

Estimation of systematic errors in the GFS using Analysis Increments

Kriti Bhargava¹, Eugenia Kalnay¹, James A. Carton¹, and Fanglin Yang²

¹Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD

20742

²NOAA/National Weather Service National Centers for Environmental Prediction, 5830

University Research Court, College Park, MD 20740

Corresponding author: Kriti Bhargava (kritib@umd.edu)

Key Points:

- Global Forecast System model has robust, systematic seasonal mean and diurnal forecast errors due to biases of the model and observations
- 6-hr analysis increments estimate the model bias before the errors grow nonlinearly, and can be used to correct the model “online”.
- Observation and model bias corrections within the Analysis Increments can be separated by their impact on systematic forecast errors.

1 **Abstract**

2 We estimate the model deficiencies in the Global Forecasting System (GFS) that lead to
3 systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as
4 in *Danforth and Kalnay 2008 (DK08)*. Since the Analysis Increments represent the corrections
5 that new observations make on the 6-hr forecast in the analysis cycle, we estimate the model bias
6 corrections from the time average of the analysis increments divided by 6-hr, assuming that
7 initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-
8 2016, seasonal means of the 6-hr model bias are generally robust despite changes in model
9 resolution and data assimilation systems, and their broad continental scales explain their
10 insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments
11 and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional
12 correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to
13 improvements in the specification of the SSTs. These results provide support for future efforts to
14 make online correction of the mean, seasonal and diurnal and semidiurnal model biases of GFS
15 to reduce both systematic and random errors, as suggested by *DK08*. It also raises the possibility
16 that analysis increments can also provide guidance in testing new physical parameterizations.

17 **1 Introduction**

18 The performance of numerical weather prediction models is limited by errors in the
19 model forecasts resulting from the errors in initial conditions and model deficiencies. Model
20 forecast errors can be classified into random errors, whose time average is zero, and systematic
21 errors [*Dalcher and Kalnay, 1987, Murphy, 1988*]. We define forecast error as the difference
22 between a model forecast x_f and a verifying analysis assumed to represent the truth x_t , and
23 separate the mean square error into the systematic and random components:

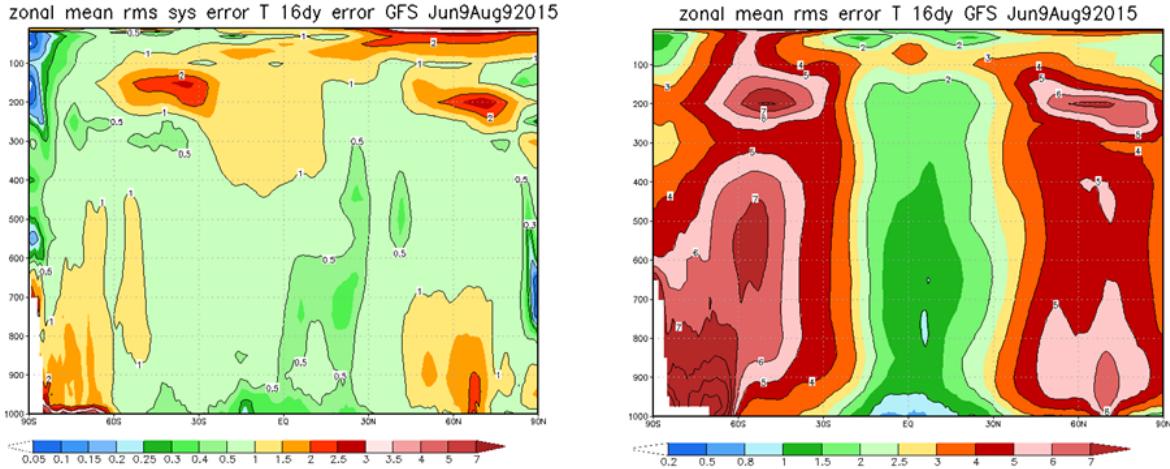
24
$$\overline{(x_f - x_t)^2} = (\bar{x}_f - \bar{x}_t)^2 + \overline{(x'_f - x'_t)^2} \quad (1)$$

25 where the overbars represent a time average (such as a month or a season), and the primes
 26 represent the departures from this average. We will refer to the square root of the first term of the
 27 rhs (i.e., the time mean of the error) as the systematic forecast error, and the square root of the
 28 second term (error variance) as the non-systematic or random errors.

29 Systematic forecast errors (SFEs) are a significant portion of the total forecast error in
 30 weather prediction models, such as the Global Forecast System (GFS). Fig. 1 shows that after
 31 two weeks, the range of GFS RMS temperature systematic errors reach 1/3 of total temperature
 32 forecast error. Many studies attribute SFEs to specific deficiencies in numerical discretization of
 33 the equations of motion, parameterizations of sub-grid processes, or boundary conditions (e.g.,
 34 *Jung and Tompkins, 2003; Zheng et al., 2006, 2009*) which lead to model bias. These errors are
 35 initially small, but as the model is integrated in time the errors grow and interact nonlinearly with
 36 systematic and random errors until the model loses all forecast skill. The SFEs include mean and
 37 periodic forecast bias, the latter including those associated with the annual cycle and the diurnal
 38 cycle, and also state-dependent errors associated with the presence of short- or long-term
 39 anomalies, such as weather highs and lows, or the phase of El Niño [*Danforth et al., 2007*]. In
 40 this paper, we aim to estimate the GFS model bias that leads to SFEs in the period 2012-2016. In
 41 addition to suggesting causes for these model errors and exploring the impact of changes in the
 42 GFS system, we evaluate their potential use as input to an empirical online correction scheme as
 43 introduced by *Danforth and Kalnay [2008]*.

44 The GFS is a global numerical weather prediction model which provides 16-day forecasts
 45 produced by the National Centers for Environmental Prediction (NCEP). It couples an

46 atmosphere model, a sea-ice model and a land/soil model using specified sea surface
 47 temperatures (SSTs) as boundary conditions to produce the forecasts. It is initialized with the
 48 Global Data Assimilation System (GDAS). Details about GFS are discussed in section 2.



49
 50 **Figure 1.** Zonal mean RMS systematic error (left) and total error (right) in temperature after 16
 51 days. The range of temperature systematic errors is $\sim 1/3$ of total temperature error range after 2
 52 weeks. (Courtesy of Dr. Glenn White).

53 The earliest attempts to estimate model bias within the predecessors to GFS for the
 54 purpose of correcting them online, were made by Saha and colleagues [Johansson and Saha,
 55 1989; Saha 1992]. They calculated the bias by averaging the error in 1-day forecasts over a
 56 training period of fixed length. After testing training periods ranging from 5 to 70 days, they
 57 found that the training period between 25-30 days improved the 5-day forecast while longer
 58 training periods improved longer forecast times. Though mostly successful, the biases were not
 59 always reduced using this method. The authors concluded that their systematic model bias
 60 estimation method contained large sampling errors and suggested other ways to estimate biases.

