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a b s t r a c t

The computational efficiency of the Wiener path integral (WPI) technique for determining

the stochastic response of diverse dynamical systems is enhanced by exploiting recent

developments in the area of sparse representations. Specifically, an appropriate basis for

expanding the system joint response probability density function (PDF) is utilized. Next,

only very few PDF points are determined based on the localization capabilities of the

WPI technique. Further, compressive sampling procedures in conjunction with group spar-

sity concepts and appropriate optimization algorithms are employed for efficiently deter-

mining the coefficients of the system response PDF expansion. It is shown that the herein

developed enhancement renders the technique capable of treating readily relatively high-

dimensional stochastic systems. Two illustrative numerical examples are considered. The

first refers to a single-degree-of-freedom Duffing oscillator exhibiting a bimodal response

PDF. In the second example, the 20-variate joint response transition PDF of a 10-degree-of-

freedom nonlinear structural system under stochastic excitation is determined.

Comparisons with pertinent Monte Carlo simulation data demonstrate the accuracy of

the enhanced WPI technique.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Response determination methodologies based on Monte Carlo simulation (MCS) and its variants (e.g., [1,2]) are consid-

ered among the most versatile tools in the area of stochastic engineering dynamics. However, for large scale complex sys-

tems, these approaches can be computationally prohibitive. Extensive research in the field during the past few decades has

shown that alternative approximate analytical and/or numerical schemes offer efficient ways to address a broad class of

problems. State-of-the-art semi-analytical techniques for determining the response of stochastic dynamical systems include

moments equations and statistical linearization [3–5], stochastic averaging schemes [6], probability density evolution

methodologies [7], Fokker-Planck equation solution techniques [8], as well as numerical schemes based on discretized ver-

sions of the Chapman-Kolmogorov equation [9–11]. Additional well-established methodologies relate to stochastic reduced

order models, stochastic Galerkin and collocation schemes (e.g., [12,13]), as well as techniques based on dynamically orthog-

onal field equations [14]. Nevertheless, solving high-dimensional nonlinear stochastic differential equations (SDEs) remains

a persistent challenge in the field of engineering dynamics.
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One of the recently developed promising techniques in stochastic engineering dynamics relates to the concept of the

Wiener path integral (WPI) [15]. Path integral techniques have proven to be potent tools in theoretical physics, with appli-

cations ranging from superfluidity to quantum chromodynamics (e.g., [16]). The notion of path integral, which generalizes

integral calculus to functionals, was introduced by Wiener [17] and by Feynman [18], independently. Recently, an approx-

imateWPI based technique has been developed for determining the stochastic response of nonlinear and/or hysteretic multi-

degree-of-freedom (MDOF) structural systems [19]. The technique exhibits significant versatility and can account even for

systems endowed with fractional derivative terms [20]. Furthermore, it has been extended for addressing certain one-

dimensional mechanics problems with random material/media properties [21], while preliminary results towards an error

quantification analysis can be found in [22]. From a computational efficiency perspective, recent work by Kougioumtzoglou

et al. [23] reduced the computational complexity by, potentially, several orders of magnitude as compared to the original

formulation and numerical implementation of the technique.

The objective of this paper is to further enhance the computational efficiency of the WPI technique by exploiting recent

developments in the area of sparse representations. Indicatively, sparse expansions of multivariate polynomials have been

recently used for numerically solving stochastic (partial) differential equations [24–26]. In this paper, compressive sampling

procedures are employed in conjunction with group sparsity concepts and appropriate optimization algorithms for decreas-

ing drastically the computational cost associated with determining the system response probability density function (PDF). It

is shown that the herein developed enhancement renders the technique capable of treating readily relatively high-

dimensional stochastic systems. Two illustrative numerical examples are considered. The first refers to a single-degree-

of-freedom Duffing oscillator exhibiting a bimodal response PDF. In the second example, the 20-variate joint response tran-

sition PDF of a 10-DOF nonlinear structural system under stochastic excitation is determined. Comparisons with pertinent

MCS data demonstrate the accuracy of the enhanced WPI technique.

2. Wiener path integral technique

2.1. Wiener path integral formalism

A wide range of problems in engineering mechanics and dynamics can be described by stochastic equations of the form

