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The solar wind-magnetosphere coupling is studied by new data-adaptive harmonic decomposition (DAHD)
approach for the spectral analysis and inverse modeling of multivariate time observations of complex nonlinear
dynamical systems. DAHD identifies frequency-based modes of interactions in the combined dataset of Auroral
Electrojet (AE) index and solar wind forcing. The time evolution of these modes can be very efficiently simulated
by using systems of stochastic differential equations (SDEs) that are stacked per frequency and formed by coupled

Stuart-Landau oscillators. These systems of SDEs capture the modes' frequencies as well as their amplitude
modulations, and yield, in turn, an accurate modeling of the AE index' statistical properties.

1. Introduction

Empirical models have proven to be an important addition to un-
derstanding and predicting physical phenomena, largely due to the
application of mathematical techniques which extract information of the
variability of a system of which we do not fully understand the physical
nature. In space physics, most historical empirical models have focused
their attention on processes at or inside of geosynchronous orbit due,
primarily, to the plethora of observations from geosynchronous, med-,
and low-Earth orbit spacecraft, and recognition of harmful effects of
relativistic energy radiation, such as deep-dielectric charging in space-
craft electrical components (Baker et al., 1987). The list of empirical
models applied to model and understand the near-Earth space plasma is
exhaustive. There are examples of the nearest-neighbor approaches for
data-driven empirical magnetic field modeling (Sitnov et al., 2008),
linear prediction (Baker and McPherron, 1990), statistical normalized
mean (Kellerman and Shprits, 2012; Kellerman et al., 2013); neural
networks (NN) (e.g. Koons and Gorney, 1991; Fukata et al., 2002; Ling
etal., 2010; Zhelavskaya et al., 2016; Bortnik et al., 2016), and NARMAX
(e.g Balikhin et al., 2011); while the Kalman filter data assimilation
techniques may utilize linear (Kondrashov et al., 2007; Shprits et al.,
2007, 2013; Daae et al., 2011; Kellerman et al., 2014; Merkin et al.,
2016) and nonlinear methods (Kondrashov et al., 2011).

Broadly speaking, some of the more dynamically-oriented data-
driven approaches such as and nonlinear autoregression moving average
with exogenous inputs (NARMAX) and NN, can be associated with the
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System Science (Vassiliadis, 2006; Borovsky and Denton, 2014) and ma-
chine learning, where the evolution of the state of the complex dynamical
system is represented by a time-dependent state vector composed of a
relatively small number of relevant variables, and the laws evolution are
learned or inferred from the simulations of the high-end models or
observations.

Recently, Kondrashov et al. (2015) have introduced the Multilayer
Stochastic Model (MSM) framework allowing for inferring a broad class
of inverse models including the standard statistical ones. This approach
relies on a formulation of inverse modeling as a closure problem, i.e.
finding an optimal model that describes the evolution of partial observa-
tions of a complex high-dimensional dynamical system. The existence of
such an optimal closure is guaranteed by the Mori-Zwanzig (MZ)
formalism of statistical mechanics (Zwanzig, 2001; Chorin et al., 2002;
Kondrashov et al., 2015). The MSM framework emphasizes the ubiqui-
tous role of the triad of nonlinear, stochastic and memory effects in the
derivation of data-driven closure models with good skill in simulating
and predicting the main dynamical features, be it as an output of a
high-end geophysical model or as a set of observations.

The solar wind-magnetosphere coupling occurs over wide range of
spatial and temporal scales, and it has been studied extensively by
various data-driven nonlinear dynamical techniques, such as time delay
embedding, Singular Spectrum Analysis (SSA), and local-linear filters, for
deterministic description of the global component of magnetospheric
dynamics and statistical description of its multi-scale behavior (Ukhor-
skiy et al., 2002, 2004; Sitnov et al., 2000).
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This study demonstrates that in the context of the solar wind-
magnetosphere coupling, an appropriate change of basis by application
of the recent Data-adaptive Harmonic Decomposition (DAHD) technique
introduced in (Chekroun and Kondrashov, 2017) allows us to reliably
detect frequency-based interaction patterns between solar wind and
Auroral Electrojet (AE) index; see Section 3. Furthermore, unlike previ-
ous efforts on stochastic modeling of AE that do not take into account
external forcing by the solar wind (Pulkkinen et al., 2006; Anh et al.,
2008), here we show that DAHD makes possible to perform successful
stochastic modeling of AE index by a simple class of frequency-based
MSMs —with few coefficients to estimate—namely the multilayer
Stuart-Landau models (MSLM:s) introduced in (Chekroun and Kondrashov,
2017); see Section 4.