61 Among the more recent studies proposing to estimate and correct model bias, Danforth *et*
 62 *al.* [2007] (DKM07 hereafter) used the low resolution SPEEDY general circulation model and

63 initialized it from the NCEP-NCAR Reanalysis [Kalnay *et al.*, 1996]. *DKM07* computed the
 64 model bias as the difference between six-hour forecasts variables and the corresponding analysis
 65 variables, averaged over many forecasts. They separated the 6-hr systematic model errors into
 66 time averaged model bias, periodic bias and state dependent error. They pointed out that the
 67 forecast system could be corrected for the time average bias by adding the average bias
 68 correction term divided by 6-hr to the time derivative of each model variable.

$$69 \quad \dot{x}(t) = M[x(t)] + \frac{\overline{\delta x_6^{at}}}{6-hr} \quad (2)$$

70 Here, $M[x(t)]$ is the standard model tendency to which the correction is added.

71 Various empirical forecast error correction schemes have been used to correct the
 72 forecasts based on the analysis of mean and variance of past model forecast errors. The simplest
 73 correction schemes operate “offline” (after the forecast is completed), applying a different
 74 statistical correction for each forecast length. A disadvantage of the offline correction schemes is
 75 that they allow forecast errors to grow until the end of the forecast cycle before comparing them
 76 with the verifying analyses and making an average correction. During the 2- week period in
 77 which errors grow until they saturate, the errors interact nonlinearly, obscuring their origin. The
 78 other type of correction scheme, used by *Saha* [1989], *DKM07*, *DelSole *et al.** [2008], and others,
 79 is “online” (applied during the model integration) as in equation (2). This scheme attempts to
 80 estimate and correct the bias during the model integration.

81 *Danforth and Kalnay* [2008, *DK08* hereafter] showed that the online correction of the
 82 model bias estimated by *DKM07* not only worked as well as the offline statistical correction of
 83 the systematic errors, but that it also reduced the random errors, indicating that the correction of
 84 the model bias actually did improve the model. *DKM07* could further reduce systematic errors
 85 significantly by correcting for diurnal cycle errors.

86 *DelSole et al.* [2008] used the Center for Ocean-Land-Atmosphere (COLA) land-
87 atmosphere model (v3.2) to test different methods to reduce the systematic errors. They
88 estimated the 24-hr model bias using an autoregressive model with a decorrelation time of 2
89 days, and found that the online correction method was able to reduce the systematic errors but
90 could not reduce random errors by correcting for model bias. By contrast, *DK08* estimated and
91 corrected online the model bias directly from the time averaged bias of the 6-hr forecast. *DelSole*
92 *et al.* [2009] suggested a possible alternative approach similar to the one used by *DKM07* and
93 *DK08*, but did not use it. *DelSole et al.* [2008, 2009] concluded that it was impossible in a
94 realistic model/data assimilation system to estimate the model bias and correct it, and thus reduce
95 not only systematic errors but random errors as well.

96 In this paper, we apply a methodology similar to *DKM07* to the NCEP operational
97 GFS/GDAS system, estimating the mean and periodic model biases from the 6-hr analysis
98 increments (AIs), before the forecast errors grow non-linearly. AIs are the difference between the
99 gridded analysis and forecast, with the former providing our best gridded estimate of the true
100 state of the atmosphere. In Section 2, we estimate the 6-hr GFS model bias from the average 6-hr
101 operational GDAS AIs. In Section 3, we examine the structure and evolution of the biases, and
102 compare the bias correction for the 2012-2014 period, during which few model changes took
103 place, to the final 2015-2016 period where major model and changes to the SST boundary
104 condition took place. In section 4, sub-monthly periodic biases are estimated and represented
105 using EOFs to provide evidence that a low dimensional approach can also be used to correct the
106 dominant diurnal and semi-diurnal errors. A summary and discussion of the results and details
107 regarding the online correction experiments that we plan to perform with the estimated
108 systematic and daily errors is presented in section 5.

109 **2 Materials and Methods**

110 The GFS is a three-dimensional hydrostatic global spectral model with current
 111 operational resolution of T1534 from 0-10 days and T574 from 10-16 days. The model uses 64
 112 hybrid sigma levels [Sela, 2009] in the vertical, defined as: $p(x,y,t) = \sigma_1 p_s + \sigma_2$ so that they become
 113 parallel pressure levels at high altitudes, σ_1 and σ_2 are parameters, and p_s is sea level pressure.
 114 Here we present results at 7 representative model levels, including the bottom two levels, the top
 115 level, and five model levels in between (Table 1). The GFS is run four times a day and forecasts
 116 are issued every hour for the first 12 hours, then every 3 hours for up to 10 days and then every
 117 12 hours. The GFS analysis is run twice per cycle: the “early” GFS run that provides 16-day
 118 forecasts, and the “final” GDAS (Global Data Assimilation System) run that assimilates late-
 119 arriving observations and provides a “final” analysis for the GFS. The GDAS currently uses a
 120 hybrid four-dimensional ensemble variational formulation [Buehner *et al.*, 2013].

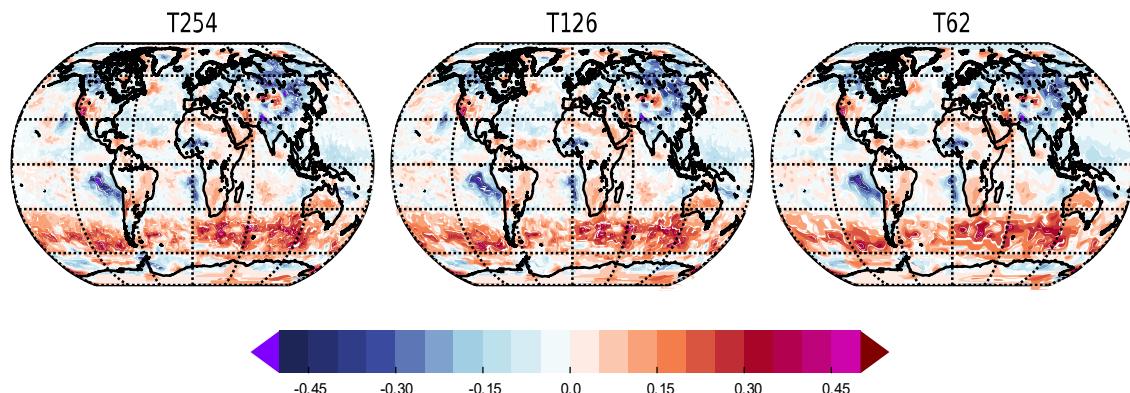
121 **Table 1.** Model levels shown and their parameters

