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A B S T R A C T

The solar wind-magnetosphere coupling is studied by new data-adaptive harmonic decomposition (DAHD)

approach for the spectral analysis and inverse modeling of multivariate time observations of complex nonlinear

dynamical systems. DAHD identifies frequency-based modes of interactions in the combined dataset of Auroral

Electrojet (AE) index and solar wind forcing. The time evolution of these modes can be very efficiently simulated

by using systems of stochastic differential equations (SDEs) that are stacked per frequency and formed by coupled

Stuart-Landau oscillators. These systems of SDEs capture the modes' frequencies as well as their amplitude

modulations, and yield, in turn, an accurate modeling of the AE index' statistical properties.

1. Introduction

Empirical models have proven to be an important addition to un-

derstanding and predicting physical phenomena, largely due to the

application of mathematical techniques which extract information of the

variability of a system of which we do not fully understand the physical

nature. In space physics, most historical empirical models have focused

their attention on processes at or inside of geosynchronous orbit due,

primarily, to the plethora of observations from geosynchronous, med-,

and low-Earth orbit spacecraft, and recognition of harmful effects of

relativistic energy radiation, such as deep-dielectric charging in space-

craft electrical components (Baker et al., 1987). The list of empirical

models applied to model and understand the near-Earth space plasma is

exhaustive. There are examples of the nearest-neighbor approaches for

data-driven empirical magnetic field modeling (Sitnov et al., 2008),

linear prediction (Baker and McPherron, 1990), statistical normalized

mean (Kellerman and Shprits, 2012; Kellerman et al., 2013); neural

networks (NN) (e.g. Koons and Gorney, 1991; Fukata et al., 2002; Ling

et al., 2010; Zhelavskaya et al., 2016; Bortnik et al., 2016), and NARMAX

(e.g Balikhin et al., 2011); while the Kalman filter data assimilation

techniques may utilize linear (Kondrashov et al., 2007; Shprits et al.,

2007, 2013; Daae et al., 2011; Kellerman et al., 2014; Merkin et al.,

2016) and nonlinear methods (Kondrashov et al., 2011).

Broadly speaking, some of the more dynamically-oriented data-

driven approaches such as and nonlinear autoregression moving average

with exogenous inputs (NARMAX) and NN, can be associated with the

System Science (Vassiliadis, 2006; Borovsky and Denton, 2014) and ma-

chine learning, where the evolution of the state of the complex dynamical

system is represented by a time-dependent state vector composed of a

relatively small number of relevant variables, and the laws evolution are

learned or inferred from the simulations of the high-end models or

observations.

Recently, Kondrashov et al. (2015) have introduced the Multilayer

Stochastic Model (MSM) framework allowing for inferring a broad class

of inverse models including the standard statistical ones. This approach

relies on a formulation of inverse modeling as a closure problem, i.e.

finding an optimal model that describes the evolution of partial observa-

tions of a complex high-dimensional dynamical system. The existence of

such an optimal closure is guaranteed by the Mori-Zwanzig (MZ)

formalism of statistical mechanics (Zwanzig, 2001; Chorin et al., 2002;

Kondrashov et al., 2015). The MSM framework emphasizes the ubiqui-

tous role of the triad of nonlinear, stochastic and memory effects in the

derivation of data-driven closure models with good skill in simulating

and predicting the main dynamical features, be it as an output of a

high-end geophysical model or as a set of observations.

The solar wind–magnetosphere coupling occurs over wide range of

spatial and temporal scales, and it has been studied extensively by

various data-driven nonlinear dynamical techniques, such as time delay

embedding, Singular Spectrum Analysis (SSA), and local-linear filters, for

deterministic description of the global component of magnetospheric

dynamics and statistical description of its multi-scale behavior (Ukhor-

skiy et al., 2002, 2004; Sitnov et al., 2000).
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This study demonstrates that in the context of the solar wind-

magnetosphere coupling, an appropriate change of basis by application

of the recent Data-adaptive Harmonic Decomposition (DAHD) technique

introduced in (Chekroun and Kondrashov, 2017) allows us to reliably

detect frequency-based interaction patterns between solar wind and

Auroral Electrojet (AE) index; see Section 3. Furthermore, unlike previ-

ous efforts on stochastic modeling of AE that do not take into account

external forcing by the solar wind (Pulkkinen et al., 2006; Anh et al.,

2008), here we show that DAHD makes possible to perform successful

stochastic modeling of AE index by a simple class of frequency-based

MSMs —with few coefficients to estimate—namely the multilayer

Stuart-Landau models (MSLMs) introduced in (Chekroun and Kondrashov,

2017); see Section 4.