2. Data

The Sun emits gigantic clouds of ionized gas (plasma) that propagate
through the solar wind and eventually may hit magnetosphere. The in-
teractions with the magnetosphere may result in a number of adverse
effects that are collectively referred to as space weather. The location of
Advanced Composition Explorer (ACE) and Wind spacecrafts at the
Lagrange point L1 between the Earth and the Sun, about 1,500,000 km
forward of Earth, enables these satellites to give up to 1h advance
warning of the arrival of damaging space weather events at Earth
including severe geomagnetic disturbances. ACE satellite was launched
in 1997 and Wind in 1994, respectively, and long history of high-
resolution 1-min bow-shock-nose-shifted solar wind magnetic field and
plasma data from these satellites have been compiled at OMNIWeb.

In this study we have used standard hourly averaged 2008-2013
datasets from the OMNIWEB database (http://omniweb.gsfc.nasa.gov) of
solar wind parameters and interplanetary magnetic field (IMF), as well as
Auroral Electrojet (AE) index that represents ground-based geomagnetic
measurements. Furthermore, the small number of gaps during this period
in solar wind and IMF were filled by SSA (Kondrashov et al., 2010, 2014).

For the analysis conducted below, we log-transformed and stan-
dardized the original AE index, namely by subtracting associated time
series mean and divided by correspondent standard deviation. Various
proxies for the solar wind forcing have been proposed by using nonlinear
combinations of solar wind parameters and IMF (Burton et al., 1975;
Perreault and Akasofu, 1978). By applying NARMAX, Boynton et al.
(2011) have shown that the selection of solar wind-magnetosphere
coupling function for best predictive capabilities of Dst index can be done
objectively in a data-driven manner. To demonstrate capabilities of the
proposed methodology in this study, we have chosen one of the proposed
proxies, namely electric field parameter VB, composed of solar wind
velocity Vy, and z-component of IMF B,, and standardized it as well. The
total length of the resulting dataset is N = 44592 points, and Fig. 1 shows
selected time interval of 1 000 h corresponding to approximately 41 days
of hourly data.

3. Frequency-based analysis of solar wind-AE coupling

The Data-adaptive Harmonic Decomposition (DAHD) (Chekroun and
Kondrashov, 2017) is a signal processing technique that allows for a
decomposition of the power and phase spectra via data-adaptive modes
within a time-embedded phase space. Unlike other techniques exploiting
time-embedding — such as M-SSA (Ghil et al.,, 2002) or nonlinear
dimension reduction techniques (Gavrilov et al., 2016) — DAHD exploits
a combination of integral operator and semigroup techniques (Engel and
Nagel, 2006) that help decompose the original signal into elementary
signals that as illustrated below, are narrowband for each separate
discrete Fourier frequency, while being data-adaptive.

At a practical level, the key feature of the method relies on the con-
struction of matrices that exploit cross-correlations in a different way
than found in standard statistical methods, such as in Principal Compo-
nent Analysis (PCA) (Preisendorfer, 1988); see Eq. (2) below. As
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explained by Chekroun and Kondrashov (2017) and discussed below, the
eigenmodes associated with such matrices exhibit a data-adaptive feature
that shows up in their phase rather than in their shape; see (8) below.

The mathematical details of the approach are provided in (Chekroun
and Kondrashov, 2017) within a general framework, including the case
of multivariate time series issued from a mixing dynamical system, either
stochastic or deterministic. Central to the approach is the spectral anal-
ysis of a class of integral operators whose kernels are built from corre-
lation functions. For the sake of simplicity, we recall first from (Chekroun
and Kondrashov, 2017) how such an integral operator is constructed in
the case of a one-dimensional time series X(t). Given the two-sided
autocorrelation function (ACF), p (of X(t)), estimated on the interval
I = [—7/2,7/2], such an operator takes the form

2,(9)(r) = % (/5 pls + ry¥(s) ds,

+/§7rp(r +s5—1)¥(s) ds) , rel,

(€Y

and acts on any square-integrable function ¥ on the interval I. The
parameter 7 > 0 characterizes the embedding window but is chosen in
practice so that p(t) has sufficiently decay over [—7/2,7/2].

