relates to the significant
computational effort required in case of large amounts of recorded data.
The second issue relates to the fact that the reconstructed free surface
spectrum may occasionally contain spurious large peaks at unanticipated
frequency values. This situation occurs specifically when the number of
available records is small and there is a significant number of unknown
data.

To address the above issues, an enhancement of the technique is
proposed in the ensuing analysis via adapting and extending the iterative
procedure proposed by Comerford et al. (2014) to account for the
extrapolation problem at hand. In particular, the measurement vector z is
determined via the optimization problem

min||z||, -subject-to-) = AWz 14
or, via the counterpart of eq. (13), where W is a reweighting matrix; see
also Comerford et al. (2014).

The rationale of the method relates to the fact that the (diagonal)
matrix W can be used for appropriately weighting the columns of the
sampling matrix A. For this purpose, the elements of the matrix W are
selected as the magnitudes of the components of z. This choice promotes
sparsity as it allows “reducing” the contribution of the small components
of the measurement vector, however, it has the drawback of requiring a
preliminary estimate of z. In this regard, the Ly-norm solution is utilized
herein as the associated explicit formula (11) requires a limited compu-
tational cost, while capturing the key components of the signal
adequately. Next, the measurement vector z is determined by solving
problem (14). The procedure is beneficial particularly when an ensemble
of realizations is available (Comerford et al., 2014). However, field
measurements involve unique realizations, which cannot be repeated. In
this context, the method can be implemented by partitioning the records
in small subsets. Thus, considering each subset as an independent
realization.

The procedure is implemented as follows: at the first iteration the
reweighting matrix is assumed equal to the identity matrix. Then, for
each available realization, the approximate values of z are calculated by
the equation

z = (AW)’ ((AW)(AW)") 'n. (15)

The magnitude of these values are used for estimating a second matrix
W, having null values when computed for the first realization, as
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Fig. 1. Space distribution of the recording points and of the extrapolation point.

Recording points are located at a constant distance R from the extrapolation
point and uniformly distributed around the extrapolation point.

Wy = W, + diag([wi, wi, wa, Wa, ..o, Wawj2, W2 ) ) (16)
where
w; = ||z2i-1, 224 a7

Once all the realizations have been processed, the reweighting matrix
is calculated as

W=W,, (18)
and the procedure is iterated until converging to a certain matrix.

As a final step, the sparse measurement vector z is determined by eq.
(14).

4. Numerical application

This section provides a numerical example where 3 recorded records
of the free surface displacement are used for extrapolating information
pertaining to a fourth point located at the centre of their spatial config-
uration (Fig. 1). The distance between the given points and the extrap-
olation point is R, while the points are uniformly distributed around the
extrapolation one. In this regard, note that the choice of this particular
configuration is absolutely arbitrary and is used only for simplifying the
discussion and accommodating further analyses on the limits of the
technique. Thus, other configurations with, for instance, more records at

=

cos(Ey;)cos(wiry) sin(Ey;)sin(w, )

A(x;, ;)

cos(&,;)cos(wt,) sin(E,;)sin(w;1,)

various distances from the extrapolation point (or points) can be adopted.

The realizations of the free surface displacement in deep water are
obtained by numerical simulations relying on the representation (1) ac-
cording to the method of Boccotti et al. (2011). Each time history is
composed by n =120 samples for a total duration of 60 s. The generated
sea state is compatible with the directional spectrum
S(w,0) = E(w)D(0), 19)
where E(w) and D(¢) are a frequency spectrum and a directional
spreading function, respectively. In this regard, the JONSWAP frequency
spectrum (Hasselmann et al., 1973) is utilized in conjunction with a

€OS(Zn(n-11)/2) COS (Wn-rany /2t )  SI(Eoay/2) ST (@nv-1a) 211 )
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A(X, ) ;"l(xl,yl)‘
M M Extrapolated data
AG ) [N,
v
A(x,,y)) n(x,,»,)
nN M X [Z] = M
A('xN’yN) n(styN)

Fig. 2. Sampling matrix construction.

cosine power directional spreading function (Mitsuyasu et al., 1975).
Specifically,

—4 2
E(w) = ag’w > exp { - % (g) }exp{ln(;/)exp { - %} }, (20)
P P

and

—1

1 . 1
D(6) = cos™ {5 (60— Gp)} . { : cosz“ie} 21
The constants in egs. (20) and (21) are: y =3.3;

_J0.07if w<w,,
77009 if 0> w,

s=20; wp=1,47rad/s; 6,=0° and a=0.01. The significant wave
height of the generated sea states is H;=1 m.