2. Data

The Sun emits gigantic clouds of ionized gas (plasma) that propagate

through the solar wind and eventually may hit magnetosphere. The in-

teractions with the magnetosphere may result in a number of adverse

effects that are collectively referred to as space weather. The location of

Advanced Composition Explorer (ACE) and Wind spacecrafts at the

Lagrange point L1 between the Earth and the Sun, about 1,500,000 km

forward of Earth, enables these satellites to give up to 1 h advance

warning of the arrival of damaging space weather events at Earth

including severe geomagnetic disturbances. ACE satellite was launched

in 1997 and Wind in 1994, respectively, and long history of high-

resolution 1-min bow-shock-nose-shifted solar wind magnetic field and

plasma data from these satellites have been compiled at OMNIWeb.

In this study we have used standard hourly averaged 2008–2013

datasets from the OMNIWEB database (http://omniweb.gsfc.nasa.gov) of

solar wind parameters and interplanetary magnetic field (IMF), as well as

Auroral Electrojet (AE) index that represents ground-based geomagnetic

measurements. Furthermore, the small number of gaps during this period

in solar wind and IMFwere filled by SSA (Kondrashov et al., 2010, 2014).

For the analysis conducted below, we log-transformed and stan-

dardized the original AE index, namely by subtracting associated time

series mean and divided by correspondent standard deviation. Various

proxies for the solar wind forcing have been proposed by using nonlinear

combinations of solar wind parameters and IMF (Burton et al., 1975;

Perreault and Akasofu, 1978). By applying NARMAX, Boynton et al.

(2011) have shown that the selection of solar wind–magnetosphere

coupling function for best predictive capabilities of Dst index can be done

objectively in a data-driven manner. To demonstrate capabilities of the

proposed methodology in this study, we have chosen one of the proposed

proxies, namely electric field parameter VswBz composed of solar wind

velocity Vsw and z-component of IMF Bz, and standardized it as well. The

total length of the resulting dataset isN ¼ 44592 points, and Fig. 1 shows

selected time interval of 1 000 h corresponding to approximately 41 days

of hourly data.

3. Frequency-based analysis of solar wind–AE coupling

The Data-adaptive Harmonic Decomposition (DAHD) (Chekroun and

Kondrashov, 2017) is a signal processing technique that allows for a

decomposition of the power and phase spectra via data-adaptive modes

within a time-embedded phase space. Unlike other techniques exploiting

time-embedding — such as M-SSA (Ghil et al., 2002) or nonlinear

dimension reduction techniques (Gavrilov et al., 2016)— DAHD exploits

a combination of integral operator and semigroup techniques (Engel and

Nagel, 2006) that help decompose the original signal into elementary

signals that as illustrated below, are narrowband for each separate

discrete Fourier frequency, while being data-adaptive.

At a practical level, the key feature of the method relies on the con-

struction of matrices that exploit cross-correlations in a different way

than found in standard statistical methods, such as in Principal Compo-

nent Analysis (PCA) (Preisendorfer, 1988); see Eq. (2) below. As

explained by Chekroun and Kondrashov (2017) and discussed below, the

eigenmodes associated with suchmatrices exhibit a data-adaptive feature

that shows up in their phase rather than in their shape; see (8) below.

The mathematical details of the approach are provided in (Chekroun

and Kondrashov, 2017) within a general framework, including the case

of multivariate time series issued from a mixing dynamical system, either

stochastic or deterministic. Central to the approach is the spectral anal-

ysis of a class of integral operators whose kernels are built from corre-

lation functions. For the sake of simplicity, we recall first from (Chekroun

and Kondrashov, 2017) how such an integral operator is constructed in

the case of a one-dimensional time series XðtÞ. Given the two-sided

autocorrelation function (ACF), ρ (of XðtÞ), estimated on the interval

I ¼ ½�τ=2; τ=2�, such an operator takes the form

L ρðΨÞðrÞ :¼
1

τ

�
∫

τ
2
�r

�τ
2

ρðsþ rÞΨðsÞ ds;

þ∫
τ
2
τ
2
�r
ρðr þ s� τÞΨðsÞ ds

�
; r 2 I;

(1)

and acts on any square-integrable function Ψ on the interval I. The

parameter τ > 0 characterizes the embedding window but is chosen in

practice so that ρðtÞ has sufficiently decay over ½�τ=2; τ=2�.

In practice, the discretization of the operator L ρ defined by (1) leads

to Hankel matrices built from temporal correlations in a different way

than found in M-SSA (Ghil et al., 2002) and alike; see (2) below.

For multivariate time series, the ACF, ρ, is replaced by time-lagged

cross-correlations, and operators such as given by (1) are grouped into

a block operator whose discretization results into block-Hankel matrices;

see (4) below and (Chekroun and Kondrashov, 2017; Sect. VI-D). The

aforementioned DAH modes (DAHMs) are then obtained as eigenvectors

of such a block-Hankel matrix, while the corresponding eigenvalues

provide a notion of energy contained into the signal that although

allowing for a reconstruction of the signal is not equivalent to variance;

see (Chekroun and Kondrashov, 2017, Remark V.1-(ii)). We summarized

hereafter the main properties of the spectral objects that the DAH

methodology extracts from observations in a general context, before

presenting results from the spectral analysis of the 2 -channel dataset of

solar wind together with Auroral Electrojet (AE) index. In particular, we

focus on:

(i) a multidimensional power spectrum, called the DAH power

spectrum,

(ii) a multidimensional phase spectrum, called the DAH phase spec-

trum, and

(iii) the DAHMs.

