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Key Points: 
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• 6-hr analysis increments estimate the model bias before the errors grow nonlinearly, and 

can be used to correct the model “online”. 

• Observation and model bias corrections within the Analysis Increments can be separated 

by their impact on systematic forecast errors.  
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Abstract 1 

We estimate the model deficiencies in the Global Forecasting System (GFS) that lead to 2 

systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as 3 

in Danforth and Kalnay 2008 (DK08). Since the Analysis Increments represent the corrections 4 

that new observations make on the 6-hr forecast in the analysis cycle, we estimate the model bias 5 

corrections from the time average of the analysis increments divided by 6-hr, assuming that 6 

initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-7 

2016, seasonal means of the 6-hr model bias are generally robust despite changes in model 8 

resolution and data assimilation systems, and their broad continental scales explain their 9 

insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments 10 

and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional 11 

correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to 12 

improvements in the specification of the SSTs. These results provide support for future efforts to 13 

make online correction of the mean, seasonal and diurnal and semidiurnal model biases of GFS 14 

to reduce both systematic and random errors, as suggested by DK08. It also raises the possibility 15 

that analysis increments can also provide guidance in testing new physical parameterizations. 16 

1 Introduction 17 

The performance of numerical weather prediction models is limited by errors in the 18 

model forecasts resulting from the errors in initial conditions and model deficiencies. Model 19 

forecast errors can be classified into random errors, whose time average is zero, and systematic 20 

errors [Dalcher and Kalnay, 1987, Murphy, 1988]. We define forecast error as the difference 21 

between a model forecast xf and a verifying analysis assumed to represent the truth xt, and 22 

separate the mean square error into the systematic and random components: 23 
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         (𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑡𝑡)������������2 = (𝑥𝑥𝑓𝑓��� −  𝑥𝑥𝑡𝑡� )2 +  (𝑥𝑥𝑓𝑓′ − 𝑥𝑥𝑡𝑡′)������������2                         (1) 24 

where the overbars represent a time average (such as a month or a season), and the primes 25 

represent the departures from this average. We will refer to the square root of the first term of the 26 

rhs (i.e., the time mean of the error) as the systematic forecast error, and the square root of the 27 

second term (error variance) as the non-systematic or random errors.  28 

Systematic forecast errors (SFEs) are a significant portion of the total forecast error in 29 

weather prediction models, such as the Global Forecast System (GFS). Fig. 1 shows that after 30 

two weeks, the range of GFS RMS temperature systematic errors reach 1/3 of total temperature 31 

forecast error. Many studies attribute SFEs to specific deficiencies in numerical discretization of 32 

the equations of motion, parameterizations of sub-grid processes, or boundary conditions (e.g., 33 

Jung and Tompkins, 2003; Zheng et al., 2006, 2009) which lead to model bias. These errors are 34 

initially small, but as the model is integrated in time the errors grow and interact nonlinearly with 35 

systematic and random errors until the model loses all forecast skill. The SFEs include mean and 36 

periodic forecast bias, the latter including those associated with the annual cycle and the diurnal 37 

cycle, and also state-dependent errors associated with the presence of short- or long-term 38 

anomalies, such as weather highs and lows, or the phase of El Niño [Danforth et al., 2007]. In 39 

this paper, we aim to estimate the GFS model bias that leads to SFEs in the period 2012-2016. In 40 

addition to suggesting causes for these model errors and exploring the impact of changes in the 41 

GFS system, we evaluate their potential use as input to an empirical online correction scheme as 42 

introduced by Danforth and Kalnay [2008]. 43 

The GFS is a global numerical weather prediction model which provides 16-day forecasts 44 

produced by the National Centers for Environmental Prediction (NCEP). It couples an 45 
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atmosphere model, a sea-ice model and a land/soil model using specified sea surface 46 

temperatures (SSTs) as boundary conditions to produce the forecasts. It is initialized with the 47 