In practice, the discretization of the operator %, defined by (1) leads
to Hankel matrices built from temporal correlations in a different way
than found in M-SSA (Ghil et al., 2002) and alike; see (2) below.

For multivariate time series, the ACF, p, is replaced by time-lagged
cross-correlations, and operators such as given by (1) are grouped into
a block operator whose discretization results into block-Hankel matrices;
see (4) below and (Chekroun and Kondrashov, 2017; Sect. VI-D). The
aforementioned DAH modes (DAHMs) are then obtained as eigenvectors
of such a block-Hankel matrix, while the corresponding eigenvalues
provide a notion of energy contained into the signal that although
allowing for a reconstruction of the signal is not equivalent to variance;
see (Chekroun and Kondrashov, 2017, Remark V.1-(ii)). We summarized
hereafter the main properties of the spectral objects that the DAH
methodology extracts from observations in a general context, before
presenting results from the spectral analysis of the 2 -channel dataset of
solar wind together with Auroral Electrojet (AE) index. In particular, we
focus on:

(i) a multidimensional power spectrum, called the DAH power
spectrum,
(i) a multidimensional phase spectrum, called the DAH phase spec-
trum, and
(iii) the DAHMs.

3.1. DAH power spectrum, DAH phase spectrum and DAHMs

To determine these spectral elements, first we estimate from a given
d-channel time series X(t,) = (X1 (tn), ..., Xa(tn)), with n=1,...,N, the
two-sided cross-correlation coefficients p,(f 9 between channels pandq at
lag k up to a maximum lag M — 1,i.e. - M+1<k<M-1.

As shown in (Chekroun and Kondrashov, 2017; Sect. VI-D), the dis-
cretization of the operator &, given by (1) with p = p®9 leads to the
following Hankel matrix H?®),

R P L Lt
P e
T

HP) = p(()P»'i) PE‘)AZL : ) @)
p(lp»q) PQ)AZLZ p((;u-q)
o, s
A [N L

Equivalently, this matrix can be viewed as a left-circulant matrix
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formed from the (2M — 1)-dimensional row we use M'=2M —1 for concision, reindexing the string { — M +
r=(p?d MH’ e pPO e pPY e 1,---,M — 1} to run from 1 to M’ as necessary.
(Chekroun and Kondrashov, 2017; Theorem V.1) provides then a
HPY = | — circ (p(fm“ o, P(fiq), pt()p-,q)7 p§P=4),,,7 p(ﬁﬁ’)l) : @) useful characterization of the eigenvalues of €. It shows that the corre-

in other words, the rows of HP% are obtained by successive shifts to the
left by one position, starting from r as a first row.

As mentioned above, by forming such a Hankel matrix for each (p, q)
in {1,---,d}?, one can assemble the following block-Hankel matrix €
constituted of d? blocks of size (2M — 1) x (2M — 1), each given ac-

cording to
P9 =HPY if 1<p<gq<d, 4
Cr = H@P) | else. Q)

Note that because each of its building block, H??, is symmetric, and

because €P? = €%, the grand matrix € is itself symmetric. Hereafter

sponding eigenvalues come in pairs of eigenvalues of opposite sign that
can be grouped per Fourier frequency, and are actually given, at each
frequency, as the singular values of a cross-spectral matrix depending on
the data.

We recall from (Chekroun and Kondrashov, 2017) the main details
concerning this latter property. First, denoting by ﬁd) the Fourier
transform at the Frequency f of the cross-correlation function pP4, we
consider the following d x d cross-spectral matrix S(f) whose entries
are given by
o, = { G azp ®

pI(f)if g < p.

Then (Chekroun and Kondrashov, 2017; Theorem V.1) shows that for
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Fig. 2. (a) Power and (b) phase DAH specra for combined dataset of Vg, B,
and log(AE) in Fig. 1. The color in phase spectrum indicates Euclidean norm of
associated DAHM snippets, see text for details. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

each singular value o, (f) of S(f) there exists, when f # 0, a pair of
negative-positive eigenvalues (1* (f), X (f)) of € such that

K@) =2 =), 1<k<d, )

i.e. 2d eigenvalues are associated with each Fourier frequency f # 0. The
same theorem shows that d (but not paired) eigenvalues are associated
with the frequency f = 0.

