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Latent-Data Privacy Preserving With Customized
Data Utility for Social Network Data

Zaobo He, Student Member, IEEE, Zhipeng Cai , Senior Member, IEEE, and Jiguo Yu

Abstract—Social network data can help with obtaining valuable
insight into social behaviors and revealing the underlying bene-
fits. New big data technologies are emerging to make it easier to
discover meaningful social information from market analysis to
counterterrorism. Unfortunately, both diverse social datasets and
big data technologies raise stringent privacy concerns. Adversaries
can launch inference attacks to predict sensitive latent information,
which is unwilling to be published by social users. Therefore, there
is a tradeoff between data benefits and privacy concerns. In this pa-
per, we investigate how to optimize the tradeoff between latent-data
privacy and customized data utility. We propose a data sanitiza-
tion strategy that does not greatly reduce the benefits brought by
social network data, while sensitive latent information can still be
protected. Even considering powerful adversaries with optimal in-
ference attacks, the proposed data sanitization strategy can still
preserve both data benefits and social structure, while guarantee-
ing optimal latent-data privacy. To the best of our knowledge, this is
the first work that preserves both data benefits and social structure
simultaneously and combats against powerful adversaries.

Index Terms—Data sanitization, latent-data privacy, prediction
utility loss, structure utility loss, tradeoff.

I. INTRODUCTION

AMONG the many big data resources, social networks con-
tribute considerable amount of data covering all the as-

pects of frontend and backend. Facebook has 1.65 billion users
with 1 billion active users per month, Twitter has 600 million
users with 0.5 billion tweets published per day, Amazon has
304 million users with 9.65 billion items traded per year, Ten-
cent QQ has 829 million active users with up to 210 million
simultaneous online users, WeChat has over a billion users with
700 million active users, etc. With such large scale of and variety
of data, Social Network Analysis (SNA) becomes increasingly
important for classifying end users, predicting buying interests,
foretelling event occurrence, etc. Recent years have witnessed
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the boom of social networks, offering a great opportunity for
SNA to prompt more novel applications.

Although the abundant social data bring valuable benefits,
they unfortunately raise stringent privacy concerns as well. Each
social network user is generally associated with an attribute set
which may contain sensitive attributes like location, gender,
sexual orientation, etc. Such personal information could be ex-
ploited by third parties like data analysts, marketer, or social
media itself. Any third parties with malicious intentions on sen-
sitive information of users can be viewed as adversaries and
they breach user privacy by collecting sensitive data first. Peo-
ple now begin to concern about the privacy issue and become
more conservative in publishing personal and sensitive data,
which may degrade data publishing scale and drive users to
publish anonymized data. Therefore, the conflict between pri-
vacy concerns and data utility promotes adversaries to exploit
sensitive information contained in the published data.

Concerns derived from inference attacks towards sensitive
information contained in user data is represented as latent-data
privacy, where the inference attacks usually employ statistical
analysis, machine learning or data mining techniques to infer
sensitive information. For instance, suppose a user does not dis-
close her opinions and interests online. Unfortunately, it is easy
to predict some of her opinions and interests if it is publicly
known that she is affiliated with any particular organization or
club. ABCNews.com and Boston Globe [1] shown it is achiev-
able to infer the sexual orientation of a user through mining a
Facebook subnetwork involving the user’s friendship relations,
gender, and other attributes. Latent-data privacy breaches could
incur serious negative repercussions.

Publishing sanitized data is generally adopted to protect
latent-data privacy. Data sanitization methods introduce
noises by sanitizing attribute sets or social links. Although
sanitizing publicly available data can help with protecting
latent-data privacy, such simple methods could also reduce
data utility for SNA. On the one hand, some user attributes
are indicative for specific social analysis which is expected to
be accurately predicted. For instance, a SNA server utilizes
published Facebook data to make movie recommendation for
target users. Unfortunately, some dominant attributes, such
as “gender”, may have been sanitized to protect latent-data
privacy, degrading recommendation performance. On the other
hand, in addition to sanitizing attributes, sanitizing social
network links can distort friendship relations among users and
change one’s social status, which is another reason of reducing
data utility for SNA. For example, social link sanitization can
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turn an influential user to an unsocial one. Therefore, effective
privacy preserving SNA strategies are crucial for big social
network data.

In this work, we explore how to balance the tradeoff between
latent-data privacy and data utility. We assume adversaries col-
lect user data, and some privacy-unconscious users publish their
sensitive latent information. We first formalize the metrics to
measure data utility loss and latent-data privacy. Then, we pro-
pose two data sanitization methods that sanitize social attributes
and links, respectively. Finally, data-sanitization strategies are
proposed, which should not degrade the benefits brought by so-
cial network data, while sensitive latent information can still be
protected.