Global Data Assimilation System (GDAS). Details about GFS are discussed in section 2. 48 

 49 

Figure 1. Zonal mean RMS systematic error (left) and total error (right) in temperature after 16 50 

days. The range of temperature systematic errors is ~1/3 of total temperature error range after 2 51 

weeks. (Courtesy of Dr. Glenn White). 52 

The earliest attempts to estimate model bias within the predecessors to GFS for the 53 

purpose of correcting them online, were made by Saha and colleagues [Johansson and Saha, 54 

1989; Saha 1992]. They calculated the bias by averaging the error in 1-day forecasts over a 55 

training period of fixed length. After testing training periods ranging from 5 to 70 days, they 56 

found that the training period between 25-30 days improved the 5-day forecast while longer 57 

training periods improved longer forecast times. Though mostly successful, the biases were not 58 

always reduced using this method. The authors concluded that their systematic model bias 59 

estimation method contained large sampling errors and suggested other ways to estimate biases. 60 

Among the more recent studies proposing to estimate and correct model bias, Danforth et 61 

al. [2007] (DKM07 hereafter) used the low resolution SPEEDY general circulation model and 62 
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initialized it from the NCEP-NCAR Reanalysis [Kalnay et al., 1996]. DKM07 computed the 63 

model bias as the difference between six-hour forecasts variables and the corresponding analysis 64 

variables, averaged over many forecasts. They separated the 6-hr systematic model errors into 65 

time averaged model bias, periodic bias and state dependent error. They pointed out that the 66 

forecast system could be corrected for the time average bias by adding the average bias 67 

correction term divided by 6-hr to the time derivative of each model variable. 68 

            𝑥̇𝑥(𝑡𝑡) = 𝑀𝑀[𝑥𝑥(𝑡𝑡)] + 𝛿𝛿𝑥𝑥6
𝑎𝑎𝑎𝑎

6−ℎ𝑟𝑟

������
       (2) 69 

Here, M[x(t)] is the standard model tendency to which the correction is added.  70 

Various empirical forecast error correction schemes have been used to correct the 71 

forecasts based on the analysis of mean and variance of past model forecast errors. The simplest 72 

correction schemes operate “offline” (after the forecast is completed), applying a different 73 

statistical correction for each forecast length. A disadvantage of the offline correction schemes is 74 

that they allow forecast errors to grow until the end of the forecast cycle before comparing them 75 

with the verifying analyses and making an average correction. During the 2- week period in 76 

which errors grow until they saturate, the errors interact nonlinearly, obscuring their origin. The 77 

other type of correction scheme, used by Saha [1989], DKM07, DelSole et al. [2008], and others, 78 

is “online” (applied during the model integration) as in equation (2). This scheme attempts to 79 

estimate and correct the bias during the model integration. 80 

Danforth and Kalnay [2008, DK08 hereafter] showed that the online correction of the 81 

model bias estimated by DKM07 not only worked as well as the offline statistical correction of 82 

the systematic errors, but that it also reduced the random errors, indicating that the correction of 83 

the model bias actually did improve the model. DKM07 could further reduce systematic errors 84 

significantly by correcting for diurnal cycle errors. 85 
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DelSole et al. [2008] used the Center for Ocean-Land-Atmosphere (COLA) land-86 

atmosphere model (v3.2) to test different methods to reduce the systematic errors. They 87 

estimated the 24-hr model bias using an autoregressive model with a decorrelation time of 2 88 

days, and found that the online correction method was able to reduce the systematic errors but 89 

could not reduce random errors by correcting for model bias. By contrast, DK08 estimated and 90 

corrected online the model bias directly from the time averaged bias of the 6-hr forecast. DelSole 91 

et al. [2009] suggested a possible alternative approach similar to the one used by DKM07 and 92 