Another key property identified by (Chekroun and Kondrashov, 2017;
Theorem V.1) is that the eigenvectors of €, i.e. the aforementioned
DAHMs, can also be grouped per Fourier frequency in an even more
explicit fashion. Indeed (Chekroun and Kondrashov, 2017; Theorem V.1)
shows that the eigenvectors of € possess the following representation

wj = (E]l/ '"7E{1)‘r~, (7)

where each E’k is a M'-dimensional row vector that is explicitly associated
with a Fourier frequency f according to

Ef,;(s) = Bi,COS(fS +6{<), 1<s<M, 8)

where the amplitudes B’k and the phases 6‘1( are both data-dependent, for
each 1 < k < d. According to this representation, each DAHM has thus a
temporal (embedding) component with s ranging from 1 to M’, and a
spatial one with k ranging from 1 to d, and since € is symmetric, the
collection of DAHMs form an orthogonal set. We will sometimes refer to a
DAHM snippet, an M'-long segment EJk that arises in the representation
(7) of a DAHM.
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From (8) we can, given a Fourier frequency,

oa(f-1) , . M +1
ff*ﬁaf71: T ©)]
determine the following subset of indices in {1, ---,dM'}:
J(fr) :=1{j : s.t. (8) holds with f = f,}. (10)

Note that for reasons similar to those mentioned above, 7 (f;) is
composed of 2d indices when ¢ # 0 and of d indices if # = 0 such that the
./ (f¢)’s form a partition of the total set of indices, {1, ---,dM'}.

Due to the simple form (8) of a DAHM snippet E,, the determination
of the subset 7 (fz) can be obtained by various means, for example by
computing numerically the power spectral density p}( of E’k and grouping

the j's for which the average power spectral density, d~! Egzlpfc, exhibits
a dominant peak at the frequency fy.

While formula (6) is useful for interpretation, it is not used numeri-
cally in practice. Instead, the eigenvalues of the dM’ x dM’ matrix € are
computed directly, and listed as the set of eigenvalues (4); ;< - This is
where the grouping of indices obtained by the procedure described above
is used in practice. It allows indeed for a rearrangement of these eigen-
values per Fourier frequency (without having to form the cross-spectral
matrix S(f) for each frequency) into a useful object called the DAH
power spectrum. The latter consists of forming, for each £ ranging from
1 to (M’ +1)/2, the discrete set

Se=Al, ies ()}, amn

or in other words, the collection of the %, for ¢ ranging from 1 to
(M' +1)/2, denotes the DAH power spectrum that is evenly spaced in
frequency (see Eq. (9)).

Fig. 2a shows the computed DAH power spectrum —with the |4;|’s
plotted as red filled circles—for the two (d = 2) combined anomaly time
series, namely log(AE) and Vi,B, (see Fig. 1) and an embedding
parameter M = 1000 hours; the number of frequency bins in the Nyquist
interval Ny = (M’ 4+ 1)/2 = 1000. There are exactly two pairs of DAHMs
at each equidistant frequency f, except at f = 0, where there are two
single (i.e. unpaired) modes. The DAH spectrum has more power in the
low-frequency band and there is a pronounced peak at the 1-day peri-
odicity, i.e. f = 1/24 ~ 0.04.

As explained in (Chekroun and Kondrashov, 2017; Sect. V), the DAH
decomposition does not only provide a data-adaptive power spectrum
but it also yields a well-defined DAH phase spectrum:

/() = e (4E,01)) - wre (B[ a2

where arg(z) denotes the principal value (that we adopt to lie in [0, 27)

here) of the argument of the complex number z, while ﬁjk and ﬁ]k denote
respectively the discrete Fourier transform of the DAHM snippet, E,, and

its conjugate. The DAH phase spectrum is then obtained as the collec-
tion of the following discrete set,

o, = {0)(f) 5 jes (), a3

as ¢ varies in from 1 to (M’ +1)/2.