Model Level	Parameter (σ_1)	Parameter (σ_2)	Pressure if $P_s = 1000$ mb
1	1	0	1000
2	0.995	0	995
7	0.954	116.899	950
14	0.827	2051.15	850
25	0.393	12344.49	500
35	0.506	15683.489	200
64	0	64.27	0

122 The GFS/GDAS system is updated regularly to improve its performance. At the
123 beginning of our study period, January 2012, the GDAS was based on the 3D-VAR Global
124 Spectral Interpolation [Wu *et al.*, 2002]. It used T574 resolution semi-implicit Eulerian
125 discretization, with the lower SST boundary condition over the oceans provided by the weekly
126 averaged Optimal Interpolation SST [Reynolds and Smith, 1994]. Beginning in May 2012, a
127 hybrid 3DVar-ENKF data assimilation system [Wang *et al.*, 2013], which makes use of a
128 background error estimate from a combination of a lower resolution Ensemble Kalman Filter and
129 a static background error, replaced the prior gridpoint statistical interpolation. In January 2015,
130 GFS transitioned to a two time-level T1534 semi-implicit semi-Lagrangian discretization, and
131 switched to the high resolution daily real time global SST product [Thiébaux *et al.*, 2003]. In
132 May 2016, the hybrid data assimilation system was upgraded to the current operational 4D
133 hybrid ensemble-variational data assimilation system [Buehner *et al.*, 2013]. Assimilation of new
134 radiances from Advanced Microwave Sounding Unit was also added. The details of the evolution
135 of GFS are described at: www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html.

136 To estimate the model bias, we take advantage of the GDAS, which optimally combines
137 the 6-hr forecast, or background, with the new observations, creating a new analysis. The
138 analysis is the best estimate of truth we have after combining the model forecasts and the
139 observations. The AIs are thus the estimated correction that the new observations make upon the
140 6-hr forecast. Therefore, we can use the time average of the AIs as the model bias correction
141 over 6 hr, the negative of which is the 6-hr model bias. An important advantage of this approach
142 is that over 6-hr, the forecast error growth is linear [Klinker and Sardeshmukh, 1992, Vannitsem
143 and Toth, 2002; Jung and Tompkins, 2003; Xue *et al.* 2013 and 2015]. Hence, the average 6-hr
144 AIs give the best estimate of the model bias before the errors start growing non-linearly.

145 We use the 6-hr analysis and forecasts for surface pressure, temperature, winds and
 146 specific humidity provided by the operational GFS. The GFS horizontal resolution was T574
 147 until January 2015 when it transitioned to T1534. For convenience, we remap variables through
 148 the full period of interest 2012-2016 onto a uniform lower resolution T254 grid, to match the
 149 resolution at which we have access to the AIs. This reduction in resolution has essentially no
 150 impact on our analysis, as illustrated in Fig. 2. We begin by focusing on seasonal model bias
 151 correction, which we estimate as the seasonal average (DJF, MAM, JJA, and SON) of the AIs
 152 during the five years 2012-2016. The temporal stability of the seasonal bias is evaluated, by
 153 comparing the spatial patterns of the seasonal AIs for the first three years (2012-2014) and
 154 evaluating their similarity using anomaly correlations.



156 **Figure 2.** 6-hour model bias for July 2014 surface temperature projected on three spatial
 157 resolutions: T254, the original resolution of data provided, (left), T126 (middle) and T62 (right).
 158 The patterns of bias remain essentially the same, indicating that the scales of the model bias are
 159 well resolved by T62.

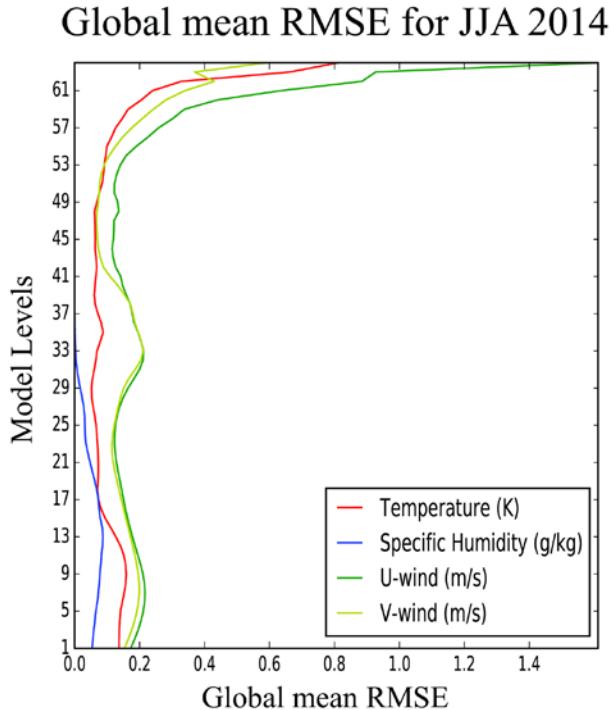
160 To identify the systematic components of the periodic AIs at sub-monthly scales we first
 161 calculate the anomalies of the 6-hourly AIs with respect to their monthly averages. We then
 162 decompose these anomalies into a complete set of 120 Empirical Orthogonal Functions (EOFs)

163 and corresponding principal component time series. These EOFs are geographically weighted, so
164 both the spatial patterns and the time series are orthogonal over the surface of the globe. We find
165 that these are dominated by the diurnal and semidiurnal components (see section 4).

166 **3 Seasonal Bias**

167 In this section, we examine the structure and evolution of the seasonal cycle
168 biases. We begin by examining the seasonal biases and compare the bias corrections for the
169 initial three-year period 2012-2014, during which few model changes took place, to the final 2-
170 year period, 2015-2016 with major model and boundary condition changes.

171 We first explore how the global mean error in GFS forecasts changes with height. The
172 estimated GFS error of temperature and winds is approximately 0.1K and 0.2 m/s, from the
173 surface to level 54 (approximately 13 mb), and then becomes very large, presumably because of
174 the effects of the artificial rigid upper boundary which introduces errors in the radiative balance
175 and generates spurious dynamic instabilities [Kalnay and Toth, 1996; Hartmann *et al.*, 1996] that
176 remain attached to the top. Specific humidity error increases from near surface to 0.1 g/kg at 850
177 mb, decreasing so that by 300 mb the air is dry. Here, we present results only for the surface and
178 850 mb.