F x½ � ¼ w ð1Þ

where F :½ � represents an arbitrary nonlinear differential operator; w denotes the external excitation; and x is the system

response to be determined. It is noted that Kougioumtzoglou [21] has shown recently that the WPI technique can address

not only problems subject to stochastic excitationwðtÞ, but also a certain class of one-dimensional mechanics problems with

stochastic media properties; that is, stochasticity is embedded in the operator F :½ �. Nevertheless, for the purpose of this

paper, and without loss of generality, an m-DOF nonlinear dynamical system with stochastic external excitation is consid-

ered herein in the form

M€xþ C _xþ Kxþ gðx; _xÞ ¼ wðtÞ ð2Þ

where x is the displacement vector process (xT ¼ ½x1; . . . ; xm�); M;C;K correspond to the m�m mass, damping and stiffness

matrices, respectively; gðx; _xÞ denotes an arbitrary nonlinear vector function; andwðtÞ is a white noise stochastic vector pro-

cess with the power spectrum matrix

Sw ¼
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Next, relying on the mathematical framework of path integrals [16], the transition PDF pðxf ; _xf ; tf jxi; _xi; tiÞ can be written

as [19]

pðxf ; _xf ; tf jxi; _xi; tiÞ ¼

Z

Cfxi ; _xi ;ti ;xf ; _xf ;tf g

W½xðtÞ�½dxðtÞ� ð4Þ

with fxi; _xi; tig denoting the initial state and fxf ; _xf ; tf g the final state, and xi ¼ xðtiÞ; xf ¼ xðtf Þ; _xi ¼ _xðtiÞ and _xf ¼ _xðtf Þ. The

integral of Eq. (4) represents a functional integration over the space of all possible paths Cfxi; _xi; ti; xf ; _xf ; tf g;W½xðtÞ� denotes

the probability density functional of the stochastic process in the path space and ½dxðtÞ� is a functional measure. Further, the

probability density functional for the stochastic process xðtÞ pertaining to the MDOF system of Eq. (2) is defined as (e.g., [19])

W½xðtÞ� ¼ exp �

Z tf

ti

L x; _x; €xð Þdt

 !

ð5Þ

where L x; _x; €xð Þ denotes the Lagrangian functional given as
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L x; _x; €xð Þ ¼
1

2
M€xþ C _xþ Kxþ gðx; _xÞð Þ

T
B�1 M€xþ C _xþ Kxþ gðx; _xÞð Þ ð6Þ
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ð7Þ

Note that Eq. (5) can be loosely interpreted as the probability assigned to each and every possible path starting from

fxi; _xi; tig and ending at fxf ; _xf ; tfg.

Clearly, the largest contribution to the functional integral of Eq. (4) comes from the trajectory xcðtÞ for which the integral

in the exponential of Eq. (5) (also known as the stochastic action) becomes as small as possible; see, for instance, [16].

According to calculus of variations (e.g., [27]) this trajectory xcðtÞ with fixed endpoints satisfies the extremality condition

d

Z tf

ti

Lðxc; _xc; €xcÞdt ¼ 0 ð8Þ

which yields the system of Euler-Lagrange (E-L) equations

@L
@xc;1

� @
@t

@L
@ _xc;1

þ @2

@t2
@L

@€xc;1
¼ 0

..

.

@L
@xc;m

� @
@t

@L
@ _xc;m

þ @2

@t2
@L

@€xc;m
¼ 0

ð9Þ

together with 4�m boundary conditions

xc;1ðtiÞ ¼ x1;i; _xc;1ðtiÞ ¼ _x1;i; xc;1ðtf Þ ¼ x1;f ; _xc;1ðtf Þ ¼ _x1;f

..

.

xc;mðtiÞ ¼ xm;i; _xc;mðtiÞ ¼ _xm;i; xc;mðtf Þ ¼ xm;f ; _xc;mðtf Þ ¼ _xm;f

ð10Þ

Next, solving Eqs. (9) and (10) yields the m-dimensional most probable path, xcðtÞ, and thus, a single point of the system

response transition PDF can be determined as [19]

pðxf ; _xf ; tf jxi; _xi; tiÞ � C exp �

Z tf

ti

Lðxc; _xc; €xcÞdt

 !

ð11Þ

In Eq. (11), the normalization constant C can be determined by utilizing the condition

Z 1

�1

. . .

Z 1

�1

pðxf ; _xf ; tf jxi; _xi; tiÞdx1;fd _x1;f . . .dxm;fd _xm;f ¼ 1 ð12Þ

It can be readily seen by comparing Eqs. (4) and (11) that in the approximation of Eq. (11) only one trajectory, i.e., the

most probable path xcðtÞ, is considered in evaluating the path integral of Eq. (4). Regarding the degree of this approximation,

direct comparisons of Eq. (11) with pertinent MCS data related to various engineering dynamical systems [19,20] have

demonstrated satisfactory accuracy; see also [22].

Further, note that instead of solving the derived E-L Eqs. (9) and (10), an alternative solution approach can be applied for

determining the most probable path xcðtÞ. Specifically, a more direct functional optimization formulation for the expression
R tf
ti
Lðxc; _xc; €xcÞdt can be applied, which can be readily combined with a standard Rayleigh-Ritz solution approach; see [20,21]

for more details. Overall, considering fixed initial conditions ðxi; _xiÞ typically (i.e., system initially at rest), both approaches

require the solution of a functional minimization problem for determining a single point of the joint response PDF. In the

ensuing analysis, adopting a data analysis perspective, this procedure will be referred to as obtaining a measurement of

the joint response PDF.