To measure data utility loss, we introduce prediction accuracy
deviation and network structure disparity. Both of them cause
utility loss because of the employed data sanitization strategy.
We investigate how to measure them and their relationship. Pre-
vious works usually consider them separately. Network structure
disparity not only affects prediction accuracy, but also limits so-
cial interaction among users. The current metrics do not compre-
hensively measure data utility and could sacrifice more utility in
realizing privacy-utility tradeoff. Our work does consider both
prediction accuracy deviation and network structure disparity.
For latent-data privacy, we expect our data sanitization strategy
can combat against powerful adversaries with abundant prior
knowledge who launch inference attacks. Thus, it is necessary
to figure out how adversaries launch inference attacks. Previ-
ous works primarily assume relatively weak adversaries such
that the proposed data sanitization strategy is not effective. Our
work does consider this problem and quantify the capabilities
of adversaries.

The previous studies for privacy-utility tradeoff have several
deficiencies. First, attribute-sanitization and link-sanitization
are separately considered, degrading the privacy preserving ef-
fect. Second, relatively weak adversaries are assumed so that the
proposed data sanitization strategies are not sufficient to com-
bat against powerful adversaries. Third, structure utility loss
caused by social structure disparity is ignored so that preserved
utility is overestimated. Therefore, the previous studies cannot
effectively optimize the tradeoff between latent-data privacy
and data utility. In this paper, we identify an optimization prob-
lem seeking a data sanitization strategy to realize the maximum
latent-data privacy with customized data utility. Our main con-
tributions are summarized as follows:

1) We consider prediction utility loss and structure utility
loss simultaneously rather than separately.

2) We assume powerful adversaries who can launch optimal
inference attacks instead of weak adversaries.

3) Rather than separately considering attribute-sanitization
and link-sanitization, we collectively sanitize social links
and attributes.

We organize the paper as follows. Section II addresses the
related works. Section III introduces Network model and prob-
lem definition. Section IV introduces the prediction method for
latent attributes and data-sanitization method. In Section V, pri-
vacy and utility metrics are introduced. The data sanitization
strategy to optimize the privacy-utility tradeoff is presented

in Section VI. The performance evaluation are shown in
Section VII. Section VIII concludes the paper.

II. RELATED WORKS

Privacy threats towards social network data have been ex-
tensively documented. A large body of researches investigating
the attacks against anonymous social network data, diverse in
techniques or goals, have been performed. On the other hand, in-
ference attacks on published social network data have attracted
much attention. The threat of predicting sensitive information
become now a serious issue due to the popularity of social
networks.

Many previous works investigate how to predict sensitive
latent information. In [2], several link-prediction and attribute-
prediction algorithms are proposed in social-attribute networks.
In [3], the authors employ the big data technologies to predict de-
mographic information of users such as age and location based
on users’ mobile communication patterns. The work in [4] de-
signs a method to predict sensitive latent information from texts
published in social media. In [5], it is demonstrated that sensitive
latent information could be predicted combining with commu-
nity information with the observation that users with common
attributes are more likely to be friends and often form dense
communities. The work in [6] develops a data-sanitization strat-
egy to predict sensitive information which can harness link and
attribute information simultaneously. The work in [6] evaluates
the effect of removing links, removing attributes and perturbing
attributes on protecting sensitive latent information. Our pre-
vious work also [7] studies how to customize the tradeoff data
utility and customized latent-data privacy in classification based
applications.

Data sanitization is important for privacy protection to tune
the privacy-utility tradeoff [8]–[26]. Both the work [8] and [9]
sanitize data by synthesizing sampled data so that synthesized
data satisfy differential privacy. In addition to sensitive latent in-
formation, protecting social network property privacy, like link
privacy [10], degree distribution [11], graph privacy [12] and
applications such as influence maximization [13] and privacy
preserving content sharing [14], also attracts much attention.
[15] explored how to sanitize data to optimize the tradeoff be-
tween three parties: utility, inherent-data privacy and latent-data
privacy. To protect against inference attacks on social data, [16]
proposed a data-sanitization method that can sanitize social at-
tributes and links collectively with different sanitization meth-
ods. [17] explored the inference attacks on personal traits and
genotypes based on belief propagation. Furthermore, a genomic
data sanitization method is proposed in [17], by removing most
indicative genomes to traits.

Existing privacy preserving techniques, like differential pri-
vacy [27], k-anonymity [28], l-diversity [29], are generally pro-
posed for preserving inherent-data privacy; however, they are
not competent for protecting latent-data privacy being subject
to inference attacks. Inherent-data privacy is related to sensitive
attribute contained in the attribute set released by users in order
to receive data-related services. For example, age and gender
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are unavoidable data for health related services yet unwilling to
be released by most consumers.

III. PROBLEM STATEMENT

A. Social Network Model

Definition 3.1. Social network: Social network is repre-
sented by graph model G(V,E,X ), with user set V , link set
E, and the set of attribute sets, X . For any link eij ∈ E between
users ui and uj , eij ∈ E also indicates eji ∈ E.

Definition 3.2. Attribute set: For user ui ∈ V , its attribute
set is represented by an attribute vector Xi ∈ X . Each attribute
xj ∈ Xi (1 ≤ j ≤ |Xi |) takes value(s) from the j-th dimension.