3.1. DAH power spectrum, DAH phase spectrum and DAHMs

To determine these spectral elements, first we estimate from a given

d-channel time series XðtnÞ ¼ ðX1ðtnÞ;…;XdðtnÞÞ, with n ¼ 1;…;N, the

two-sided cross-correlation coefficients ρ
ðp;qÞ
k between channels p and q at

lag k up to a maximum lag M � 1, i.e. �M þ 1 � k � M � 1.

As shown in (Chekroun and Kondrashov, 2017; Sect. VI-D), the dis-

cretization of the operator L ρ given by (1) with ρ ¼ ρðp;qÞ leads to the

following Hankel matrix Hðp;qÞ,

Hðp;qÞ ¼

0
BBBBBBBBBB@

ρ
ðp;qÞ
�Mþ1 ρ

ðp;qÞ
�Mþ2 ⋯ ρ

ðp;qÞ
0 ρ

ðp;qÞ
1 ⋯ ρ

ðp;qÞ
M�1

ρ
ðp;qÞ
�Mþ2 ⋰ ⋰ ⋰ ⋰ ⋰ ρ

ðp;qÞ
�Mþ1

⋮ ⋰ ⋰ ⋰ ⋰ ⋰ ρ
ðp;qÞ
�Mþ2

ρ
ðp;qÞ
0 ⋰ ⋰ ⋰ ρ

ðp;qÞ
�Mþ1 ⋰ ⋮

ρ
ðp;qÞ
1 ⋰ ⋰ ⋰ ρ

ðp;qÞ
�Mþ2 ⋰ ρ

ðp;qÞ
0

⋮ ρ
ðp;qÞ
M�1 ρ

ðp;qÞ
�Mþ1 ⋰ ⋰ ⋰ ⋮

ρ
ðp;qÞ
M�1 ρ

ðp;qÞ
�Mþ1 ρ

ðp;qÞ
�Mþ2 ⋯ ρ

ðp;qÞ
0 ⋯ ρ

ðp;qÞ
M�2

1
CCCCCCCCCCA

: (2)

Equivalently, this matrix can be viewed as a left-circulant matrix
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formed from the ð2M � 1Þ-dimensional row

r ¼ ðρ
ðp;qÞ
�Mþ1;⋯; ρ

ðp;qÞ
0 ;⋯; ρ

ðp;qÞ
M�1Þ, i.e.:

Hðp;qÞ ¼ l� circ
�
ρ
ðp;qÞ
�Mþ1;⋯; ρ

ðp;qÞ
�1 ; ρ

ðp;qÞ
0 ; ρ

ðp;qÞ
1 ⋯; ρ

ðp;qÞ
M�1

�
; (3)

in other words, the rows of Hðp;qÞ are obtained by successive shifts to the

left by one position, starting from r as a first row.

As mentioned above, by forming such a Hankel matrix for each ðp; qÞ

in f1;⋯; dg2, one can assemble the following block-Hankel matrix ℭ

constituted of d2 blocks of size ð2M � 1Þ � ð2M � 1Þ, each given ac-

cording to

ℭ
ðp;qÞ ¼ Hðp;qÞ;  if  1 � p � q � d;

ℭ
ðp;qÞ ¼ Hðq;pÞ;  else:

(4)

Note that because each of its building block, Hðp;qÞ, is symmetric, and

because ℭ
ðp;qÞ ¼ ℭ

ðq;pÞ, the grand matrix ℭ is itself symmetric. Hereafter

we use M0 ¼ 2M � 1 for concision, reindexing the string f �M þ

1;⋯;M � 1g to run from 1 to M0 as necessary.

(Chekroun and Kondrashov, 2017; Theorem V.1) provides then a

useful characterization of the eigenvalues of ℭ. It shows that the corre-

sponding eigenvalues come in pairs of eigenvalues of opposite sign that

can be grouped per Fourier frequency, and are actually given, at each

frequency, as the singular values of a cross-spectral matrix depending on

the data.

We recall from (Chekroun and Kondrashov, 2017) the main details

concerning this latter property. First, denoting by dρp;qðf Þ the Fourier

transform at the Frequency f of the cross-correlation function ρp;q, we

consider the following d� d cross-spectral matrix Sðf Þ whose entries

are given by

S
k

p;q ¼

�dρq;pðf Þ if q � p;
dρq;pðf Þ if q < p:

(5)

Then (Chekroun and Kondrashov, 2017; Theorem V.1) shows that for

Fig. 1. Selected 1 000 h-long interval from 2008 to 2013 time

series: upper panel – AE index; central panel – log-

transformed and standardized AE index; lower panel – stan-

dardized solar wind forcing VswBz, see text for details.
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each singular value σkðf Þ of Sðf Þ there exists, when f 6¼ 0, a pair of

negative-positive eigenvalues ðλk�ðf Þ; λ
k
þðf ÞÞ of ℭ such that

λkþðf Þ ¼ �λk�ðf Þ ¼ σkðf Þ; 1 � k � d; (6)

i.e. 2d eigenvalues are associated with each Fourier frequency f 6¼ 0. The

same theorem shows that d (but not paired) eigenvalues are associated

with the frequency f ¼ 0.