4.1. Sampling matrix construction

The full sampling matrix is constructed according to the representa-
tion adopted in eq. (1). Specifically, each individual time history of the
free surface displacement at a given spatial point is associated with a
matrix A (x;y;) such that

: : (22)
b
08 (Zv-n)2.) COS (Onv-ian 2tn) - SIN (a2, )SIN (@401 21
where
Eji = kjy; cos 6; + kix; sin ;. (23)

In this regard, note that the selection of the angles 6; associated with
the frequencies wj is conducted by the method described by Boccotti et al.
(2011). Specifically, the directional domain is divided into n small in-
tervals such that

i _
) DO)d0 = .

(24)

From the directional domain, n wave angles are calculated by the
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Fig. 3. Realizations of recorded (left panels) and of extrapolated (right panel) time histories of the free surface displacement. The right panel compares the free surface
displacement computed by CS (continuous line) with the target free surface displacement (dotted line).
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Fig. 4. Left panel: power spectral density function of the extrapolated signal vis-a-vis target power spectral density function. Right panel: cross-correlation between the
extrapolated signal and the given signal 5(x;,y1,t). Continuous lines: computed values; dotted lines: target values. Extrapolation point — recording points distance

R=0.11L,
equation
0; = 0; + (011 — 0,);, (25)

where ¢; are random variables uniformly distributed over the interval
(0,1). Then, each frequency wj is associated randomly with a certain

0,14
0,12

0,1
0,08
0,06
0,04
0,02

o w (rad/s)

0 1 2 3 4 5

direction 6;.

Next, the full sampling matrix is constructed by assembling individual
matrices associated with each record as shown in Fig. 2. Further, in the
same figure it is shown that the vector on the right hand side is composed
by vectors encapsulating the given values of the free surface displace-
ment as
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0 k /\ ,/5\\(///\\ P =
1% '
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Fig. 5. Left panel: power spectral density function of the extrapolated signal vis-a-vis target power spectral density function. Right panel: cross-correlation between the
extrapolated signal and the given signal 7(x1,y1,t). Extrapolation point — recording points distance R = 0.1 L,. Computations were pursued via adaptive basis and Ly-

norm minimization.
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Fig. 6. Left panel: power spectral density function of the extrapolated signal vis-a-vis target power spectral density function. Right panel: cross-correlation between the
extrapolated signal and the given signal #(x,y;,t). Continuous lines: computed values; dotted lines: target values. Extrapolation point — recording points distance
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Fig. 7. Left panel: power spectral density function of the extrapolated signal vis-a-vis target power spectral density function. Right panel: cross-correlation between the
extrapolated signal and the given signal 7(x1,y1,t). Extrapolation point — recording points distance R = 0.5 L,. Computations were pursued via adaptive basis and Ly-

norm minimization.

n(xi, yi, 1)
n(x,y) = : (26)

10X, Yis tn)

The underdetermined system utilized for estimating the sparse mea-
surement vector z is obtained by removing from the full system the rows
pertaining to the unknown free surface displacement data.

4.2. Extrapolation of the free surface displacement

An example of extrapolation is shown in Fig. 3. The figures show, on
the left panel, the given time histories of the free surface displacement.
Such time histories pertain to the same realization obtained via the
representation (1) by utilizing the same set of random phase angles for all
the records. The right panel compares the reconstructed free surface
(continuous line) with the “true” free surface obtained within the nu-
merical simulation (dotted line). In this regard, note that the recon-
struction was pursued without resorting to the adaptive basis approach.
This specific example has been pursued under the stipulation that the
recording points are at a distance R = 0.1 L, where L, is the dominant
wave length of the sea state. It is seen that the reconstruction accuracy of
the free surface is quite satisfactory. Indeed, the periods of the individual
waves are preserved during the reconstruction, while the crests and
troughs are slightly either over- or under-estimated.

