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Key Points:

e Global Forecast System model has robust, systematic seasonal mean and diurnal forecast
errors due to biases of the model and observations

e 6-hr analysis increments estimate the model bias before the errors grow nonlinearly, and
can be used to correct the model “online”.

e Observation and model bias corrections within the Analysis Increments can be separated

by their impact on systematic forecast errors.
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Abstract

We estimate the model deficiencies in the Global Forecasting System (GFS) that lead to
systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as
in Danforth and Kalnay 2008 (DKO08). Since the Analysis Increments represent the corrections
that new observations make on the 6-hr forecast in the analysis cycle, we estimate the model bias
corrections from the time average of the analysis increments divided by 6-hr, assuming that
initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-
2016, seasonal means of the 6-hr model bias are generally robust despite changes in model
resolution and data assimilation systems, and their broad continental scales explain their
insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments
and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional
correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to
improvements in the specification of the SSTs. These results provide support for future efforts to
make online correction of the mean, seasonal and diurnal and semidiurnal model biases of GFS
to reduce both systematic and random errors, as suggested by DKOS. It also raises the possibility

that analysis increments can also provide guidance in testing new physical parameterizations.

1 Introduction

The performance of numerical weather prediction models is limited by errors in the
model forecasts resulting from the errors in initial conditions and model deficiencies. Model
forecast errors can be classified into random errors, whose time average is zero, and systematic
errors [Dalcher and Kalnay, 1987, Murphy, 1988]. We define forecast error as the difference
between a model forecast xr and a verifying analysis assumed to represent the truth x;, and

separate the mean square error into the systematic and random components:
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(o —x)? = (% — %)* + (xp — x)° (1)

where the overbars represent a time average (such as a month or a season), and the primes
represent the departures from this average. We will refer to the square root of the first term of the
rhs (i.e., the time mean of the error) as the systematic forecast error, and the square root of the

second term (error variance) as the non-systematic or random errors.

Systematic forecast errors (SFEs) are a significant portion of the total forecast error in
weather prediction models, such as the Global Forecast System (GFS). Fig. 1 shows that after
two weeks, the range of GFS RMS temperature systematic errors reach 1/3 of total temperature
forecast error. Many studies attribute SFEs to specific deficiencies in numerical discretization of
the equations of motion, parameterizations of sub-grid processes, or boundary conditions (e.g.,
Jung and Tompkins, 2003; Zheng et al., 2006, 2009) which lead to model bias. These errors are
initially small, but as the model is integrated in time the errors grow and interact nonlinearly with
systematic and random errors until the model loses all forecast skill. The SFEs include mean and
periodic forecast bias, the latter including those associated with the annual cycle and the diurnal
cycle, and also state-dependent errors associated with the presence of short- or long-term
anomalies, such as weather highs and lows, or the phase of El Nifo [Danforth et al., 2007]. In
this paper, we aim to estimate the GFS model bias that leads to SFEs in the period 2012-2016. In
addition to suggesting causes for these model errors and exploring the impact of changes in the
GFS system, we evaluate their potential use as input to an empirical online correction scheme as

introduced by Danforth and Kalnay [2008].

The GFS is a global numerical weather prediction model which provides 16-day forecasts

produced by the National Centers for Environmental Prediction (NCEP). It couples an
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46  atmosphere model, a sea-ice model and a land/soil model using specified sea surface
47  temperatures (SSTs) as boundary conditions to produce the forecasts. It is initialized with the

48  Global Data Assimilation System (GDAS). Details about GFS are discussed in section 2.

zonal mean rms sys error T 16dy error GFS Jun3Aug32015 zonal mean rms_error T 16dy GFS Jun9Aug92015
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50  Figure 1. Zonal mean RMS systematic error (left) and total error (right) in temperature after 16
51  days. The range of temperature systematic errors is ~1/3 of total temperature error range after 2

52 weeks. (Courtesy of Dr. Glenn White).