Another key property identified by (Chekroun and Kondrashov, 2017;

Theorem V.1) is that the eigenvectors of ℭ, i.e. the aforementioned

DAHMs, can also be grouped per Fourier frequency in an even more

explicit fashion. Indeed (Chekroun and Kondrashov, 2017; Theorem V.1)

shows that the eigenvectors of ℭ possess the following representation

Wj ¼
�
Ej
1;⋯;Ej

d

�tr
; (7)

where each E
j
k is aM'-dimensional row vector that is explicitly associated

with a Fourier frequency f according to

Ej

kðsÞ ¼ B
j

kcos
�
fsþ θ

j

k

�
; 1 � s � M0; (8)

where the amplitudes B
j
k and the phases θ

j
k are both data-dependent, for

each 1 � k � d. According to this representation, each DAHM has thus a

temporal (embedding) component with s ranging from 1 to M0, and a

spatial one with k ranging from 1 to d, and since ℭ is symmetric, the

collection of DAHMs form an orthogonal set. We will sometimes refer to a

DAHM snippet, an M0-long segment E
j
k that arises in the representation

(7) of a DAHM.

From (8) we can, given a Fourier frequency,

fℓ ¼
2πðℓ� 1Þ

M 0 � 1
; ℓ ¼ 1;⋯;

M0 þ 1

2
; (9)

determine the following subset of indices in f1;⋯; dM0g:

J ðfℓÞ :¼ fj :  s:t: ð8Þ holds with f ¼ fℓg: (10)

Note that for reasons similar to those mentioned above, J ðfℓÞ is

composed of 2d indices when ℓ 6¼ 0 and of d indices if ℓ ¼ 0 such that the

J ðfℓÞ’s form a partition of the total set of indices, f1;⋯; dM0g.

Due to the simple form (8) of a DAHM snippet E
j
k, the determination

of the subset J ðfℓÞ can be obtained by various means, for example by

computing numerically the power spectral density p
j
k of E

j
k and grouping

the j's for which the average power spectral density, d�1
Pd

k¼1p
j
k, exhibits

a dominant peak at the frequency fℓ.

While formula (6) is useful for interpretation, it is not used numeri-

cally in practice. Instead, the eigenvalues of the dM0 � dM0 matrix ℭ are

computed directly, and listed as the set of eigenvalues ðλjÞ1�j�dM0 . This is

where the grouping of indices obtained by the procedure described above

is used in practice. It allows indeed for a rearrangement of these eigen-

values per Fourier frequency (without having to form the cross-spectral

matrix Sðf Þ for each frequency) into a useful object called the DAH

power spectrum. The latter consists of forming, for each ℓ ranging from

1 to ðM0 þ 1Þ=2, the discrete set

J ℓ :¼
���λj

��; : j 2 J ðfℓÞ
	
; (11)

or in other words, the collection of the P ℓ for ℓ ranging from 1 to

ðM0 þ 1Þ=2, denotes the DAH power spectrum that is evenly spaced in

frequency (see Eq. (9)).

Fig. 2a shows the computed DAH power spectrum —with the
��λj

��’s
plotted as red filled circles—for the two (d ¼ 2) combined anomaly time

series, namely logðAEÞ and VswBz (see Fig. 1) and an embedding

parameterM ¼ 1000 hours; the number of frequency bins in the Nyquist

interval Nf ¼ ðM0 þ 1Þ=2 ¼ 1000. There are exactly two pairs of DAHMs

at each equidistant frequency f, except at f ¼ 0, where there are two

single (i.e. unpaired) modes. The DAH spectrum has more power in the

low-frequency band and there is a pronounced peak at the 1-day peri-

odicity, i.e. f ¼ 1=24 � 0:04.

As explained in (Chekroun and Kondrashov, 2017; Sect. V), the DAH

decomposition does not only provide a data-adaptive power spectrum

but it also yields a well-defined DAH phase spectrum:

Φ
j

kðfℓÞ :¼ arg
�
λjbE

j

kðfℓÞ
�
� arg



bEj

kðfℓÞ

�
; (12)

where argðzÞ denotes the principal value (that we adopt to lie in ½0; 2πÞ

here) of the argument of the complex number z, while bEj

k and
bEj

k denote

respectively the discrete Fourier transform of the DAHM snippet, E
j
k, and

its conjugate. The DAH phase spectrum is then obtained as the collec-

tion of the following discrete set,

Φℓ :¼
�
Φ

j

kðfℓÞ : j 2 J ðfℓÞ
	
; (13)

as ℓ varies in from 1 to ðM0 þ 1Þ=2.