2.2. Numerical Implementation

Although the boundary value problem (BVP) of Eqs. (9) and (10) is amenable to a closed-form analytical solution for a

linear dynamical system, i.e., gðx; _xÞ ¼ 0, unfortunately this is not the case, in general, for nonlinear systems. Therefore, a

numerical solution scheme needs to be implemented. In this regard, adopting a brute-force numerical solution approach,

for each time instant tf an effective domain of values is considered for the joint response PDF pðxf ; _xf ; tf jxi; _xi; tiÞ. Next, dis-

cretizing the effective domain using N points in each dimension, the joint response PDF values are obtained corresponding to

the points of the mesh. More specifically, for anm-DOF system corresponding to 2m stochastic dimensions (m displacements

A.F. Psaros et al. /Mechanical Systems and Signal Processing 111 (2018) 87–101 89



and m velocities) the number of measurements required is N2m. Clearly, this demonstrates the high computational cost

related to a brute force solution scheme implementation, especially for high-dimensional systems.

To address the above computational limitations, Kougioumtzoglou et al. [23] employed a polynomial expansion for the

joint response PDF; thus, yielding the required number of PDF measurements equal to the number of the expansion coeffi-

cients. Further, it was shown that the computational cost follows a power-law function of the form � ð2mÞl=l! (where l is the

degree of the polynomial), which can be orders of magnitude smaller than N2m. Indicatively, the joint response PDF of a 10-

DOF nonlinear dynamical system can be obtained with only 10;626 measurements by utilizing the polynomial approxima-

tion, whereas a brute force PDF domain discretization scheme would require 3020 measurements (for N ¼ 30). However,

even with the enhancement in computational efficiency proposed in [23], the related computational cost as a power law

function of the number of stochastic dimensions still restricts the applicability of the methodology to relatively low-

dimensional systems. In this paper, further enhancement in the computational efficiency of the WPI technique is achieved

by employing sparse representations for the response PDF in conjunction with appropriate optimization algorithms.

3. PDF approximation and sparse representations

3.1. Joint response PDF approximation

The solution approach proposed by Kougioumtzoglou et al. [23] can be construed as a special case of expanding the joint

response PDF by employing an appropriate basis. Specifically, without loss of generality and considering fixed initial condi-

tions, the only variables describing the PDF at a time instant tf are xf and _xf . Next, dropping the subscript f for simplicity, the

joint response PDF is considered to be a square-integrable function, i.e., pðx; _xÞ 2 L
2ðR2mÞ. In this regard, pðx; _xÞ is approxi-

mated as

pðx; _xÞ � exp
Xn

i¼1

cidiðx; _xÞ

 !

ð13Þ

where ci and diðx; _xÞ, for i 2 f1; . . . ;ng, denote the expansion coefficients and the basis functions, respectively. Note that Eq.

(13) can be written, alternatively, as

log pðx; _xÞð Þ �
Xn

i¼1

cidiðx; _xÞ ð14Þ

Further, following the selection of n points to perform the approximation, Eq. (14) takes the form of a linear system of n

equations, i.e.,

y0 ¼ Dc ð15Þ

where y0 2 R
n�1 is a vector of n points (measurements) of logðpðx; _xÞÞ; D 2 Rn�n is the basis matrix and c ¼ ½c1; . . . ; cn�

T 2 R
n�1

is the expansion coefficient vector. A WPI solution approach coupled with Eq. (15) has proved to drastically increase the

computational efficiency of the WPI technique [23], as only n � N2m BVPs of the form of Eqs. (9) and (10) need to be solved

for determining the joint response PDF.

Nevertheless, it is demonstrated herein that further significant decrease in the computational cost is possible, if r � n

measurements (or, in other words, BVPs to be solved) are utilized in Eq. (15). As shown in the following section, this yields

an underdetermined system of equations that can be solved by relying on potent sparse representation concepts and tools.

3.2. Sparse representations and compressive sampling

Compressive sampling (or compressive sensing) procedures are currently revolutionizing the signal processing field

[28,29]. In this section it is shown that by relying on compressive sampling concepts, and by exploiting additional informa-

tion regarding pðx; _xÞ, the approximation scheme of Eq. (13) can become even more efficient computationally. The rationale

of the herein proposed enhancement relates to using the least amount of joint response PDF measurements (i.e., r � n

measurements obtained using the WPI technique) for computing the coefficient vector c.