53 The earliest attempts to estimate model bias within the predecessors to GFS for the

54  purpose of correcting them online, were made by Saha and colleagues [Johansson and Saha,

55  1989; Saha 1992]. They calculated the bias by averaging the error in 1-day forecasts over a

56  training period of fixed length. After testing training periods ranging from 5 to 70 days, they

57  found that the training period between 25-30 days improved the 5-day forecast while longer

58  training periods improved longer forecast times. Though mostly successful, the biases were not
59  always reduced using this method. The authors concluded that their systematic model bias

60  estimation method contained large sampling errors and suggested other ways to estimate biases.
61 Among the more recent studies proposing to estimate and correct model bias, Danforth et

62 al. [2007] (DKMO7 hereafter) used the low resolution SPEEDY general circulation model and
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initialized it from the NCEP-NCAR Reanalysis [Kalnay et al., 1996]. DKMO7 computed the
model bias as the difference between six-hour forecasts variables and the corresponding analysis
variables, averaged over many forecasts. They separated the 6-hr systematic model errors into
time averaged model bias, periodic bias and state dependent error. They pointed out that the
forecast system could be corrected for the time average bias by adding the average bias
correction term divided by 6-hr to the time derivative of each model variable.

at
6xg

6—hr (2)

x(t) = M[x(t)] +

Here, M[x(t)] is the standard model tendency to which the correction is added.

Various empirical forecast error correction schemes have been used to correct the
forecasts based on the analysis of mean and variance of past model forecast errors. The simplest
correction schemes operate “offline” (after the forecast is completed), applying a different
statistical correction for each forecast length. A disadvantage of the offline correction schemes is
that they allow forecast errors to grow until the end of the forecast cycle before comparing them
with the verifying analyses and making an average correction. During the 2- week period in
which errors grow until they saturate, the errors interact nonlinearly, obscuring their origin. The
other type of correction scheme, used by Saha [1989], DKMO7, DelSole et al. [2008], and others,
is “online” (applied during the model integration) as in equation (2). This scheme attempts to
estimate and correct the bias during the model integration.

Danforth and Kalnay [2008, DKO0S8 hereafter] showed that the online correction of the
model bias estimated by DKMO07 not only worked as well as the offline statistical correction of
the systematic errors, but that it also reduced the random errors, indicating that the correction of
the model bias actually did improve the model. DKMO07 could further reduce systematic errors

significantly by correcting for diurnal cycle errors.
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DelSole et al. [2008] used the Center for Ocean-Land-Atmosphere (COLA) land-
atmosphere model (v3.2) to test different methods to reduce the systematic errors. They
estimated the 24-hr model bias using an autoregressive model with a decorrelation time of 2
days, and found that the online correction method was able to reduce the systematic errors but
could not reduce random errors by correcting for model bias. By contrast, DK08 estimated and
corrected online the model bias directly from the time averaged bias of the 6-hr forecast. DelSole
et al. [2009] suggested a possible alternative approach similar to the one used by DKM07 and
DKO08, but did not use it. DelSole et al. [2008, 2009] concluded that it was impossible in a
realistic model/data assimilation system to estimate the model bias and correct it, and thus reduce
not only systematic errors but random errors as well.

In this paper, we apply a methodology similar to DKMO07 to the NCEP operational
GFS/GDAS system, estimating the mean and periodic model biases from the 6-hr analysis
increments (Als), before the forecast errors grow non-linearly. Als are the difference between the
gridded analysis and forecast, with the former providing our best gridded estimate of the true
state of the atmosphere. In Section 2, we estimate the 6-hr GFS model bias from the average 6-hr
operational GDAS Als. In Section 3, we examine the structure and evolution of the biases, and
compare the bias correction for the 2012-2014 period, during which few model changes took
place, to the final 2015-2016 period where major model and changes to the SST boundary
condition took place. In section 4, sub-monthly periodic biases are estimated and represented
using EOFs to provide evidence that a low dimensional approach can also be used to correct the
dominant diurnal and semi-diurnal errors. A summary and discussion of the results and details
regarding the online correction experiments that we plan to perform with the estimated

systematic and daily errors is presented in section 5.
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2 Materials and Methods

The GFS is a three-dimensional hydrostatic global spectral model with current
operational resolution of T1534 from 0-10 days and T574 from 10-16 days. The model uses 64
hybrid sigma levels [Sela, 2009] in the vertical, defined as: p(x,y,t) = g.p.+0. so that they become
parallel pressure levels at high altitudes, o, and o. are parameters, and p. is sea level pressure.
Here we present results at 7 representative model levels, including the bottom two levels, the top
level, and five model levels in between (Table 1). The GFS is run four times a day and forecasts
are issued every hour for the first 12 hours, then every 3 hours for up to 10 days and then every
12 hours. The GFS analysis is run twice per cycle: the “early” GFS run that provides 16-day
forecasts, and the “final” GDAS (Global Data Assimilation System) run that assimilates late-
arriving observations and provides a “final” analysis for the GFS. The GDAS currently uses a

hybrid four-dimensional ensemble variational formulation [Buehner et al., 2013].