For social network data, a SNA server performs analysis to
predict users’ latent information such as preferences. Then, ac-
cording to the predicted results, the corresponding services are
provided. For example, a SNA server can predict movie pref-
erence of users by classifying the users into different classes
such as action, adventure, comedy, etc. However, adversaries
also attempt to gain benefit from users’ social relationships and
attribute set to infer sensitive latent information. These two
types of latent information related to data utility and latent-data
privacy are denoted as Sensitive Latent Attributes (SLA) and
Non-Sensitive Latent Attributes (NSLA), respectively.

Definition 3.3. SLA: SLA is a set of unpublished sensitive
attributes, yet such attributes could be predicted from published
social network data combined with prior knowledge.

Definition 3.4. NSLA: NSLA is a set of unpublished non-
sensitive attributes, yet such attributes can be predicted from
published social network data combined with prior knowledge.

We expect NSLA can be accurately predicted so that satis-
factory services can be guaranteed. Conversely, to protect the
privacy of SLA, we expect SLA does not being predicted ac-
curately. Furthermore, social network structure should be pre-
served such as node degree, centrality, betweenness, etc. Thus,
there exists a tradeoff between latent-data privacy and data
utility. Utility and latent-data privacy are formally defined as
follows.

Definition 3.5. Latent-data privacy: Latent-data privacy pr-
eserving is to protect the SLA of each user.

Definition 3.6. Utility: The utility of a social network dataset
is high iff 1) a SNA server has a high prediction accuracy for
NSLA; and 2) the social network structure is effectively pre-
served.

For the sake of brevity, we omit the subscript and use X and
X ′ to denote an original and sanitized attribute set of a user,
respectively, in the rest of the paper without confusion.

B. Model of Adversaries

We assume powerful adversaries with abundant prior knowl-
edge about users, and they can launch optimal inference attacks
to infer the SLA of each user. This assumption allows the con-
structed data-sanitation method can combat against adversaries
with a larger range of capability.

There exists a prior probability for a user’s attribute vector
X , denoted as ψ(X), which represents the probability of a user

TABLE I
MAJOR SYMBOLS

Parameter Definition

X Set of attribute sets
Xi Attribute set of user ui
xj j-th attribute
ψ(X ) Prior probability of attribute set X
lit t-th latent attribute, lt , of ui
P (lit ) Probability of ui with latent attribute lt
Wi,j Weight between ui and uj
f (X ′|X ) Attribute sanitization strategy
L(X ′|X ) link sanitization strategy
ε Structure-utility loss threshold
δ Prediction-utility loss threshold

with attribute set X . For a user, all her possible attribute sets
satisfy

∑
ψ(X) = 1. We call the set of ψ(X) as a user’s profile.

Definition 3.7. Profile: The profile of a user is a set of prob-
abilities Ψ = {ψ(X1), ψ(X2), . . . , ψ(Xk )},

∑
1≤i≤k ψ(Xi) =

1, where each ψ(Xi) is the probability of a user with attribute
set Xi and k is the number of possible attribute sets.

First, we assume adversaries know each user’s profile. Sec-
ond, adversaries are assumed to know the data-sanitization strat-
egy employed to realize the tradeoff between utility and privacy.
Based on the above knowledge, optimal inference attacks are
launched by adversaries.

C. Problem Definition

In this paper, we study the following problem.
Input:
1) Social graph G, SLA and NSLA of users.
2) Utility thresholds ε and δ.
Output:
The data sanitization strategy that minimizes the predication

accuracy for unpublished SLA and satisfies utility threshold ε
and δ.

For clarity, the meanings of the symbols are summarized in
Table I.

IV. PRELIMINARIES

In this section, the prediction method is presented to predict
both SLA and NSLA of a user based on published social data.

A. Prediction Method for Latent Attributes

We assume powerful adversaries that launch inference at-
tacks by utilizing all publicly available knowledge including
social links and attribute sets. Therefore, the prediction method
predicts latent information considering social links and attribute
sets collectively to increase prediction accuracy.

Link knowledge is important for predicting latent information
in social networks. Therefore, we consider uj ’ latent informa-
tion when predicting ui’ latent information, where uj ∈ Ni and
Ni denotes the neighbor set of ui . For clarity, ui with latent
attribute lt is denoted as lit .
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For brevity, the probability of ui to have latent attribute lt is
denoted as P (lit). The average probability of ui’ neighbors with
latent attribute lt is calculated as:

P
(
lit |Ni

)
=

1
|Ni |

∑
uj ∈Ni

P
(
ljt

)
(1)

However, directly computing the average probability may in-
cur overfitting. In practice, close neighbors should have larger
impact for each other on the determination of latent informa-
tion. To avoid overfitting, we introduce a weight to evaluate the
impact of one neighbor for target user. We assume that if more
published attributes are shared by two friends, they tend to share
more latent attributes. Then the weight Wi,j between ui and uj
is calculated as

Wi,j =
|(xi1, . . . , xim ) ∩ (

xj1, . . . , x
j
n

)|
|Xi | (2)

Equation (2) computes the proportion of the shared attributes
between ui and uj among ui’s attributes. Clearly, Wi,j �= Wj,i .
To determine li based on Ni , we combine Equation (1) and
Equation (2) as follows,

P
(
lit |Ni

)
=

1
|Ni |

∑
uj ∈Ni

P
(
ljt

) Wi,j∑
uk ∈Ni

Wi,k
(3)

It is easy to find that Equation (3) requires that at least one
of the neighbors of each user to publish her latent attributes.
Obviously, this strict condition is hard to be satisfied in real
social networks. Therefore, it is inaccurate to predict the latent
attributes of user ui based on link information directly, since it
is possible that few neighbors publish their latent attributes. To
solve this problem, we first predict the latent attributes of those
unpublished users through analyzing their attribute sets. Then,
we predict the latent attributes of unpublished users through
utilizing weighted link knowledge calculated by Equation (3).

