WMonmalleable Information $low Control

Ethan Cecchetti Andrew C. Myers Owen Arden
Department of Computer Science Department of Computer Science Department of Computer Science
Cornell University Cornell University University of California, Santa Criz
ethan@cs.cornell.edu andru@cs.cornell.edu owen@soe.ucsc.edu
Abstract should also be compositionab that secure subsystems remain
Noninterference is a popular semantic security condition because it secure.when combined into a larger systgm.
offers strong end-to-end guarantees, it is inherently compositional, ~ Noninterference, along with many variart§ Bg, has been a
and it can be enforced using a simple security type systém: popular security condition precisely because it is both extensional

fortunately, it is too restrictive for real systems. Mechanisms for and compositional. Noninterference forbids all flows of information
downgrading information are needed to capture real-world security from “high” to “low”, or more generally, flows of information that
requirements, but downgrading eliminates the strong compositional Violate a lattice policy [14].
security guarantees of noninterference. Unfortunately, noninterference is also known to be too restrictive
We introduce nonmalleable information flow, a new formal se- for most real systems, which need fine-grained control over when
curity condition that generalizes noninterference to permit con- and how information flows. Consequently, most implementations
trolled downgrading of both confidentiality and integrity. While ©f information flow control introduce downgrading mechanisms
previous work on robust declassification prevents adversaries from t0 allow information to flow contrary to the lattice policy. Down-
exploiting the downgrading of confidentiality, our key insight is grading confidentiality is called declassification, and downgrading
transparent endorsement, a mechanism for downgrading integrity integrity—that is, treating information as more trustworthy than
while defending against adversarial exploitation. Robust declassifi- information that has influenced it—is known as endorsement [47].
cation appeared to break the duality of confidentiality and integrity ~ Once downgrading is permittechoninterference is lostThe
by making confidentiality depend on integrity, but transparent en- natural question is whether downgrading can nevertheless be con-
dorsement makes integrity depend on confidentiality, restoring this Strained to guarantee that systems still satisfy some meaningful, ex-
duality. We show how to extend a security-typed programming tensional, and compositional security conditions. This paper shows
language with transparent endorsement and prove that this static how to constrain the use of both declassification and endorsement
type system enforces nonmalleable information flow, a new secu- in @ way that ensures such a security condition holds.
rity property that subsumes robust declassification and transparent ~ Starting with the work of Biba [7], integrity has often been
endorsement. Finally, we describe an implementation of this type Viewed as dual to confidentialitfOver time,that simple duality
system in the context of Flame, a flow-limited authorization plugin ~has eroded. In particular, work on robust declassificaior,[27,

for the Glasgow Haskell Compiler. 46 47] has shown that in the presence of declassification, confiden-
tiality depends on integrity. It is dangerous to give the adversary
CCs Concepts the ability to influence declassification, either by affecting the data

that is declassified or by affecting the decision to perform declas-

sification. By preventing such influencerobust declassification

]])) stops the adversary from laundering confidential data through ex-

Aepwords: Downgrading; Information security; Security types isting declassification operations. Operationally, languages prevent

IntroSucti laundering by restricting declassification to high integrity program

1 mtroouction points.Robust declassification can be enforced using a modular

An ongoing foundational challenge for computer security is to dis- type system and is therefore compositional.

cover rigorous—yet sufficiently flexible—ways to specify whatit ~ This paper introduces a new security condition, transparent en-
means for a computing system to be secure. Such security condieorsement, which is dual to robust declassification: it controls en-
tions should be extensionaheaning that they are based on the dorsement by using confidentiality to limit the possible relaxations
externally observable behavior of the system rather than on unob-of integrity. Transparent endorsement prevents an agent from en-
servable details of its implementation. To allow security enforce- dorsing information that the provider of the information could not
ment mechanisms to scale to large systems, a security conditionhave seen. Such endorsement is dangerous because it permits the
- - — provider to affect flows from the endorser’s own secret information
Work done while author was at Harvard University. into trusted inf fi Thi tricti d t enf
Permission to make digital or hard copies of all or part of this work for personal or Into trus e m.olrma |on . IS restricuon (?n en Orseme'.‘ en OI.’CGS
classroom use is granted without fee provided that copies are not made or distributed an often-implicit justification for endorsing untrusted inputs in

for proﬂlt or commercial ladvantage and that copies bear this notice and the full citation high-integrity, confidential computation (e.g., a password checker):
on the first page. Copyrights for components of this work owned by others than ACM . L .
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, OW-integrity inputs chosen by an attacker should be chosen with-
to post on servers or to redistribute to lists, requires prior specific permission and/or a out knowledge of secret information.

fee. Request permissions from permissions@acm.org. i ; : iali i i

CCS 17, October 30-November 3, 2017, Dallas, TX, USA A S|m|Iar conpectlgn between thg confldentlallty and integrity

© 2017 Association for Computing Machinery. of information arises in cryptographic settings. A malleable encryp-

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00 tion scheme is one where a ciphertext encrypting one value can
https://doi.org/10.1145/3133956.3134054

* Security and privacy — Information flow control;

be transformed into a ciphertext encrypting a related value. While
sometimes malleability is intentional (e.g., homomorphic encryp-
tion), an attacker’s ability to generate ciphertexts makes malleable
encryption insufficient to authenticate messages or validate in-
tegrity. Nonmalleable encryption schemé§ [prevent such attacks.
In this paper, we combine robust declassification and transparent
endorsement into a new security condition, nonmalleable informa-
tion flow, which prevents analogous attacks in an information flow
control setting.

The contributions of this paper are as follows:

» We give example programs showing the need for a security
condition that controls endorsement of secret information.
» We generalize robust declassification to programs including
complex data structures with heterogeneously labeled data.
» We identify transparent endorsement and nonmalleable in-
formation flow,new extensional security conditions for
programs including declassification and endorsement.
We present a core languad8ViIFC which provably en-
forces robust declassificatiotransparent endorsement,
and nonmalleable information flow.
We present the first formulation of robust declassification
as a 4-safety hyperproperty, and define two new 4-safety
hyperproperties for transparent endorsement and nonmal-
leable information flow, the first time information security
conditions have been characterizedkasafety hyperprop-
erties with k > 2.
We describe our implementation NMIFCusing Flame,
a flow-limited authorization library for Haskell and adapt
an example of the Servant web application framework,
accessible online at http://memo.flow.limited.

We organize the paper as follows. Section 2 provides examples o
vulnerabilities in prior work. Section 3 reviews relevant background.
Section 4 introduces our approach for controlling dangerous en-

String 7 password;

1
2

3 booleant+ check_password(String 7- guess) {

4 booleanT endorsed_guess = endorse(guess, T);
5 booleanT result = (endorsed_guess == password);
6 return declassify(result, T)

7}

Figure 1: A password checker with malleable information flow

In FLAM, principals and information flow labels occupy the same
space. Given a principal (or labglthe notation®” denotes the
confidentiality projection oP, whereas the notatioB” denotes
its integrity projection. IntuitivelyP™ represents the authority to
decide wher@’s secrets may flow to, wherddis represents the
authority to decide where information trusted /may flow from.
Robust declassification ensures that the ldbelcan be removed

via declassification only in code that is trustedyhat is, with

integrity p~ .

Information flow policies provide a means to specify security
requirements for a program, but not an enforcement mechanism.
For example, confidentiality policies might be implemented using
encryption and integrity policies using digital signatures. Alterna-
tively, hardware security mechanisms such as memory protection
might be used to prevent untrusted processes from reading confi-
dential data. The following examples illustrate issues that would
arise in many information flow control systems, regardless of the
enforcement mechanism.

2.1 Fooling a password checker

Password checkers are frequently used as an example of necessary
gnd justifiable downgrading. However, incorrect downgrading can
allow an attacker who does not know the password to authenticate
anyway. Suppose there are two principals, a fully trusted printipal

dorsements, and Section 5 presents a syntax, semantics, and typeand an untrusted principdV. The following information flows are

system forNMIFC Section 6 formalizes our security conditions
and Section 7 restates them as hyperproperties. Section 8 discusse
our Haskell implementation, Section 9 compares our approach to
related work, and Section 10 concludes.

2 Motivation

then securé/” £ T~ andT- £ U . Figure 1 shows in pseudo-

Tode how we might erroneously implement a password checker in
a security-typed language like J&q. Because this pseudo-code
would satisfy the type system, it might appear to be secure.

The argumenguess has no integrity because it is supplied by an
untrusted, possibly adversarial source. It is necessary to declassify

To motivate the need for an additional security condition and give the result of the function (at line 6) because the result indeed leaks
some intuition about transparent endorsement, we give three short a little information about the passwordRobust declassification,
examples. Each example shows code that type-checks under exisis enforced in Jif, demands that the untrustegss be endorsed

ing information-flow type systems even though it contains insecure
information flows, which we are able to characterize in a new way.

before it can influence information released by declassification.
Unfortunately,the check_password policy does not prevent

These examples use the notation of the flow-limited authoriza- faulty or malicious (but well-typed) code from supplyipassword
tion model (FLAM)4], which offers an expressive way to state both directly as the argumentthereby allowing an attacker with no
information flow restrictions and authorization policies. However, knowledge of the correct password to “authenticate.” Begaess
the problems observed in these examples are not specific to FLAM; is labeled as secrdtt), a flow of information fronpasswordto
they arise in all previous information-flow models that support guess looks secure to the type system, so this severe vulnerabil-
downgrading (e.g.§ 16 22 26 33 43 48). The approach in this ity could remain undetected. To fix this we would need to make
paper can be applied straightforwardly to the decentralized label guess less secret, but no prior work has defined rules that would
model (DLM) Rg, and with more effort, to DIFC models that are require this changeThe true insecurityhoweverJies on line 4,
less similar to FLAM. While some previous models lack a notion which erroneously treats sensitive information as if the attacker
of integrity, from our perspective they are even worse off, because had constructed it. We can prevent this insecurity by outlawing
they effectively allow unrestricted endorsement. such endorsements.

A T B
abid " AAang)-
(ANB) a_bid (AnB)
T a_bid
B- nNANB)) big
(ANB) b_bid (AaB)
b_bid
open b_bid open a_bid
(AAB)" A(AVB)” (AANB)" AN(AVB)™
b_bid ¢——— Bids ——— a_bid

Figure 2: Cheating in a sealed-bid auction. Without knowing Alice’s
bid, Bob can always win by setting b_bid := a_bid + 1

2.2 Cheating in a sealed-bid auction

1 while (true) do {

2 x=0[] x=1;// generate secret probabilistically
3 output xto H ;

4 input y from H ; // implicit endorsement

5 output x @ (y mod 2) to L

5}

In this code, there are two external agerftandL. AgentH
is intended to have access to secret information, whekdasot.
The code generates a secret by assigning to the variablson-
deterministic, secret value that is either 0 or 1. The choigdsf
assumed not to be affected by the adversary. Its value is used as a
one-time pad to conceal the secret low bit of variable y.