Table 1. Model levels shown and their parameters

Model Level Parameter (c1) Parameter (62) Pressure if Ps =1000 mb

1 1 0 1000
2 0.995 0 995
7 0.954 116.899 950
14 0.827 2051.15 850
25 0.393 12344.49 500
35 0.506 15683.489 200

64 0 64.27 0
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The GFS/GDAS system is updated regularly to improve its performance. At the
beginning of our study period, January 2012, the GDAS was based on the 3D-VAR Global
Spectral Interpolation [Wu et al., 2002]. It used T574 resolution semi-implicit Eulerian
discretization, with the lower SST boundary condition over the oceans provided by the weekly
averaged Optimal Interpolation SST [Reynolds and Smith, 1994]. Beginning in May 2012, a
hybrid 3DVar-ENKF data assimilation system [ Wang et al., 2013], which makes use of a
background error estimate from a combination of a lower resolution Ensemble Kalman Filter and
a static background error, replaced the prior gridpoint statistical interpolation. In January 2015,
GFS transitioned to a two time-level T1534 semi-implicit semi-Lagrangian discretization, and
switched to the high resolution daily real time global SST product [ Thiébaux et al., 2003]. In
May 2016, the hybrid data assimilation system was upgraded to the current operational 4D
hybrid ensemble-variational data assimilation system [Buehner et al., 2013]. Assimilation of new
radiances from Advanced Microwave Sounding Unit was also added. The details of the evolution

of GFS are described at: www.emc.ncep.noaa.gov/gmb/STATS/html/model changes.html.

To estimate the model bias, we take advantage of the GDAS, which optimally combines
the 6-hr forecast, or background, with the new observations, creating a new analysis. The
analysis is the best estimate of truth we have after combining the model forecasts and the
observations. The Als are thus the estimated correction that the new observations make upon the
6-hr forecast. Therefore, we can use the time average of the Als as the model bias correction
over 6 hr, the negative of which is the 6-hr model bias. An important advantage of this approach
is that over 6-hr, the forecast error growth is linear [K/inker and Sardeshmukh, 1992, Vannitsem
and Toth, 2002; Jung and Tompkins, 2003; Xue et al. 2013 and 2015]. Hence, the average 6-hr

Als give the best estimate of the model bias before the errors start growing non-linearly.
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We use the 6-hr analysis and forecasts for surface pressure, temperature, winds and
specific humidity provided by the operational GFS. The GFS horizontal resolution was T574
until January 2015 when it transitioned to T1534. For convenience, we remap variables through
the full period of interest 2012-2016 onto a uniform lower resolution T254 grid, to match the
resolution at which we have access to the Als. This reduction in resolution has essentially no
impact on our analysis, as illustrated in Fig. 2. We begin by focusing on seasonal model bias
correction, which we estimate as the seasonal average (DJF, MAM, JJA, and SON) of the Als
during the five years 2012-2016. The temporal stability of the seasonal bias is evaluated, by

comparing the spatial patterns of the seasonal Als for the first three years (2012-2014) and

evaluating their similarity using anomaly correlations.

Figure 2. 6-hour model bias for July 2014 surface temperature projected on three spatial
resolutions: T254, the original resolution of data provided, (left), T126 (middle) and T62 (right).
The patterns of bias remain essentially the same, indicating that the scales of the model bias are

well resolved by T62.

To identify the systematic components of the periodic Als at sub-monthly scales we first
calculate the anomalies of the 6-hourly Als with respect to their monthly averages. We then

decompose these anomalies into a complete set of 120 Empirical Orthogonal Functions (EOFs)
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and corresponding principal component time series. These EOFs are geographically weighted, so
both the spatial patterns and the time series are orthogonal over the surface of the globe. We find

that these are dominated by the diurnal and semidiurnal components (see section 4).

