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A B S T R A C T

Estimating the space-time characteristics of a sea state is of crucial importance to a number of engineering ap-

plications, such as the ones involving three-dimensional waves interacting with marine structures. In this context,

developing a technique that allows extrapolating information about the wave field utilizing only a relatively small

number of records is highly impactful, as it allows minimizing the use of expensive and sophisticated measure-

ment techniques. In this paper, a Compressive Sampling (CS) based technique is developed for extrapolating free

surface displacement data. The technique relies on a directional spectrum compatible sparse representation in

conjunction with formulating and solving an L1-norm optimization problem. Further, the accuracy of the

developed technique is significantly enhanced via the use of an adaptive basis re-weighting procedure. Pertinent

numerical examples demonstrate that the technique is capable of reconstructing the time history of a free surface

displacement record successfully, while capturing the main features of the target frequency spectrum and of the

cross-correlation function satisfactorily.

1. Introduction

Determining the spatial characteristics of a sea state is pivotal for

ensuring that marine structures operate safely when subjected to rare

extreme events. For instance, commonly utilized large body structures,

such as breakwaters (both fixed and floating), are excited by wave fields

exhibiting a well-defined spatial configuration in case of extreme events

(Isaacson and Nwogu, 1987; Boccotti, 2014) that must be accounted for

to prevent structural failures (Oumeraci, 1994). Another relevant

example pertains to the emerging field of wave energy converters, where

single point (buoy-like) energy harvesters are aimed to be installed in

arrays with a specified spatial distribution. In this context, a given array

is typically regarded as one system providing the grid network with

electrical power. Therefore, determining the response of all harvesters

simultaneously is of significant importance to optimizing the perfor-

mance of both the energy harvesters and the electrical grid (Folley and

Whittaker, 2009). A final example relates to the field of sea wave sta-

tistics. Recent research work (Fedele et al., 2009, 2011; Naess and Bat-

sevych, 2010; Fedele, 2012; Romolo and Arena, 2015; Romolo et al.,

2016) demonstrated that conventional time-domain analyses underesti-

mate real sea wave statistics in space-time domain, and thus, introduce

unsafe input data in the design process. In this regard, knowledge of

spatial data is clearly indispensable for estimating the appropriate design

wave height to be adopted in the design of a marine structure.

A number of instruments/methods have been developed for quanti-

fying sea state spatial characteristics, such as wave gauges, ultrasonic

instruments, wave buoys, synthetic aperture radar (Schulz-Stellenfleth

and Lehner, 2004; Li et al., 2010), satellites (Chelton et al., 2001) and

variational stereo cameras (Gallego et al., 2011; Fedele et al., 2013).

Wave gauges and ultrasonic instruments can be used for retrieving in-

formation about the frequency spectrum or, in case of multiple sensors,

about the directional spectrum of the free surface displacement. Similar

information is provided by individual wave buoys via acceleration data

post-processing (Tucker, 1989). These data are utilized for acquiring only

local information (free surface data at a certain point in the time

domain). Thus, they cannot be used for obtaining space-time informa-

tion, unless affording the high cost associated with the installation of a

quite large number of instruments over a certain area. Radars and sat-

ellites allow covering quite large areas, but they are unavoidably affected

by limited resolution when it comes to relatively small spatial scales. To

overcome the above limitations, stereo wave imaging has been proposed

by the implementation of variational stereo cameras (Benetazzo et al.,

2015). These techniques involve the use of two or more cameras

recording free surface images over a certain area, which are

post-processed via 3-D reconstruction algorithms for recovering mea-

surements of the free surface displacement. In this context, the main
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drawback of the technique relates to the significant processing power

required. This has an impact on the quality of the reconstruction algo-

rithms that are designed considering a trade-off between speed and ac-

curacy. Further, an additional drawback relates to the occasional

inability to record some areas. For instance, the occurrence of a large

wave crest may impede a given camera to have visual contact with a part

of the wave field, and thus, the stereo technique cannot reconstruct the

associated portion of the wave field. Therefore, the record shows small

“holes” in the measured wave field (Gallego et al., 2011).