Wittbold and Johnson observe that this code permits an adver-
sary to launder one bit of another secret variahlby sendingzebx
as the value read into y. The low bit of z is then the output to L.

Let us consider this classic example from the viewpoint of a

Imagine that two principals A and B (Alice and Bob) are engaging modern information-flow type system that enforces robust declassi-

in a two-party sealed-bid auction administered by an auctioheer

fication. In order for this code to type-check, it must declassify the

whom they both trust. Such an auction might be implemented using yaluexa(y mod 2) . Since the attack depends phbeing affected

cryptographic commitments and may even simulatewithout

by adversarial input fromH, secret input fromH must be low-

need of an actual third party. However, we abstractly specify the integrity (that is, its label must b8~). But if it is low-integrity,

information security requirements that such a scheme would aim
to satisfy.Consider the following sketch of an auction protocol,
illustrated in Figure 2:

(1) A sends her bicg_bid to T with labelA~ A (A AB)~ . This
label meansa_bid is trusted only by those who trusf and
can be viewed only if both A and B agree to release it.

(2) T acceptsa_bid fromA and uses his authority to endorse the
bid to label (A A B)~ A (A AB)™ (identically,A A B). The
endorsement prevents any further unilateral modification to
the bid byA. T then broadcasts this endorsedbid to A and
B. This broadcast corresponds to an assumption that network
messages can be seen by all parties.

(3) B constructsb_bid with labelB~ A (A A By and sends it td .

(4) T endorses b_bid to A A B and broadcasts the result.

(5) T now uses its authority to declassify both bids and send them

to all parties. Since both bids have high integrity, this declassi-

fication is legal according to existing typing rules introduced
to enforce (qualified) robust declassification [4, 11, 27].

Unfortunately, this protocol is subject to attacks analogous to
mauling in malleable cryptographic schemddgJf B can always
win the auction with the minimal winning bid. In Step 3 nothing
preventsB from constructingo_bid by adding 1 t@_bid , yielding
a new bid with label B A (A A B)” (to modify the value, B must
lower the value’s integrity aé did not authorize the modification).

Again an insecurity stems from erroneously endorsing overly
secret information. In step 4, should not endorsé_bid since it
could be based on confidential information inaccessiblB+ein
particular,a_bid . The problem can be fixed by givifgs bid the
labelA~ A A< (identically, jusi?), but existing information flow
systems impose no such requirement.

2.3 Laundering secrets

Wittbold and Johnson44 present an interesting but insecure pro-
gram:

this input (or the variabley) must be endorsed to allow the de-
classification it influences. As in the previous two examples, the
endorsement of high-confidentiality information enables exploits.

3 DBackground

We explore nonmalleable information flow in the context of a sim-
plified version of FLAM4], so we first present some background.
FLAM provides a unified model for reasoning about both informa-
tion flow and authorization. Unlike in previous models, principals
and information flow labels in FLAM are drawn from the same
setlL . The interpretation of a label as a principal is the least pow-
erful principal trusted to enforce that label. The interpretation of
a principal as a label is the strongest information security policy
that principal is trusted to enforce. We refer to element& cdis
principals or labels depending on whether we are talking about
authorization or information flow.

Labels (and principals) have both confidentiality and integrity
aspects. A label (or principdlan be projected to capture just its
confidentiality (¢) and integrity (¢) aspects.

The information flow orderinds on labels (and principals) de-
scribes information flows that are secure, in the direction of increas-
ing confidentiality and decreasing integrity. The orthogonal trust
ordering > on principals (and labels) corresponds to increasing
trustedness and privilege: toward increasing confidentiality and
increasing integrity. We rea& ¢ " as ¢ flows to¢ ", meaning’
specifies a policy at least as restrictive @oes. We regd > g as
“p acts for g”, meaning that g delegates to p.

The information flow and the trust orderings each define a lattice
over L, and these lattices lie intuitively at right angles to one
another. The least trusted and least powerful principal, ighat
is,p » L for all principalsP), and the most trusted and powerful
principal isT (whereT > p for allP). We also assume there is a
set of atomic principals likiice andbob that define their own
delegations.

Since the trust ordering defines a lattice, it has meet and join
operations. Principa A gis the least powerful principal that can
act for bothP and@; converselyp v g can act for all principals
that bothP andq can act for. The least element in the information
flow ordering isT “ , representing maximal integrity and minimal
confidentiality, whereas the greatest element i, representing
minimal integrity and maximal confidentiality. The join and meet
operators in the information flow lattice are the usual andn,
respectively.

Any principal (label) can be expressed in a normal fBrm
d< whereP andq are CNF formulas over atomic principalé][

state of the system, whose confidentiality label is sufficiently low,
and to modify some state of the system, whose integrity label is
sufficiently low. Semantically, robust declassification says that if the
attacker is unable to learn a secret with one attack, no other attack
will cause it to be reveale@T, 46. The attacker has no control over
information release because all attacks are equally good. When ap-
plied to a decentralized system, robust declassification means that
for any principalP, other principals thaP does not trust cannot
influence declassification of p’s secrets [11].

To enforce robust declassification, prior security-typed languages
place integrity constraints on declassification. The original work

This normal form allows us to decompose decisions about latticeon FLAM enforces robust declassification using the voice operator

ordering (in either lattice) into separate questions regarding the
integrity component P) and the confidentiality componentq).
Lattice operations can be similarly decomposed.

V. However, when declassification is expressed as a programming-
language operation, as is more typical, it is convenient to define a
new operator on labels, one that maps in the other direction, from

FLAM also introduces the concept of the voice of a label (princi-integrity to confidentiality. We define th&i€Wof a principal as the

pal)¢, written V(¢) . Formally, for a normal-form labek p~ Aq*,
we define voice as followS{p”™ Aq™) &2p ~ 1A label's voice
represents the minimum integrity needed to securely declassify
data constrained by that labeg restriction designed to enforce
robust declassification.

The Flow-Limited Authorization Calculus (FLAC)][previously

upper bound on the confidentiality a label or context can enforce
to securely endorse that label:

Definition 4.1 (Principal view)et¢ = p~ Aq“ be a FLAM label
(principal) expressed in normal form. TWeWof ¢, written A(¢) ,
is definedas AP AG™) 2q~.

embedded a simplified version of the FLAM proof system into a core When the confidentiality of a lalfdlies above the view of its own

language for enforcing secure authorization and information flow.

FLAC is an extension of the Dependency Core Calculus (OC) [
whose types contain FLAM labels. A computation is additionally
associated with a program-counter laB€which tracks the influ-

ences on the control flow and values that are not explicitly labeled.

In this paper we take a similar approabhvlIFCenforces secu-
rity policies by performing computation in a monadic context. As
in FLAC ,NMIFCincludes &Clabel. For an ordinary valug the
monadic term(n, v) signifies that value with the information flow
labele¢. If valueV has typeTl, the term(n, v) has type says 7,
capturing the confidentiality and integrity of the information.

Unlike FLACNMIFChas no special support for dynamic delega-
tion of authority. Atomic principals defirle by statically delegating
their authority to arbitrary conjunctions and disjunctions of other
principals, and we include traditional declassification and endorse-
ment operationsgecl andendorse. We leave to future work the
integration of nonmalleable information flow with secure dynamic
delegation.

4 “€nforcing nonmalleability

Multiple prior security-typed languages—both function8] pnd
imperative [B, 11, 27—aim to allow some form of secure down-

integrity, a declassification of that label may give adversaries the
opportunity to subvert the declassification to release information.
Without enough integrity, an adversary might, for example, replace
the information that is intended to be released via declassification
with some other secret.

Figure 3 illustrates this idea graphically. It depicts the lattice of
FLAM labels, which is a product lattice with two axes, confidential-
ity and integrity. A given label is a point in this diagram, whereas
the set of labels sharing the same confidentiality or integrity
¢ correspond to lines on the diagram. Given the integtity of
the labele, the view of that integrity, A(¢ ~), defines a region of
information (shaded) that is too confidential to be declassified.

The view operator directly corresponds to the writers-to-readers
operator that Chong and Myeiid 1] use to enforce robust declassi-
fication in the DLM. We generalize the same idea here to the more
expressive labels of FLAM.

4.2 Transparent endorsement

The key insight of this work is that endorsement should be re-
stricted in a manner dual to robust declassification; declassification
(reducing confidentiality) requires a minimum integrity, so endorse-
ment (raising integrity) should requirg®@aximumconfidentiality.

grading. These languages place no restriction whatsoever on thelntuitively, if a principal could have written data it cannot read,

confidentiality of endorsed data or the context in which an endorse-

ment occurs Because of this permissivenessl three insecure
examples from Section 2 type-check in these languages.

4.1 Robust declassification

Robust declassification prevents adversaries from using declassifi

cations in the program to release information that was not intended

to be released. The adversary is assumed to be able to observe so

FLAM definesV(p~™ AQ©)=p*“ AQ“, butour simplified definition is sufficient
for NMIFC. For clarity, the operatoV is always applied to a projected principal.

m

which we call an “opaque write,” it is unsafe to endorse that data.
An endorsement igiansparentf it endorses only information its
authors could read.

The voice operator suffices to express this new restriction conve-
niently, as depicted in Figure 4. In the figure, we consider endorsing
information with confidentiality¢ ™ . This confidentiality is mapped
to a corresponding integrity leve¥(¢ ~), defining a minimal in-
tegrity level thatt must have in order to be endorsed. lies below
Wi boundary, its endorsement is considered transparent; if it lies
above the boundaryendorsement i®Paquénd hence insecure.
The duality with robust declassification is clear.

T

T

Figure 3: Robust declassification says information at lévedn be
declassified only if it has enough integrity. The gray shaded region
represents information thak(¢ =) cannot read, so it is unsafe to
declassify with ¢'s integrity.

T

opaque

transparent

T

figure 40 Transparent endorsement iNMIFC. The gray shaded
region represents information that(¢ ~) does not trust and may

neN (atomic principals)

xeV (variable names)
me{-, <} (security aspects)
p.tpc = N T 1 PT pAp pvp pup pnp
pc
T = wunit T-->7T (saysT
V.= () Ax:t)lpcle (7, v)
€ = X V €€ (ne) bindx=eine
decleto¢ endorseeto¢

Figure 5: Core NMIFC syntax.

[E-Apd

[E-BindM]

Ax:T)Pd.e)v—ex7-vVv]

bind x = (T, v)in e —— e[x 7- V]

@ v) (4 v)
(trace) ti=¢ C t;t

e, ty—» (¢t

(event) cu=-

e——e'

[E-sted [T CT)

[E-UnitM] nev),)= @ v)t;mv)

[E-Decl] decl (M, v)to 6, &~ (M, v), t5(§, T, v)
[E-Endorse] endorse (" v)to ¢, t =» ([, v), t;(§, T, v)
[E-Evall ©h= €0

(Elell) — <E[€], 1)

Evaluation context

E === [] Ee VE

decl Eto ¢

(n¢ E) bindx=Eine

endorse E to ¢

Figure 6: Core NMIFC operational semantics.

to track what information influences control flow so that these
downgrading effects may be appropriately constrained. Therefore,

have been created by an opaque write. It is thus unsafe to endorseﬁke FLAC, NMIFC adds pc labels to lambda terms and types

with ¢'s confidentiality.