DK08, but did not use it. DelSole et al. [2008, 2009] concluded that it was impossible in a 93 

realistic model/data assimilation system to estimate the model bias and correct it, and thus reduce 94 

not only systematic errors but random errors as well.  95 

In this paper, we apply a methodology similar to DKM07 to the NCEP operational 96 

GFS/GDAS system, estimating the mean and periodic model biases from the 6-hr analysis 97 

increments (AIs), before the forecast errors grow non-linearly. AIs are the difference between the 98 

gridded analysis and forecast, with the former providing our best gridded estimate of the true 99 

state of the atmosphere. In Section 2, we estimate the 6-hr GFS model bias from the average 6-hr 100 

operational GDAS AIs. In Section 3, we examine the structure and evolution of the biases, and 101 

compare the bias correction for the 2012-2014 period, during which few model changes took 102 

place, to the final 2015-2016 period where major model and changes to the SST boundary 103 

condition took place. In section 4, sub-monthly periodic biases are estimated and represented 104 

using EOFs to provide evidence that a low dimensional approach can also be used to correct the 105 

dominant diurnal and semi-diurnal errors. A summary and discussion of the results and details 106 

regarding the online correction experiments that we plan to perform with the estimated 107 

systematic and daily errors is presented in section 5.  108 
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2 Materials and Methods 109 

The GFS is a three-dimensional hydrostatic global spectral model with current 110 

operational resolution of T1534 from 0-10 days and T574 from 10-16 days. The model uses 64 111 

hybrid sigma levels [Sela, 2009] in the vertical, defined as: p(x,y,t) = 𝜎𝜎1ps+𝜎𝜎2 so that they become 112 

parallel pressure levels at high altitudes, 𝜎𝜎1 and 𝜎𝜎2 are parameters, and ps is sea level pressure. 113 

Here we present results at 7 representative model levels, including the bottom two levels, the top 114 

level, and five model levels in between (Table 1). The GFS is run four times a day and forecasts 115 

are issued every hour for the first 12 hours, then every 3 hours for up to 10 days and then every 116 

12 hours. The GFS analysis is run twice per cycle: the “early” GFS run that provides 16-day 117 

forecasts, and the “final” GDAS (Global Data Assimilation System) run that assimilates late-118 

arriving observations and provides a “final” analysis for the GFS. The GDAS currently uses a 119 

hybrid four-dimensional ensemble variational formulation [Buehner et al., 2013]. 120 

Table 1. Model levels shown and their parameters 121 

Model Level Parameter (σ1) Parameter (σ2) Pressure if Ps =1000 mb 

1 1 0 1000 

2 0.995 0 995 

7 0.954 116.899 950 

14 0.827 2051.15 850 

25 0.393 12344.49 500 

35 0.506 15683.489 200 

64 0 64.27 0 
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The GFS/GDAS system is updated regularly to improve its performance. At the 122 

beginning of our study period, January 2012, the GDAS was based on the 3D-VAR Global 123 

Spectral Interpolation [Wu et al., 2002]. It used T574 resolution semi-implicit Eulerian 124 

discretization, with the lower SST boundary condition over the oceans provided by the weekly 125 

averaged Optimal Interpolation SST [Reynolds and Smith, 1994]. Beginning in May 2012, a 126 

hybrid 3DVar-ENKF data assimilation system [Wang et al., 2013], which makes use of a 127 

background error estimate from a combination of a lower resolution Ensemble Kalman Filter and 128 

a static background error, replaced the prior gridpoint statistical interpolation. In January 2015, 129 

GFS transitioned to a two time-level T1534 semi-implicit semi-Lagrangian discretization, and 130 

switched to the high resolution daily real time global SST product [Thiébaux et al., 2003]. In 131 

May 2016, the hybrid data assimilation system was upgraded to the current operational 4D 132 

hybrid ensemble-variational data assimilation system [Buehner et al., 2013]. Assimilation of new 133 

radiances from Advanced Microwave Sounding Unit was also added. The details of the evolution 134 

of GFS are described at: www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html. 135 