Another useful property concerns the pair of DAHMs associated with

a pair of DAH eigenvalues ðλj; λj0 Þ, such that λj0 ¼ �λj and j and j0 thus

belong to the same subset J ðf Þ. For such a DAHM pair, the theory shows

indeed that their corresponding phases satisfy θ
j0

k ¼ θ
j
k þ π=2, i.e. in each

DAHM pair the modes are shifted by one fourth of the period; see

(Chekroun and Kondrashov, 2017; Theorem IV.1). These DAHMs are

thus always in exact phase quadrature, as for a sine-and-cosine pair in

Fig. 2. (a) Power and (b) phase DAH specra for combined dataset of VswBz

and logðAEÞ in Fig. 1. The color in phase spectrum indicates Euclidean norm of

associated DAHM snippets, see text for details. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Fourier analysis, but in a data-adaptive fashion as encapsulated in the

θ
j
k’s and the B

j
k’s; see Figs. 3 and 4 for an illustration.

Fig. 2b shows computed DAH phase spectrum Φℓ, which is color

coded with information on the Euclidean norm of respective DAHM

snippets
���Ej

kðfℓÞ
���, that can be unambiguously associated with the Φ

j
kðfℓÞ.

Taking into account this phase-quadrature property, there are, for the

dataset at hand, in total d2 ¼ 4 independent phase valuesΦ
j
kðfℓÞ given by

DAHphase per frequency fℓ. Three main features are clearly visible in this

spectrum: (i) two straight lines, (ii) two “tongues” containing very few or

no values in a low-frequency band with periodicities of larger than � 4

hours, and (iii) a diffuse background at higher frequencies. Moreover, the

“tongues” areas are surrounded by regions of higher density than in the

diffuse background, and the largest magnitudes of DAHM snippets are

found in the regions of high density around the “tongues” and the straight

lines.

To assess the dynamical relevance of these phase spectrum features, it

is instructive to analyze results for the AE index combined with a (stan-

dardized) white noise instead of the solar wind forcing. The resulting

DAH phase spectrum is shown in Fig. 5b, and as one can observe, the

tongues surrounded by high-density regions are no longer apparent,

while the largest magnitudes of DAHM snippets are strictly confined to

two straight lines. Such result can be explained from the characterization

of the DAH eigenvalues as singular values of the cross-spectral matrix,

Sðf Þ, with entries given in (5): since the white noise is by definition

independent from the AE index at all lags, the off-diagonal terms are in

theory equal to zero for each frequency f. In such a case, the theory

(Chekroun and Kondrashov, 2017) predicts that the DAH spectrum is

composed of two independent spectra associated with each of the (uni-

variate) time series, and that the corresponding phase spectrum exhibits

a linear dependence with f, such as seen in Fig. 5b. Moreover, the pres-

ence of the diffuse background in Fig. 5b is due to the finite length of time

series resulting into the presence of small, but non-zero off-diagonal

terms in the corresponding cross-spectral density matrix.

Fig. 3. Left and center panels — spatio-temporal

patterns of the DAH mode (DAHM) pairs corre-

sponding to the peak of the DAH power spectrum, i.e.

to the largest
��λj

�� at the given temporal frequency f, cf.

Fig. 2; in each panel, the x-axis is lag in hours, while

the y-axis is the index of data channel: 1 – logðAEÞ, 2–

VswBz. The color bar represents DAHM amplitude.

Right panels — associated DAH coefficients

(DAHCs), with time in hours on the abscissa; see text

for details. (For interpretation of the references to

color in this figure legend, the reader is referred to the

Web version of this article.)
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The comparison with the white noise experiment thus strongly sug-

gests that the presence of void tongues surrounded by high-density re-

gions in Fig. 2b, is due to dynamical solar wind–magnetosphere

interactions that are most pronounced at (relatively) low frequencies,

where most of the energy is contained in both the AE index and solar

wind forcing; see Fig. 2a. On the other hand, the absence of such struc-

tures at higher frequencies (and lower energy) indicates a weaker

coupling, same as in the case of the white noise experiment.

The spatio-temporal patterns of the DAHMs at low frequencies are

shown in the left and center columns of Figs. 3 and 4, and are visualized

by exploiting the representation (7). More precisely, given a frequency f

of interest and a DAHM, Wj, associated with this frequency, we extract

d DAHM snippets, Ej
p, each of length M0, and we form the array in which

each row for 1 � p � d, is given by Ej
pðsÞ when s varies from 1 to M0; the

index p referring to channels and s to (embedding) time. The resulting

“spatio-temporal” array with d rows andM0 columns gives thus a natural

way to visualize a dM0-dimensional DAHM. The DAHMs are always in

phase-quadrature, except at zero frequency.