If only r < n measurements are obtained, Eq. (14) takes the form of an underdetermined linear system, which can be

written as

y ¼ Uy0 ¼ UDc ¼ Ac ð16Þ

In Eq. (16)U is an r � nmatrix, also known as compressive sampling matrix [30] as it randomly deletes rows of y0 and D. The

underdetermined system of Eq. (16) has either no solution, or an infinite number of solutions. Nevertheless, in many cases

there is additional information available concerning the coefficient vector c. For instance, if only a small number of its com-

ponents, say k out of n components, are nonzero, then the problem can be regularized and there has been extensive research

during the past decade on solution procedures [31]. In particular, the sufficiently sparse (k � n) coefficient vector c is
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typically referred to as k-sparse. For such cases, searching for the vector ĉ with the least amount of elements that satisfies the

condition y ¼ Aĉ constitutes a non-convex optimization problem. Although this problem has a unique solution if A has cer-

tain desired properties and the number of measurements, r, is sufficiently large (e.g., [29]), it is known to be NP-hard (where

NP stands for nondeterministic polynomial time), or in other words, there is no known algorithm for solving it efficiently

(e.g., [32]).

To address the above challenge, greedy algorithms can be used to find an approximate solution of the original non-convex

problem [31]. Alternatively, the regularization constraint can be relaxed. For example, instead of seeking for the solution

with the least amount of elements (or in other words, with the minimum ‘0-norm), the solution with the minimum ‘1-

norm is sought for, alternatively. The problem becomes, therefore, convex and can be readily solved via standard numerical

algorithms. However, the price to be paid for such a relaxation approach relates to increasing the number of measurements,

r, required for a unique solution [29]; see also [33,34].

The main question in such problems relates to the properties that A should have in order for the aforementioned mini-

mization problem to have a unique solution. Also, depending on the type of A selected, knowledge of the number of mea-

surements for nearly exact recovery of the coefficient vector c is required in an a priori manner. The latter is known in

the sparse representations literature as measurement bound, as a lower bound of rmeasurements guaranteeing nearly exact

recovery of c is sought for; see, e.g., [35] for an introduction to the topic. In this regard, theoretical measurement bounds exist

only for certain classes of matrices, e.g., for Gaussian matrices A, or random submatrices of Bounded Orthonormal Systems

(BOS), such as Fourier, Wavelet and Legendre bases (see [36,37,28]). These bounds typically show how the order of magni-

tude of the required number of measurements r changes with increasing dimension n, and sparsity k. Therefore, they are

mainly useful for comparing the performances of various optimization algorithms and for providing with an indicative num-

ber of measurements. In Section 3.5, a more general approach is described, which is often used in practical applications.

3.3. Sparse polynomial approximation and group sparsity

Although approximation strategies based on univariate functions are considered a well-developed topic, there is still

active research in approximation schemes utilizing multivariate polynomials (see for example [38]). In the ensuing analysis,

the monomial basis (e.g., [39]) is adopted for approximating the exponent of the joint response PDF in Eq. (13), and therefore

a polynomial approximation is constructed. The rationale for selecting the above basis relates to the fact that in cases of lin-

ear systems (i.e., gðx; _xÞ ¼ 0) the joint response PDF is Gaussian, or, in other words, the function log pðx; _xÞð Þ can be expressed

exactly as a second-order polynomial. In the general case, where gðx; _xÞ– 0; pðx; _xÞ can be construed as a ‘‘perturbation”

(small or large) from the Gaussian PDF, and thus, more monomials are required to enhance the approximation accuracy.

The resulting polynomial is, consequently, of higher order.

Further, to determine the polynomial approximation coefficients, n ¼ lþ2m
2m

� �
points from R

2m need to be chosen, for an l-

degree polynomial. These are the points at which the joint response PDF is sampled using the WPI technique and can be

selected either randomly, or based on some kind of optimality criterion to enhance the robustness and accuracy of the

approximation (see, e.g., [40]). As noted by Sommariva and Vianello [41], choosing ‘‘optimal” approximation points can, also,

overcome certain numerical issues that typically accompany the monomial basis, such as the handling of resulting ill-

conditioned Vandermonde matrices.

Next, the monomials are ordered based on the graded lexicographical order, which for a 10-DOF dynamical system, for

instance, would take the form

1 � x1 � . . . � _x10 � x21 � 2x1x2 � x22 � 2x1x3 � 2x2x3 � x23 . . . � _x210
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

monomials of order 2

� . . . ð17Þ

Interestingly, this ordering scheme becomes important in the context of sparse polynomial approximation. Numerical

examples involving arbitrary nonlinear systems of the form of Eq. (2) have demonstrated that the coefficients corresponding

to the Gaussian part of the exponent, i.e., monomials of order 2, are always nonzero, whereas only few of the higher order

coefficients are nonzero. In particular, the fact that Gaussian coefficients form a group, which is always active, serves as an

additional piece of information that can be exploited. In the framework of sparse representations, this corresponds to group

(or structured) sparsity, which is a term describing any kind of structure that the coefficient vector is known to have [42]. For

the group sparsity to be considered and exploited, the standard compressive sampling algorithms need to be modified as

delineated in the following section. In this regard there are both convex (e.g., [43]) and non-convex approaches (e.g., [44]).