To estimate the model bias, we take advantage of the GDAS, which optimally combines 136 

the 6-hr forecast, or background, with the new observations, creating a new analysis. The 137 

analysis is the best estimate of truth we have after combining the model forecasts and the 138 

observations. The AIs are thus the estimated correction that the new observations make upon the 139 

6-hr forecast. Therefore, we can use the time average of the AIs as the model bias correction 140 

over 6 hr, the negative of which is the 6-hr model bias. An important advantage of this approach 141 

is that over 6-hr, the forecast error growth is linear [Klinker and Sardeshmukh, 1992, Vannitsem 142 

and Toth, 2002; Jung and Tompkins, 2003; Xue et al. 2013 and 2015]. Hence, the average 6-hr 143 

AIs give the best estimate of the model bias before the errors start growing non-linearly. 144 

http://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
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We use the 6-hr analysis and forecasts for surface pressure, temperature, winds and 145 

specific humidity provided by the operational GFS. The GFS horizontal resolution was T574 146 

until January 2015 when it transitioned to T1534. For convenience, we remap variables through 147 

the full period of interest 2012-2016 onto a uniform lower resolution T254 grid, to match the 148 

resolution at which we have access to the AIs. This reduction in resolution has essentially no 149 

impact on our analysis, as illustrated in Fig. 2. We begin by focusing on seasonal model bias 150 

correction, which we estimate as the seasonal average (DJF, MAM, JJA, and SON) of the AIs 151 

during the five years 2012-2016. The temporal stability of the seasonal bias is evaluated, by 152 

comparing the spatial patterns of the seasonal AIs for the first three years (2012-2014) and 153 

evaluating their similarity using anomaly correlations. 154 

 155 

Figure 2. 6-hour model bias for July 2014 surface temperature projected on three spatial 156 

resolutions: T254, the original resolution of data provided, (left), T126 (middle) and T62 (right). 157 

The patterns of bias remain essentially the same, indicating that the scales of the model bias are 158 

well resolved by T62. 159 

To identify the systematic components of the periodic AIs at sub-monthly scales we first 160 

calculate the anomalies of the 6-hourly AIs with respect to their monthly averages. We then 161 

decompose these anomalies into a complete set of 120 Empirical Orthogonal Functions (EOFs) 162 

-0.45 -0.30 0.300.150.0-0.15 0.45
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and corresponding principal component time series. These EOFs are geographically weighted, so 163 

both the spatial patterns and the time series are orthogonal over the surface of the globe. We find 164 

that these are dominated by the diurnal and semidiurnal components (see section 4). 165 

3 Seasonal Bias 166 

 In this section, we examine the structure and evolution of the seasonal cycle 167 

biases. We begin by examining the seasonal biases and compare the bias corrections for the 168 

initial three-year period 2012-2014, during which few model changes took place, to the final 2-169 

year period, 2015-2016 with major model and boundary condition changes. 170 

We first explore how the global mean error in GFS forecasts changes with height. The 171 

estimated GFS error of temperature and winds is approximately 0.1K and 0.2 m/s, from the 172 

surface to level 54 (approximately 13 mb), and then becomes very large, presumably because of 173 

the effects of the artificial rigid upper boundary which introduces errors in the radiative balance 174 

and generates spurious dynamic instabilities [Kalnay and Toth, 1996; Hartmann et al., 1996] that 175 

remain attached to the top. Specific humidity error increases from near surface to 0.1 g/kg at 850 176 

mb, decreasing so that by 300 mb the air is dry. Here, we present results only for the surface and 177 

850 mb. 178 
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 179 

Figure 3. Global mean temperature, specific humidity and winds error vs model level for JJA 180 