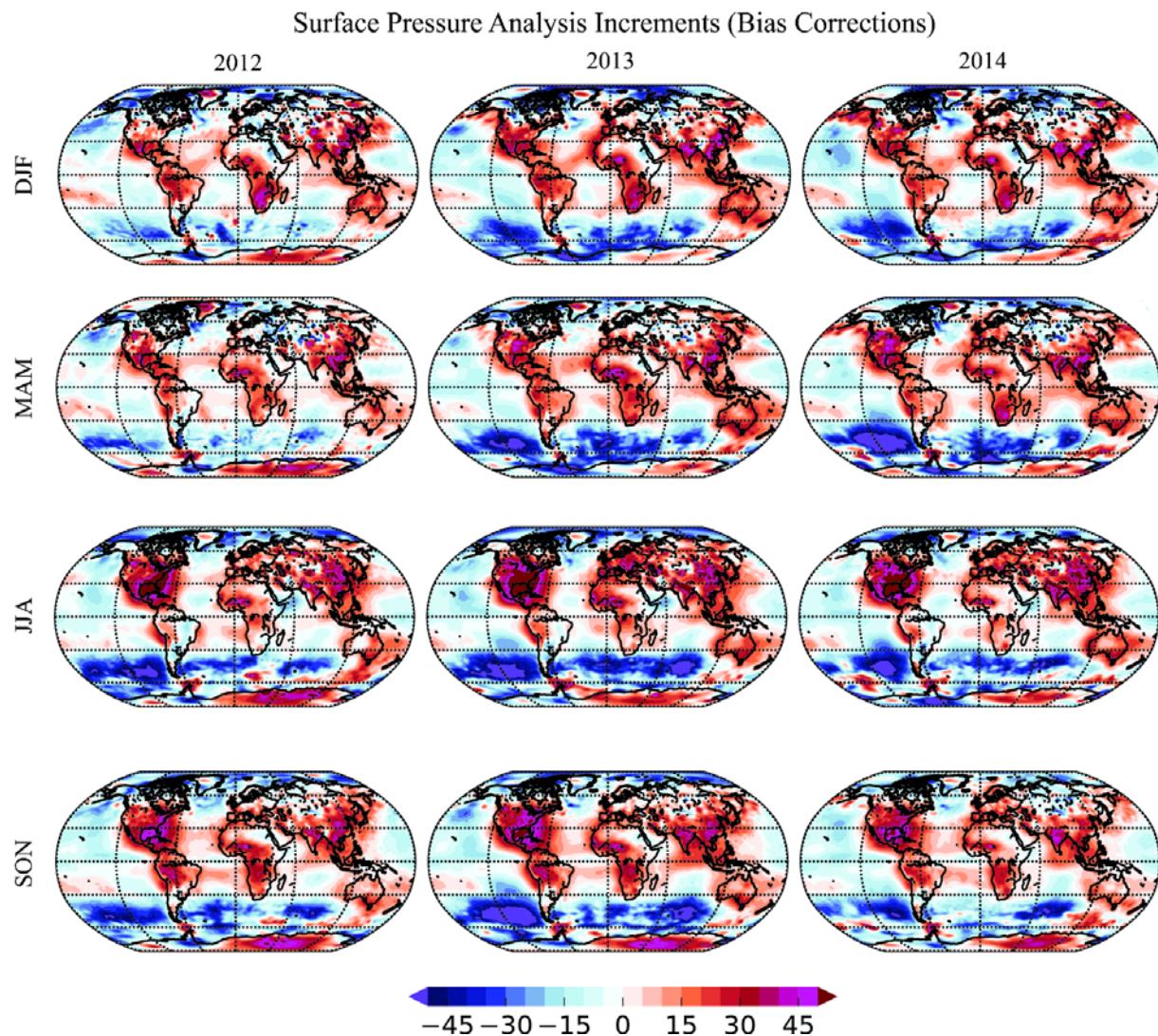
179

180 **Figure 3.** Global mean temperature, specific humidity and winds error vs model level for JJA
 181 2014. The increase in error for levels above 53 is discussed in the text.

182 Despite major changes made to the data assimilation scheme in May 2012, the bias
 183 corrections retain their major features throughout 2012 to 2014 (Figs. 4 and 5). In general, the
 184 model tends to underestimate surface pressure over the land and overestimate it over the ocean,
 185 except the regions of warm pools at the Gulf of Mexico, North Atlantic, and Bay of Bengal (Fig.
 186 4). The surface pressure bias over the land peaks in local summer and is lowest during local
 187 winter. Conversely, over ocean the high bias peaks during the local winter.

188 South and East Asia show a -10 to -20 mb erroneously low forecast surface pressure
 189 during JJA (Fig. 4). This is the result of erroneously warm and dry forecast air, which peaks
 190 during the summer monsoon (Fig. 5). A possible explanation is that the monsoon winds carrying
 191 moisture in from the Southern Hemisphere are erroneously weak. Near the Equator the elevated

192 humidity associated with the ITCZ is spread too wide meridionally, with too weak convergence,
 193 so that the ITCZ itself is too dry and the Equator is too moist (Fig. 5).