5 A core [anguage: JDNISC

We now describe the NonMalleable Information Flow Calculus

Similarly to DCC, protected values have type ¢ says T where ¢
is the confidentiality and integrity of a value of typeAll compu-
tation on these values occurs in tisays monad; protected values
must be bound using thand term before performing operations

(NMIFQ), a new core language, modeled on DCC and FLAC, thatO" them (e.g., applying them as functions). Results of such compu-

allows downgrading, but in a more constrained manner than FLAC
so as to provide stronger semantic guarantebi#/IFCincorpo-
rates the program-counter labBE of FLAC, but eschews the more
powerful assumemechanism of FLAC in favor of more traditional
declassify and endorse operations.

The fullNMIFCis a small extension of Polymorphic DC@.[In

tations are protected with the monadic unit operaigy e), which
protects the result of e with label ¢.

5.1 WNISC operational semantics

The core semantics biMIFCare mostly standard, but to obtain our

theoretical results we need additional information about evaluation.

Figure 5 we present the core syntax, leaving other features such asThis information is necessary because we want to identifipr

sums, pairs, and polymorphism to Appendix A. Unlike DNMIFC

instance, whether information is ever available to an attacker during

supports downgrading and models it as an effect. It is necessary evaluation, even if it is discarded and does not influence the final

('S¢ .1 Fpcr x - . A
[P-Unit] L0 unit [P-Lbl] [Var] Mx:t,LpPC-x:1 [Unit] I;PCH () - unit
¢ EsaysT

. pe
Figure 7: Type protection levels. [PCrenit o1

M X:5PCrHe:n MpCre: T pce pc
[Lam] P [Apd Fpcr e 6,
[PeHe Gl T
[PCHA(x : ®)[PCl.e: 11 ——> B
result. This approach gives an attacker more power; an attacker canyypip | rpcre:t pece [VUNitM] Gperv:t
see information at its level even if it is not output by the program. FiPCH (e e):(saysT riper (M v):tsays T
TheNMIFCsemantics, presented in Figure 6, maintain a tratce rpcre:esaysT r(ET

events. An event is emitted into the trace whenever a new protected BindM] rx:T;pcuere :tT
value is created and whenever a declassification or endorsemen{ I;PCbind x =€ in € : T

occurs. These events track the observations or influence an attacker) o - _ .
. IpCe: ¢ saysT [pcE¢
may have during a run of adMIFCprogram. Formally, a trace can ¢~ e uA(C upy)

be an empty tracé, a single everg, or the concatenation of two [Decl] T;PCrdecl €to ¢: (says T
traces with the associative operator “;” with identity .))

When a source-level unit terf, v) is evaluated (rule E-UnitM), rpc-e ;’LSE,‘:”‘;‘I y v(“(; Jlﬁ(‘;) peet
an event(n, v) is added to the trace indicating that the valle [Endorse] r;pwe;dorse 1o (10 saysT
became protected @t When a protected value is declassified,))
declassification ever(t” , 7j, v) is emitted, indicating that was Figure 8: Typing rules for core NMIFC.

declassified from’ to¢. Likewise, an endorsement eveyt, 1, v)
is emitted for an endorsement. Other evaluation steps (rule E-Step)
emit ¢, for “no event.” Rule E-Eval steps under the evaluation

contexts [45] defined at the bottom of Figure 6. The core type system presented in Figure 8 enforces nonmal
Rather than being literal side effects of th , th t .) X ;
aiher than being fiteral Side etiects of Ihe program, fnese even SIeable information flow foNMIFCprograms. Most of the typing

track how observable information is as it is accessed, processed, ; .
and protected by the progranBecause our semantics emits an rules are standard, and differ only superficially from DCC and FLAC.

event whenever information is protected (by evaluating’atierm) :_ilt()elinflt_:ct)NMlFCtytping judgmebnts ir:jcludteha prog;amt.c?.ttmterd
or downgraded (by decl or endorse term), our traces capture abel PG, that represents an upper bound on the confidentiality an

all information processed by a progranindexed by the policy mtegrl’g Of. botund mforlmaBt.lo(r;'\:Ihat ar.1y ccihmprtatlor} {anbdzper}d
protecting that information. upon. For instance, rule BindM requires the type of the body of a

By analogy, these events are similar to the typed and labeled mu_bind term to protect the unlabeled information of type with at

: least’, and to type-check under a raised program counterdatél
table reference cells of languages like FlowCafhahd DynSeddd.) i .
An event(r, v) is analogous to allocating a reference cell protected Rule Lam ensures that function bodies type-check with respect to

ate, and(\", 7, v) is analogous to copying the contents of a cell the function’sPCannotation, and rule App ensures functions are
at (}7 to a ne\;v éell ate only applied in contexts that flow to these annotations.

It is important for the semantics to keep track of these events TheNMIFCrule for UnitM differs from FLAC and DCC in re-

so that our security conditions hold for programs containing data quiring the premisepe £l fcl)rt\'/vell-liypid;)M:ermls!.ﬁThljnptremlse
structures and higher-order function®revious language-based ensures a more precise re:ationsnip betweentian erms.

definitions of robust declassification have only applied to simple Intumvelly this re§tr|(?t|on makes sense. Théis a bound on all un-
. A labeled information in the context. Since an expressiprotected
while-languages [6, 11, 27] or to primitive types [5].

with (n, €) may depend on any of this information, it makes sense
to require that pc flow to £

Abadi [2] similarly modifies DCC’s protection relation to distin-
guish the protection level of terms with nested says types.

5.2 MYY)H-C type SYStem By itself, this restrictive premise would prevent public data from
The NMIFCprotection relation, presented in Figure 7, defines how flowing through secret contexts and trusted data from flowing
types relate to information flow policiesA type T protects the through untrusted contexts. To allow such flows, we distinguish
confidentiality and integrity of¢ if ¢ E 1 . Unlike in DCC and source-leve{n, e)terms from run-time value§j, v), which have
FLAC, a label is protected by a type only if it flows to the outermost been fully evaluated. These terms are only created by the opera-
says principal.In FLAC and DCCthe typesf' says ¢says T tional semantics during evaluation and no longer depend on the

and¢ says (¢ ' says 1 protect the same set of principals; in other context in which they appearthey are closed termsThus it is

words,says is commutative. By distinguishing between these types, appropriate to omit the new premise in VUnitM. This approach

NMIFC does not provide the same commutativity. allows us to require more precise flow tracking for the explicit
The commutativity ofsays is a design decision, offering a more dependencies of protected expressions without restricting where

permissive programming model at the cost of less precise tracking these values flow once they are fully evaluated.

of dependencie\MIFCtakes advantage of this extra precision

in the Uth_typ_mg rUIe. so the la.bel on eve'ry'.7 term protects 2The premise is not required in FLAC because protection is commutative. For example,
the information it containseven if nested within othef] terms. in a FLAC term such as bin& = v in (1,' (¢ x)} X may be protected by or ¢ .

requires a term of the formendorse vto A A B whereV types
to B~ A (A AB)” says int . Despite the trusted context, the last
premise of Endorse again fails:

checkpwd = A(0 :U~ says String, p :T says String)[T “].
bind guess = (endorse 0 to T) in
decl (bind pwd =pin (n T pwd == guess))to T

BT E(AABY UV((AAB)”)=(AAB) .
Figure 9: A secure version of a password checker. (a (¢) =()

If we instead labea_bid : A says int andb_bid : B says int ,
Rule Decl ensures a declassification from labab ¢ is robust. ~ then the correspondingndorse statements type-check, assuming
We first requiret = = ¢ to ensure that this does not perform en- that Tis trusted: TE (A A B).
dorsement. A more permissive premise E ¢* is admissible, but 5.3.3 Laundering secrefSor the secret-laundering example in

requiring equality simplifies our proofs and does not reduce expres- Section 2.3we assume that neitheH nor L is trusted, but the

SIVENess since the dgclassmcatlop can be foIIowe.d.by.a SUbS‘equentoutput from the program is. This forces an implicit endorsement of
relabeling. The premispc E ¢ requires that declassifications occur

L . o Y, the input received frortf. But the condition needed to endorse
in high-integrity contexts, and prevents declas&ﬂcgtlon events from fromH” AL- to H” AT* is false:
creating implicit flows. The premise™ E¢~ U A((¢ upc))en- '

sures that the confidentiality of the information declassified does LS ETTUVHT)=V(H™)

not exceed the view of the integrity of the principals that may

have influenced it. These influences can be either exlici) or We haveV(L™) £ V(H ™) and all integrity flows to L, so by
implicit (PC), so we compare against the join of the twdhis transitivity the above condition cannot hold.

last premise effectively combines the two conditions identified by) L
Chong and Myer§1 1] for enforcing robust declassification inan 6 Security conditions

imperative while-language. The NMIFCtyping rules enforce several strong security conditions:
Rule Endorse enforces transparent endorsemeiit.but the multiple forms of conditional noninterferencepbust declassifi-

last premise are straightforward: the expression does not declassify cation, and our new transparent endorsement and nonmalleable

andpc E ¢ requires a high-integrity context to endorse and pre- information flow conditions. We define these conditions formally

vents implicit flows. Interestingly, the last premise is dual to that pyt relegate proof details to the technical report [10].
in Decl. An endorsement cannot raise integrity above the voice of

the confidentiality of the data being endorsed () or the context 6.1 Attackers
performing the endorsemen{C”). For the same reasons as in

Decl, we compare against their join. Noninterference is frequently stated with respect to a specific but

arbitrary label.Anything below that label in the lattice is “low”
3 Examples revisited (public or trusted) and everything else is “high”. We broaden this
>3 P definition slightly and designate high information using a set of

We now reexamine the examples presented in Section 2 to see thal paisH that is upward closed. Thatis/iE H and¢C ¢, then
the NMIFC type system prevents the vulnerabilities seen above. ¢ cH . We refer to such upward closed sets as high séts.
5.3.1 Password checkae saw above that when the pass- We say that a typé& is ahigh type written “+ T prot H”, if all of

word checker labelguess at T~ , well-typed code can improp- the information in a value of typ& is above some label in the high
erly setguess to the actual password. We noted that the endorse- Set H . The following rule defines high types:

ment enabled an insecure flow of informationLooking at En- HeH L HCT

dorse in NMIFC we can attempt to type the equivalent expression: [P-Set] ~ _His upward closed

endorse guess to T However,if guésshas typeT ~ says bool, + T prot H

the endorse does not type-check; it fails to satisfy the final premise
of Endorse:

This formulation of adversarial power is adequate to express
noninterference, in which confidentiality and integrity do not inter-
LT =(T7)Y ET uv(T”)=T". act. However, our more complex conditions relate confidentiality to
If we instead giveguess the labelU* | the endorsement type- integrity and therefore require a way to relate the attacker’'s power
checks, assuming a sufficiently trusted pc. in the .two domains.
This is as it should be. With the labdl , the guesser must be . Intumvely,.a.n attacker is an arbitrary set of coIIud!ng a.torr.uc prin-
able to read their own guess, guaranteeing that they cannot guessc'pals' Specifically, ff1, ,ine N are those atomic principals,

the correct password unless they in fact know the correct password.:hel? tr’1e setA =_|{_(;1€ L . n'1 AII A 'k kl f};j repre§er;ts thlst.at— d
Figure 9 shows this secure version of the password checker. ackers power. 1hese principals may Include principals mentione

in the program,and there may be delegations between attacker

5.3.2 Sealed-bid auctiom the insecure auction described in principals and program principals. While this definition of an at-

Section 2.2, we argued that an insecure flow was createdWhen tacker is intuitive, the results in this paper actually hold for a more
endorsedb_bid from B~ A (A A B)” to A A B. This endorsement general notion of attacker defined in Appendix B.