This paper addresses the problem of extrapolating the time history of

the free surface displacement at a certain location (~xj;~yj) given recorded

time histories at various other different known locations (xi, yi). The

solution to this problem can be regarded as a tool for overtaking some of

the limitations associated with the aforementioned methodologies. For

example, given the free surface data recorded by few ultrasonic probes

placed at relatively distant locations, we may determine free surface data

at other locations without the need of several (expensive) sensors.

Another example relates to the variational stereo technique: given a

successfully recovered time history, we may extrapolate information

pertaining to the “holes” directly from the already available data at no

additional cost in terms of camera requirements.

The technique developed in the paper is based on Compressive

Sampling (CS) ideas in conjunction with sparse representations. CS was

first proposed in the field of seismology by Claerbout and Muir (1973),

and was recently revitalized due to the results of Candes et al. (2006a),

Candes and Tao (2006) and Donoho (2006) (see also Candes and Wakin

(2008) Candes and Wakin (2008)), which contributed extensively to

establishing a rigorous mathematical foundation for CS. Their results

fostered CS applications to quite diverse disciplines (Qaisar et al., 2013),

such as radar imaging (Baraniuk and Steeghs, 2007), face recognition

(Qiao et al., 2010) and magnetic resonance image reconstruction

(Trzasko and Manduca, 2009). Civil engineering applications have been

proposed, as well. For instance, the structural health monitoring com-

munity has exploited CS to reduce the number of data required for

monitoring and assessing the damage of civil infrastructures (Huang

et al., 2014; Di Ianni et al., 2015; Tau Siesakul et al., 2015; Wang and

Hao, 2015; Yang and Nagarajaiah, 2015; Zou et al., 2015; Klis and Chatzi,

2017). Further, Comerford et al. (2014, 2016) and Zhang et al. (2017a;

2017b) demonstrated that CS is effective also for reconstructing signals

describing random environmental processes such as winds, earthquakes

and sea waves, which are characterized by a relatively small number of

dominant frequencies. Specifically, they developed a technique for

determining the power spectral density function of a signal (either sta-

tionary or non-stationary) subject to missing data in the time domain,

and showed that power spectra can be successfully estimated even in

cases of highly limited data (even up to 80%missing data for some cases).

Although CS has already revolutionized the signal processing field,

the ocean engineering community has neglected so far the capabilities of

CS. In this context, the first applications were proposed by Bayındır

(2015, 2016a, b) that utilized CS for conducting numerical simulations of

nonlinear gravity waves and for the early identification of crossing rough

seas, while Laface et al. (2017) proposed the technique for reconstructing

free surface data in time domain.

In the following sections, a CS technique is developed for recon-

structing a wave field based on a given set of recorded data. The tech-

nique involves a relatively sparse representation compatible with a

certain directional spectrum in conjunction with appropriate L1-norm

minimization algorithms. It is demonstrated that the main features of

frequency spectra and spatial cross-correlations are preserved during the

extrapolation. It is noted that concepts and ideas developed in Comerford

et al. (2016) are extended herein to account for the significantly more

sophisticated case of directional spectrum, whereas it is demonstrated

that an adaptation of the iterative procedure enhancement proposed by

Comerford et al. (2014, 2017) is particularly beneficial to the herein

considered numerical examples.

2. Overview on stochastic process representation of a sea state

This section reviews in a concise manner a typical stochastic process

representation used in the context of linear water wave mechanics for

describing the free surface displacement in an undisturbed wave field.

Next, it introduces the main statistical quantities involved in the

description of a random wave field.