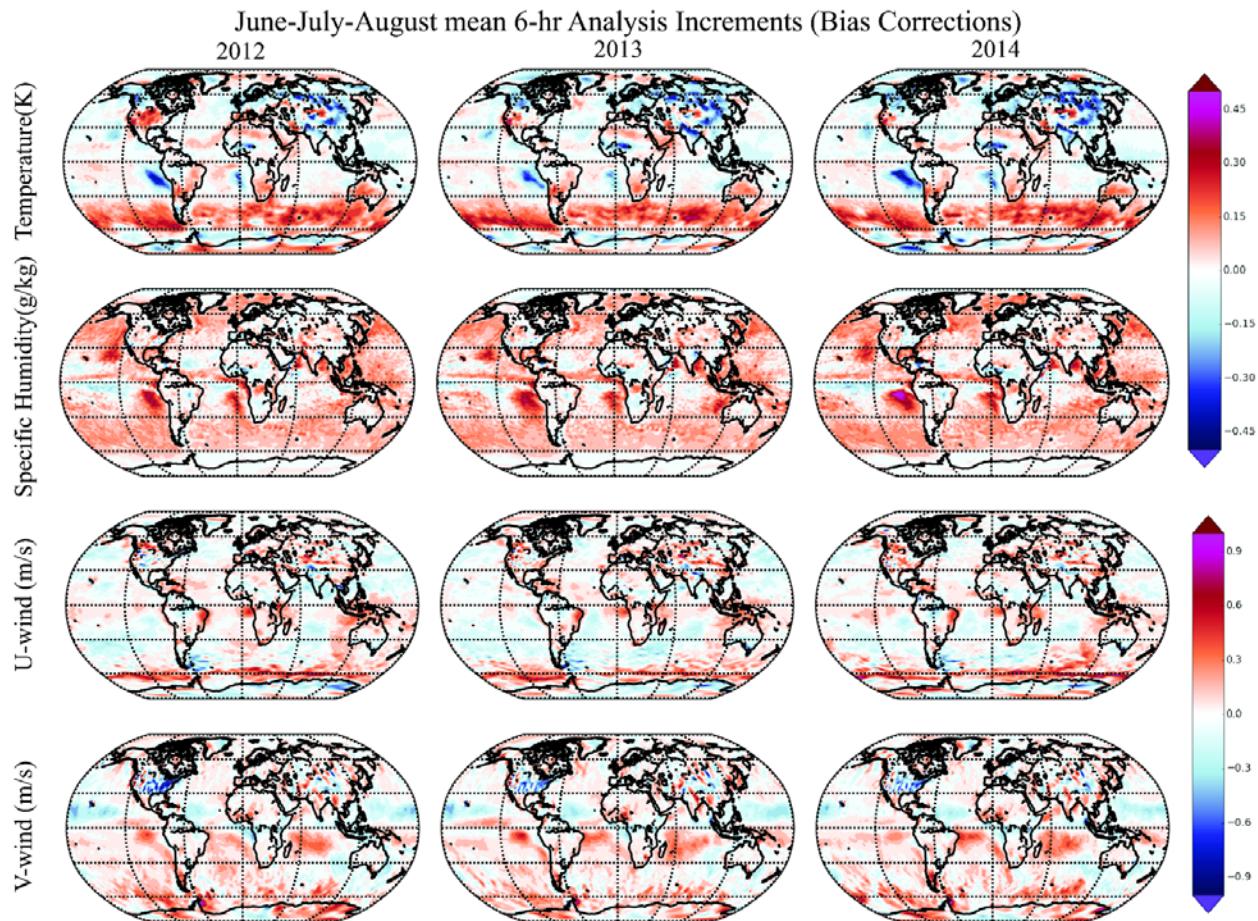
194
 195 **Figure 4.** Seasonally averaged surface pressure AIs (mb) for 2012 to 2014 (left to right).

196 Forecast surface pressure is generally too high (cool colors) over the oceans, except near coasts,
 197 and too low (warm colors) over the continents. Seasonal mean AIs remain relatively consistent
 198 for the 3 years.

199 Erroneously warm temperatures are also present over the subsidence zones west of South
200 Africa and South America (Fig. 5). For many GCMS high temperatures in these locations are
201 likely due to an inability to maintain sufficient stratus clouds [Zheng *et al.*, 2011; Lien *et al.*,
202 2016b). What is a little different here is that the biases are more strongly concentrated in the
203 Southern Hemisphere and are displaced a few degrees westward from the coast. These areas also
204 have a dry bias of 0.3 to 0.6 g/kg.

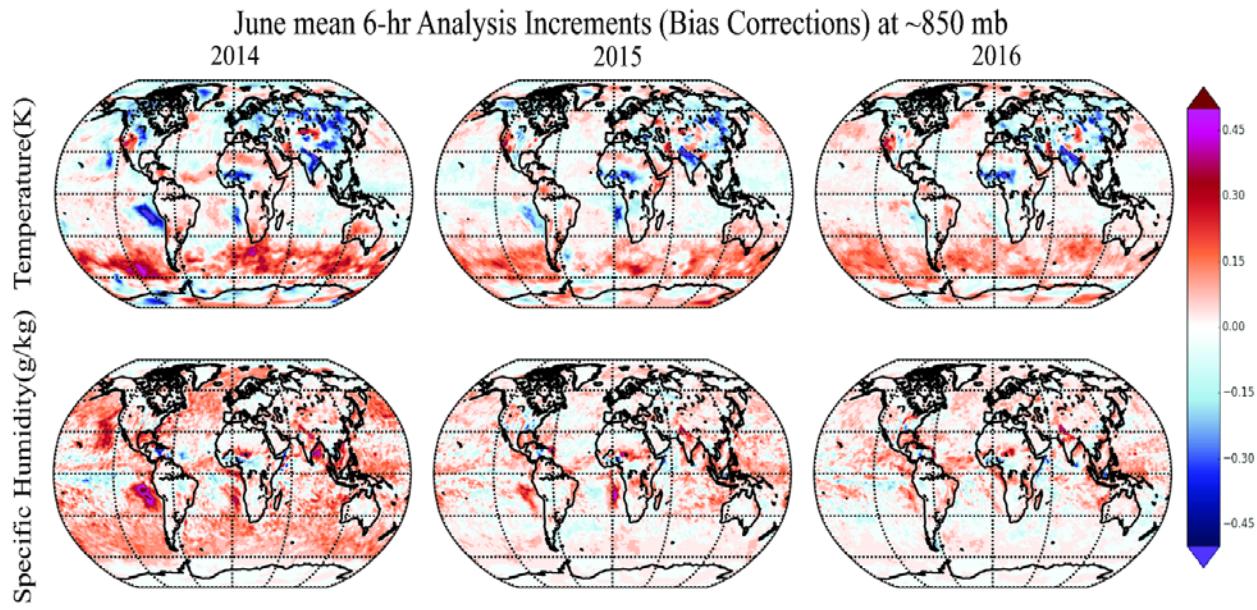
205 A cold bias is present over the oceans in higher latitudes during local summer with the
206 bias being more prominent over the Southern Ocean. Accompanying the cold bias over the
207 Southern Ocean is a positive surface pressure bias. Interestingly, the biases in surface pressure
208 seemed to increase after the data assimilation changes made in May 2012. The winds in this
209 region show a north-easterly bias. This bias pattern over the ocean in the Northern Hemisphere is
210 also found in various GCM simulations and is hypothesized to be due to inaccuracies in
211 simulation of North Atlantic storms [Chapman and Walsh, 2007]. Over the Southern Ocean
212 (60°S-40°S) surface temperature forecasts are -0.2K/6-hr erroneously cool (Fig. 5), while the
213 intense easterlies that dominate in this latitude zone are displaced 5° too far northward.

214



216 **Figure 5.** JJA averaged AIs for the years 2012 (left), 2013 (middle) and 2014 (right) at
 217 approximately 850 mb. The AIs remain quite consistent from 2012 to 2014.