Another useful property concerns the pair of DAHMs associated with
a pair of DAH eigenvalues (4;,4y), such that 4; = —4; and j and j' thus
belong to the same subset_7 (f). For such a DAHM pair, the theory shows
indeed that their corresponding phases satisfy 0;( = 6‘2 + /2, 1i.e. in each
DAHM pair the modes are shifted by one fourth of the period; see
(Chekroun and Kondrashov, 2017; Theorem IV.1). These DAHMs are
thus always in exact phase quadrature, as for a sine-and-cosine pair in
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Fourier analysis, but in a data-adaptive fashion as encapsulated in the
6{(’5 and the B’,;’s; see Figs. 3 and 4 for an illustration.

Fig. 2b shows computed DAH phase spectrum ®,, which is color
coded with information on the Euclidean norm of respective DAHM
snippets )E],;(f/)
Taking into account this phase-quadrature property, there are, for the
dataset at hand, in total d> = 4 independent phase values (I>;< (fr) given by
DAHphase per frequency f,. Three main features are clearly visible in this
spectrum: (i) two straight lines, (ii) two “tongues” containing very few or
no values in a low-frequency band with periodicities of larger than ~ 4
hours, and (iii) a diffuse background at higher frequencies. Moreover, the
“tongues” areas are surrounded by regions of higher density than in the
diffuse background, and the largest magnitudes of DAHM snippets are
found in the regions of high density around the “tongues” and the straight
lines.

To assess the dynamical relevance of these phase spectrum features, it

, that can be unambiguously associated with the tbi(fg).

1000

2000 3000

is instructive to analyze results for the AE index combined with a (stan-
dardized) white noise instead of the solar wind forcing. The resulting
DAH phase spectrum is shown in Fig. 5b, and as one can observe, the
tongues surrounded by high-density regions are no longer apparent,
while the largest magnitudes of DAHM snippets are strictly confined to
two straight lines. Such result can be explained from the characterization
of the DAH eigenvalues as singular values of the cross-spectral matrix,
©(f), with entries given in (5): since the white noise is by definition
independent from the AE index at all lags, the off-diagonal terms are in
theory equal to zero for each frequency f. In such a case, the theory
(Chekroun and Kondrashov, 2017) predicts that the DAH spectrum is
composed of two independent spectra associated with each of the (uni-
variate) time series, and that the corresponding phase spectrum exhibits
a linear dependence with f, such as seen in Fig. 5b. Moreover, the pres-
ence of the diffuse background in Fig. 5b is due to the finite length of time
series resulting into the presence of small, but non-zero off-diagonal
terms in the corresponding cross-spectral density matrix.



D. Kondrashov, M.D. Chekroun

f-O 002, Mode 3 f-O 002, Mode 4

Journal of Atmospheric and Solar-Terrestrial Physics xxx (2017) 1-11

=0.002 Fig. 4. Similar to Fig. 3, but for DAH mode pairs at

the bottom of the power spectrum at a given fre-
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The comparison with the white noise experiment thus strongly sug-
gests that the presence of void tongues surrounded by high-density re-
gions in Fig. 2b, is due to dynamical solar wind-magnetosphere
interactions that are most pronounced at (relatively) low frequencies,
where most of the energy is contained in both the AE index and solar
wind forcing; see Fig. 2a. On the other hand, the absence of such struc-
tures at higher frequencies (and lower energy) indicates a weaker
coupling, same as in the case of the white noise experiment.

The spatio-temporal patterns of the DAHMs at low frequencies are
shown in the left and center columns of Figs. 3 and 4, and are visualized
by exploiting the representation (7). More precisely, given a frequency f
of interest and a DAHM, Wj, associated with this frequency, we extract
d DAHM snippets, E/ , each of length M’, and we form the array in which
each row for 1 < p < d, is given by E{, (s) when s varies from 1 to M'; the
index p referring to channels and s to (embedding) time. The resulting
“spatio-temporal” array with d rows and M’ columns gives thus a natural

1000 2000 3000

way to visualize a dM'-dimensional DAHM. The DAHMs are always in
phase-quadrature, except at zero frequency.