ET—— , § o th sundant. 1t would Attackers correspond to two high setsn untrustechigh set
e first two premises&~ =¢“ andPC E ¢ —make this join redundant. It would, _ P . _ =
hpwever, be necessary if we replaced the equality premise with the more permissive U= {€ eL | ¢ E.A} and aseCfeh|gh setS = {(el | <
¢'< £ ¢ version, so we include it for clarity. A}. We say that A induces U and S.

¢ |lvay v then either there is some everﬁ,(m w) t' where ¢ e H and

1 ~x 2
(<H,ort *wt'

C=w

These equivalence relations are the smallest congruences ®eed overV

extended with ¢, containing the equivalences defined by these rules: . . .
X W g g y The restrictions placed on downgrading operations mean that we

(<W (<W . " . .
[EqUnitM] m—pie—r [Eq-Down] or—r—pis— can characterize the conditions under which no downgrading can
g W e w occur. We add two further noninterference theorems that restrict
t=yy U downgrading in different ways. Theorem 6.2 states that if a program

types without a public-trusted@Cit must be noninterfering (with

The equivalence relation t %, t' is the smallest congruence over t - . . ”
d w g respect to that definition of “public-trusted”).

containing the equivalences defined by these rules:

[T-Lift] W C: [T-BulletR] t;+ = ¢ [TBulletl] =, t Theorem 6.2 (Noninterference of high- PCprograms). Let
c=y © A be an attacker inducing high sets U and S. Let H be one of those
Figure 10: Low equivalence and low trace equivalence. high sets and W =L\ H . Given some e such that T, x;:pc -
e : Ty where -ty protH, forallvy v withT; pc+vi : Ty, if
, Y iy ey - ~* t2
6.2 Equivalences e[x 7~ v], vi» Wi, t"yandpceUus, thent =},
All of our security conditions involve relations on traces. As is typ- Rather than restrict th@C Theorem 6.3 states that secret-untrusted

ically the case for information-flow security conditions, we define information is@/waysnoninterfering. Previous work (e.g8,[27)
a notion of “low equivalence” on traces, which ignores effects with does not restrict endorsement of confidential information, allow-
high labels We proceed by defining low-equivalent expressions ing any label to be downgraded to public-trusted (given a public—
and then extending low-equivalence to traces. trustedPQ). INNMIFG however, secret-untrusted data must remain
For expression equivalencee examine precisely the values secret and untrusted.
which are visible to a low observer defined by a set of labéls)
(i, v) and (I, 7, v) wherec e W . We formalize this idea in Theorem 6.3 (Nonlr.1terfe'rence. of secret-untrusted data).
Figure 10, using to represent values that are not visible. Beyond L&t A be an attacker inducing high sets U and S. LetH=Un S
ignoring values unable to affect the outputwe use a standard ~ @1d W =L\ H. Given some e such that T, pc - e T2 Where*n—
structural congruence (i.e., syntactic equivalence). This strict notion '1 Prot H, for1 all v, Y with T, pc = w: Ty, if €[x 7~], vi) =
of equivalence is not entirely necessary: observational equivalence Vit >thent =3, t%
or any refinement thereof would be sufficient if augmented with e
the »-equivalences in Figure 10. 6.4 Robust declassification and
Figure 10 also extends the equivalence on emitted values to irrelevant inputs

equivalence on entire traces of emitted valudsssentiallyfwo We now move to security conditions for programs that do not sat-
traces are equivalent if there is a way to match up equivalent eventsisfy noninterference. Recall that robust declassification informally
in each trace, while ignoring high events equivalent to «. means the attacker has no influence on what information is released
, p by declassification. Traditionally, it is stated in terms of attacker-
6.3 Monmterfereuce and 50‘00119‘((181119 provided code that is inserted into low-integrity holes in programs
An immediate consideration when formalizing information flow is which differ only in their secret inputs. MMIFC the same attacker
how to express interactions between an adversary and the systempower can be obtained by substituting exactly two input values into
One possibility is to limit interaction to inputs and outputs of the the program, one secret and one untrusted. This simplification is
program. This is a common approach for functional languages. We possible becaus¢MIF Chas first-class functions that can model the
take a stronger approach in which security is expressed in terms of substitution of low-integrity code. Appendix C shows that this sim-
execution traces. Note that traces contain all information necessary pler two-input definition is equivalent to the traditional hole-based
to ensure the security of input and output values. approach in the full version of NMIFC (Appendix A).

We begin with a statement of noninterference in the presence of Prior work on while -based languaged {, 27] defines robust
downgrading. Theorem 6.1 states that, given two high inputs, a well-declassification in terms of four traces generated by the combination
typed program produces two traces that are either low-equivalent of two variations: a secret input and some attacker-supplied code.
or contain a downgrade event that distinguishes them. This implies For terminating traces, these definitions require any pair of secrets
that differences in traces distinguishable by an attacker are all to produce public-equivalent traces under all attacks or otherwise
attributable to downgrades of information derived from the high to produce distinguishable traces regardless of the attacks chosen.
inputs. Furthermore, any program that performs no downgrades on This implies that an attacker cannot control the disclosure of secrets.
secret or untrusted values (i.e., containdexl or endorse terms We can attempt to capture this notion of robust declassifcation
on H data) must be noninterfering. using the notation oNMIFC For a progran® with a secret inpu¥
and untrusted inpu¥, we wish to say robustly declassifies if, for

Theorem 6.1 (Noninterference modulo downgrading). Let
a‘?” secret values1y v and for all untrusted valuesywp, where

H be a high set and let W = L\ H . Given an expression e such th 5
r, x_f:ﬁ; pc +—eTywhere+tprotH, forall v, wwithT; pc+v: elx 7o V]ly 7T W], vi;w —~»"* Vij, i
Tq, 0 A

ex7-v],vi) =" Vit then 1=} 121 et 12=2% 122

Ax: (P~ AU® saysT) x (P> AU~ saysT))[P” AT . To ensure that we only .consider data structures with nested
values that were selected independently of the values themselves,
we leverage the noninterference theorems in Section 6.3. In par-
ticular, if the outermost label is trusted before a declassification
(or public prior to an endorsement), then any influence from un-
trusted (secret) data must be the result of a prior explicit downgrade.
Figure 11: A program that admits inept attack¢dereP = S and Thus we can identify irrelevant inputs by finding inputs that re-
T C U, but not vice versa, sds a secret boolean ardtky, atk) sult in traces that are public-trusted equivalent, but can be made
form an untrusted pair of values. #K4 | atk 2, then the attacker both public (trusted) equivalent and non-equivalent at the point of
will learn the value o$€¢ Ifatky = atko, however, then the attacker ~ declassification (endorsement).
learns nothing due to its own ineptness. To define this formally, we begin by partitioning the principal
lattice into four quadrants using the definition of an attacker from
Section 6.1. We consider only flows between quadrants and, as with
This condition is intuitive but, unfortunately, overly restrictive. noninterference, downgrades must result in public or trusted values.
It does not account for the possibility of @ept attackin which an We additionally need to refer to individual elements and prefixes
attacker causes a program to reveal less information than intended. of traces. For a trade lettn denote thdlth element of, and let
Inept attacks are harder to characterize than in previous work ¢, denote the prefix of t containing its first n elements.
because, unlike the pre\(lously usedhile -IanguagesNM!FCsup- Definition 6.4 (Irrelevant inputsonsider attackeA inducing
ports data structures with heterogeneous labels. Using such datah. _ _
structures, we can build a program that implicitly declassifies data igh setsti. andH., . LetWr = L\H mandW =W . nW...
’ Given opposite projectiong and’ a programé€, and typedx and

by using a secret to influence the selection of an attacker-provided T, such that- T brot Hr andr 7/ orot Hre . we sav an inou¥
value and then declassifying that selection. Figure 11 provides an i P v P ’ y put

, is anirrelevant -input with respect toA and€if I; pc + v : Tx
example of such a program, which uses sums and products from . T
and there exist valuéép, W1, andWs and four trace indice8i; (for
the full NMIFC language. o . s :
. : i, je {1, 2}) such that the following conditions hold:
While this program appears secure—the attacker has no control i))) .
over what information is declassified or when a declassification (1) 5 pc - Y- I, I pcr w1, and* r pe 'I‘IW L4
occurs—it violates the above conditioBne attack can contain) <I.6]’.[X 7= VIly 7= wl, vis W) =" vij,)
the same value twice—causing any two secrets to produce indis- (3) tn;; 0,y «foralli, j € {1, 2}
tinguishable traces—while the other can contain different values. (4) tf/_m =% tfd.nkl foralli,j, k, {1, 2}
Intuitively, no vulnerability in the program is thereby revealed; the (5) 11 =x 12
program wadntendedo release information, but the attacker failed t'2'1"” W t'2'"12
to infer it due to a poor choice of attack. Such inputs result in less (6) 1y OWn - M2 .
information leakage entirely due to the attacker’s ineptness, not Otherwise we say1is arelevant frinput with respect toA and
an insecurity of the program. As a result, we consider inputs from €, denotedelg e (v1). Note that the four indice8i; identify corre-
inept attackers to be irrelevant to our security conditions. sponding prefixes of the four traces.

Dually to inept attackerswe can define uninteresting secret . .
inputs. For example, if a program endorses an attacker’s selection As mentioned aboveprior downgrades can allow secret/un-
: ’ trusted information to directly influence the outer later of the data

of a s.ecret. value, an input where all segret Qgtlons contain the samestructure, but Condition 4 requires that all four trace prefixes be
data is uninteresting, so we also consider it irrelevant.