Next, we present how to predict the latent attributes of
a user through analyzing her attribute set. Given a user ui
with attribute set Xi = {x1, . . . , xn} and p potential latent at-
tributes l1, . . . , lp , the probability of ui with latent attribute lt is
arg max

1≤t≤p
[P (lit |x1, . . . , xn )].

To calculate the above value, based on Bayes Theorem, as-
suming that all attributes are independent, we have

arg max
1≤t≤p

[
P

(
lit
) × P

(
x1|lit

) × . . .× P
(
xn |lit

)
P (x1, . . . , xn )

]
.

We find thatP (x1, . . . , xn ) is the same for any value ofP (lit).
Therefore, we only need to calculate

arg max
1≤t≤p

[
P

(
lit
) × P

(
x1|lit

) × . . .× P
(
xn |lit

)]
.

B. Data Sanitization Method

In Section IV-A, we assume powerful adversaries that launch
inference attacks by exploiting social links and attribute sets
simultaneously. Therefore, in order to realize the tradeoff be-
tween privacy and utility, our objective is to sanitize both social
links and attribute sets.

1) Attribute-Sanitization Method: An attribute set could
be sanitized in three ways, adding attributes, removing at-
tributes, and perturbing attributes (replace one attribute with
another). Which methods should be employed to sanitize so-
cial data depends on data utility and privacy metrics and data
semantics.

To prevent inference attacks on SLA, we can sanitize the most
indicative attributes for each SLA which is publicly available to
adversaries. With this objective, for a user with attribute set X ,
it is easy to determine the most indicative attribute xj for any
SLA zi ∈ Z by argmaxj [∀zi ∈ Z : P (xj |zi)].

This allows us to determine a single attribute which is the most
indicative for a SLA and sanitize it. Unfortunately, directly sani-
tizing the most indicative attributes for SLA can reduce utility if
we don’t consider the most indicative attributes for NSLA. For
instance, consider the case to predict health conditions of users
which could be viewed as NSLA. Health conditions and SLA
such as sexual orientation share indicative attribute “gender”.
Therefore, although sanitizing “gender” reduces the prediction
accuracy for SLA, it also reduces the prediction accuracy for
NSLA.

To resolve the above conflict, we propose the following data
sanitization method: (1) If there exist indicative attributes shared
by SLA and NSLA, we perturb the shared indicative attributes;
and remove the SLA except the shared indicative attributes; (2)
If there does not exist any indicative attribute shared by SLA
and NSLA, we remove the indicative attributes for SLA.

The next challenge is how to perturb the indicative attributes
shared by SLA and NSLA. Our idea is to generalize each shared
indicative attribute. For example, if a shared attribute is idol:
Jodon, it can be generalized to basketball star. For each shared
indicative attribute, we can organize potential generalized at-
tributes into a hierarchy.

2) Link-Sanitization Method: Unlike attributes, social links
can only be sanitized by adding links and removing existing
links. Similar with the attribute-sanitization method, a link-
sanitization method should reduce the prediction accuracy for
SLA and do not greatly reduce the prediction accuracy for
NSLA. Unfortunately, unlike attributes, it is nontrivial to find
the indicative links shared by SLA and NSLA, thus we focus
on reducing the prediction accuracy for SLA firstly when sani-
tize links and more constraints will be given later to guarantee
utility.

For this goal, the concept of Vulnerable Link is introduced as
follows:

Definition 4.1. Vulnerable link: A vulnerable link of one
user is the link whose removal will lower the prediction ac-
curacy for the SLA of the user. The prediction accuracy for the
SLA of ui upon removing the vulnerable link eij is Λ(Ei − eij ).

From the above definition, it shows that Λ(Ei − eij ) ≤
Λ(Ei). To protect SLA of ui through removing links, we first
identify a set of vulnerable links denoted as Ai . Second, for
any eij ∈ Ai , we calculate the reduction of prediction accuracy
for SLA upon removing eij . Then, we order the links in Ai

according to the calculated prediction accuracy reduction. We
next remove those links with the largest prediction accuracy
reduction in Ai .
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V. METRICS

Now we discuss how to measure utility and latent-data pri-
vacy. Our data sanitization strategy includes two parts: attribute
sanitization strategy f(X ′|X) and link sanitization strategy
L(X ′|X). f(X ′|X) likes a transfer function that takes a user’s
attribute setX as input and outputs the sanitized oneX ′. Mean-
while, for an arbitrary user ui , L(E ′

i |Ei) can be viewed as a
transfer function that takes ui’s link set Ei as input and outputs
the sanitized one E ′

i .