3 Seasonal Bias

In this section, we examine the structure and evolution of the seasonal cycle
biases. We begin by examining the seasonal biases and compare the bias corrections for the
initial three-year period 2012-2014, during which few model changes took place, to the final 2-

year period, 2015-2016 with major model and boundary condition changes.

We first explore how the global mean error in GFS forecasts changes with height. The
estimated GFS error of temperature and winds is approximately 0.1K and 0.2 m/s, from the
surface to level 54 (approximately 13 mb), and then becomes very large, presumably because of
the effects of the artificial rigid upper boundary which introduces errors in the radiative balance
and generates spurious dynamic instabilities [Kalnay and Toth, 1996; Hartmann et al., 1996] that
remain attached to the top. Specific humidity error increases from near surface to 0.1 g/kg at 850
mb, decreasing so that by 300 mb the air is dry. Here, we present results only for the surface and

850 mb.
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Global mean RMSE for JJA 2014
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Figure 3. Global mean temperature, specific humidity and winds error vs model level for JJA

2014. The increase in error for levels above 53 is discussed in the text.

Despite major changes made to the data assimilation scheme in May 2012, the bias
corrections retain their major features throughout 2012 to 2014 (Figs. 4 and 5). In general, the
model tends to underestimate surface pressure over the land and overestimate it over the ocean,
except the regions of warm pools at the Gulf of Mexico, North Atlantic, and Bay of Bengal (Fig.
4). The surface pressure bias over the land peaks in local summer and is lowest during local

winter. Conversely, over ocean the high bias peaks during the local winter.

South and East Asia show a -10 to -20 mb erroneously low forecast surface pressure
during JJA (Fig. 4). This is the result of erroneously warm and dry forecast air, which peaks
during the summer monsoon (Fig. 5). A possible explanation is that the monsoon winds carrying

moisture in from the Southern Hemisphere are erroneously weak. Near the Equator the elevated
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humidity associated with the ITCZ is spread too wide meridionally, with too weak convergence,

so that the ITCZ itself is too dry and the Equator is too moist (Fig. 5).

Surface Pressure Analysis Increments (Bias Corrections)
2012

< a0 i
—-45-30-15 0 15 30 45

Figure 4. Seasonally averaged surface pressure Als (mb) for 2012 to 2014 (left to right).
Forecast surface pressure is generally too high (cool colors) over the oceans, except near coasts,
and too low (warm colors) over the continents. Seasonal mean Als remain relatively consistent

for the 3 years.
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Erroneously warm temperatures are also present over the subsidence zones west of South
Africa and South America (Fig. 5). For many GCMS high temperatures in these locations are
likely due to an inability to maintain sufficient stratus clouds [Zheng et al., 2011; Lien et al.,
2016b). What is a little different here is that the biases are more strongly concentrated in the
Southern Hemisphere and are displaced a few degrees westward from the coast. These areas also

have a dry bias of 0.3 to 0.6 g/kg.

A cold bias is present over the oceans in higher latitudes during local summer with the
bias being more prominent over the Southern Ocean. Accompanying the cold bias over the
Southern Ocean is a positive surface pressure bias. Interestingly, the biases in surface pressure
seemed to increase after the data assimilation changes made in May 2012. The winds in this
region show a north-easterly bias. This bias pattern over the ocean in the Northern Hemisphere is
also found in various GCM simulations and is hypothesized to be due to inaccuracies in
simulation of North Atlantic storms [Chapman and Walsh, 2007]. Over the Southern Ocean
(60°S-40°S) surface temperature forecasts are -0.2K/6-hr erroneously cool (Fig. 5), while the

intense easterlies that dominate in this latitude zone are displaced 5° too far northward.
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June-July-August mean 6-hr Analysis Increments (Bias Corrections)

Specific Humidity(g'kg) Temperature(K)

U-wind (nv/s)

V-wind (m/s)

Figure 5. JJA averaged Als for the years 2012 (left), 2013 (middle) and 2014 (right) at

approximately 850 mb. The Als remain quite consistent from 2012 to 2014.