The DAHM patterns show details of frequency-based information
about the solar wind-magnetosphere interactions. For instance, the
dominant variability patterns (Fig. 3) at a given f — i.e. those corre-
sponding to the pair with largest |/1j(f)\ — inform us about the out-of-
phase or time-lagged relationship existing at this frequency between
the underlying time series. Furthermore, the amplitudes of these DAHMs
for each frequency are roughly equal in each channel, i.e. in channel 1
corresponding to log(AE), and in channel 2 corresponding to V,B,. On
the other hand, DAHMs associated with the smallest |4(f)| have also
their amplitude roughly equal in each channel, but exhibit an in-phase
relationship; see left and center columns of Fig. 4.

In contrast, the DAHM patterns for the white noise experiment do not
share such features. In particular, the pattern amplitudes are negligible in
channels 2 and 1, for the largest (Fig. 6) and smallest |4(f)| (Fig. 7),
respectively. This is another manifestation that in this case, the DAH
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Fig. 5. Same as in Fig. 2, but when the white noise is used instead of solar
wind forcing Vg, B,

power spectrum is composed of two independent univariate spectra, and
that the energy contained in the AE index (i.e. channel 1) is substantially
larger for f < 0.017 than in white noise (i.e. channel 2), see Fig. 5a.

3.2. DAH coefficients (DAHCs)

By analogy with M-SSA (Ghil et al., 2002), the multivariate dataset X
can be projected onto the orthogonal set formed by the W;’s, in order to
obtain the following DAH expansion coefficients (DAHCs):

=30 S Wl s DELG) (14)
=1

s=1
where t varies from 1 to

N =N-M +1. (15)

Although the DAHCs are not formally orthogonal in time, the DAHC
pair ((t), & (t)) associated with a DAHM pair (W;, Wy ), is made of time
series that are nearly in phase quadrature; a property that is all the more
pronounced when the embedding parameter M can be sufficiently large
to resolve the decay of temporal correlations contained in X; see Chek-
roun and Kondrashov (2017). In other words, the larger M (subject to the
length of the record), the more apparent is the phase quadrature between
a pair of DAHCs associated with the same frequency.

For the dataset at hand, the panels of the right column of Figs. 3 and 4
show several DAHC pairs, (&;(t), & (t)), that account for the narrow-band
temporal information contained at the characteristic frequency associ-
ated with the respective DAHM pair (W;, Wj ). The latter pairs are shown
in the left and center columns of these two figures, respectively, and as
mentioned above, they exhibit a shift of, a quarter of a period in time. As
one can see, the phase-quadrature property of the DAHCs is also satisfied
sufficiently well, which bodes well for the success of the stochastic-
modeling approach described in the next section.

Finally, we mention that any subset B of the set & of DAHCs, as well as
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the full set € itself, can be convolved with its corresponding set of DAHMs,
W;, to produce a partial or full reconstruction of the original dataset,
respectively. Thus, the following jth reconstructed component (RC) at
time t and for channel k is defined as:

Zsj

’xL,

s+1E/() 1<s<M, (16)

where L, (resp. U,) is a lower (resp. upper) bound in {1,---,M’}, that is
allowed to depend on time. The normalization factor M, equals M’,
except near the ends of the time series, as in M-SSA (Ghil et al., 2002),
and the sum of all the RCs recovers the original time series. The next
section addresses the modeling of the &;’s in (16), while the latter formula
will be used to emulate the original dataset from the simulation of the
DAHCs.

4. Stochastic modeling of the AE index
4.1. Inverse stochastic multilayer Stuart-Landau models (MSLM)

Chekroun and Kondrashov (2017) have shown how to leverage DAH
decomposition to simplify the data-driven modeling effort into elemental
multilayer stochastic models (MSMs) (Kondrashov et al., 2015) stacked
per frequency. Given a sequence of partial observations issued from a
dynamical system, the DAHCs allow one to recast these observations so as
to model them within a universal parametric family of simple stochastic
models, provided, roughly speaking, that the window M is sufficiently
large to resolve the decay of temporal correlations of a given dataset.