A. Utility Metric

For data utility, two aspects need to be considered. First, the
sanitized attribute set and social links should guarantee a SNA
server can effectively infer the NSLA of users. Second, the
sanitized network structure should not deviate from the original
one very much. Worth to note that the second aspect expects
that sanitizing social links does not distort friendship relations
among users and does not change one’s social status too much.
We introduce two parameters ε and δ to scale the above two
aspects. Then, (ε, δ)-data utility can be defined as follows.

Definition 5.1. (ε, δ)-Utility: Given social graph G, network
disparity measurer M, collective prediction method C, NSLA
set Y , accessible prior knowledge known to third party users K,
we say that G’s sanitized graph G′ satisfies (ε, δ)-utility if for
any NSLA yi ∈ Y ,

(i).M(G,G′) ≤ ε;

(ii).Λyi
C (G′,K) − Λyi

C (K) ≥ δ,

where Λyi
C (G) represents the prediction accuracy of collective

prediction method C for NSLA yi . ε is the super-threshold of
social structure changes. δmeasures how much added prediction
accuracy is earned by adversaries through predicting with the
published G′. Clearly, ε, δ ≥ 0. To preserve data utility, both ε
and δ are given by the data publisher.

Next, we define utility loss due to the data-sanitization strat-
egy carried out on published data. Definition 5.1 shows that
utility loss comes from two aspects: network structure disparity
and prediction accuracy deviation for NSLA. Therefore, utility
loss is defined based on the above two aspects: structure utility
loss and prediction utility loss.

Definition 5.2. ε-Structure utility loss: Structure utility loss
estimates how much an arbitrary user ui loses regarding net-
work structure after sanitizing its social links. Structure util-
ity loss of ui is determined by the structure utility values
of ui’s neighbors. For a given structure utility value met-
ric, the ε-structure utility loss for ui after sanitizing ui’ vul-
nerable link set Ai ⊆ Ni is given by SULi = ζ(SAi

) ≤ ε,
where SAi

= {Sj |uj ∈ Ai ⊆ Ni, Sj ∈ R∗}, and Sj represents
the structure utility value of user uj .

The structure utility value of a user reflects social structure
properties, which can be measured by different metrics. In this
paper, we use number of shared friends as structure utility met-
ric. Unfriending a friend that shares a large of friends of one
user has a bad effect on the clustering coefficient of the user

[ ]. Furthermore,we assume ζ(.) is an additive function,then
SULi =

∑
uj ∈A⊆Ni

Sj ≤ ε.
Since both attribute set and social links of a user are sani-

tized and we assume powerful adversaries predict SLA based
on them simultaneously as shown in Section IV-A, prediction
utility loss is derived from both of the disparity sources. Since
social structure disparity is measured by ε-structure utility loss,
prediction utility loss only needs to measure the prediction ac-
curacy deviation derived from attribute sanitization.

To evaluate prediction utility loss due to sanitized attribute
set, we introduce an attribute set disparity measurer du , such that
du (X,X ′) measures how much prediction utility loss there is if
a SNA server performs analysis depending onX ′ rather thanX .
Thus, given ψ(X), f(X ′|X), and du (X,X ′), prediction utility
loss can be calculated as the expectation of du (X,X ′) over all
X and X ′ for a user.

Definition 5.3. δ-Prediction utility loss: Prediction utility
loss estimates the amount of prediction accuracy deviation for
the NSLA of an arbitrary user ui . For a given attribute set
disparity measurer du , the δ-prediction utility loss for ui after
carrying out a data sanitization method on its attribute set X
and social links, is given by PULi =

∑
X,X ′ ψ(X)f(X ′|X)du

(X,X ′) ≤ δ.
Attribute set disparity measurer du is determined by data

semantics. In different applications, du can be defined as Eu-
clidean, Hamming, or Mahalanobis distance, etc.

B. Latent-Data Privacy Metric

We assume powerful adversaries have the knowledge of user’s
profile ψ(X) and our data-sanitization strategy. After obtaining
the sanitized attribute set, adversaries calculate the posterior
probability ofX , conditional onX ′ with prior knowledgeψ(X)
and f(X ′|X):

Pr(X|X ′) =
Pr(X,X ′)
Pr(X ′)

=
f(X ′|X)ψ(X)∑
X f(X ′|X)ψ(X)

Then, for each X with posterior probability Pr(X|X ′), ad-
versaries can predict the user’s SLA based on X and sanitized
social links. We represent the SLA predicted fromPr(X|X ′) as
ZX . Obviously,ZX is related to the sanitized link setA such that
we denote ZX as the function of A, i.e., ZX (A). Adversaries’
goal is then to choose Ẑ to minimize the user’s conditional
expected latent-data privacy, conditional on Pr(X|X ′). For an
arbitrary Ẑ, the user’s conditional expected latent-data privacy
is