3.4. Optimization algorithm

In this paper, the StructOMP greedy algorithm proposed by Huang et al. [44] is adopted for addressing the original non-

convex problem. It can be construed as a generalization of the widely used Orthogonal Matching Pursuit (OMP) algorithm

[45] and is preferred in the ensuing numerical examples over alternative convex approaches, such as Group-LASSO [46].

In fact, for various typical stochastic dynamics problems of the form of Eq. (2), StructOMP has exhibited superior

performance, both in terms of convergence rate and of approximation accuracy.
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Specifically, the input to StructOMP is the r-length measurement vector y, the r � n matrix A and the group structure (in

the form of blocks) that the coefficient vector is anticipated to exhibit. In the herein considered applications the coefficient

vector is separated into blocks, with every block corresponding to a single monomial, except for the second-order monomials

that are grouped together. In standard sparse vectors, each component of the coefficient vector is considered to have com-

plexity 1. This means that if this coefficient is active, then the coefficient vector will be less sparse by 1. In group sparse vec-

tors each block is assigned a value that describes its complexity, which depends on its coding length (see the original paper

by Huang et al. [44] for more details). Obviously, all the single monomials are assigned the same complexity value, whereas

the grouped monomials are assigned higher complexity values than the single ones. Additionally, the total complexity of the

coefficient vector, s, is the sum of the individual complexities of the blocks used to construct it.

As in Section 3.2, c denotes the original coefficient vector that solves the system of Eq. (15) and ĉ the estimated one that

solves the system of Eq. (16) using StructOMP. The algorithm selects which block reduces the approximation error

err ¼ ky � Aĉk2 ð18Þ

per unit increase of complexity the most (this block is considered to provide the maximum progress to the algorithm), and

then assigns values to the coefficients of the selected block via least squares regression. Subsequently, the algorithm finds

the next block with the maximum progress and terminates either when err becomes smaller than a prescribed threshold

or when the complexity of ĉ becomes larger than a prescribed value. For the Performance Analysis in Section 3.5 the latter

is used, because the recovery error is measured for fixed complexity s. On the contrary, in the numerical examples in Sec-

tion 4 the former is used, since the goal is to minimize the recovery error even if a less sparse (or more complex) coefficient

vector is used in the expansion.

3.5. Performance analysis

As noted in Section 3.4, the input to the StructOMP algorithm is the r-length measurement vector y, the r � n matrix A

(where A ¼ UD) and the group structure that the coefficient vector c is anticipated to have. Thus, a decision has to be made

a priori regarding the number r of measurements, the degree of the multivariate polynomial to be used and the group struc-

ture provided as input to StructOMP. First, the degree of the polynomial expansion is selected and the basis matrix D, and

thus, A is constructed. Next, the group structure is formed using the group of second-order monomials, while the remaining

monomials are considered separately as single monomials. Based on the rationale explained in Sections 3.3 and 3.4, since the

group of second-order monomials is always active, the complexity of the coefficient vector is directly related only to the

number of single monomials (NSM). In addition, given that the more complex the coefficient vector is the more measure-

ments are needed for its accurate recovery, the number of measurements r depends solely on NSM. Therefore, the antici-

pated NSM has to be decided a priori and a tool is needed to find the corresponding required number of joint response

PDF measurements r.

In the absence of theoretical results, novel algorithms are typically tested with the aid of synthetic data before being used

in practical applications [45,47–49]. In this regard, based on the experimental set-up described below, empirical measure-

ment bounds are determined, guaranteeing coefficient vector estimates with bounded error. In particular, for a monomial

basis, coefficient vectors with synthetic data are created, with varying numbers of single monomials, and hence, with varying

total complexity, s. Next, a value is assigned randomly (e.g., from a Gaussian distribution; see [45]) to each nonzero compo-

nent, and recovery of these vectors is attempted using StructOMP with only r < n measurements and coefficient vector com-

plexity s. Finally, the average recovery error

kc � ĉk2
kck2

ð19Þ

is measured over 100 independent runs of the algorithm for each pair (r=n; s=r), and the result is shown in Fig. 1. It is

observed that for every r=n there is a value of s=r above which sparse approximation becomes relatively inaccurate, or in

other words, it changes phase (e.g., [47]). This is the reason why the plot in Fig. 1, illustrating the transition from highly accu-

rate recovery (blue1) to recovery with significant error (red), is commonly called Phase Diagram (e.g., [47]).