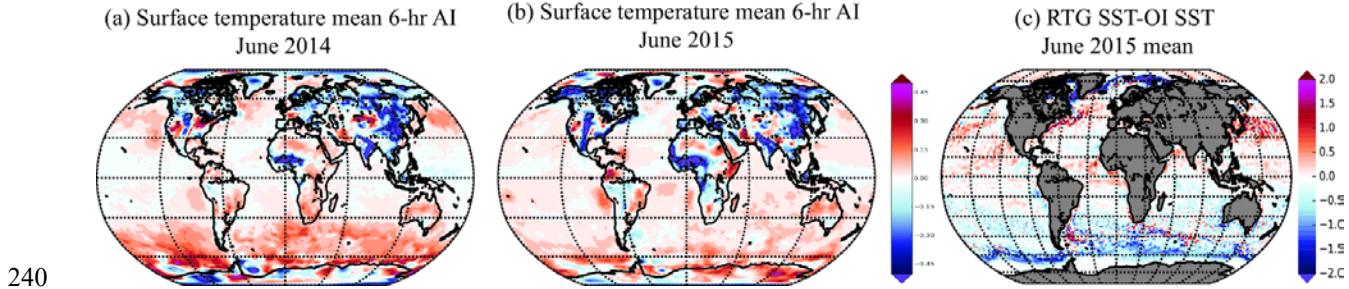
218 We next explore how the AIs change when progressing from the years 2012-2014 to
219 2015-2016 (Fig. 6). The most striking changes occur over the oceans. There we see a reduction
220 of the cold temperature bias, a reduction of the dry bias, and a southward shift of the Polar Front
221 in the Southern Ocean. Model changes possibly responsible for this improvement between these
222 periods are the shift of SSTs from the use of weekly optimally interpolated (OI) SST to the high
223 resolution real time global (RTG) SSTs and the update of the Community Radiative Transfer
224 Model (CRTM).



226 **Figure 6.** Temperature and specific humidity AIs for June 2014, 2015 and 2016. The errors are
 227 substantially reduced from 2014 to 2015 especially over the ocean, and further reduce in 2016.

228 We compared the difference between RTG and OI SSTs with the changes in AI in 2014
 229 and 2015. In the Northern Hemisphere the surface temperature AI improvements are highly
 230 correlated with the places of significant difference between RTG and OI SSTs (Fig. 7). The
 231 warmer RTG SSTs in the north Pacific and Atlantic tend to remove the cold bias in 2015, which
 232 was found in 2012-2014. Further experiments are required to confirm the role of SST in the
 233 improvements in bias.

234 In contrast to the situation in the Northern Hemisphere, RTG SSTs are colder in the
 235 Southern Ocean. But we still find a reduction of cold bias in forecasted temperature. This is a
 236 result of updating the CRTM which improved the analysis of near surface temperature over
 237 water, especially in the Southern Oceans by improving specification of microwave sea surface
 238 emissivities (http://www.nws.noaa.gov/om/notification/tin14-46gfs_cca.htm, D. Kleist, pers.
 239 comm., 2017).



240
 241 **Figure 7.** Comparison of change in surface air temperature mean bias, June 2014 (a) - June
 242 2015(b) with the difference in RTG and OI SST (c). Warm colors indicate that RTG SSTs are
 243 warmer than the OI SSTs.

244 **4 Periodic Bias Estimation**

245 The periodic bias at sub-monthly periods is dominated by the daily cycle, which
 246 includes stationary components, a large diurnal component that progresses westward following
 247 the motion of the Sun and a significant semi-diurnal signal (Fig. 8). The size of these are
 248 comparable to the seasonal bias, thus making correction of diurnal and semi-diurnal bias also
 249 critical to improving the model performance. To separate these components, we conduct a
 250 standard EOF analysis of the 6-hourly AIs each month and then focus on those terms associated
 251 with the daily cycle.

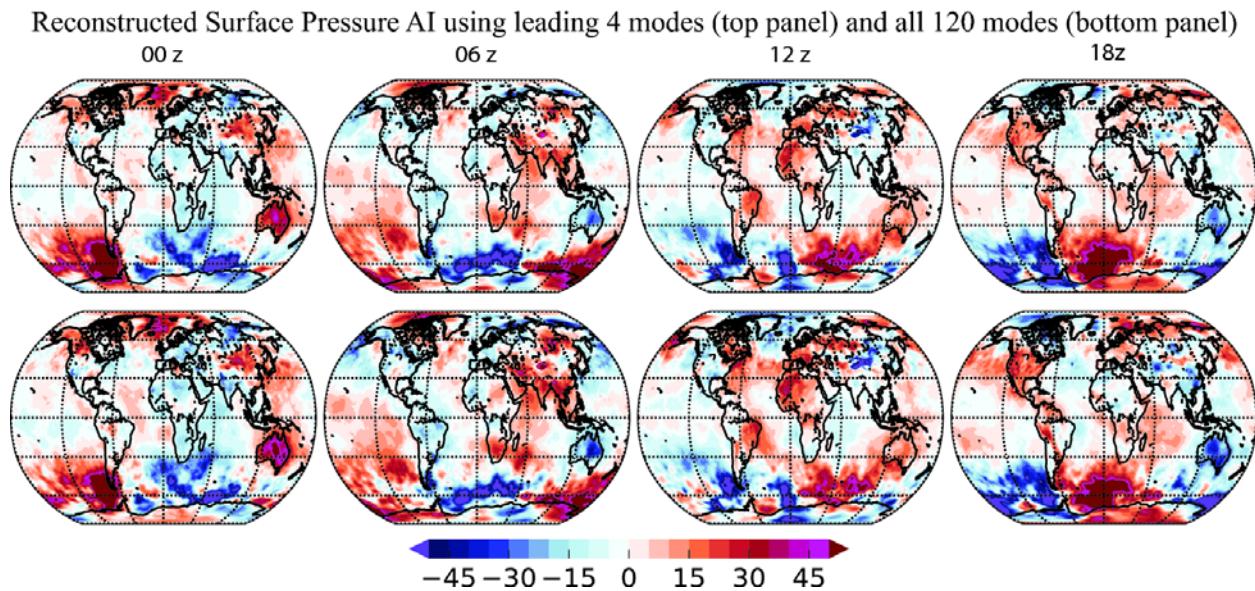
252 Over the eastern Atlantic and Pacific Oceans, the model tends to overestimate humidity
 253 and underestimate temperature during daytime and underestimate night-time humidity and
 254 overestimate night-time temperature. The bias has a semi-diurnal component during the
 255 southwest monsoon season JJA over Europe and Asia, with peaks in cold bias both in early
 256 morning and dusk and warm bias late morning and night.



258 **Figure 8.** JJA AIs for 2014, at 00 Z to 18 Z (from left to right) for temperature, specific
 259 humidity, zonal and meridional winds (top to bottom) at approximately 850 mb.