A stationary homogeneous Gaussian random wave field is repre-

sented by the equation (Ochi, 2005)

ηðx; y; tÞ ¼
X

N

i¼1

ai cosðkiy cos θi þ kix sin θi � ωit þ εiÞ; (1)

where η(x,y,t) is the free surface displacement calculated at a certain

location (x,y) at a given time instant t, ai are wave amplitudes, ωi are

frequencies such that ωi 6¼ωj if i 6¼j, θi are wave directions, ki are wave

numbers and εi are random phase angles uniformly distributed over the

interval 0� εi 2π. The wave numbers are directly related to the fre-

quenciesωi. Specifically, in deep waters, they are calculated as (Mei et al.,

2005)

ki ¼
ω2

i

g
; (2)

g being the acceleration due to gravity.

Eq. (1) involves the superposition of a large number N of regular

waves each having a certain frequency and direction. However, their

amplitudes are related to ωi and θi via the directional spectrum S (ω,θ)

according to the relation

Sðω; θÞδωδθ ¼
X

i

1

2
a2i ; for ω < ωi < ωþ δω and θ < θi < θ þ δθ (3)

In this regard, note that the frequency spectrum E(ω) of the process is

associated with the directional spectrum (3) by the equation

EðωÞ ¼ ∫ π

�π
Sðω; θÞdθ: (4)

The statistical characteristics of the free surface displacement are

directly estimated from the directional spectrum (Ochi, 2005; Boccotti,

2014). Specifically, the significant wave height Hs is given by

Hs ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∫ ∞
0
∫ π

�π
Sðω; θÞdθdω

q

; (5)

where it is recognized that the quantity under the square root is the

variance of the free surface displacement process; and the spatial cross-

correlation is

CXYðτÞ ¼ E½ηðx; y; tÞηðxþ X; yþ Y ; t þ τÞ�; (6)

E [⋅] being the mathematical expectation operator; X and Y being

space lags; and τ being a time lag. In this context, it is seen that C00(τ) is

the auto-correlation function and C00 (0) is the variance of the free sur-

face displacement process.

The cross-correlation (6) is readily calculated from the directional

spectrum via the equation

CXYðτÞ ¼ ∫ ∞
0
∫ π

�π
Sðω; θÞcosðkY cos θ þ kX sin θ � ωτÞdθdω: (7)

3. Compressive sampling

The celebrated Shannon's theorem states that the sampling rate of a

signal must be at least twice the maximum frequency present in the signal

(Shannon, 1949). CS allows recovering signals even in case of “under-

sampling”. That is, even if the sampling rate is smaller than the Nyquist

rate. In this section, the fundamental CS assumptions and conditions

(sparsity, incoherence and restricted isometry property) are reviewed for

completeness. Next, the optimization problem involved in the
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extrapolation of free surface data is formulated in conjunction with an

adaptive iterative procedure for enhancing the accuracy of the extrapo-

lated signal.

3.1. Sparsity, incoherence and restricted isometry property

Many signals associated with natural phenomena (such as sea wave

displacements) can be represented, via a convenient basis, with much

fewer coefficients than the ones required by the Shannon-Nyquist rate. In

this regard, consider a free surface displacement time history expanded

as

ηðtÞ ¼
X

n

i¼1

AiðtÞzi; (8)

where Ai are the components of an orthonormal basis and zi are the co-

efficient sequences obtained by projecting η in the Ai-space. The free

surface displacement has a sparse representation if several of the zi co-

efficients have adequately small values, and thus, can be disregarded for

its reconstruction. Once the coefficients are identified via appropriate

optimization algorithms, sparsity allows pursuing efficient data

compression and statistical estimation (Comerford et al., 2016).

The choice of the basis is guided by the property of incoherence.

Specifically, CS is pursued by considering that the sampling domain and

the (sparse) transform domain have a high degree of incoherence. For

instance, regarding the Fourier basis, spikes in the frequency domain

correspond to sinusoids in the time domain, and vice versa. This pair is

maximally incoherent as a single coefficient characterizing the signal in

the transform domain corresponds to a harmonic signal spanning the

entire length of the sampling domain.