∑
X Pr(X|X ′)dp(ZX (A), Ẑ), where dp(ZX (A), Ẑ) is the

privacy disparity between ZX (A) and Ẑ.
For the minimized Ẑ, it is

min
Ẑ

∑
X

Pr(X|X ′)dp(ZX (A), Ẑ) (4)

The latent-data privacy conditional on a given X ′ is given
by Equation (4). Meanwhile, the probability of X ′ output by
the sanitization method is P (X ′) =

∑
X f(X ′|X)ψ(X). Thus,
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unconditional expected privacy of the user’s is

∑
X ′

ψ(X ′)min
Ẑ

∑
X

Pr(X|X ′)dp(ZX (A), Ẑ)

=
∑
X ′

min
Ẑ

∑
X

ψ(X)f(X ′|X)dp(ZX (A), Ẑ) (5)

We define

PX ′ = min
Ẑ

∑
X

ψ(X)f(X ′|X)dp(ZX (A), Ẑ). (6)

Incorporating PX ′ into Equation (5), the users unconditional
expected privacy is rewritten as

∑
X ′

PX ′ , (7)

which is the user attempts to maximize by finding the optimal
f(X ′|X).

Unfortunately, the minimum operator in Equation (6) makes
the computation problem nonlinear. Therefore, we can trans-
form (6) into a series of linear constraints by

PX ′ ≤
∑
X

ψ(X)f(X ′|X)dp(ZX (A), Ẑ) ∀Ẑ (8)

Therefore, maximizing Formula (7) under constraint (6) is
equal to optimizing Formula (7) under constraint (8).

VI. PRIVACY-UTILITY TRADEOFF

In this section, we first formalize optimal problem that can
produce optimized data sanitization strategy. Then, we discuss
how to solve the proposed optimal problem. Here, we introduce
function LaPri(.) to measure latent-data privacy with current
sanitized attribute set and social links.

A. Optimal Problem Formulation

The problem of (ε, δ)-utility with maximize latent-data pri-
vacy can be formulated as follows.

Definition 6.1. (ε, δ)-UtiOptPri (ψ(.), du (.), dp(.),S, ε, δ, ):
Given user’s profile ψ(.), attribute set disparity measurer du (.),
privacy disparity measure dp(.), structure utility value metric
S, structure utility loss threshold ε, and prediction utility loss
threshold δ, the question is to find data-sanitization strategy
f(.) and link-sanitization strategy L(.), and latent-data privacy
function LaPri(.) such that

1) L(.) satisfies ε-structure utility loss and f(.) satisfies
δ-prediction utility loss;

2) For any L′(.) that satisfies ε-structure utility loss
and f ′(.) that satisfies δ-prediction utility loss,
LaPri(L′(.), f ′(.), ψ(.), dp(.))≥LaPri(L(.), f(.), ψ(.),
dp(.)).

The linear optimization program for an arbitrary user ui to
find the optimal data sanitization strategy is as following: choose

f(X ′|X), Ẑ, ∀X,X ′, in order to

Maximize:
∑
X ′

PX ′

Subject to :

PX ′ ≤
∑
X

ψ(X)f(X ′|X)dp(ZX (A), Ẑ) ∀Ẑ
∑

uj ∈Ai⊆Ni

Sj ≤ ε

∑
X

ψ(X)
∑
X ′

f(X ′|X)du (X,X ′) ≤ δ

f(X ′|X) ≥ 0 ∀X,X ′

∑
X ′

f(X ′|X) = 1, ∀X

B. Solve the Optimal Problem

We now solve the optimal problem to find attribute sanitiza-
tion strategy f(.) and link sanitization strategy L(.).

B1) Find Link-Sanitization Strategy: First, we prove the link
sanitization method introduced in Section IV-B2 has mono-
tonicity property. The monotonicity property indicates that if
we increase the number of removed links of a user, we can only
improve this user’s latent-data privacy.

Theorem 6.1. Monotonicity: Function LaPri : Ai → R∗ is
monotonically nondecreasing, namely, LaPri(Ai ∪ eij ) ≤
LaPri(Ai), where eij ∈ Ai , Ai ∈ Ni , and Ai is the vulner-
able link set of ui .

Proof: As discussed in Definition 4.1, the prediction accu-
racy for user ui’ SLA decreases upon removing the vulnerable
link between ui and uj ; namely, for any vulnerable link eij ,
Λ(Ai) ≤ Λ(Ai ∪ eij ). This accuracy relation indicates that for
user ui , the latent-data privacy with vulnerable link setAi is def-
initely larger than the latent-data privacy with vulnerable link
set Ai ∪ eij . Hence, LaPri(Ai ∪ eij ) ≤ LaPri(Ai). �

Theorem 6.2. Submodularity: Function LaPri : Ai → R∗

is submodular, namely, LaPri(Bi ∪ eij ) − LaPri(Bi) ≤
LaPri(Ai ∪ eij ) − LaPri(Ai), where Ai ⊆ Bi ⊆ Ni , eij ∈
Ni , and Ai and Bi are vulnerable link sets of ui .