L : . o public-trusted equivalent, so any such downgrades must have the
Which inputs are irrelevant is specific to the program and to . : s .
. .) : same influence across adixecutions Condition 5 requires that
the choice of attacker. In Figure 11, if both execution paths used . :) . .
) some inputs result in prefixes that are public equivalent (or trusted
(proj 1 x) there would be no way for an attacker to learn any . : o .
) . o e equivalent for endorsement), while Condition 6 requires that other
information, so all attacks are equally relevant. Similarly if is) .) e .)
.) inputs result in prefixes that are distinguishable. Since all prefixes
already considered public, then there is no secret information in ; - ;) L
! . are public-trusted equivalent, this means there is an implicit down-
the first place, so again, all attacks are equally relevant. o .)
. : . . grade inside a data structure, so the equivalent prefixes form an
For an input to be irrelevant, it must have no influence over the

outermost layer of the data structure—the label that is explicitly irelevant input. _— o

. . : We can now relax our definition of robust declassification to
downgraded. If the input could influence that outer layer in any way, only restrict the behavior of relevant inouts
the internal data could be an integral part of an insecure execution. y o o 'p '
Converselywhen the selection of nested values is independent ~ Deéfinition 6.5 (Robust declassificatiamste be a program and
of any untrusted/secret information (though the content of the letX andy be variables representing secret and untrusted inputs,
values may not be), it is reasonable to assume that the inputs will respectively. We say th@robustly declassifigsfor all attackers
be selected so that different choices yield different results. An input A inducing high setdJ andS (andP =L\S) and all values
which does not is either an inept attack—an attacker gaining less V1, V2, w1, W, if
information than it could have—or an uninteresting secret—a choice elx T Vly 7- Wl vi;w =" Vij, t' |
between secrets that are actually the same. In either case, the input
is irrelevant. then rely . (w1) and M =% t21 =t 12 =% t22,

declbind b=(n s-ar< sec)in
case bofinj 1 .(Ns- a7 (Proj 1x))
[inj 2.(ns- AT~ (proj 2x))
toP~” AT< atky atky

As NMIFConly restricts declassification of low-integrity data, once a declassification has occurreds can say little about the

endorsed data is free to influence future declassificatioAs. a relation between trace pairs that fix a secret and vary an attack.
result, we can only guarantee robust declassification in the absence There is one condition that allows us to safely relate trace pairs
of endorsements. even after a downgrade event: if the downgraded values are identi-

cal in both trace pairs. Even if a declassify or endorse could have
caused the traces to deviatd,it did not, then this program is
essentially the same as one that started with that value already
downgraded and performed no downgrade. To capture this intu-
Note that prior definitions of robust declassificatioh?] 27] sim- ition, we define nonmalleable information flow in terms of trace
ilarly prohibit endorsement and ignore pathological inputs, specifi- Prefixes that either do not deviate in public values when varying
cally nonterminating traces. Our irrelevant inputs are very different only the secret input or do not deviate in trusted values when vary-
sinceNMIFCis strongly normalizing but admits complex data struc- ing only the untrusted input. This assumption may seem strong at

Theorem 6.6 (Robust declassification). Given a program e,
ifT, x 7%, y :y; pc + e: T and e contains no endorse expressions,
then e robustly declassifies as defined in Definition 6.5.

tures, but the need for some restriction is not new. first, but it exactly captures the intuition that downgraded data—
but not secret/untrusted data—should be able to influence future
6.5 tr(mqurent endorsement downgrades. While two different endorsed attacks could influence

a future declassificationif the attacks are similar enough to re-
sult in the same value being endorsetihey must influence the
declassification in the same way.

We described in Section 2 how endorsing opaque writes can cre
ate security vulnerabilities. To formalize this intuition, we present
transparent endorsemeatsecurity condition that is dualto ro-
bust declassification. Instead of ensuring that untrusted informa- Definition 6.9 (Nonmalleable information flowet e be a pro-
tion cannot meaningfully influence declassificatidransparent gram and leX andY be variables representing secret and untrusted
endorsement guarantees that secret information cannot meaning-inputs, respectively. We say ttaénforcegionmalleable informa-
fully influence endorsement. This guarantee ensures that secretstion flow(NMIF) if the following holds for all attacker& inducing
cannot influence the endorsement of an attacker’s value—neither high setsJ andS. LetT=L\U ,P=L\S andW=Tn$S .
the value endorsed nor the existence of the endorsement itself. For all values ¥ v, wq, and w, let

As it is completely dual to robust declassification, we again ap-
peal to the notion of irrelevant inputsthis time to rule out un- -
interesting secretsThe condition looks nearly identicamerely For all indices #j such that,’b{-, Ow *
switching the roles of confidentiality and integritylt therefore
ensures that any choice of interesting secret provides an attacke
with the maximum possible ability to influence endorsed values;
no interesting secrets provide more power to attackers than others.

ex7-Vlly7-wl,vi;w =" Vij,tij .

P I s ti2 fori=1,2, then

rel;,e (W1) and t1-1ﬂ11 z;’ t-2-1nz1 =t -13712 zP t-2-2n22'
Definition 6.7 (Transparent endorsemggtkbe a program and (2) Similarly, if t_1/_'n1j_1 =%, t_2/_'nzj_1 forj =1, 2, then
letX andy be variables representing secret and untrusted inputs,

respectively. We say thatransparently endorsesor all attackers relie (vi)and 0}, =% 112, ==t 2] =% 122
A inducing high setdJ andS dT=L\U d all val
vy "‘12 l:/;mi :? se an (an) and all values Unlike the previous condition®§yMIFCenforces NMIF with no

ij syntactic restrictions.
e[x 7- vy 7- w], vi; =" Vij t! . .
[Iy 7~ wl, vi w Y Theorem 6.10 (Nonmalleable information flow). For any

then rely , (v1) and i1 = t12 — ¢ 2 =t t22 program e such that T, x ;1 :¥; pc + e : T, e enforces NMIF.

We note that both Theorems 6.6 and 6.8 are directly implied by
Theorem 6.10. For robust declassification, the syntactic prohibition
onendorse directly enforceé’ ' =% t/2 for the entire trace), and

Theorem 6.8 (Transparent endorsement). Given a program the rest of case 1 is exactly that of Theorem 6.&imilarly, the
eifl, x 1x, y :y; pc - e : Tand e contains no decl expressions, syntactic prohibition ordecl enforcedV =% t%, while the rest

As in robust declassification, we can only guarantee transparent
endorsement in the absence of declassification.

then e transparently endorses. of case 2 is exactly Theorem 6.8.
6.6 WMonmalleable information flow 7 WDNIF as 4-safety

Robust declassification and transparent endorsement each restricClarkson and Schneid§t3] define ahyperpropertias “a set of sets
one type of downgrading, but as structured above, cannot be en-of infinite traces,” andlypersafetito be a hyperproperty that can
forced in the presence of both declassification and endorsement.be characterized by a finite set of finite trace prefixes defining some
The key difficulty stems from the fact that previously declassified “bad thing.” That is, given any of these finite sets of trace prefixes it
and endorsed data should be able to influence future declassifi- is impossible to extend those traces to satisfy the hyperproperty. It
cations and endorsements. However, any endorsement allows atis therefore possible to show that a program satisfies a hypersafety
attack to influence declassification, so varying the secret input can property by proving that no set of finite trace prefixes emitted by
cause the traces to deviate for one attack and not another. Similarly,the program fall into this set of “bad things.” They further define a

k-safety hyperproperyrk-safetyj as a hypersafety property that
limits the set of traces needed to identify a violation to size k.
Clarkson and Schneider note that noninterference provides an
example of 2-safety. We demonstrate here that robust declassifica-
tion, transparent endorsement, and nonmalleable information flow
are all 4-safety propertiés.
For a condition to be 2-safety, it must be possible to demonstrate
a violation using only two finite traces. With noninterference, this Figure 12: Relating 4-safety hyperproperties and noninterference.
demonstration is simple: if two traces with low-equivalent inputs
are distinguishablle. by.a low observer, the program is interfering. ti 1n_ » :*T tizn- _,), then one of three things must happen when
Robust declassification, however, cannot be represented this waygy iy 2

It that th , fidentiality rel ¢ tb xing the attack and varying the secret: both trace pairs are equiv-
says that the program's confidentiality release events canno ealent, both trace pairs are non-equivalent, or the postcondition of

influence by untrusted inputdf we could precisely identify the the implication holdst(2. = t22) The first two satisfyv the
release events, this would allow us to specify robust declassification P (1'”12 w o) y

>-safet t th | o ir of equivalency implication in Definition 6.9 while the third is exactly
asac-sa 'e y property (.)n ose release even) very palr N a demonstration that the first input is irrelevant.
untrusted inputs results in the same trace of confidentiality release

ts. th tisfi bust declassification. H ¢ Next we note that, while this does not strictly conform to the def-
events, the program satisties robust deciassitication. OWEVE, Q.. of robust declassification in Definition 6.5 which cannot be
identify confidentiality release events requires comparing traces

s . ! stated as a hypersafety properDis equivalent to Definition 6.5
with different secret inputs. A trace consists of a set of c.>bser_v.ablefor programs that do not perform endorsement. This endorse-free
states, not a set of release events. Release events are identified b x $i2

varying secrets; the robustness of releases is identified by varying

¥ondition means that the equivalence clalli:éh1_1 =3 t2
untrusted input. Thus we need 4 traces to properly characterize will be true whenever the trace prefixes refer to the same point
robust declassification.

in execution. In particular, they can refer to the end of execution,
Both prior work [l 1] and our definition irfBection 6.4tate robust

which gives exactly the condition specified in the theorem.
declassification in terms of four traces, making it easy to convert to

As with every other result so far, the dual construction results
a 4-hyperproperty. That formulation cannot, however, be directly in a 4-safety propertfC-&epresenting transparent endorsement.
translated to 4-safety. It instead requires a statement about trace

Sincé’Dcaptures the first clause of Definition 80&hus captures
) .) . . the second. This allows us to represent nonmalleable information
prefixes, which cannot be invalidated by extending traces. . . _
. X) . flow as a 4-safety property very simply: Y10i§ = RD n TE.
Instead of simply reformulating Definition 6.5 with trace pre- . . .
) TP . _— Figure 12 illustrates the relation between these hyperproperty
fixes,we modify it using insights gained from the definition of S :
- definitions. Observe that the 2-safety hyperpropéftifor nonin-
NMIF. In particular, instead of a strict requirement that if a relevant . :) .
-) .) terference is contained in all three 4-safety hyperproperties. The
attack results in public-equivalent trace prefixes then other attacks
must as wellwe relax this requirement to apply only when the

insecure example programs 8€&ction 2are found in the left cres-
trace prefixes are trusted-equivalent. As noted in Section 6.6, if we cent, satisfying XID but not M5
syntactically prohibiendorse—the only case in which we could 8 Impfementing MNIE

enforce the previous definition—this trivially reduces to that defini- i))
tion. Without the syntactic restriction, however, the new condition e have implemented the rules for nonmalleable information flow

is still enforceable. in context of Flame, a Haskell library and GH{][plugin. Flame
For a given attackek we can define a 4-safety property with ~ Provides data structures and compile-time checking of type-level
respectto A (letU, S, T, P, and W be as in Definition 6.9). acts-for constraints that are checked using a custom type-checker
n plugin. These constraints are used as the basis for encbiti§C
RDy & TeT|T= M2 as a shallowly-embedded domain-specific language (DSL). We have
At ent Joeat =t At V=i demonstrated that programs enforcing nonmalleable information

ij i o flow can be built using this new DSL.
== Vinij}eN: oy Oy ont T =7 U5

=121 At 12 08 t22 8.1 Information-flow monads in Flame

..n21q ..n12 --N22
=12 & p22 © The DSL works by wrapping sensitive information in an abstract

oMz W22 data type—a monad—that includes a principal type parameter rep-

We then define robustm—:‘ss against all attackers as the intersectionresenting the confidentiality and integrity of the information.
over all attackers: RD = 5 R . The Flame library tracks computation on protected information