Next, the robustness of CS is guaranteed by the Restricted Isometry

Property (RIP) (Candes and Tao, 2005): the sampling matrix A satisfies

RIP if there exists a constant δK such that

ð1� δKÞkzk
2

l2 � kAzk2l2 � ð1þ δKÞkzk
2

l2; (9)

for every vector z¼ [z1, z2, …, zn] with at least K non-zero values.

This property ensures that z cannot be in the null space of A, or,

equivalently, that any matrix composed of K randomly selected columns

of A should have full rank and be nearly orthonormal. To demonstrate

that RIP holds for a given matrix A is NP-hard (Candes et al., 2006b),

however for some matrices, such as Gaussian randommatrices (Fornasier

and Rauhut, 2011), RIP holds with a high probability.

3.2. Signal reconstruction by L1-norm minimization

Consider N free surface displacement time histories (each composed

by n samples) available at certain locations (xi,yi). Next, the objective is to

extrapolate and determine time histories at arbitrary M distinct points

(~xj~yj). For this purpose, define η the (nN� 1) column vector containing

the known samples of the free surface displacement and A the (nN� n

(NþM)) sampling matrix. Then, the measurement vector z considered

sparse is determined by solving the problem

η ¼ Az: (10)

Eq. (10) constitutes an underdetermined problem with infinite solu-

tions. Therefore, an additional constraint is imposed with the objective of

determining a unique solution that is as sparse as possible.

It is known that the sparsest solution occurs when the L0-norm of z is

minimized. However, this optimization problem is non-convex with no

known exact solution (Candes et al., 2006a). Instead, a known solution is

available by minimizing the L2-norm of z. In this context it can be readily

shown that

minkzkl2 ¼ ATðAAT Þ
�1
η: (11)

This solution minimizes z in a mean square sense, but, in general,

does not lead to a sparse solution.

A convenient alternative to these constraints is given by the mini-

mization of the L1-norm. Indeed, L1-norm still promotes sparsity and, in

addition, gives rise to a convex optimization problem that can be solved,

for instance, by a gradient based optimization method (Stankovi�c et al.,

2012). In this context, the optimization problem is recast in the linear

programming form

minkzkl1⋅subject⋅to⋅η ¼ AZ (12)

Considering the fact that z is usually only approximately sparse and

that some noise is always included in the computed values, Eq. (12) takes

the form

minkzkl1⋅subject⋅to⋅kAZ � ηkl2 � e (13)

where e denotes a tolerance value. This modification has the effect of

applying intervals to the solution, further promoting sparsity.

3.3. Accuracy enhancement via an adaptive iterative procedure

As demonstrated in Comerford et al. (2014), eq. (12) (or eq. (13)) is

rather straightforward to apply, however, this kind of treatment comes

with certain limitations. One potential drawback relates to the significant

computational effort required in case of large amounts of recorded data.

The second issue relates to the fact that the reconstructed free surface

spectrum may occasionally contain spurious large peaks at unanticipated

frequency values. This situation occurs specifically when the number of

available records is small and there is a significant number of unknown

data.

To address the above issues, an enhancement of the technique is

proposed in the ensuing analysis via adapting and extending the iterative

procedure proposed by Comerford et al. (2014) to account for the

extrapolation problem at hand. In particular, the measurement vector z is

determined via the optimization problem

minkzkl1⋅subject⋅to⋅η ¼ AWz (14)

or, via the counterpart of eq. (13), where W is a reweighting matrix; see

also Comerford et al. (2014).

The rationale of the method relates to the fact that the (diagonal)

matrix W can be used for appropriately weighting the columns of the

sampling matrix A. For this purpose, the elements of the matrix W are

selected as the magnitudes of the components of z. This choice promotes

sparsity as it allows “reducing” the contribution of the small components

of the measurement vector, however, it has the drawback of requiring a

preliminary estimate of z. In this regard, the L2-norm solution is utilized

herein as the associated explicit formula (11) requires a limited compu-

tational cost, while capturing the key components of the signal

adequately. Next, the measurement vector z is determined by solving

problem (14). The procedure is beneficial particularly when an ensemble

of realizations is available (Comerford et al., 2014). However, field

measurements involve unique realizations, which cannot be repeated. In

this context, the method can be implemented by partitioning the records

in small subsets. Thus, considering each subset as an independent

realization.