Proof: For the prediction accuracy for SLA, the maximum
decrease in prediction accuracy of user ui , by removing a vul-
nerable link eij from vulnerable link set Ai is at least more
than the maximum decrease by removing eij from another
set Bi , namely, Λ(Ai ∪ eij ) − Λ(Ai) ≤ Λ(Bi ∪ eij ) − Λ(Bi),
where Ai ⊆ Bi ⊆ Ni , and e ∈ Ni . The accuracy relation in-
dicates that for user ui , the maximum gain in latent-data pri-
vacy after removing vulnerable link eij from vulnerable link
set Ai is at least more than the maximum gain by removing
eij from Bi . Hence, LaPri(Bi ∪ eij ) − LaPri(Bi) ≤ LaPri
(Ai ∪ eij ) − LaPri(Ai). �

With Theorems 6.1 and 6.2, the problem of finding a link-
sanitization strategy is equivalent to the minimization of sub-
modular, nondecreasing, nonnegative function with constraints
that is knapsack-like. The greedy algorithm proposed in [30]
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TABLE II
GENERAL INFORMATION ABOUT CALTECH

Network property Value

Number of users 769
Number of social links 16656
Number of attributes of each user 7
Number of possible attribute values for SLA 4
Number of possible attribute values for NSLA 2

could be exploited to solve this problem with nondecreas-
ing, submodular, nonnegative objective function constrained by
structure utility loss.

B2) Find Attribute-Sanitization Strategy: To find an
attribute-sanitization strategy, the optimization problem can be
solved by iterating over all possible f(X ′|X), all X and all
sanitizedX ′ to make sure the prediction accuracy loss of latent-
data privacy is less than δ. Furthermore, find the optimal set
of f(X ′|X) that produce minimum value of objective function∑

X ′ PX ′ . However, this approach is impractical since there is an
infinite number of f(X ′|X). For example, X has three possible
sanitized attribute vectors X1, X2 and X3, and the probabil-
ities that satisfy

∑
i=1:3 f(Xi |X) = 1, f(Xi |X) ≥ 0,∀X,Xi

are infinite. To solve this problem, we discrete the probability
space, i.e., [0, . . . , 1] → [0, 1/d, 2/d, . . . , 1] to get a subopti-
mal solution. Furthermore, to shrink search space of X , the
set of X ′ can be derived through substituting each attribute in
the shared attributes between SLA and NSLA with a generic
attribute, which ensures that adversaries cannot get specific in-
formation to increase prediction accuracy on sensitive attributes,
while guarantees no significant accuracy reduction on data util-
ity. Moreover, since there are different levels of generalization,
we organize the generic attributes as a hierarchy.

VII. EVALUATION

A. Dataset

In our evaluation, we study a large Facebook dataset that
contains all the Facebook “friendship” links among the users at
California Institute of Technology at a certain time in September
2005. It also includes some demographic information like stu-
dent/faculty status flag, gender and some other attributes, which
are published by users on their Facebook pages. Each attribute
is assigned a numeric value and user identity is ignored. For
convenience, the dataset is named as Caltech. Some general
information about Caltech are listed in Table II.

B. Experimental Settings

As shown in Table II, there are 7 attributes for each user. We
choose attribute student/faculty status flag (represented by flag)
and gender as SLA and NSLA, respectively. Table II shows that
SLA and NSLA have 4 and 2 possible attribute values, respec-
tively. The remaining 5 attributes are assumed to be publicly
available attributes, among which 3 attributes are for SLA, 3
attributes are for NSLA, and 1 attribute is common.

Fig. 1. Latent-data privacy under different data-sanitization strategies with
increasing number of (a) attributes; (b) sanitized links, ε = 180, and δ = 0.4.

We compare our data-sanitization strategy with different
strategies to satisfy the (ε, δ)-UtiOptPri problem defined in Def-
inition 6.1: 1) Attribute Removal: remove the most indicative
attributes for SLA; 2) Attribute Perturbing: perturb the most
indicative attributes for SLA; 3) Link Removal: remove vulner-
able links; 4) Random Link Removal: randomly remove links.
We denote our data sanitization strategy as Collective Saniti-
zation since it collectively harnesses different data sanitization
methods.

C. Privacy-Utility Tradeoff With Different Data-Sanitization
Strategies

We evaluate the effectiveness of our Collective Sanitization
to realize the privacy-utility tradeoff. To make a fair compari-
son, we first evaluate latent-data privacy when the above five
strategies satisfy the same data utility thresholds. We choose
an arbitrary pair of ε and δ such as ε = 180, δ = 0.4, and then
calculate the latent-data privacy under different strategies with
increasing number of attributes and links being sanitized. As
stated in Section IV-B1, Collective Sanitization sanitizes user
attributes by employing removing and perturbing collectively.
The horizontal axis of Fig. 1(a) for Collective Sanitization repre-
sents the number of the removed attributes (indicative for SLA)
and the number of attributes (common indicative attributes for
SLA and NSLA) being perturbed. Similarly, the horizontal axis
of Fig. 1(b) for Collective Sanitization represents the number of
the removed vulnerable links (as presented in Section IV-B2).