The quantities r=n and s=r in Fig. 1 are non-dimensional. Therefore, to use Fig. 1 for creating a measurement bounds plot

for an m-DOF system, the actual dimension of the coefficient vector, n, is substituted into r=n. In this regard, the x-axis cor-

responds to the required number of measurements r, while the y-axis corresponds to the NSM of the coefficient vector.

Specifically, for a 10-DOF dynamical system of the form of Eq. (2) with 20 stochastic dimensions and considering a

fourth-order polynomial expansion, n becomes 10;626. Fig. 2 shows the estimated measurement bounds for n ¼ 10;626

with the complexity s represented by the NSM of the coefficient vector. Indicatively, for a 10-DOF linear dynamical system

of the form of Eq. (2), only the group of second-order monomials is active, because the joint response PDF is Gaussian, and

thus, NSM is equal to zero. Therefore, as shown in Fig. 2 the coefficient vector for such a system can be recovered with less

than r ¼ 3000 measurements of the joint response PDF using the WPI technique and with average normalized error less than

3%. For a 10-DOF nonlinear dynamical system of the form of Eq. (2), with a non-Gaussian response PDF, NSM is nonzero and

1 For interpretation of color in Fig. 1, the reader is referred to the web version of this article.
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as shown in Fig. 2 the number of measurements r has to increase accordingly. Further, a significant additional advantage of

employing a sparse approximation treatment relates to the a priori knowledge about the sensitivity of the technique. As

shown in Fig. 2 an estimate of the expected increase of the error is readily available in case the coefficient vector sparsity

is not predicted accurately.

3.6. Wiener path integral computational efficiency enhancement

For any m-DOF system of the form of Eq. (2), the joint response PDF can be described by Eq. (13) with a length n coeffi-

cient vector. Therefore, plots similar to Fig. 2 can be constructed for any dimension m. Such plots are useful for deciding on

the number of required measurements and for providing an estimate for the coefficient vector complexity. For instance, for

an error less than 3% and selecting the number of single monomials to be 10% of the Gaussian coefficients (see Fig. 2) the

required number of measurements can be found for an arbitrary system of m DOFs. In this regard, Fig. 3 shows how the

required number of measurements grows with increasing dimension of the system, m. This number is compared with the

respective one required for cases where the formulation does not yield an underdetermined problem; that is, the number

of measurements is equal to the number of coefficients in the expansion yielding a power law function of the form

� ð2mÞl=l! (see [23]). Further, the number of coefficients corresponding to a linear system response multivariate Gaussian

PDF is included as well. It can be readily seen that the proposed approach can be orders of magnitude more efficient than

both a brute-force numerical implementation of the WPI [19], and the approximate technique developed by Kougioumt-

zoglou et al. [23]. Most importantly, as shown in Fig. 3, this enhancement in efficiency becomes even more prevalent as

the number of DOFs (or equivalently the number of stochastic dimensions) increases; thus, rendering the herein proposed

sparse representation approach indispensable, especially for high-dimensional systems. Of course, it is noted that Fig. 3

Fig. 1. Phase Diagram for StructOMP using the Monomial Basis. The z-axis corresponds to the average normalized ‘2 recovery error, kc�ĉk2
kck2

, over 100 runs; the

x-axis corresponds to the ratio showing how much underdetermined the problem is, whereas the y-axis corresponds to the ratio showing the level of

complexity of the coefficient vector.

Fig. 2. Measurement bounds for n ¼ 10;626, corresponding to m ¼ 10 and a fourth-order polynomial approximation using StructOMP. The z-axis

corresponds to the average normalized ‘2 recovery error, kc�ĉk2
kck2

, over 100 runs; the x-axis corresponds to the ratio showing how much underdetermined the

problem is, whereas the y-axis corresponds to the ratio showing the level of complexity of the coefficient vector. The white solid line indicates the required

number of measurements for the error to be smaller than 3%, while the white dashed lines show the deviation of the error by 	1%.
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shows an indicative rate of growth of r. Systems with complex nonlinearities may require a larger number r. Thus, it is sug-

gested to terminate the StructOMP algorithm only after the addition of a new block does not cause any further reduction of

the approximation error in Eq. (18) (see Section 3.4 for more details).

3.7. Mechanization of the sparse polynomial approximation technique

The mechanization of the developed technique involves the following steps:

(a) Select the polynomial degree l and n ¼ lþ2m
2m

� �
points of R

2m, either randomly (e.g., uniformly distributed), or by

employing optimal point selection methodologies (see, e.g., [40]).

(b) Create the basis matrix D.

(c) Relying on Fig. 3, select only r out of these n points randomly (e.g., uniformly distributed).

(d) Evaluate log pðx; _xÞð Þ at these r points using the WPI technique (Eq. (11)).

(e) Estimate the coefficient vector c using StructOMP (or an alternative appropriate optimization algorithm).