260 The monthly EOFs, which consist of 120 modes, are dominated by the four leading daily
 261 modes which explain 24% (surface pressure), 11% (temperature), and 10% (humidity), and
 262 nearly completely describe the daily cycle (Fig. 9). The diurnal cycle biases in 2015 and 2016

263 show similar structure with reduced magnitude.



265 **Figure 9.** Comparison of the diurnal cycle (September, 2014) constructed using the first four
 266 modes for (top row) with the total diurnal cycle (bottom row) errors at 00Z, 06Z, 12Z and 18 Z
 267 (left to right) for surface pressure. This is also true for other variables in different months (not
 268 shown).

269 **5 Summary and Discussion**

270 In this paper, we estimate the model deficiencies in the Global Forecasting
 271 System (GFS) that lead to systematic errors in the forecast, as a first step towards correcting
 272 them online (i.e., within the model) as in *Danforth and Kalnay 2008*. For this, we examine six-
 273 hour averaged AIs for the years 2012-2016. AIs are the difference between the gridded analysis
 274 and forecast, with the former providing our best gridded estimate of the true state of the
 275 atmosphere. They contain information about the physical processes that the model lacks and give
 276 the best estimate of the systematic errors arising due to model deficiencies. The 6-hr cycle time
 277 is sufficiently short that the errors are still linear. This reduces the likelihood of having errors in

278 one variable at one location inducing errors in another variable at a different location, and thus
279 simplifies the identification of causes of the errors.

280 Our results reveal the presence of significant bias that is geographically anchored with
281 continental scales in the GFS. The model has excess heating and drying of south and east Asia
282 especially during JJA, which leads to a lower pressure forecasts. A likely cause is weaker
283 moisture-carrying monsoon winds from the Southern Hemisphere, which also affects monsoon
284 convection and circulation. Warm and dry anomalies are also present in the regions where GFS
285 is unable to maintain sufficient stratus clouds, i.e. the zone west of South Africa, and the
286 Americas.

287 At higher latitudes, the oceans have a cold bias during local summer with northward
288 displacement of the band of intense easterlies over the Southern Ocean. The amplitude of the
289 bias declines in 2015, especially over the ocean. We are able to identify one possible cause of the
290 reduction in the Northern Hemisphere, which was the switch in 2015 to an improved, higher
291 spatial and temporal resolution in the estimation of SST boundary conditions. However, the bias
292 represented by AIs over oceans in 2012-2014 are not completely due to model deficiencies, but
293 also arise from bias in prescribed SSTs and a problem with observational assimilation. The mean
294 bias is also reduced over the Southern Ocean in 2015. In this region, the change in SST has less
295 impact. Instead, we think the reduction in bias is due to updating of the Community Radiative
296 Transfer Model and improvements in radiance assimilation.

297 In addition to time mean bias, we find strong daily bias in temperature, surface pressure,
298 specific humidity, and winds. Specific humidity has a strong diurnal bias pattern while the
299 periodic component of temperature bias shows a complex pattern, with both semidiurnal and
300 diurnal components, where polarity changes every 6-hrs at some places and every 12 hours at

301 other places. The daily biases are similar from 2012 to 2014, and are almost perfectly captured
302 by the four leading EOFs, computed every month, for surface pressure, temperature, and
303 humidity for all months. The amplitude of the daily biases also declines in 2015, especially over
304 the ocean. Here also, we think the decline in bias is due to the improved SST boundary
305 conditions.

306 Our results for bias estimation in GFS support the application of the approaches used by
307 *DKM07* to correct the mean and diurnal systematic errors. As the error growth in the short-term
308 is still linear, we can use the estimated model bias corrections and add them as a forcing term in
309 the model tendency equation. With the best estimate of model biases prior to non-linear growth,
310 the challenge that now arises is how to utilize the past estimates to correct present models. An
311 important challenge in using the past AIs as correction for model bias is accounting for
312 contributions of observation biases to the AIs. If the observations have negligible errors, for
313 short-term, the AIs represent the bias due to lack of model dynamics. But AIs should be adjusted
314 for observation biases before using them to correct the model bias. The presence of observation
315 bias can be tested by their impact on the online correction of the bias, since erroneously
316 correcting the model for an observation bias should result in an increase of the AIs.

317 In the continuation of this work, we plan to use the successful approach of *Greybush et*
318 *al.* [2012], who used the mean of a limited number of past AIs (e.g., the past 15 days) to correct
319 the model online. As diurnal and semidiurnal errors contribute significantly to the total bias,
320 correcting only the mean bias should not be enough. The diurnal and semidiurnal biases
321 dominate the higher frequencies (sub-monthly) in GFS. As these are reproduced by four
322 eigenmodes out of 120 modes, we plan to use the low dimensional approach as used by *Li et al.*
323 [2009] to correct the sub-monthly periodic bias online. Once the corrections for the mean bias

324 and periodic biases are applied, we would test if the forecast bias improvement achieved online
325 is comparable to the standard operational statistical bias correction made *a posteriori*. We also
326 plan to test whether the reducing the mean and periodic bias reduces the forecast random errors
327 during their nonlinear growth.

328 We emphasize that the ultimate goal of this study is not to empirically correct the model
329 bias and improve the forecasts only. If our results show that this goal can be achieved, this
330 approach can then be used to guide and optimize the design of subgrid-scale physical
331 parameterizations, more accurate discretizations of the model dynamics, boundary conditions,
332 radiative transfer codes, and other potential model improvements that can then replace the
333 empirical correction scheme. The methodology we propose, if successful, can be also used to
334 efficiently check potential improvements by testing whether they reduce the mean Analysis
335 Increments as expected from their design.

336 **Acknowledgments**

337 We gratefully acknowledge the support of the NOAA grant NA16NWS46800009 and of
338 the Indian Monsoon Mission grant MMSERPUnivMarylandUSA-2013 INT5002150. JAC was
339 supported by the National Science Foundation Physical Oceanography Program (OCE1233942).
340 The authors would like to thank Drs. James Jung, Mark Iredell and Henry Juang for their
341 generous guidance on the running of the GFS, and Dr. Glenn White for creating Fig. 1.

342 **Data**

343 The data used was the operational GFS/GDAS data archived and provided by co-author
344 Dr. Fanglin Yang.

345

References

346 **References**

347 Buehner, M., J. Morneau, and C. Charette (2013), Four-dimensional ensemble-variational data
348 assimilation for global deterministic weather prediction. *Nonlinear Processes Geophys.*, 20,
349 669–682.

350 Chapman, W. and J. Walsh (2007), Simulations of Arctic Temperature and Pressure by Global
351 Coupled Models. *J. Climate*, 20, 609–632, doi: 10.1175/JCLI4026.1.