The above definition structurally combines Definition 6.4 with as a monadic effect and provides operations that constrain such
the first clause of Definition 6.9 to capture both the equivalence computations to enforce information security. This effect is mod-
and the relevant-input statements of the original theorem. In the eled using théFC type class defined in Figure 13. The type class
nested implicationif the first two clauses holdféj,, oW « and IFC is parameterized by two additional types.in the Labeled

type class ance in Monad Instances of the_abeled type class

4While NMIFC produces finite traces and hyperproperties are defined for infinite enforce noninterference on pure computation—no downgradmg or
traces, we can easily exteNMIFCtraces by stuttering infinitely after termination. effects. The parameter represents an effect we want to control.

class (Monad e, Labeled n) => IFC m e n where authCheck :: Lbl MemoClient BasicAuthData
protect:: (pcEIl)=>a->menpcla -> NM IO (I MemoServer) (I MemoServer)
(BasicAuthResult Prin)

use : (IEI', pcE pc', | E pc', pc E pc") => authCheck lauth =
menpcla->(@->menpc'l'b) let lauth' = endorse §$ lift lauth
->menpc'l'b res = use lauth' $ \(BasicAuthData user guess) ->

ebind user_db $ \db ->
case Map.lookup user db of
Figure 13: Core information flow control operations in Flame. Nothing -> protect Unauthorized
Just pwd ->
if guess == pwd then
class IFC m e n => NMIF m e n where .
) protect $ Authorized (Name user)
declassify :: ((C pc) E(C) else
(CIE(CHUA(("upc) protect Unauthorized
(1) === (11)) => in declassify res
menpcla->menpcla

runFC:menpcla->e(nla)

Figure 16: A nonmalleable password checker in Servant.
endorse :: ((Ipc) E(I1)

, (A1 E(@D)uV(C(I'upc))

,(CI)===(C)=> 8.2 WMonmalleable HTTI Basic Authentication
menpcla->menpcla To show the utility ofNMIFG we adapt a simple existing Haskell
y pt a simple existing Haske
Figure 14: Nonmalleable information flow control in Flame. web application 21 based on the Servan8}] framework to run
in Flame. The application allows users to create, fetch, and delete
recv :: (NMIF m e n, (I p) E V(C p)) => shared memos. Our version uses HTTP Basic Authentication and

npa Flame’s security mechanisms to restrict access to authorized users.
>men(l(pArg)(pa(lq)a We have deployed this application online at http://memo.flow.limited.

recv v = endorse $ lift v Figure 16 contains the functi@uthCheck, which checks pass-

words in this application using tiN\iata type, which is an instance
of theNMIFtype class. The function takes a value containing the
username and password guess of the authentication attempt, labeled
>men(l(pAg)(pra)a with the confidentiality and integrity of an unauthenticated client,

badrecv v = endorse § lift v {-REJECTED+} MemoClient This value is endorsed to have the integrity of the
Sigure 15: Receive operations INMIF The secureecy is accepted, serverMemoServerThis operation is safe since it only endorses
but the insecure badrecyv is rejected_ information visible to the client. Next, the username is used to look
up the correct password and compare it to the client’s guess. If they
match, then the user is authorized. The result of this comparison is
secret, so before returning the result, it must be declassified.

Enforcing any form of information flow control on authenti-
cation mechanisms likauthCheck provides more information
security guarantees than traditional approaches. Unlike other ap-
proaches, nonmalleable information flow offers strong guarantees
even when a computation endorses untrusted information. This
example shows it is possible to construct applications that offer
these guarantees.

badrecv :: (NMIF me n, (I p) E V(C p)) =>
nipaCaq)a

For instance, many Flame libraries control effects in tBemonad,
which is used for input, output, and mutable references.

The typemenpcla in Figure 13 associates a labe&lith
the result of a computation of type, as well as a program counter
labelpc that bounds the confidentiality and integrity of side ef-
fects for some effeat. Confidentiality and integrity projections
are represented by type construct@andl . Theprotect opera-
tor corresponds to monadic unit(rule UnitM). Given any term,
protect labels the term and lifts it into dRC type wherepc E |

The use operation corresponds to kind term in NMIFC Its
constraints implement the BindM typing rule. Given a protected

9 Related work

value of typeme npcla and a function on a value of type Our efforts belong both within a significant body of work attempt-
with return typemenpc' I'b , use returns the result of ap- ing to develop semantic security conditions that are more nuanced
plying the function, provided thatE I’ and(pcul) E pc’ . than noninterferenceand within an overlapping body of work
Finally,runlFC executes a protected computation, which results aiming to create expressive practical enforcement mechanisms for
in a labeled value of type (n | a) in the desired effect e. information flow control. Most prior work focuses on relaxing con-

We provideNMIF, which extends thi& Ctype class witlendorse fidentiality restrictions; work permitting downgrading of integrity
anddeclassify operations. The constraints on these operations imposes relatively simple controls and lacks semantic security con-
implement the typing rules Endorse and Decl respectively. ditions that capture the concerns exemplified in Section 2.

We implemented the secure and insecure sealed-bid auction ex- /ntransitive noninterferenfgg, 32 34,43 is an information flow
amples from Section 2.2 usihtMIFoperations, shown in Figure 15. condition that permits information to flow only between security
As expected, the insecuradrecv is rejected by the compiler while levels (odomaing according to some (possibly intransitive) rela-
the secure recv type checks. tion. It does not address the concerns of nonmalleability.

Decentralized information flow control (DIFC2 introduces 10 Conclusion

the idea of mediating downgrading using access contaf].[How- Downgrading mechanisms like declassification and endorsement
ever, the lack of robustness and transparency means downgradingnake information flow mechanisms sufficiently flexible and ex-
can still be exploited in these systems (e.g., [16, 22, 25, 48]). pressive for real programs. However, we have shown that previous
Robust declassification and qualified robustness have been exyotions of information-flow security missed the dangers endors-
plored in DIFC systems as a way to constrain the adversary’s in-ing confidential information. We therefore introduced transparent
fluence on declassificatiod6, 12 27, 46 47). While transparent gndorsement as a security property that rules out such influences
endorsement can be viewed as an integrity counterpart to robust anq showed that it is dual to robust declassification. Robust declas-
declassification, this idea is not present in prior work. sification and transparent endorsement are both consequences of
Sabelfeld and Sands provide a clarifying taxonomy for much priorg stronger property, nonmalleable information flow, and we have
work on declassificatiorBf, introducing various dimensions along formulated all three as 4-safety properties. We have shown how to
which declassification mechanisms operate. They categorize robust provably enforce these security properties in an efficient, compo-
declassification as lying on the “who” dimension. However, they do gjtional way using a security type system. Based on our Haskell
not explicitly consider endorsement mechanisms. Regardless of the implementation, these security conditions and enforcement mecha-
taxonomic category, transparent endorsement and nonmalleablepigm appear to be practical, supporting the secure construction of

information flow also seem to lie on the same dimension as robust programs with complex security requirements.

declassificationsince they take into account influences on the
information that is downgraded.

Label algebragf] provide an abstract characterization of several
DIFC systemsHoweverthey do not address the restrictions on
downgrading imposed by nonmalleable information flow.

The Aura language2] uses information flow policies to con-

While security-typed languages are not yet mainstream, infor-
mation flow control, sometimes in the guise of taint tracking, has
become popular as a way to detect and control real-world vulnera-
bilities (e.g., 17). Just as the program analyses used are approxima-
tions of previous security type systems targeting noninterference,
it is reasonable to expect thdMIFCtype system to be a useful

strain authorization and endorsement. However, it does not addressgyide for other analyses and enforcement mechanisms.

the malleability of endorsemenRx [4(represents information
flow control policies in terms of dynami®/es[1§. Adding new
principals to these roles corresponds to declassification and en-

Acknowledgments

dorsement since new flows may occur. Rx constrains updates toMany people helped us with this work.Martin Abadi posed a
roles similarly to previous type systems that enforce robust declas- Provocative question about dualities. Pablo Buiras helped develop
sification and qualified robustness but does not prevent opaque the memo example. David Naumann pointed out workkesafety.

endorsements.

Relational Hoare Type Theor2§ (RHTT) offers a powerful and
precise way to specify security conditions that are 2-hyperproperties,
such as noninterference. Cartesian Hoare logi§ [CHL) extends
standard Hoare logic to reason abdusafety properties of rela-

Tom Magrino, Yizhou Zhang, and the anonymous reviewers gave
us useful feedback on the paper.

Funding for this work was provided by NSF grants 1513797
and 1524052nd by a gift from GoogleAny opinions,findings,
conclusions, or recommendations expressed here are those of the

tional traces (the input/output pairs of a program). Since nonmal- author(s) and do not necessarily reflect those of these sponsors.

leable information flow, robust declassification, and transparent en-

dorsement are all 4-safety properties that cannot be fully expressed Xeferences

with relational traces,neither RHTT nor CHL can characterize
them properly.

Haskell's type system has been attractive target for embedding |,
information flow checking 9, 23 39. Much prior work has focused
on dynamic information flow control. LIO39 requires computa-
tion on protected information to occur in thelO monad, which
tracks the confidentiality and integrity of information accessed
(“unlabeled”) by the computation. HLI®][explores hybrid static
and dynamic enforcement. Flame enforces information flow con-
trol statically, and theNMIFtype class enforces nonmalleable IFC
statically as well. The static component of HLIO enforces solely via
the Haskell type system (and existing general-purpose extensions),
but Flame—and by extensidwiMIF—uses custom constraints based
on the FLAM algebra which are processed by a GHC type checker
plugin. Extending the type checker to reason about FLAM con-
straints significantly improves programmability over pure-Haskell
approaches like HLIO.

(11

3

[4]
[5]
6]

[71

[8]

[9]

Martin Abadi. 2006Access Control in a Core Calculus of Dependenc@fﬁw
ACM SIGPLAN Int'l Conf. on Functional Programmig®, New York, NY, USA,
263-273.