We next explore how the Als change when progressing from the years 2012-2014 to
2015-2016 (Fig. 6). The most striking changes occur over the oceans. There we see a reduction
of the cold temperature bias, a reduction of the dry bias, and a southward shift of the Polar Front
in the Southern Ocean. Model changes possibly responsible for this improvement between these
periods are the shift of SSTs from the use of weekly optimally interpolated (OI) SST to the high
resolution real time global (RTG) SSTs and the update of the Community Radiative Transfer

Model (CRTM).
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June mean 6-hr Analysis Increments (Bias Corrections) at ~850 mb

0.30

015

10.00

1-0.15

=045

Specific Humidity(g/kg) Temperature(K)

Figure 6. Temperature and specific humidity Als for June 2014, 2015 and 2016. The errors are

substantially reduced from 2014 to 2015 especially over the ocean, and further reduce in 2016.

We compared the difference between RTG and OI SSTs with the changes in Al in 2014
and 2015. In the Northern Hemisphere the surface temperature Al improvements are highly
correlated with the places of significant difference between RTG and OI SSTs (Fig. 7). The
warmer RTG SSTs in the north Pacific and Atlantic tend to remove the cold bias in 2015, which
was found in 2012-2014. Further experiments are required to confirm the role of SST in the

improvements in bias.

In contrast to the situation in the Northern Hemisphere, RTG SSTs are colder in the
Southern Ocean. But we still find a reduction of cold bias in forecasted temperature. This is a
result of updating the CRTM which improved the analysis of near surface temperature over
water, especially in the Southern Oceans by improving specification of microwave sea surface

emissivities (http:/www.nws.noaa.gov/om/notification/tin14-46gfs cca.htm,D. Kleist, pers.

comm., 2017).
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(a) Surface temperature mean 6-hr Al (b) Surface temperature mean 6-hr Al (¢) RTG SST-OI SST
June 2015 mean

June 2014

Figure 7. Comparison of change in surface air temperature mean bias, June 2014 (a) - June
2015(b) with the difference in RTG and OI SST (c¢). Warm colors indicate that RTG SSTs are

warmer than the OI SSTs.

4 Periodic Bias Estimation

The periodic bias at sub-monthly periods is dominated by the daily cycle, which
includes stationary components, a large diurnal component that progresses westward following
the motion of the Sun and a significant semi-diurnal signal (Fig. 8). The size of these are
comparable to the seasonal bias, thus making correction of diurnal and semi-diurnal bias also
critical to improving the model performance. To separate these components, we conduct a
standard EOF analysis of the 6-hourly Als each month and then focus on those terms associated

with the daily cycle.

Over the eastern Atlantic and Pacific Oceans, the model tends to overestimate humidity
and underestimate temperature during daytime and underestimate night-time humidity and
overestimate night-time temperature. The bias has a semi-diurnal component during the
southwest monsoon season JJA over Europe and Asia, with peaks in cold bias both in early

morning and dusk and warm bias late morning and night.
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JJA 2014 mean 6-hr Al at about 850 mb

Temperature (K)

Specefic Humidity (g/kg)

V-wind (m/s)

U-wind (m/s)

Figure 8. JJA Als for 2014, at 00 Z to 18 Z (from left to right) for temperature, specific

humidity, zonal and meridional winds (top to bottom) at approximately 850 mb.

The monthly EOFs, which consist of 120 modes, are dominated by the four leading daily
modes which explain 24% (surface pressure), 11% (temperature), and 10% (humidity), and

nearly completely describe the daily cycle (Fig. 9). The diurnal cycle biases in 2015 and 2016
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show similar structure with reduced magnitude.

Reconstructed Surface Pressure Al using leading 4 modes (top panel) and all 120 modes (bottom panel)
06z 12z 18z

15 30 45

Figure 9. Comparison of the diurnal cycle (September, 2014) constructed using the first four
modes for (top row) with the total diurnal cycle (bottom row) errors at 00Z, 067, 127 and 18 Z
(left to right) for surface pressure. This is also true for other variables in different months (not

shown).

5 Summary and Discussion

In this paper, we estimate the model deficiencies in the Global Forecasting
System (GFS) that lead to systematic errors in the forecast, as a first step towards correcting
them online (i.e., within the model) as in Danforth and Kalnay 2008. For this, we examine six-
hour averaged Als for the years 2012-2016. Als are the difference between the gridded analysis
and forecast, with the former providing our best gridded estimate of the true state of the
atmosphere. They contain information about the physical processes that the model lacks and give
the best estimate of the systematic errors arising due to model deficiencies. The 6-hr cycle time

is sufficiently short that the errors are still linear. This reduces the likelihood of having errors in
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one variable at one location inducing errors in another variable at a different location, and thus

simplifies the identification of causes of the errors.