Fig. 4 shows comparisons regarding frequency spectra and cross-
correlation functions. In this regard, note that the cross-correlation has
been calculated by considering the time histories of points (x1, y1) and
(X1, ¥1), while the frequency spectrum of the free surface at the extrap-
olation point is calculated via the squared amplitudes of its Fourier
components. Further, note that the results were obtained by averaging
the results of 200 realizations. The frequency spectrum of the

92

reconstructed signals captures the salient features of the original fre-
quency spectrum (dotted line), but it also shows unexpected peaks
occurring at the high frequency tail. This discrepancy was observed also
by Comerford et al. (2014), and apparently, relates to the fact that a
straightforward application of the Li-norm minimization approach, as
described in section 3.2, does not yield always the sparsest (or even a
sparse enough) solution. This feature doesn't seem to affect the
cross-correlation that, notably, retains a quite satisfactory accuracy de-
gree during the reconstruction. Further, to enhance the accuracy, the
adaptive basis is implemented. Fig. 5 shows that in this case a sparser
solution is obtained, and thus, the unanticipated peaks are eliminated
from the record and the frequency spectrum is reasonably well estimated
over the entire frequency domain. A slight underestimation of the peak
frequency value is noticed, however, the location of the peak is satis-
factorily captured. Furthermore, the cross-correlation agrees well with
the target cross-correlation. In addition, the figure shows a comparison
with the results pertaining to the application of a Ly-norm minimization.
In this case, it is seen that the results are markedly less representative of
the target values. Indeed, the target spectrum is systematically under-
estimated over the entire frequency domain, as are the maxima and
minima of the cross-correlation.

A crucial issue in the implementation of CS for extrapolation purposes
is the distance between the extrapolation point and the recording point.
Figs. 6 and 7 show the results pertaining to the case where the distance
R =0.5 L. In a similar manner as in the previous example, CS is utilized
without (Fig. 6) and with (Fig. 7) the adaptive basis. It is seen that the
quality of the reconstruction deteriorates if the recording points are far
from the extrapolation point. However, the use of the adaptive basis al-
lows preserving the main features of the cross-correlation that, other-
wise, are completely lost. As in the previous example, the use of a Ly-
norm minimization provides with a significantly worse extrapolation
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result as compared to the proposed adaptive basis. Indeed, although the
cross-correlations are quite similar to each other, it is seen that the Lo-
norm overestimates the frequency spectrum over the whole frequency
domain and introduces rather large unrealistic peaks at both low and
high frequencies.

A more general overview on this last issue is given in Fig. 8, where the
correlation coefficient p(A,B) given by the equation

_ cov(A,B)

p(A,B) 27)

0A0B

cov (A,B) being the covariance between A and B and 64 and op being the
standard deviations of A and B, respectively, is used for measuring the
similarity between the simulated free surface displacements and the
reconstructed free surface displacements. It is seen that the similarity
between the signals rapidly decays with the distance from the recording
points. The graph is limited to the interval R/Lyo = (0, 1), as numerical
computations showed that larger values lead to uncorrelated free surface
displacement data.

4.3. Extrapolation of nonlinear free surface data

There is a general consensus about the fact that realistic representa-
tions of the free surface displacement must account for nonlinear (second
order in a Stokes' expansion) effects. Indeed, sea waves exhibit sharp
crests and flat troughs producing deviations of the crest and trough dis-
tributions from the Rayleigh distribution, which are not captured via the
linear water wave theory (Arena and Guedes Soares, 2009).