The DAHM patterns show details of frequency-based information

about the solar wind–magnetosphere interactions. For instance, the

dominant variability patterns (Fig. 3) at a given f — i.e. those corre-

sponding to the pair with largest
��λjðf Þ

�� — inform us about the out-of-

phase or time-lagged relationship existing at this frequency between

the underlying time series. Furthermore, the amplitudes of these DAHMs

for each frequency are roughly equal in each channel, i.e. in channel 1

corresponding to logðAEÞ, and in channel 2 corresponding to VswBz. On

the other hand, DAHMs associated with the smallest
��λjðf Þ

�� have also

their amplitude roughly equal in each channel, but exhibit an in-phase

relationship; see left and center columns of Fig. 4.

In contrast, the DAHM patterns for the white noise experiment do not

share such features. In particular, the pattern amplitudes are negligible in

channels 2 and 1, for the largest (Fig. 6) and smallest
��λjðf Þ

�� (Fig. 7),
respectively. This is another manifestation that in this case, the DAH

Fig. 4. Similar to Fig. 3, but for DAH mode pairs at

the bottom of the power spectrum at a given fre-

quency, i.e. with smallest
��λj

��.
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power spectrum is composed of two independent univariate spectra, and

that the energy contained in the AE index (i.e. channel 1) is substantially

larger for f � 0:017 than in white noise (i.e. channel 2), see Fig. 5a.

3.2. DAH coefficients (DAHCs)

By analogy with M-SSA (Ghil et al., 2002), the multivariate dataset X

can be projected onto the orthogonal set formed by the Wj’s, in order to

obtain the following DAH expansion coefficients (DAHCs):

ξjðtÞ ¼
XM0

s¼1

Xd

k¼1

Xkðt þ s� 1ÞEj

kðsÞ; (14)

where t varies from 1 to

N 0 ¼ N �M 0 þ 1: (15)

Although the DAHCs are not formally orthogonal in time, the DAHC

pair ðξjðtÞ; ξj0 ðtÞÞ associated with a DAHM pair ðWj;Wj0 Þ, is made of time

series that are nearly in phase quadrature; a property that is all the more

pronounced when the embedding parameter M can be sufficiently large

to resolve the decay of temporal correlations contained in X; see Chek-

roun and Kondrashov (2017). In other words, the largerM (subject to the

length of the record), the more apparent is the phase quadrature between

a pair of DAHCs associated with the same frequency.

For the dataset at hand, the panels of the right column of Figs. 3 and 4

show several DAHC pairs, ðξjðtÞ; ξj0 ðtÞÞ, that account for the narrow-band

temporal information contained at the characteristic frequency associ-

ated with the respective DAHM pair ðWj;Wj0 Þ. The latter pairs are shown

in the left and center columns of these two figures, respectively, and as

mentioned above, they exhibit a shift of, a quarter of a period in time. As

one can see, the phase-quadrature property of the DAHCs is also satisfied

sufficiently well, which bodes well for the success of the stochastic-

modeling approach described in the next section.

Finally, we mention that any subset B of the set ξ of DAHCs, as well as

the full set ξ itself, can be convolved with its corresponding set of DAHMs,

Wj, to produce a partial or full reconstruction of the original dataset,

respectively. Thus, the following jth reconstructed component (RC) at

time t and for channel k is defined as:

R
j

kðtÞ ¼
1

Mt

XUt

s¼Lt

ξjðt � sþ 1ÞEj

kðsÞ; 1 � s � M 0; (16)

where Lt (resp. Ut) is a lower (resp. upper) bound in f1;⋯;M0g, that is

allowed to depend on time. The normalization factor Mt equals M0,

except near the ends of the time series, as in M-SSA (Ghil et al., 2002),

and the sum of all the RCs recovers the original time series. The next

section addresses the modeling of the ξj’s in (16), while the latter formula

will be used to emulate the original dataset from the simulation of the

DAHCs.

4. Stochastic modeling of the AE index

4.1. Inverse stochastic multilayer Stuart-Landau models (MSLM)

Chekroun and Kondrashov (2017) have shown how to leverage DAH

decomposition to simplify the data-driven modeling effort into elemental

multilayer stochastic models (MSMs) (Kondrashov et al., 2015) stacked

per frequency. Given a sequence of partial observations issued from a

dynamical system, the DAHCs allow one to recast these observations so as

to model them within a universal parametric family of simple stochastic

models, provided, roughly speaking, that the window M is sufficiently

large to resolve the decay of temporal correlations of a given dataset.

First, we consider a DAHC pair ðξjðtÞ; ξj0 ðtÞÞ associated with a pair of

DAH eigenvalues ðλj; λj0 Þ, such that λj0 ¼ �λj with j and j0 that belong thus

to the same subset J ðf Þ associated with a frequency f. Hereafter, we

assume the time t to be a continuous parameter. For such a DAHC pair, we

form the complex time series, ζjðtÞ ¼ ξjðtÞ þ iξj0 ðtÞ where i2 ¼ �1.