Martin Abadi.2008. Variations in Access Control Logicln Deontic Logic in
Computer SciencRon van der Meyden and Leendert van der Torre (Eds.). Lecture
Notes in Computer Science, Vol. 5076. Springer Berlin Heidelberg, 96-109.
Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. 1898ore
Calculus of Dependency. »6" ACM Symp. on Principles of Programming Lan-
guages (POPL). 147-160.

Owen Arden, Jed Liu, and Andrew C. Myers. 20AIBw-Limited Authorization.

in 28" IEEE Symp. on Computer Security Foundations (CSF). 569-583.

Owen Arden and Andrew C. Myers. 2018.Calculus for Flow-Limited Autho-
rization. In 2§" IEEE Symp. on Computer Security Foundations (CSF). 135-147.
Aslan Askarov and Andrew C. Myers. 201Attacker Control and Impact for
Confidentiality and Integrity. Logical Methods in Computer Scierce (Sept.
2011).

K. J.)Biba. 197integrity Considerations for Secure Computer Systegtnical
Report ESD-TR-76-372. USAF Electronic Systems Division, Bedford(/AA.
available through National Technical Information Service, Springfield Va., NTIS
AD-A039324.).

Niklas Broberg and David Sands. 20R@ralocks—Role-Based Information Flow
Control and Beyond. B ACM Symp. on Principles of Programming Languages
(POPL).

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 20#5.10: Mixing
Static and Dynamic Typing for Information-Flow Control in Haskelln 20h

ACM SIGPLAN Int'l Conf. on Functional Programming. ACM, 289-301.

[10]

1]

2]

3]
[14]
[18]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 20§pnmalleable In- [40] Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. 2006. Managing

formation Flow Control: Technical Rep@échnical Report. Cornell University Policy Updates in Security-Typed Languagés.19" IEEE Computer Security
Computing and Information Sciencenttps://arxiv.org/abs/1708.08596. Foundations Workshop (CSFW). 202-216.

Stephen Chong and Andrew C. Myers. 20@¢ralized Robustness. wh [41] The Glasgow Haskell Compiler 2018he Glasgow Haskell Compilef2016).
IEEE Computer Security Foundations Workshop (CSFW). 242-253. https://www.haskell.org/ghc/.

Stephen Chong and Andrew C. Myers. 2@0#8i-to-End Enforcement of Erasure [42] Ron van der Meyden. 200fhat, Indeed, Is Intransitive Noninterference?. In
and Declassification. lFEE Symp. on Computer Security Foundations @SF) 12" European Symposium on Research in Computer Security (ESQRIOS).
111. [43] Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo. 2015.
Michael R.Clarkson and Fred BSchneider2008. HyperpropertiesIn /EEE It's My Privilege: Controlling Downgrading in DC-Labels. fyoceedings of the
Symp. on Computer Security Foundations (CSF). 51-65. 11th International Workshop on Security and Trust Management.

Dorothy E. Denning. 1976. A Lattice Model of Secure InformationGagwn. of [44] J. Todd Wittbold and Dale M. Johnson. 198€ormation Flow in Nondetermin-
the ACM 19, 5 (1976), 236-243. istic Systems. In IEEE Symp. on Security and Privacy. 144-161.

Danny Dolev, Cynthia Dwork, and Moni Naor. 2003. Nonmalleable Cryptography.[45] Andrew K. Wright and Matthias Felleisen. 1994 Syntactic Approach to Type
SIAM Rev. 45, 4 (2003), 727-784. SoundnesslInformation and Computation 115, 1 (1994), 38-94.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David [46] Steve Zdancewic and Andrew C. Myers. 2(Rdbust Declassification. [Hh
Ziegler, Eddie Kohler, David Maziéres, Frans Kaashoek, and Robert Morris. 2005. IEEE Computer Security Foundations Workshop (CSFW). 15-23.

Labels and Event Processes in the Asbestos Operating Systen?0” ACM [47] Steve Zdancewid.antian ZhengNathaniel Nystrom,and Andrew C.Myers.

Symp. on Operating System Principles (SOSP). 2002.Secure Program PartitioningCM Trans. on Computer Syst@Ds3 (Aug.
Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, 2002), 283-328.

Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Harj48] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. 2006.
Paul Vines,and Edward X.Wu. 2014. Collaborative Verification of Informa- Making Information Flow Explicit in HiStar. 17" USENIX Symp. on Operating

tion Flow for a High-Assurance App Store. & ACM Conf. on Computer and Systems Design and Implementation (OSDI). 263-278.

Communlca_tlons Securlty (CCS). 1092-1104. [49] Lantian Zheng and Andrew C. Myers. 20@knamic Security Labels and Static
David Ferraiolo and Richard Kuhn. 19%ole-Based Access Controls 1ibth Information Flow Control./nternational Journal of Information Securigy 2-3
National Computer Security Conference. (March 2007).

Joseph A. Goguen and Jose Meseguer. 1982. Security Policies and Security Models.

In IEEE Symp. on Security and Privacy. 11-20.

Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, JosephA fu[T)fQ‘OIjZC

Schorr, and Steve Zdancewic. 2088ra: A Programming Language for Autho- . .

rization and Audit. 143" ACM SIGPLAN Int'l Conf. on Functional Programming Ve present the full syntax, semantics, and typing ruleblfi=C

krdlab.2014. Haskell Servant Examplehttps://github.com/krdlab/examples. in Figures 1718,and 20respectivelyThis is a straightforward

(Dec. 2014). ; : :
Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,extenSIon of the core language presented in Section 5. We note that

Eddie Kohler, and Robert Morris. 200fformation Flow Control for Standard polymorphic terms specify BCjust as) terms. This is because they
0S Abstractions. In S1ACM Symp. on Operating System Principles (SOSP). contain arbitrary expressions which could produce arbitrary effects,

Peng Li and Steve Zdancewic. 20B8coding information flow in Haskell. | .
19 e o m::fe ; szgﬁsglzou pnivan B ; '(Ogsffv";)'" aske™ M so we must constrain the context that can execute those effects.

Benoit MontaguBenjamin C.Pierce,and Randy Pollack2013. A Theory of Figure 21 presents the full set of derivation rules for the acts-for
Information-Flow Labels. 186" IEEE Symp. on Computer Security Foundations (delegation) relation p > q.
(CSF). 3-17.

Andrew C. Myers. 1999Flow: Practical Mostly-Static Information Flow Control. ‘ 3
In 26" Acm Symp. on Principles of Programming Languages (POPL). 228-241. A’i .2“5 ef’cracﬁmg W1t6 B racﬁets

Andrew C. Myers and Barbara Liskov. 20Rfhtecting Privacy using the Decen- i i iri
tralized Label ModelACM Transactions on Software Engineering and Methodol- In order to S|mply prOOfs of hyperpropertles requiring 2 and 4

ogy 9, 4 (Oct. 2000), 410-442. traces, we introduce a new brackgt syntax to track secret and up—
Andrew C.Myers, Andrei Sabelfeldand Steve Zdanctlawfi(gOO& Enf%rcing_ trusted data. These brackets are inspired by those used by Pottier
?fb;?;gggafzgffgg” and Qualified Robustnéesynal of Computer Security 5§ Simonet31] to prove their FlowCaml type system enforced
Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. ¥6fification of noninterferenceTheir brackets served two purposes simultane-
Information Flow and Access Control Policies with Dependent Typed=fE 0u3|y_ First they allow a single execution of a bracketed program
Symp. on Security and Privacy. 165-179. to faithfully model two executions of a non-bracketed program
Sylvan Pinsky. 1998bsorbing Covers and Intransitive Non-Interference. In ully u . i prog .
IEEE Symp. on Security and Privacy. 102-113. Second, the brackets track secret/untrusted information through

Frangois Pottier and Sylvain Conchon. 200@rmation Flow Inference for Free.
In 5" ACM SIGPLAN Int'l Conf. on Functional Programming (ICFP '00). 46-57.
Frangois Pottier and Vincent Simonet. 2008ormation Flow Inference for ML.

ACM Trans. on Programming Languages and Systems 25, 1 (Jan. 2003). n & N (atomic principals)

A. W. Roscoe and M. H. Goldsmith. 198Mat is Intransitive Noninterference?. x € V (variable names)
In 12" IEEE Computer Security Foundations Workshop (CSFW). 228-238.
Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Em- p,6,pc = N T 1 pTt PApP pvp pup pnp
mett Witchel. 2009Laminar: Practical Fine-Grained Decentralized Information
Flow Control. In ACM SIGPLAN Conbn Programming Language Design and T u= unit X (t+1) (1%x71)
Implementation (PLDI).

/ e . . pc
John Rushby. 199goninterference, transitivity and channel-control security poli- T-57 VYX[pcl.T ¢saysT
cies.Technical Report CSL-92-02. SRI.
Andrei Sabelfeld and Andrew C. Myers. 20@®guage-Based Information-Flow v o= () injiVv <wvvy @, v)
Security. IEEE Journal on Selected Areas in Communicationg (Jan.2003), ’ ¢
5-19. Ax:T)[pcl.e AX|pcl. e
Andrei Sabelfeld and David Sands. 2@nensions and Principles of Declassifi-
cation. In18" IEEE Computer Security Foundations Workshop (CSE3A%69. e = X Vv ee eT <(e,e) (ne)

Servant Contributors. 2016. Servant— A Type-Level Web DSL. http://

e i e . -
haskell-servant.readthedocs.io/. (2016). proy i nyi bind x = ein e

Marcelo Sousa and Isil Dillig. 201@artesian Hoare logic for verifyin§-safety case e of inj ¢(x).e|inj o(x).e
properties. In SIGPLAN Notices, Vol. 51. ACM, 57-69.
Deian Stefan, Amit Levy, Alejandro Russo, and David Maziéres. Zitting decleto¢ endorseeto¢

Secure Systems with LIO. In Haskell Symposium. ACM SIGPLAN. ,
Figure 17: Full NMIFC syntax.