(f) The joint response PDF is given by Eq. (13).

4. Numerical examples

4.1. SDOF Duffing oscillator with a bimodal response PDF

As shown in Fig. 3 the advantage of the herein developed technique as compared to the implementation of [23] becomes

more significant for relatively high-dimensional problems. However, to demonstrate the efficacy of the technique in deter-

mining accurately even relatively complex response PDF shapes, an SDOF Duffing nonlinear oscillator that exhibits a bimodal

response PDF is considered first. In this regard, assuming quiescent initial conditions, its equation of motion is given by Eq.

(2) with parameter values (M ¼ 1;C ¼ 1;K ¼ �0:3; g ¼ x3; and S0 ¼ 0:0637). It is noted that an exact analytical expression

exists for the stationary joint response PDF of this oscillator, given by [50]

pðx; _xÞ ¼ C exp
�1

0:0637p

�0:3x2

2
þ
x4

4
þ

_x2

2

� �� �

ð20Þ

where C is a normalization constant. Thus, in addition to utilizing pertinent MCS data, the accuracy degree of the WPI tech-

nique can be assessed by direct comparisons with Eq. (20) as well. Next, in implementing the WPI technique summarized in

Section 3.7, a 4-th degree polynomial is employed for approximating the response transition PDF pðxf ; _xf ; tf jxi; _xi; tiÞ. Follow-

ing [23], the number of the expansion coefficients is n ¼ 15, however, resorting to the herein proposed technique only r ¼ 9

PDFmeasurements obtained by theWPI are used for determining the joint response PDF of the displacement x and the veloc-

ity _x at a given time instant. In Figs. 4 and 5, the joint PDFs referring to time instants t ¼ 1 s and t ¼ 12 s are shown, respec-

tively. For the time instant t ¼ 1s, which corresponds to the transient phase of the oscillator dynamics, the high accuracy

degree of the technique is demonstrated in Fig. 4 by comparisons with MCS data (50; 000 realizations). For the time instant

t ¼ 12s, which corresponds to the stationary phase of the oscillator dynamics, the high accuracy degree is demonstrated by

comparisons with the exact analytical expression given by Eq. (20). The marginal PDFs of x and _x are shown in Fig. 6 as well.

Fig. 3. Required measurements estimate for a general m-DOF system by utilizing the developed sparse approximation technique, and compared with the

technique in [23]; the number of measurements required for a multivariate Gaussian PDF is included for completeness.
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Fig. 4. Joint PDF of xðtÞ and _xðtÞ at time t ¼ 1 s for a Duffing oscillator with a bimodal response PDF, as obtained via the WPI technique (a–b); comparisons

with MCS data – 50,000 realizations (c–d).

Fig. 5. Joint PDF of xðtÞ and _xðtÞ at time t ¼ 12 s for a Duffing oscillator with a bimodal response PDF, as obtained via the WPI technique (a–b); comparisons

with the exact stationary PDF of Eq. (20) (c–d).
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Although the accuracy of the technique depends, in general, on the choice of the polynomial degree, it has been shown in this

example that a 4-th degree polynomial is adequate in capturing even relatively complex PDF shapes, such as the bimodal.

4.2. 10-DOF oscillator with damping and stiffness nonlinearities

To demonstrate the accuracy and efficiency of the proposed technique in handling relatively high-dimensional problems,

a 10-DOF system of the form of Eq. (2) with cubic damping and stiffness nonlinearites is considered, where

M ¼

m0 . . . 0

..

. . .
. ..

.

0 . . . m0

2

6
6
4

3

7
7
5
; ð21Þ

C ¼

2c0 �c0 . . . 0

�c0
. .
. . .

. ..
.

..

. . .
. . .

.
�c0

0 . . . �c0 2c0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; ð22Þ

K ¼

2k0 �k0 . . . 0

�k0
. .
. . .

. ..
.

..

. . .
. . .

.
�k0

0 . . . �k0 2k0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; ð23Þ

and

gðx; _xÞ ¼

�1k0x31 þ �2c0 _x31
0

..

.

0

2

6
6
6
6
4

3

7
7
7
7
5

ð24Þ
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Fig. 6. Marginal PDFs of xðtÞ and _xðtÞ at time instants t ¼ 1 s and t ¼ 12 s for a Duffing oscillator with a bimodal response PDF, as obtained via the WPI

technique; comparisons with MCS data (50,000 realizations) and the exact stationary PDF of Eq. (20).
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The system is excited by a white noise vector process, whose power spectrummatrix is given by Eq. (3), while the param-

eters values are (m0 ¼ 1; c0 ¼ 0:2; k0 ¼ 1; �1 ¼ 1; �2 ¼ 1; and S0 ¼ 0:5). In Figs. 7 and 8, the joint response PDFs for the dis-

placement x1ðtÞ and velocity _x1ðtÞ corresponding to the first DOF obtained by the herein developed efficient WPI

technique are plotted for two time instants t ¼ 1 s and t ¼ 2 s, respectively. These arbitrarily chosen time instants refer to

the non-stationary (transient) phase of the system dynamics. Comparisons with MCS based PDF estimates are included as

Fig. 7. Joint PDF of x1ðtÞ and _x1ðtÞ at time t ¼ 1 s, as obtained via the WPI technique (a–b); comparisons with MCS data – 50,000 realizations (c–d).