Recalling from Sec. 3.2, that a DAHC pair ðξjðtÞ; ξj0 ðtÞÞ is constituted of

narrowband time series that are nearly in phase quadrature, Chekroun

and Kondrashov (2017) have shown that Stuart-Landau (SL) oscillators

driven by an additive noise (Zakharova et al., 2016; Selivanov et al.,

2012), represents a natural class of models to emulate the behavior of

ξjðtÞ and ξj0 ðtÞ:

_z ¼ ðμþ iγÞz� ð1þ iβÞ
��zj2zþ εt ; z 2 ℂ : (17)

where μ; γ and β are real parameters and εt is a noise term, not necessarily

white.

With the appropriate parameter values of μ; γ and β as well as noise

characteristics of εt , one can generate a solution zðtÞ of (17) whose real

and imaginary parts are also nearly in phase quadrature, modulated in

amplitude and narrowband about the frequency f. As a consequence, it is

reasonable to envision a good approximation of the complex DAHC ζjðtÞ

by zðtÞ, when numerically solving (17).

On the other hand, particular pair ðξjðtÞ; ξj0 ðtÞÞ is not isolated from the

other DAHC pairs associated with the same frequency f, and their col-

lective behavior must be taken into account. The natural idea consists

then of introducing an appropriate dynamical coupling between the

corresponding individual SL oscillators to reproduce any global phase

coherence that would be displayed by the DAHC pairs at a given fre-

quency, as well as to take into account the associated temporal and

spatial cross-pair correlations in the noise term εt .

The MSM framework of (Kondrashov et al., 2015) is particularly

suited to deal with these issues, and when applied to (17), it leads to

multilayer Stuart-Landau models (MSLMs) such as introduced in Chek-

roun and Kondrashov (2017). In the simplest case of one layer used to

model the noise εt , and by denoting ðxjðtÞ; yjðtÞÞ variables as numerical

approximation of the DAHC pair ðξjðtÞ; ξj0 ðtÞÞ associated with a frequency

f ¼ fℓ, the resulting MSLM is given by the following system of SDEs:

Fig. 5. Same as in Fig. 2, but when the white noise is used instead of solar

wind forcing VswBz.
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Fig. 6. Same as in Fig. 3, but when the white noise is

used instead of solar wind forcing VswBz .

_xj ¼ βjðf Þxj � αjðf Þyj þ σjðf Þxj

�
x2j þ y2j

�
þX
bxij

i 6¼j
i2J d ðf Þ

ðf Þxi þ
X

axij
i 6¼j

i2J d ðf Þ

ðf Þyi þ ε
x
j ;

_yj ¼ αjðf Þxj þ βjðf Þyj þ σjðf Þyj

�
x2j þ y2j

�
þX
a
y
ij

i 6¼j
i2J d ðf Þ

ðf Þxi þ
X

b
y
ij

i6¼j
i2J d ðf Þ

ðf Þyi þ ε
y
j ;

_ε
x

j ¼ L
j

11ðf Þxj þ L
j

12ðf Þyj þM
j

11ðf Þε
x
j þM

j

12ðf Þε
y
j þ ðMSLMÞ

Q
jj
11ðf Þ _W

j

1 þ Q
jj
12ðf Þ _W

j

2 þ
X

i6¼j
i2J d ðf Þ

X2

k¼1

Q
ij
1kðf Þ _W

i

k;

_ε
y

j ¼ L
j

21ðf Þxj þ L
j

22ðf Þyj þM
j

21ðf Þε
x
j þM

j

22ðf Þε
y
jþ

Q
jj
21ðf Þ _W

j

1 þ Q
jj
22ðf Þ _W

j

2 þ
X

i6¼j
i2J d ðf Þ

X2

k¼1

Q
ij
2kðf Þ _W

i

k:

(18)
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where index j varies thus in the subset of indices, J dðfℓÞ, constituted by

the indices of J ðf Þ (given by 10) which correspond to d distinct pairs.

The W
j
k’s with k ¼ 1 or k ¼ 2, and 1 � j � d, form 2d independent

Brownian motions. The sums in the εxj - and ε
y
j -equations take into ac-

count correlations between the pairs, at the noise level. Note that for

f � 0, there are exactly d modes that are not paired, and they are

modeled by a linear MSM, as in (Kondrashov et al., 2015).

Following Kondrashov et al. (2015), all model coefficients are esti-

mated starting from the main level of MSLM for each ðxj; yjÞ-pair, namely

by successive multiple linear regression (MLR). As needed, extra layers in

an MSLM can be added until the regression residuals at the last layer are

reasonably approximated by a white noise, according to the stopping

criterion described in (Kondrashov et al., 2015; Appendix A). For the

logðAEÞ modeling presented in Sec. 4.2, the optimal model has the form

as shown in Eq. (MSLM), i.e. with just one extra layer for εt variable. This

extra MSLM layer allows for coping with complex state-dependencies —

such as dependence on the past of xjðtÞ and yjðtÞ — as well as with

temporal correlations exhibited by the residual, εt , of the main layer for

the xj- and yj-variables; see (Kondrashov et al., 2015; Proposition 3.3).