The procedure is implemented as follows: at the first iteration the

reweighting matrix is assumed equal to the identity matrix. Then, for

each available realization, the approximate values of z are calculated by

the equation

z ¼ ðAWÞT
�

ðAWÞðAWÞT
��1

η: (15)

Themagnitude of these values are used for estimating a secondmatrix

W2 having null values when computed for the first realization, as
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W2 ¼ W2 þ diag
��

w1;w1;w2;w2; :::;wnN=2;wnN=2

��

; (16)

where

wi ¼ kz2i�1; z2ik: (17)

Once all the realizations have been processed, the reweighting matrix

is calculated as

W ¼ W2; (18)

and the procedure is iterated until converging to a certain matrix.

As a final step, the sparse measurement vector z is determined by eq.

(14).

4. Numerical application

This section provides a numerical example where 3 recorded records

of the free surface displacement are used for extrapolating information

pertaining to a fourth point located at the centre of their spatial config-

uration (Fig. 1). The distance between the given points and the extrap-

olation point is R, while the points are uniformly distributed around the

extrapolation one. In this regard, note that the choice of this particular

configuration is absolutely arbitrary and is used only for simplifying the

discussion and accommodating further analyses on the limits of the

technique. Thus, other configurations with, for instance, more records at

various distances from the extrapolation point (or points) can be adopted.

The realizations of the free surface displacement in deep water are

obtained by numerical simulations relying on the representation (1) ac-

cording to the method of Boccotti et al. (2011). Each time history is

composed by n¼ 120 samples for a total duration of 60 s. The generated

sea state is compatible with the directional spectrum

Sðω; θÞ ¼ EðωÞDðθÞ; (19)

where E(ω) and D(θ) are a frequency spectrum and a directional

spreading function, respectively. In this regard, the JONSWAP frequency

spectrum (Hasselmann et al., 1973) is utilized in conjunction with a

cosine power directional spreading function (Mitsuyasu et al., 1975).

Specifically,

EðωÞ ¼ αg2ω�5 exp

"

�
5

4

�

ω

ωp

��4
#

exp

(

lnðγÞexp

"

�

�

ω� ωp

�2

2σ2ω2
p

#)

; (20)

and

DðθÞ ¼ cos2s
	

1

2

�

θ � θp
�




⋅
	

∫ 2π

0
cos2s

1

2
θ


�1

: (21)

The constants in eqs. (20) and (21) are: γ ¼ 3.3;

σ ¼

�

0:07 if ω < ωp

0:09 if ω > ωp

;

s¼ 20; ωp¼ 1,47 rad/s; θp¼ 0�; and α¼ 0.01. The significant wave

height of the generated sea states is Hs¼ 1m.

4.1. Sampling matrix construction

The full sampling matrix is constructed according to the representa-

tion adopted in eq. (1). Specifically, each individual time history of the

free surface displacement at a given spatial point is associated with a

matrix A (xi,yi) such that

where

Ξj;i ¼ kjyi cos θj þ kjxi sin θj: (23)

In this regard, note that the selection of the angles θj associated with

the frequencies ωj is conducted by the method described by Boccotti et al.

(2011). Specifically, the directional domain is divided into n small in-

tervals such that

∫
~θiþ1

~θi
DðθÞdθ ¼

1

n
: (24)

From the directional domain, n wave angles are calculated by the

Fig. 1. Space distribution of the recording points and of the extrapolation point.

Recording points are located at a constant distance R from the extrapolation

point and uniformly distributed around the extrapolation point. Fig. 2. Sampling matrix construction.