First, we consider a DAHC pair ((t), & (t)) associated with a pair of
DAH eigenvalues (4;, Jy), such that 4; = —4 with j and j’ that belong thus
to the same subset 7 (f) associated with a frequency f. Hereafter, we
assume the time t to be a continuous parameter. For such a DAHC pair, we
form the complex time series, {;(t) = &(t)+i& (t) where i*=—1.
Recalling from Sec. 3.2, that a DAHC pair (¢(t), ¢ (t)) is constituted of
narrowband time series that are nearly in phase quadrature, Chekroun
and Kondrashov (2017) have shown that Stuart-Landau (SL) oscillators
driven by an additive noise (Zakharova et al., 2016; Selivanov et al.,
2012), represents a natural class of models to emulate the behavior of

&(¢) and & (¢):
i=(u+inz— (1+i)|z+e, zeC. a7

where u,y and g are real parameters and ¢, is a noise term, not necessarily
white.

With the appropriate parameter values of u,y and  as well as noise
characteristics of ¢,, one can generate a solution z(t) of (17) whose real
and imaginary parts are also nearly in phase quadrature, modulated in
amplitude and narrowband about the frequency f. As a consequence, it is
reasonable to envision a good approximation of the complex DAHC {;(t)
by z(t), when numerically solving (17).

On the other hand, particular pair ((t), & (t)) is not isolated from the
other DAHC pairs associated with the same frequency f, and their col-
lective behavior must be taken into account. The natural idea consists
then of introducing an appropriate dynamical coupling between the
corresponding individual SL oscillators to reproduce any global phase
coherence that would be displayed by the DAHC pairs at a given fre-
quency, as well as to take into account the associated temporal and
spatial cross-pair correlations in the noise term &;.

The MSM framework of (Kondrashov et al., 2015) is particularly
suited to deal with these issues, and when applied to (17), it leads to
multilayer Stuart-Landau models (MSLMs) such as introduced in Chek-
roun and Kondrashov (2017). In the simplest case of one layer used to
model the noise ¢, and by denoting (x;(t),y;(t)) variables as numerical
approximation of the DAHC pair ((t), & (t)) associated with a frequency
f = fr, the resulting MSLM is given by the following system of SDEs:
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f-O 002, Mode 1 f=0_002 Mode 2 f=0.002 Fig. 6. Same as in Fig. 3, but when the white noise is
used instead of solar wind forcing Vg, B;.
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1=0.002, Mode 3 f=0.002 Mode 4 f=0.002 Fig. 7. Same as in Fig. 4, but when the white noise is
2 used instead of solar wind forcing Vg, B;.
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where index j varies thus in the subset of indices, .7 4(f¢), constituted by
the indices of 7 (f) (given by 10) which correspond to d distinct pairs.

The Wi’s with k=1 or k=2, and 1 <j<d, form 2d independent

Brownian motions. The sums in the &- and eﬁ' -equations take into ac-

count correlations between the pairs, at the noise level. Note that for
f =0, there are exactly d modes that are not paired, and they are
modeled by a linear MSM, as in (Kondrashov et al., 2015).

Following Kondrashov et al. (2015), all model coefficients are esti-
mated starting from the main level of MSLM for each (x;, y;)-pair, namely
by successive multiple linear regression (MLR). As needed, extra layers in
an MSLM can be added until the regression residuals at the last layer are
reasonably approximated by a white noise, according to the stopping
criterion described in (Kondrashov et al., 2015; Appendix A). For the
log(AE) modeling presented in Sec. 4.2, the optimal model has the form
as shown in Eq. (MSLM), i.e. with just one extra layer for ¢, variable. This
extra MSLM layer allows for coping with complex state-dependencies —
such as dependence on the past of x;(t) and y;(t) — as well as with
temporal correlations exhibited by the residual, ¢, of the main layer for

1000

2000 3000

the x;- and y;-variables; see (Kondrashov et al., 2015; Proposition 3.3).

Because the SL oscillators are uncoupled across the frequencies, the
DAH-MSLM approach is computationally quite efficient and, moreover,
totally parallelizable in practice. Indeed, the model coefficients can be
estimated in parallel for each frequency, i.e. by successive pairwise re-
gressions with linear constraints on ¢;(f), 5;(f) and o;(f). These con-
straints impose the necessary model structure in Eq. (MSLM) for each
(xj,yj)-pair, namely antisymmetry for the linear part without coupling
terms, as well as equal and nonpositive values oj(f) <0 to ensure
asymptotic stability.