rx:t,fpc-x: i I;pc T unit
[E-App] A : T)pcl. e) v —— e [x 7> v] [Var] X1, GPCEXT [Unit] ;PCH () Tuni
. pé
K N } MPCre i1 —=>1T
(E-TApp] (AX[pcle)T-—e[X#T] MLx:gpCre:n MpC-e: 1 pce pc
(Lan = R
[E-UnPair] proj j (vq,va) ——> Vi MPCHA(X: B)[PCl.e: Ty —— B ’ 2
[E-Case] (case (inj i v) ofinj ¢(x).eq |inj o(x).€0) —> €i[x 7> V] [TLan rLXpcre:t
I;PC AX PCl. e : VX PC]. T
[E-BindM] bindx= (7, v)ine - e[x7- V] Fpcee: VX,pé]. .
Y pce pc ,
(e, t) - € t . ¥ :
[TApd Fper (e 7) TX 7o 7] is well-formed inl”
e——e . IPCHe @1y MPCre 1 . [;PC-e: (11 % 1)
E-Ste _— PR S
[2 e, ty— € t;» [Pair] [;PCH (e, &) : (T1 X T2) [UnPair] [;PCrproj j e:Ti
. = Mpc-e:q
E-UnitM Nev), ty = v),t;n v i et
[E-Unit] e v) M V)t @ v) finj} IR
[EDec) decl (T, v)tot t = (1 V)i ({7 V) Mpcre:(qer) poET
B 3 M X:%,PCe:T MX:5PCre: T
[E-Endorse] endorse (' v)to¢, T —» (7, v), t;(§, 1T, V) [Casd IPCi-case €ofinj q(x).e1 |inj o(x).&:T
E.Eval ety €t UitV] Mpcre:T PCE¢ [VURitM] rpcrv:t
- ni _— ni _—
(E-Eval] (Efelt) - E[e'], t’ Ipc-(n, e):¢saysT pCH-(M, v):tsaysT
[;pC-e : ¢ says T FCET
Evaluation context Mx:T;PCUlre T
— [BindM] - .
E == [] Ee VE ET <(Ee) (E) (n E) [PCrbind x=e in € : T
proj i E inj i E bindx=Eine mpc-e:¢ saysT ¢ =¢~ pcce
case E of inj 4(x).e|inj o(x).e [Decl] (7 BeTuA(e upP9T)
[;PCrdecl €to ¢:¢ saysT
declEto¢ endorse Eto¢
rpcre:(saysT ¢~ =¢~ pecEe
. . . . ¢ ¢ uv((Ee upg™)
Figure 18: Full NMIFC operational semantics. [Endorse] FpCr endorss €10 (¢ saysT
FIET Figure 20: Typing rules for full NMIFC language.
P-Unit ¢ E unit P-Lbl ¢ et
(P-Unit] & uni [P-Lol U CisaysT prq
FlET, F(ET)H . PZq
-Pai - - Bot Ll T R Refl > P
[P-Pair] EExD) [Bot] p [Tonl p [Refl] p>p [rOJlﬁann

Piq P*q1

) Ie{1,2} pP*q2
HeH FHET | ProjR =p"] ——— iRl — 12
[P-Sef oot H is upward closed [ProjR] p>p [ConjL] PiApard [ConjR] YT
: . ; Pi>q P=qi
Figure 19: Type protection levels. . Py q ‘ i'e(1 2} prq gxr
[Disl] ———— [DisR ———— [Trans] —M—
Pivp2=q PZq1VQ2 pEr

execution of the program, thereby making it easy to verify that it
did not interfere with public/trusted information simply by prov-
ing that brackets could not be syntactically present in such values.
Since noninterference only requires examining pairs of traces, thesepurpose: they track restricted information but not multiple execu-
purposes complement each other well; if the two executions vary tions.
only on high inputs, then low outputs cannot contain brackets. As in previous formalizationsNMIFCs brackets are defined
While this technique is very effective to prove noninterference, with respect to a notion of “high” labelsin this case a high set.
nonmalleable information flow provides security guarantees even The high set restricts the type of the expression inside the bracket
in the presence of both declassification and endorsement. As a re-as well as thePC at which it must type, thereby restricting the
sult, we need to track secret/untrusted information even through effects it can create. For the more complex theorems we must track
downgrading events that can cause traces to differ arbitrarily. To data with multiple different high labels within the same program
accomplish this goal, we use brackets that serve only the secondexecution, so we parameterize the brackets themselves with the

Figure 21: Principal lattice rules

Syntax extensions

v = Lviy
e = LeM
New contexts
E = LEM
B = proji[] bindx=[]ine

Evaluation extensions

[B-Expand] B[LvM]--L B[v] My
(<H
[B-DeclL]
declLvMy to¢——declvito¢
(eH
[B-DeclH]

declLvM; to¢-—Ldeclvto¢M y

(<H

[B-Endorsel]
endorse L v to ¢ —— endorse vto ¢

(eH

[B-EndorseH]
endorse LV to¢——- L endorsevto(M y

Typing extensions

Mpcre:T pcEpc
pc eH +TprotH

Mpc-LeMTt

[Bracket] H is upward closed

Bracket projection

e ife=sLel

Le1=
recursively project all sub-expressions otherwise

Figure 22: NMIFC language extensions.

The theorems proved in this paper hold for any attacker satisfy-
ing these properties, so for generality we can take the properties in
Definition B.1 as defining an attacker.

We now prove that our original definition of an attacker satisfies
Definition B.1.

Proof. Conditions 1 and 2 of Definition B.1 follow directly from
the definition of A and ConjR and DisR, respectively. Condition 5
holds by the symmetry of the lattice.

Since we are only examining one of confidentiality and integrity
at a time, for the following conditions we assume without loss of
generality that all principals in each expression have only Fhe
projection and the other componentiis In particular, this means
we can assume Proj and ProjR are not used in any derivation, and
any application of the conjunction or disjunction derivation rules
split in a meaningful way with respect to thgT projection (i.e.,
neither principal in the side being divided is T or L).

We now show Condition 4 holds by contradiction. Assamd.
andb<A " butanbeA . Thismeans(niA---Anr)" >
a A b. We prove by induction of thata, b€ A”. Ifk = 1, then
the only possible rule to derive this result i€onjL and we are
finished.If kK > 1, then the derivation of this relation must be
due to either ConjL or ConjR. If it is due to ConjR, then this
again achieves the desired contradiction. If it is due to ConjL, then
the same statement holds for a subset of the atomic principals
n., ..., p, wherek’ <k, so by induction(n; A - - - An.)" > b,
and by Trans,(n1A ... A rk)’T ¥ b’ which also contradicts our
assumption.

Finally, we also show Condition 3 holds by contradiction. We
assumdq, b < A7 butby v bp e A and again prove a contra-
diction by induction orK. If k = 1, then the derivation showing
N » (b1 v bz)" must end with DisR which contradicts the assump-
tion thatbq, b < A™. Ifk > 1, the derivation either ends with DisR,

high set. We present the extended syntax, semantics, and typingresulting in the same contradiction, or with ConjL. In this second

rules in Figure 22.

% Attacker properties

Recall that we defined an attacker as a set of principats{¢ €
L| N"qA---Am >¢ for some non-empty finite set of atomic
principals {r, . . . |} S N.

Definition B.1 (Attacker propertiesgt A be an attacker and let
AT ={pel| 3geLsuchthatd Aqg" €A} .The following
properties hold:

(1) forallay, @ e A, a;na e AT (Attacking principals
may collude)

(2)forallac A Tandbel ,avbeA ™ (Attackers may
attenuate their power)

(3) forall by, b <A ™ byvby <A™ (Combining public
information in a public context yields public information
and combining trusted information in a trusted context
yields trusted information)

(4)forallacL andb<A ™, anb<A T (Attackers can-
not compromise policies requiring permission from non-
attacking principals)

(5) forallae A ,V(@) AA@") € A . (Attackers have the
same power in confidentiality and integrity)

case, the same argument as above holds: there is a strict subset of
the principalsiy, . . ., mthat act for eitherbs or b, and thus by
Trans we acquire the desired contradiction. =

€ Generalization

Definition 6.9 (and correspondingly Theorem 6.10) might appear
relatively narrow;they only speak directly to programs with a
single untrusted value and a single secret value. However, because
the language has first-class functions and pair types, the theorem
as stated is equivalent to one that allows insertion of secret and
untrusted code into multiple points in the program, as long as that
code types in an appropriately restrictive pc.

To define this formally, we first need a means to allow for inser-
tion of arbitrary code. We follow previous work7] by extending
the language to includBoles A program expression may contain
an ordered set of holes. These holes may be replaced with arbitrary
expressions, under restrictions requiring that the holes be treated
as sufficiently secret or untrusted. Specifically, the type system is
extended with the following rule:

pceH
Mpcr[H T

+ 7 prot H
[Hole]

H is a high set

Using this definition, we can state NMIF in a more traditional
form.

Definition C.1 (Genera‘llMlF). We say that a prograrre[@H
enforcesgeneral NMIFf the following holds for all attackersA
inducing high setsU andS.LetT=L\U ,P=L\S and
W=TnS .IfH<c U , then for all value¥1, V2 and all attacks
@& and®, let

€[y PET-@)], @) =" Vij, t' .
For all indices i7 such that :&J,j 0W .
(M T =52 fori=1,2, then

o=
< A1 o 21 — 12 o 22
reIA,e (wt) and £’ p, ~T3 t: iy T2 Ty ~T° t: p2°
(2) Similarly, if &/ _, =%t forj=1,2, then
Yy, It mi=1 7P Lmi—1 J 1S
- A1 o 12 - 21 L 22
reIA,e (V1) and l:.n11 ~f|' t .M2 ==t .1 ~t|' t oo

For NMIFGC this definition is equivalent to Definition 6.9Ne
prove this fact to prove the following theorem.

Theorem C.2 (General NMIF). Given a program €@y such
that T X&1®pc - @y : T, then ePy enforces general NMIF.

Proof. We prove this by reducing Definition C.1 to Defini-

Fipcr[1n : T wherel[®@®CST andPC e H . We replace
the hole with a function application inside bind . Specifically, the
hole becomes

bindy' =yiny "Zy ez
wherey andy’ are fresh variables and tH&s are every variable in
"\ T (including every element of ® Let

' pc pc pc .,
Iy =pc says Iz, ———»:-=—>g ——>T

and includ¢/ :Ty as the type of an untrusted value to substitute in.

Instead of inserting the expressiénnto that hole, we substitute

in for y the value

W=fpe Mz1:7,)lpcl - -Azk: 7)pcl. a.
By Hole we know that PC € H andr 1" prot H, so the type
has the proper protectionand by constructionl’; pc+w : Ty.
Moreover, while it has an extra value at the beginning of the trace
(the function), the rest of the traces are necessarily the same.

As a second step, we reduce the rest of the way to the expressions
used in Definition 6.9. To get from our intermediate step to these
single-value expressions, if we wish to substittitesecret values
andKku untrusted values, we instead substitute a single liskof
secret values and a single listkaf untrusted values. These lists are
constructed in the usual way out of pairs, meaning the protection

tion 6.9 in two steps. We assume that no two variables in the originatelations continue to hold as required. Finally, whenever a variable
expressioe[®y have the same name as this can be enforced byis referenced in the unsubstituted expressiame instead select

o -renaming.

the appropriate element out of the substituted list using nested

The first step handles expressions that only substitute values (angrojections. o

have no holes), but allow any number of both secret and untrusted
values. An expression of the form in this corollary is easily rewritten

as such a substitution as follows. For each pplg, we note that

We also note that the same result holds if we allow for insertion
of secret code and untrusted values, as the argument is exactly dual.
Such a situation, however, makes less sense, so we do not present
it explicitly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