Aðxi; yiÞ ¼

2

4

cosðΞ1;iÞcosðω1t1Þ sinðΞ1;iÞsinðω1t1Þ ⋯ cos
�

ΞnðNþMÞ=2;i

�

cos
�

ωnðNþMÞ=2t1
�

sin
�

ΞnðNþMÞ=2;i

�

sin
�

ωnðNþMÞ=2t1
�

⋮ ⋮ ⋮ ⋮ ⋮
cosðΞ1;iÞcosðω1tnÞ sinðΞ1;iÞsinðω1tnÞ ⋯ cos

�

ΞnðNþMÞ=2;i

�

cos
�

ωnðNþMÞ=2tn
�

sin
�

ΞnðNþMÞ=2;i

�

sin
�

ωnðNþMÞ=2tn
�

3

5; (22)
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equation

θi ¼ ~θi þ
�

~θiþ1 � ~θi
�

~εi; (25)

where ~εi are random variables uniformly distributed over the interval

(0,1). Then, each frequency ωj is associated randomly with a certain

direction θi.

Next, the full sampling matrix is constructed by assembling individual

matrices associated with each record as shown in Fig. 2. Further, in the

same figure it is shown that the vector on the right hand side is composed

by vectors encapsulating the given values of the free surface displace-

ment as

Fig. 3. Realizations of recorded (left panels) and of extrapolated (right panel) time histories of the free surface displacement. The right panel compares the free surface

displacement computed by CS (continuous line) with the target free surface displacement (dotted line).

Fig. 4. Left panel: power spectral density function of the extrapolated signal vis-�a-vis target power spectral density function. Right panel: cross-correlation between the

extrapolated signal and the given signal η(x1,y1,t). Continuous lines: computed values; dotted lines: target values. Extrapolation point – recording points distance

R¼ 0.1 Lp.

Fig. 5. Left panel: power spectral density function of the extrapolated signal vis-�a-vis target power spectral density function. Right panel: cross-correlation between the

extrapolated signal and the given signal η(x1,y1,t). Extrapolation point – recording points distance R¼ 0.1 Lp. Computations were pursued via adaptive basis and L2-

norm minimization.
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ηðxi; yiÞ ¼

2

4

ηðxi; yi; t1Þ
⋮

ηðxi; yi; tnÞ

3

5: (26)

The underdetermined system utilized for estimating the sparse mea-

surement vector z is obtained by removing from the full system the rows

pertaining to the unknown free surface displacement data.

4.2. Extrapolation of the free surface displacement

An example of extrapolation is shown in Fig. 3. The figures show, on

the left panel, the given time histories of the free surface displacement.

Such time histories pertain to the same realization obtained via the

representation (1) by utilizing the same set of random phase angles for all

the records. The right panel compares the reconstructed free surface

(continuous line) with the “true” free surface obtained within the nu-

merical simulation (dotted line). In this regard, note that the recon-

struction was pursued without resorting to the adaptive basis approach.

This specific example has been pursued under the stipulation that the

recording points are at a distance R¼ 0.1 Lp, where Lp is the dominant

wave length of the sea state. It is seen that the reconstruction accuracy of

the free surface is quite satisfactory. Indeed, the periods of the individual

waves are preserved during the reconstruction, while the crests and

troughs are slightly either over- or under-estimated.