Herein, the CS approach is employed via the formulation described in
the previous sections by utilizing nonlinear free surface displacement
data. The rationale of this numerical example is evaluating to what extent
this formulation is eligible for applications in real seas, where nonline-
arity may play a significant role. In this context, the input data and the
target free surface displacement at the point (x;y;) are simulated
numerically via the method described by Romolo et al. (2014), which
produces a free surface displacement compatible with a random second
order Stokes' wave by superposing a linear wave to a second order
contribution. For comparison purposes, the reconstruction is conducted
also by utilizing exclusively the underlying linear free surface displace-
ment. Finally, the correlation coefficient is calculated for both cases in
order to check if introducing nonlinearities in the free surface may
deteriorate the quality of the reconstruction. This numerical example
considers three sea states with identical Hs=4m, and different peak
spectral periods T,=8,5s, 7s, and 6s. These three sea states have
steepness coefficient S, =0.035, 0.052 and 0.071, respectively (For-
ristall, 2000). In all cases, the simulated time window is 120s.

p(rlCS(xl aylst)arl(xuyvt))
0,8
0,6
0,4

0,2

0 0,2 0,4 0,6 0,8 1

RIL,,

Fig. 8. Correlation coefficient between the simulated free surface »(x1,y,,t)
and the reconstructed free surface 7c5(X1,y;,t) as a function of the distance
between the extrapolation point and the recording points.
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Fig. 9. Correlation coefficient by nonlinear free surface waves vis-a-vis corre-
lation coefficient by linear surface waves for 100 realizations. Extrapolation
point — recording points distance R = 0.1 L,. Panel a): sea state with steepness
parameter 0.035; panel b): steepness parameter 0.052; panel c): steepness
parameter 0.071.

Fig. 9 shows the correlation coefficients calculated by using the
nonlinear waves vis-a-vis the correlation coefficient calculated by using
the linear waves. The calculation is pursued by assuming R=0.1 L.
Totally, 100 realizations of the free surface displacement have been
synthesized in each case. The figure shows that the reconstruction via
nonlinear free surface is affected by a small decrease of the correlation
coefficient with respect to the linear case, with +15% variation of the
correlation coefficient with respect to the linear wave reconstruction.
This evidence is observed also by considering the average value of the
correlation coefficient. Indeed, Table 1 shows that the greatest discrep-
ancy pertains to the steeper sea state, while no substantial difference is
observed in case of low steepness.
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Table 1
Correlation coefficient (27) calculated from linear and nonlinear simulated
waves pertaining to sea states with various steepness parameters.

Sea state parameters Correlation coefficients

H, [m] T, [s] Steepness Linear waves Nonlinear waves
4 8.53 0.035 0.758 0.752
4 7 0.052 0.807 0.790
4 6 0.071 0.816 0.786

5. Concluding remarks

Compressive Sampling (CS) has revolutionized the signal processing
field by allowing sampling signals without the constraint of the Nyquist
rate. To date, the ocean engineering community has marginally consid-
ered CS as a potent tool for sea waves processing. In this paper, a CS based
technique has been developed for extrapolating free surface displace-
ment time histories. The technique relies on the identification of a
sampling matrix ensuring: determination of a sparse measurement vec-
tor; incoherence between bases in the sampling and the transform do-
mains; and validity of the restricted isometry property.

The paper has demonstrated that the CS based technique can suc-
cessfully recover the time history of the free surface displacement given
free surface data recorded at various other locations. It has been shown
that the quality of the reconstruction is highly dependent on the distance
between the extrapolation point and the recording point. Indeed, for
relatively large distances the quality of the extrapolation deteriorates. In
this regard, it was observed that reliable data are extrapolated at a dis-
tance of 0.1 L, (L, being the dominant wave length of the sea state), while
the reconstruction is rather rough for distances of 0.5 L,. Note that the
utilization of an adaptive basis in the technique has drastically improved
its accuracy, and has addressed the above limitation at a large extent. In
fact, the enhanced technique has reconstructed the target frequency
spectrum more accurately, while capturing at the same time the main
features of the cross-correlation between free surface displacement data.
The herein proposed Li-norm technique has shown to exhibit superior
accuracy to a standard Ly-norm minimization technique, which deter-
mined unrealistic peaks in the spectrum at both low and high
frequencies.

In view of the implementation with real field data, the technique has
been implemented also in conjunction with nonlinear free surface data.
The numerical results have shown that the reconstruction is slightly less
accurate with respect to the case of linear waves. This observation ap-
pears more evident in quite steep seas, where nonlinear effects are
important. In this regard, future studies focusing on situations where
nonlinear effects are significant (for instance, waves in finite water depth,
or in inhomogeneous wave fields) may be pursued in conjunction with
the use of real (measured) field data.
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