As shown in Fig. 1(a), four strategies are generally effective in
protecting latent-data privacy while realizing customized (ε, δ)-
utility. With increasing number of attributes being sanitized,
latent-data privacy monotonically increases as well. However,
compared with the remaining three strategies, Collective San-
itization can realize a larger level of latent-data privacy with
the same number of attributes being sanitized and same utility
thresholds. Meanwhile, as expected, Attribute Removal is better
than Attribute Perturbing in protecting latent-data privacy. With
more and more attributes removed and perturbed, this advantage
of Attribute Removal becomes more and more obvious. Further-
more, in protecting latent-data privacy, Link Removal is better
than both Attribute Removal and Attribute Perturbing. To ex-
plain this observation, we find that the latent-data privacy under
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Fig. 2. Utility loss under different levels of latent-data privacy. (a) Struc-
ture utility loss with different prediction utility loss thresholds and ε = 180.
(b) Prediction utility loss with different structure utility loss thresholds and
δ = 0.4.

Link Removal and Collective Sanitization are close, indicating
that removing vulnerable links contributes more effectiveness
than attribute sanitization in protecting latent-data privacy.

The same observation can be found in Fig. 1(b), where latent-
data privacy monotonically increases with more and more links
removed. However, compared with the remaining two strate-
gies, Collective Sanitization can also achieve a larger level of
latent-data privacy with the same number of links removed and
same utility threshold. Meanwhile, Link Removal is better than
Random Link Removal in protecting latent-data privacy. With
more and more links removed, this advantage of Link Removal
becomes more and more obvious.

We further discuss the effectiveness of Collective Sanitiza-
tion in guaranteeing utility under different levels of latent-data
privacy. The results are shown in Fig. 2, which shows that utility
loss increases with the increasing of latent-data privacy level.
Furthermore, utility loss converges to a stable level with the
increasing of latent-data privacy level. The reason lies that the
marginal gain of latent-data privacy is obtained with the max-
imum number of sanitized attributes and links, and minimized
utility.

D. Privacy-Utility Tradeoff With Different Prior Knowledge

We evaluate the privacy-utility tradeoff with different cases
of prior knowledge for adversaries. We compare our Collec-
tive Sanitization assuming most powerful adversaries with the
knowledge of user profile ψ(X) and data-sanitization strategy,
where different types of prior knowledge are assumed: 1) Pro-
file Only: only profile is known to adversaries; 2) Strategy
Only: only data-sanitization strategy is known to adversaries;
3) Unknown Both: neither profile nor strategy is known to
adversaries.

To make a fair comparison, we first compare the latent-data
privacy when the above four cases has same utility thresholds.
With the same utility thresholds ε = 500 and δ = 0.4, we calcu-
late the latent-data privacy under different cases with increasing
number of sanitized attributes and links. The results are shown
in Fig. 3(a) and (b), where the horizontal axis for Collective San-
itization represents the number of removed/perturbed attributes
and the number of removed vulnerable links, respectively.

Fig. 3 shows that compared with different cases, Collec-
tive Sanitization assuming powerful adversaries is the most

Fig. 3. Latent privacy-utility tradeoff with different cases of prior knowledge
for adversaries, with increasing number of (a) attributes; (b) sanitized links; and
the increasing of (c) prediction utility threshold; (d) structure utility threshold.

Fig. 4. Latent-data privacy with different utility thresholds.

effective one in protecting latent-data privacy while guarantee-
ing customized (ε, δ)-utility. As shown in Fig. 3(a) and (b), the
latent-data privacy under Profile Only and Strategy Only lies
somewhere in between Collective Sanitization and Unknown
Both, and profile information is more valuable than strategy
information in some cases. The similar observation can be ob-
tained in Fig. 3(c) and (d), where it is also shown that latent-data
privacy converges to a stable level with the increasing of utility
thresholds. The reason lies that the marginal gain of latent-data
privacy is obtained with the most sacrifice in utility.

Finally, the latent-data privacy with different utility thresholds
is shown in Fig. 4. Fig. 4 shows that with the increasing of ε
and δ, latent-data privacy increases as well. The reason lies
that it is possible to determine a better data-sanitization strategy
with fewer utility requirements. Furthermore, latent-data privacy
converges to a stable value with continuously increase of ε and δ,
which indicates the optimal data-sanitization strategy is found.
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VIII. CONCLUSION

In this paper, we study how to optimize the tradeoff between
latent-data privacy and customized data utility when combating
against powerful adversaries with optimal inference attacks. To
address this issue, we first propose two sanitization methods for
links and attributes, based on which we formalize prediction
utility loss matric, structure utility loss matric and latent-data
privacy. Then we formulate an optimization problem that can
maximize latent-data privacy while guaranteeing customized
data utility. Finally, we evaluate our data-sanitization strategy
towards real big social network data and the results show that
the proposed data-sanitization strategy can effectively achieve
a meaningful privacy-utility tradeoff. Our future work is to
explore formal privacy models, such as differential privacy
or k-anonimity to balance latent-data privacy and customized
data utility.
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