Fig. 4 shows comparisons regarding frequency spectra and cross-

correlation functions. In this regard, note that the cross-correlation has

been calculated by considering the time histories of points (x1, y1) and

(~x1, ~y1), while the frequency spectrum of the free surface at the extrap-

olation point is calculated via the squared amplitudes of its Fourier

components. Further, note that the results were obtained by averaging

the results of 200 realizations. The frequency spectrum of the

reconstructed signals captures the salient features of the original fre-

quency spectrum (dotted line), but it also shows unexpected peaks

occurring at the high frequency tail. This discrepancy was observed also

by Comerford et al. (2014), and apparently, relates to the fact that a

straightforward application of the L1-norm minimization approach, as

described in section 3.2, does not yield always the sparsest (or even a

sparse enough) solution. This feature doesn't seem to affect the

cross-correlation that, notably, retains a quite satisfactory accuracy de-

gree during the reconstruction. Further, to enhance the accuracy, the

adaptive basis is implemented. Fig. 5 shows that in this case a sparser

solution is obtained, and thus, the unanticipated peaks are eliminated

from the record and the frequency spectrum is reasonably well estimated

over the entire frequency domain. A slight underestimation of the peak

frequency value is noticed, however, the location of the peak is satis-

factorily captured. Furthermore, the cross-correlation agrees well with

the target cross-correlation. In addition, the figure shows a comparison

with the results pertaining to the application of a L2-norm minimization.

In this case, it is seen that the results are markedly less representative of

the target values. Indeed, the target spectrum is systematically under-

estimated over the entire frequency domain, as are the maxima and

minima of the cross-correlation.

A crucial issue in the implementation of CS for extrapolation purposes

is the distance between the extrapolation point and the recording point.

Figs. 6 and 7 show the results pertaining to the case where the distance

R¼ 0.5 Lp. In a similar manner as in the previous example, CS is utilized

without (Fig. 6) and with (Fig. 7) the adaptive basis. It is seen that the

quality of the reconstruction deteriorates if the recording points are far

from the extrapolation point. However, the use of the adaptive basis al-

lows preserving the main features of the cross-correlation that, other-

wise, are completely lost. As in the previous example, the use of a L2-

norm minimization provides with a significantly worse extrapolation

Fig. 6. Left panel: power spectral density function of the extrapolated signal vis-�a-vis target power spectral density function. Right panel: cross-correlation between the

extrapolated signal and the given signal η(x1,y1,t). Continuous lines: computed values; dotted lines: target values. Extrapolation point – recording points distance

R¼ 0.5 Lp.

Fig. 7. Left panel: power spectral density function of the extrapolated signal vis-�a-vis target power spectral density function. Right panel: cross-correlation between the

extrapolated signal and the given signal η(x1,y1,t). Extrapolation point – recording points distance R¼ 0.5 Lp. Computations were pursued via adaptive basis and L2-

norm minimization.
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result as compared to the proposed adaptive basis. Indeed, although the

cross-correlations are quite similar to each other, it is seen that the L2-

norm overestimates the frequency spectrum over the whole frequency

domain and introduces rather large unrealistic peaks at both low and

high frequencies.

A more general overview on this last issue is given in Fig. 8, where the

correlation coefficient ρ(A,B) given by the equation

ρðA;BÞ ¼
covðA;BÞ

σAσB
; (27)

cov (A,B) being the covariance between A and B and σA and σB being the

standard deviations of A and B, respectively, is used for measuring the

similarity between the simulated free surface displacements and the

reconstructed free surface displacements. It is seen that the similarity

between the signals rapidly decays with the distance from the recording

points. The graph is limited to the interval R/Lp0 ¼ (0, 1), as numerical

computations showed that larger values lead to uncorrelated free surface

displacement data.

4.3. Extrapolation of nonlinear free surface data

There is a general consensus about the fact that realistic representa-

tions of the free surface displacement must account for nonlinear (second

order in a Stokes' expansion) effects. Indeed, sea waves exhibit sharp

crests and flat troughs producing deviations of the crest and trough dis-

tributions from the Rayleigh distribution, which are not captured via the

linear water wave theory (Arena and Guedes Soares, 2009).