Because the SL oscillators are uncoupled across the frequencies, the

DAH-MSLM approach is computationally quite efficient and, moreover,

totally parallelizable in practice. Indeed, the model coefficients can be

estimated in parallel for each frequency, i.e. by successive pairwise re-

gressions with linear constraints on αjðf Þ; βjðf Þ and σjðf Þ. These con-

straints impose the necessary model structure in Eq. (MSLM) for each

ðxj; yjÞ-pair, namely antisymmetry for the linear part without coupling

terms, as well as equal and nonpositive values σjðf Þ � 0 to ensure

asymptotic stability.

Moreover, the DAH-MSLMs are also run in parallel across the fre-

quencies, being driven by the same white-noise realization in the last

model layer; this driving noise serving thus of dynamical mechanism for

the coupling between different frequencies. Simulated DAHCs are then

convolved with DAHMs according to (16) to obtain the harmonic

reconstruction component (HRC) consisting of the sum of the RCs

associated with a same Fourier frequency f:

Fig. 7. Same as in Fig. 4, but when the white noise is

used instead of solar wind forcing VswBz .
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Rkðt; f Þ ¼
X

j2J ðf Þ

R
j

kðtÞ; (19)

where J ðf Þ denotes the set of indices given by (10). Summing the HRCs

over the frequencies that lie within a frequency band of interest allows us

thus to model that particular frequency band.

4.2. DAH-MSLM of the AE index

In this section we demonstrate inverse modeling skills obtained by

applying DAH-MSLM approach to the dataset composed of the

logðAEÞ-index combined with solar wind forcing (see Sec. 2). In a first

step, the DAHCs (Sec. 3.2) are computed using DAHD results for an

embedding window of M ¼ 1000 hours (i.e. M0 ¼ 1999) (Sec. 3.1). In a

second step, a collection of such DAHCs is modeled—for a frequency

band of interest—by using the MSLM approach described above. The

simulated logðAEÞ-index is then obtained from HRCs (Eq. (19)). The

overall number of independent coefficients in MSLM is small and fixed

for each ðxj; yjÞ-pair, e.g. the main layer of Eq. Main_syst involves esti-

mation of 3þ 4ðd� 1Þ ¼ 7 coefficients from 2N0 ¼

2ð44592� 1000þ 1Þ ¼ 87186 DAH-processed observations, over the

full time interval 2008–2013.

Fig. 8 shows a stochastic realization of logðAEÞ index, as simulated by

the DAH-MSLMmodel in the frequency band f � 0:1hour�1 that accounts

for most of the variance, and where according to the DAH phase spec-

trum, the dynamical coupling with the solar wind is most pronounced,

see Fig. 2b and Sec. 3.1. The DAH-MSLM model was estimated and

simulated in parallel for different frequencies (see Sec. 4), taking in total

� 1min of CPU time on a 4-core 2.9 GHz Intel Core i7 MacBook Pro

laptop. The comparison with the measured logðAEÞ (in the same fre-

quency band) is meant to be qualitative and statistical due to stochastic

nature of the DAH-MSLM model. After back-transformation, Fig. 9a

shows that the multiplicity of abrupt variations, quiet episodes of vari-

able durations as well as their punctuation by burst episodes of different

magnitudes are all well reproduced in simulated AE. In addition, the

model captures reasonably well long-term amplitude modulation over

2008–2013.

Furthermore, Fig. 9b and c demonstrate excellent modeling skill by

DAH-MSLM in reproducing key statistical properties of the back-

transformed AE index (Fig. 9a), such as autocorrelation functions

(ACFs) and probability density functions (PDFs). The DAH-MSLM cap-

tures very well not only the decay of ACF, but also its 27–day peak (solar

rotation) and 1-day modulations (Fig. 9b), as well as the highly nonlinear

skewed PDF shape (Fig. 9c). The obtained results show high fidelity of

DAH-MSLM approach since the logarithmic scale requires high accuracy

in the modeling to resolve the multiplicity of abrupt variations spanning

several orders of magnitude. Preliminary results also indicate that in-

clusion of solar-wind forcing in DAH-MSLM modeling is important to

reproduce heavy tails in PDF of AE; the detailed study of using presented

approach to isolate internal vs. externally forced magnetospheric vari-

ability is left for the future work.

5. Concluding remarks

The recent DAH-MSLM approach of (Chekroun and Kondrashov,

2017) has been successfully applied to identify frequency-based patterns

of dynamical interaction between the AE index and the solar wind

forcing, as well as to produce an accurate inverse modeling of key sta-

tistical properties of the AE index. Future work will extend the presented

approach into a prediction context and will include other proxies of solar

wind forcing and geomagnetic indices, as well as other space physics

datasets and higher sampling frequency. We believe that the presented

approach could also be useful to identify frequency-based content of

internal magnetospheric variability as opposed from the one caused by

external solar forcing.
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