Moreover, the DAH-MSLMs are also run in parallel across the fre-
quencies, being driven by the same white-noise realization in the last
model layer; this driving noise serving thus of dynamical mechanism for
the coupling between different frequencies. Simulated DAHCs are then
convolved with DAHMs according to (16) to obtain the harmonic
reconstruction component (HRC) consisting of the sum of the RCs
associated with a same Fourier frequency f:
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Fig. 8. Time series of log(AE): red — measured, blue — random stochastic
realization of the DAH-MSLM model. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)
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Fig. 9. Comparison of statistical properties of measured and modeled
AE. (a) AE for red — measured and blue — random stochastic realization of the
DAH-MSLM model; (b) Autocorrelation function (ACF); (c) Probability density
function (PDF) (the mean has been removed). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version
of this article.)

R(t:f) = ) Ri(1), (19)

Jes ()

where 7 (f) denotes the set of indices given by (10). Summing the HRCs
over the frequencies that lie within a frequency band of interest allows us
thus to model that particular frequency band.
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4.2. DAH-MSLM of the AE index

In this section we demonstrate inverse modeling skills obtained by
applying DAH-MSLM approach to the dataset composed of the
log(AE)-index combined with solar wind forcing (see Sec. 2). In a first
step, the DAHCs (Sec. 3.2) are computed using DAHD results for an
embedding window of M = 1000 hours (i.e. M’ = 1999) (Sec. 3.1). In a
second step, a collection of such DAHCs is modeled—for a frequency
band of interest—by using the MSLM approach described above. The
simulated log(AE)-index is then obtained from HRCs (Eq. (19)). The
overall number of independent coefficients in MSLM is small and fixed
for each (xj,y;)-pair, e.g. the main layer of Eq. Main_syst involves esti-
mation of 3+4d-1)=7 coefficients from 2N’ =
2(44592 — 1000 + 1) = 87186 DAH-processed observations, over the
full time interval 2008-2013.

Fig. 8 shows a stochastic realization of log(AE) index, as simulated by
the DAH-MSLM model in the frequency band f < 0.1hour~! that accounts
for most of the variance, and where according to the DAH phase spec-
trum, the dynamical coupling with the solar wind is most pronounced,
see Fig. 2b and Sec. 3.1. The DAH-MSLM model was estimated and
simulated in parallel for different frequencies (see Sec. 4), taking in total
~ lmin of CPU time on a 4-core 2.9 GHz Intel Core i7 MacBook Pro
laptop. The comparison with the measured log(AE) (in the same fre-
quency band) is meant to be qualitative and statistical due to stochastic
nature of the DAH-MSLM model. After back-transformation, Fig. 9a
shows that the multiplicity of abrupt variations, quiet episodes of vari-
able durations as well as their punctuation by burst episodes of different
magnitudes are all well reproduced in simulated AE. In addition, the
model captures reasonably well long-term amplitude modulation over
2008-2013.

Furthermore, Fig. 9b and ¢ demonstrate excellent modeling skill by
DAH-MSLM in reproducing key statistical properties of the back-
transformed AE index (Fig. 9a), such as autocorrelation functions
(ACFs) and probability density functions (PDFs). The DAH-MSLM cap-
tures very well not only the decay of ACF, but also its 27-day peak (solar
rotation) and 1-day modulations (Fig. 9b), as well as the highly nonlinear
skewed PDF shape (Fig. 9¢c). The obtained results show high fidelity of
DAH-MSLM approach since the logarithmic scale requires high accuracy
in the modeling to resolve the multiplicity of abrupt variations spanning
several orders of magnitude. Preliminary results also indicate that in-
clusion of solar-wind forcing in DAH-MSLM modeling is important to
reproduce heavy tails in PDF of AE; the detailed study of using presented
approach to isolate internal vs. externally forced magnetospheric vari-
ability is left for the future work.

5. Concluding remarks

The recent DAH-MSLM approach of (Chekroun and Kondrashov,
2017) has been successfully applied to identify frequency-based patterns
of dynamical interaction between the AE index and the solar wind
forcing, as well as to produce an accurate inverse modeling of key sta-
tistical properties of the AE index. Future work will extend the presented
approach into a prediction context and will include other proxies of solar
wind forcing and geomagnetic indices, as well as other space physics
datasets and higher sampling frequency. We believe that the presented
approach could also be useful to identify frequency-based content of
internal magnetospheric variability as opposed from the one caused by
external solar forcing.
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