Herein, the CS approach is employed via the formulation described in

the previous sections by utilizing nonlinear free surface displacement

data. The rationale of this numerical example is evaluating to what extent

this formulation is eligible for applications in real seas, where nonline-

arity may play a significant role. In this context, the input data and the

target free surface displacement at the point (~x1~y1) are simulated

numerically via the method described by Romolo et al. (2014), which

produces a free surface displacement compatible with a random second

order Stokes' wave by superposing a linear wave to a second order

contribution. For comparison purposes, the reconstruction is conducted

also by utilizing exclusively the underlying linear free surface displace-

ment. Finally, the correlation coefficient is calculated for both cases in

order to check if introducing nonlinearities in the free surface may

deteriorate the quality of the reconstruction. This numerical example

considers three sea states with identical HS¼ 4m, and different peak

spectral periods Tp¼ 8,5 s, 7 s, and 6 s. These three sea states have

steepness coefficient Sp¼ 0.035, 0.052 and 0.071, respectively (For-

ristall, 2000). In all cases, the simulated time window is 120 s.

Fig. 9 shows the correlation coefficients calculated by using the

nonlinear waves vis-�a-vis the correlation coefficient calculated by using

the linear waves. The calculation is pursued by assuming R¼ 0.1 Lp.

Totally, 100 realizations of the free surface displacement have been

synthesized in each case. The figure shows that the reconstruction via

nonlinear free surface is affected by a small decrease of the correlation

coefficient with respect to the linear case, with �15% variation of the

correlation coefficient with respect to the linear wave reconstruction.

This evidence is observed also by considering the average value of the

correlation coefficient. Indeed, Table 1 shows that the greatest discrep-

ancy pertains to the steeper sea state, while no substantial difference is

observed in case of low steepness.

Fig. 9. Correlation coefficient by nonlinear free surface waves vis-�a-vis corre-

lation coefficient by linear surface waves for 100 realizations. Extrapolation

point – recording points distance R¼ 0.1 Lp. Panel a): sea state with steepness

parameter 0.035; panel b): steepness parameter 0.052; panel c): steepness

parameter 0.071.

Fig. 8. Correlation coefficient between the simulated free surface ηð~x1; ~y1; tÞ

and the reconstructed free surface ηCSð~x1; ~y1; tÞ as a function of the distance

between the extrapolation point and the recording points.
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5. Concluding remarks

Compressive Sampling (CS) has revolutionized the signal processing

field by allowing sampling signals without the constraint of the Nyquist

rate. To date, the ocean engineering community has marginally consid-

ered CS as a potent tool for sea waves processing. In this paper, a CS based

technique has been developed for extrapolating free surface displace-

ment time histories. The technique relies on the identification of a

sampling matrix ensuring: determination of a sparse measurement vec-

tor; incoherence between bases in the sampling and the transform do-

mains; and validity of the restricted isometry property.

The paper has demonstrated that the CS based technique can suc-

cessfully recover the time history of the free surface displacement given

free surface data recorded at various other locations. It has been shown

that the quality of the reconstruction is highly dependent on the distance

between the extrapolation point and the recording point. Indeed, for

relatively large distances the quality of the extrapolation deteriorates. In

this regard, it was observed that reliable data are extrapolated at a dis-

tance of 0.1 Lp (Lp being the dominant wave length of the sea state), while

the reconstruction is rather rough for distances of 0.5 Lp. Note that the

utilization of an adaptive basis in the technique has drastically improved

its accuracy, and has addressed the above limitation at a large extent. In

fact, the enhanced technique has reconstructed the target frequency

spectrum more accurately, while capturing at the same time the main

features of the cross-correlation between free surface displacement data.

The herein proposed L1-norm technique has shown to exhibit superior

accuracy to a standard L2-norm minimization technique, which deter-

mined unrealistic peaks in the spectrum at both low and high

frequencies.

In view of the implementation with real field data, the technique has

been implemented also in conjunction with nonlinear free surface data.

The numerical results have shown that the reconstruction is slightly less

accurate with respect to the case of linear waves. This observation ap-

pears more evident in quite steep seas, where nonlinear effects are

important. In this regard, future studies focusing on situations where

nonlinear effects are significant (for instance, waves in finite water depth,

or in inhomogeneous wave fields) may be pursued in conjunction with

the use of real (measured) field data.
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