Our results reveal the presence of significant bias that is geographically anchored with
continental scales in the GFS. The model has excess heating and drying of south and east Asia
especially during JJA, which leads to a lower pressure forecasts. A likely cause is weaker
moisture-carrying monsoon winds from the Southern Hemisphere, which also affects monsoon
convection and circulation. Warm and dry anomalies are also present in the regions where GFS
is unable to maintain sufficient stratus clouds, i.c. the zone west of South Africa, and the

Americas.

At higher latitudes, the oceans have a cold bias during local summer with northward
displacement of the band of intense easterlies over the Southern Ocean. The amplitude of the
bias declines in 2015, especially over the ocean. We are able to identify one possible cause of the
reduction in the Northern Hemisphere, which was the switch in 2015 to an improved, higher
spatial and temporal resolution in the estimation of SST boundary conditions. However, the bias
represented by Als over oceans in 2012-2014 are not completely due to model deficiencies, but
also arise from bias in prescribed SSTs and a problem with observational assimilation. The mean
bias is also reduced over the Southern Ocean in 2015. In this region, the change in SST has less
impact. Instead, we think the reduction in bias is due to updating of the Community Radiative

Transfer Model and improvements in radiance assimilation.

In addition to time mean bias, we find strong daily bias in temperature, surface pressure,
specific humidity, and winds. Specific humidity has a strong diurnal bias pattern while the
periodic component of temperature bias shows a complex pattern, with both semidiurnal and

diurnal components, where polarity changes every 6-hrs at some places and every 12 hours at
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other places. The daily biases are similar from 2012 to 2014, and are almost perfectly captured
by the four leading EOFs, computed every month, for surface pressure, temperature, and
humidity for all months. The amplitude of the daily biases also declines in 2015, especially over
the ocean. Here also, we think the decline in bias is due to the improved SST boundary

conditions.

Our results for bias estimation in GFS support the application of the approaches used by
DKMOT7 to correct the mean and diurnal systematic errors. As the error growth in the short-term
is still linear, we can use the estimated model bias corrections and add them as a forcing term in
the model tendency equation. With the best estimate of model biases prior to non-linear growth,
the challenge that now arises is how to utilize the past estimates to correct present models. An
important challenge in using the past Als as correction for model bias is accounting for
contributions of observation biases to the Als. If the observations have negligible errors, for
short-term, the Als represent the bias due to lack of model dynamics. But Als should be adjusted
for observation biases before using them to correct the model bias. The presence of observation
bias can be tested by their impact on the online correction of the bias, since erroneously

correcting the model for an observation bias should result in an increase of the Als.

In the continuation of this work, we plan to use the successful approach of Greybush et
al. [2012], who used the mean of a limited number of past Als (e.g., the past 15 days) to correct
the model online. As diurnal and semidiurnal errors contribute significantly to the total bias,
correcting only the mean bias should not be enough. The diurnal and semidiurnal biases
dominate the higher frequencies (sub-monthly) in GFS. As these are reproduced by four
eigenmodes out of 120 modes, we plan to use the low dimensional approach as used by Li ef al.

[2009] to correct the sub-monthly periodic bias online. Once the corrections for the mean bias
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and periodic biases are applied, we would test if the forecast bias improvement achieved online
is comparable to the standard operational statistical bias correction made a posteriori. We also
plan to test whether the reducing the mean and periodic bias reduces the forecast random errors

during their nonlinear growth.

We emphasize that the ultimate goal of this study is not to empirically correct the model
bias and improve the forecasts only. If our results show that this goal can be achieved, this
approach can then be used to guide and optimize the design of subgrid-scale physical
parameterizations, more accurate discretizations of the model dynamics, boundary conditions,
radiative transfer codes, and other potential model improvements that can then replace the
empirical correction scheme. The methodology we propose, if successful, can be also used to
efficiently check potential improvements by testing whether they reduce the mean Analysis

Increments as expected from their design.
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