352 Dalcher, A., and Kalnay, E. (1987). Error growth and predictability in operational ECMWF
353 forecasts. *Tellus A*, 39A(5), 474–491. <https://doi.org/10.1111/j.1600-0870.1987.tb00322.x>

354 Danforth, C. M., E. Kalnay, and T. Miyoshi (2007), Estimating and correcting global weather
355 model error, *Monthly Weather Review*, 135, 281–299.

356 Danforth, C.M., and E. Kalnay (2008), Using Singular Value Decomposition to Parameterize
357 State-Dependent Model Errors, *Journal of the Atmospheric Sciences*, 65, 1467-1478.

358 Danforth, C.M., and E. Kalnay (2008), Impact of online empirical model correction on nonlinear
359 error growth, *Geophysical Research Letters*, 35, L24805, doi: 10.1029/2008GL036239.

360 DelSole, T., M. Zhao, P. Dirmeyer, and B. Kirtman (2008), Empirical Correction of a coupled
361 Land-Atmosphere model, *Monthly Weather Review*, 136, 4063–4076.

362 DelSole, T., M. Zhao, and P. Dirmeyer (2009), A new method for exploring land-atmosphere
363 dynamics. *J. Hydrometeorology*, 10, 1040-1050.

364 Greybush, S. J., R.J. Wilsom, R.N. Hoffman, M.J. Hoffman, T. Miyoshi, K. Ide, T.
365 McConnochie, and E. Kalnay (2012), Ensemble Kalman Filter data assimilation of
366 spectrometer temperature retrievals into a Mars GCM, *J. Geophys. Res.*, 117, E11008,
367 doi:10.1029/2012JE004097.

368 Hartmann, D.L., T.N. Palmer, and R. Buizza (1996), Finite-Time Instabilities of Lower-
369 Stratospheric Flow. *J. Atmos. Sci.*, 53, 2129–2143.

370 Johansson, A., and S. Saha, (1989), Simulation of systematic error effects and their reduction in
371 a simple model of the atmosphere, *Mon. Weather Rev.*, 117, 1658 – 1675

372 Jung, T. (2005), Systematic errors of the atmospheric circulation in the ECMWF forecasting
373 system, *Quart. J. Roy. Meteor. Soc.*, 131, 1045-1073

374 Jung, T., and A.M. Tompkins (2003), Systematic errors in the ECMWF forecasting system,
375 Technical Memorandum, No. 442, ECMWF, Shinfield Park, Reading RG 29AX, U. K., 72
376 pp.

377 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G.
378 White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W.
379 Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph (1996),
380 The NCEP/NCAR 40-Year Reanalysis Project. *Bull. Amer. Meteor. Soc.*, 77, 437–471

381 Kalnay, E., and Z. Toth (1996), The breeding method, Proceedings of the Seminar on
382 Predictability, held at ECMWF on 4–8 September 1995.

383 Klinker, E., and P. Sardeshmukh (1992), The diagnosis of mechanical dissipation in the
384 atmosphere from large-scale balance requirements, *J. Atmos. Sci.*, 49, 608 – 627

385 Li, Hong, E. Kalnay, T. Miyoshi and C. M. Danforth (2009), Accounting for model errors in
386 Ensemble Data Assimilation, *Monthly Weather Review*, 137, 3407-3419.

387 Lien, G.-Y., T. Miyoshi, and E. Kalnay (2016b), Assimilation of TRMM Multisatellite
388 Precipitation Analysis with a low-resolution NCEP Global Forecast System. *Mon. Wea.
389 Rev.*, 144, 643–661. doi:10.1175/MWR-D-15-0149.1

390 Murphy, A. H. (1988), Skill scores based on the mean square error and their relationships to the
391 correlation coefficient. *Mon. Wea. Rev.*, 116, 2417–2424.

392 Reynolds, R.W. and T.M. Smith (1994), Improved Global Sea Surface Temperature Analyses
393 Using Optimum Interpolation. *J. Climate*, 7, 929–948.

394 Saha, S. (1992), Response of the NMC MRF model to systematic error correction within
395 integration, *Monthly Weather Review*, 120, 345–360.

396 Sela, J. G. (2009), The Implementation of the Sigma Pressure Hybrid Coordinate into the GFS.
397 NCEP, et al. Office Note #461,425 pp.

398 Thiébaux, J., E. Rogers, W. Wang, and B. Katz (2003), A New High-Resolution Blended Real-
399 Time Global Sea Surface Temperature Analysis. *Bull. Amer. Meteor. Soc.*, 84, 645–656,
400 doi: 10.1175/BAMS-84-5-645.

401 Vannitsem, S., and Z. Toth (2002), Short-term dynamics of model errors. *J. Atmos. Sci.*, 59,
402 2594–2604.

403 Wang, X., D. Parrish, D. Kleist, and J. Whitaker (2013), GSI 3DVar-Based Ensemble–
404 Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution
405 Experiments. *Mon. Wea. Rev.*, 141, 4098–4117.

406 Wu, W., R.J. Purser, and D.F. Parrish (2002), Three-Dimensional Variational Analysis with
407 Spatially Inhomogeneous Covariances. *Mon. Wea. Rev.*, 130, 2905–2916.

408 Xue, H.-L., X.-S. Shen, and J.-F. Chou (2013), A forecast error correction method in numerical
409 weather prediction by using the recent multiple-time evolution data. *Adv. Atmos. Sci.*,
410 30(5), 1249–1259, doi: 10.1007/s00376-013-2274-1.

411 Xue, H. L., X. S. Shen, and J. F. Chou (2015), An online model correction method based on an
412 inverse problem Part I—Model error estimation by iteration. *Adv. Atmos. Sci.*, 32(10),
413 1329–1340, doi: 10.1007/s00376-015-4261-1.

414 Zheng, F., J. Zhu, R.-H. Zhang, and G.-Q. Zhou (2006), Ensemble hindcasts of SST anomalies in
415 the tropical Pacific using an intermediate coupled model. *Geophys. Res. Lett.*, 33, L19604,
416 doi: 10.1029/2006GL026994.

417 Zheng, F., J. Zhu, H. Wang, and R.-H. Zhang (2009), Ensemble hindcasts of ENSO events over
418 the past 120 years using a large number of ensembles. *Adv. Atmos. Sci.*, 26(2), 359–372,
419 doi: 10.1007/s00376-009-0359-7.

420 Zheng, Y., T. Shinoda, J. Lin, and G. Kiladis (2011), Sea Surface Temperature Biases under the
421 Stratus Cloud Deck in the Southeast Pacific Ocean in 19 IPCC AR4 Coupled General
422 Circulation Models. *J. Climate*, 24, 4139–4164, doi: 10.1175/2011JCLI4172.1.