Fig. 8. Joint PDF of x1ðtÞ and _x1ðtÞ at time t ¼ 2 s, as obtained via the WPI technique (a–b); comparisons with MCS data – 50,000 realizations (c–d).
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well. Fig. 9 shows the marginal displacement and velocity PDFs at the above time instants. Figs. 10–12 show the respective

results for x10ðtÞ and _x10ðtÞ. In all cases, comparisons with pertinent MCS data demonstrate a high degree of accuracy for the

sparse representation based WPI technique.

Regarding computational efficiency, for such a system with 10 DOFs (or in other words, 20 stochastic dimensions), a

brute-force WPI numerical implementation requires � 3020 functional minimization problems of the form of Eqs. (9) and

Fig. 9. Marginal PDF of x1ðtÞ (a) and _x1ðtÞ (b) at time instants t ¼ 1 s and t ¼ 2 s, as obtained via the WPI technique; comparisons with MCS data (50,000

realizations).

Fig. 10. Joint PDF of x10ðtÞ and _x10ðtÞ at time t ¼ 1 s, as obtained via the WPI technique (a–b); comparisons with MCS data – 50,000 realizations (c–d).
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(10) to be solved. Fig. 3 indicates that the polynomial approximation implementation by Kougioumtzoglou et al. [23]

requires the solution of only 10;626 functional minimization problems (i.e., measurements of the joint response PDF),

whereas resorting to compressive sampling in conjunction with a sparse polynomial approximation technique as developed

herein the number of optimization problems to be solved decreases to 3200. As an indicative order of magnitude, and uti-

lizing a standard PC with up-to-date configurations, the joint response transition PDF of this 10-DOF system is determined in

Fig. 11. Joint PDF of x10ðtÞ and _x10ðtÞ at time t ¼ 2 s, as obtained via the WPI technique (a–b); comparisons with MCS data – 50,000 realizations (c–d).

Fig. 12. Marginal PDF of x10ðtÞ (a) and _x10ðtÞ (b) at time instants t ¼ 1 s and t ¼ 2 s, as obtained via the WPI technique; comparisons with MCS data (50,000

realizations).

A.F. Psaros et al. /Mechanical Systems and Signal Processing 111 (2018) 87–101 99



less than an hour by utilizing the herein developed technique. Further, it is noted that according to Fig. 3, the technique

becomes even more efficient as compared to the one in [23] for increasing number of DOFs m. In other words, the compu-

tational efficiency enhancement becomes even more significant for high-dimensional systems. Of course, note that a rela-

tively accurate MCS based response PDF estimate would require the solution of � 106 deterministic problems; thus,

rendering the herein developed WPI technique a significantly more efficient alternative.

5. Conclusion

Although for low-dimensional systems the WPI technique can be significantly more efficient than MCS, its standard

numerical implementation has proven computationally unwieldy for relatively high-dimensional MDOF systems. In this

regard, extending the work by Kougioumtzoglou et al. [23] who developed an efficient formulation of the technique, the cur-

rent paper has proposed an enhanced formulation that decreases the computational cost by potentially several orders of

magnitude. Specifically, utilizing an appropriate sparse basis for expanding the system joint response PDF, resorting to

the WPI localization features, and employing compressive sampling procedures in conjunction with group sparsity concepts,

the response PDF expansion coefficients have been determined efficiently.

It is worth noting that in comparison to the formulation by Kougioumtzoglou et al. [23], the enhancement in computa-

tional efficiency becomes more prevalent as the number of stochastic dimensions increases; thus, rendering the herein pro-

posed sparse representation approach indispensable, especially for high-dimensional systems. Two illustrative numerical

examples have been considered. The first refers to a single-degree-of-freedom Duffing oscillator exhibiting a bimodal

response PDF. Although the accuracy of the technique depends, in general, on the choice of the polynomial degree for a speci-

fic problem, it has been shown that a 4-th degree polynomial is adequate in capturing even relatively complex PDF shapes,

such as the bimodal. In the second example, the 20-variate joint response transition PDF of a 10-DOF nonlinear structural

system under stochastic excitation has been determined. The high degree of accuracy exhibited has been corroborated by

comparisons with pertinent MCS data.
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