2014. The increase in error for levels above 53 is discussed in the text. 181 

Despite major changes made to the data assimilation scheme in May 2012, the bias 182 

corrections retain their major features throughout 2012 to 2014 (Figs. 4 and 5). In general, the 183 

model tends to underestimate surface pressure over the land and overestimate it over the ocean, 184 

except the regions of warm pools at the Gulf of Mexico, North Atlantic, and Bay of Bengal (Fig. 185 

4). The surface pressure bias over the land peaks in local summer and is lowest during local 186 

winter. Conversely, over ocean the high bias peaks during the local winter. 187 

South and East Asia show a -10 to -20 mb erroneously low forecast surface pressure 188 

during JJA (Fig. 4). This is the result of erroneously warm and dry forecast air, which peaks 189 

during the summer monsoon (Fig. 5). A possible explanation is that the monsoon winds carrying 190 

moisture in from the Southern Hemisphere are erroneously weak. Near the Equator the elevated 191 
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humidity associated with the ITCZ is spread too wide meridionally, with too weak convergence, 192 

so that the ITCZ itself is too dry and the Equator is too moist (Fig. 5). 193 

 194 

Figure 4. Seasonally averaged surface pressure AIs (mb) for 2012 to 2014 (left to right). 195 

Forecast surface pressure is generally too high (cool colors) over the oceans, except near coasts, 196 

and too low (warm colors) over the continents. Seasonal mean AIs remain relatively consistent 197 

for the 3 years. 198 
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Erroneously warm temperatures are also present over the subsidence zones west of South 199 

Africa and South America (Fig. 5). For many GCMS high temperatures in these locations are 200 

likely due to an inability to maintain sufficient stratus clouds [Zheng et al., 2011; Lien et al., 201 

2016b). What is a little different here is that the biases are more strongly concentrated in the 202 

Southern Hemisphere and are displaced a few degrees westward from the coast. These areas also 203 

have a dry bias of 0.3 to 0.6 g/kg. 204 

A cold bias is present over the oceans in higher latitudes during local summer with the 205 

bias being more prominent over the Southern Ocean. Accompanying the cold bias over the 206 

Southern Ocean is a positive surface pressure bias. Interestingly, the biases in surface pressure 207 

seemed to increase after the data assimilation changes made in May 2012. The winds in this 208 

region show a north-easterly bias. This bias pattern over the ocean in the Northern Hemisphere is 209 

also found in various GCM simulations and is hypothesized to be due to inaccuracies in 210 

simulation of North Atlantic storms [Chapman and Walsh, 2007]. Over the Southern Ocean 211 

(60°S-40°S) surface temperature forecasts are -0.2K/6-hr erroneously cool (Fig. 5), while the 212 

intense easterlies that dominate in this latitude zone are displaced 5° too far northward. 213 

 214 
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 215 

Figure 5. JJA averaged AIs for the years 2012 (left), 2013 (middle) and 2014 (right) at 216 

approximately 850 mb. The AIs remain quite consistent from 2012 to 2014. 217 

We next explore how the AIs change when progressing from the years 2012-2014 to 218 

2015-2016 (Fig. 6). The most striking changes occur over the oceans. There we see a reduction 219 

of the cold temperature bias, a reduction of the dry bias, and a southward shift of the Polar Front 220 

in the Southern Ocean. Model changes possibly responsible for this improvement between these 221 

periods are the shift of SSTs from the use of weekly optimally interpolated (OI) SST to the high 222 

resolution real time global (RTG) SSTs and the update of the Community Radiative Transfer 223 

Model (CRTM). 224 
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 225 

Figure 6. Temperature and specific humidity AIs for June 2014, 2015 and 2016. The errors are 226 

substantially reduced from 2014 to 2015 especially over the ocean, and further reduce in 2016. 227 

We compared the difference between RTG and OI SSTs with the changes in AI in 2014 228 

and 2015. In the Northern Hemisphere the surface temperature AI improvements are highly 229 

correlated with the places of significant difference between RTG and OI SSTs (Fig. 7). The 230 

warmer RTG SSTs in the north Pacific and Atlantic tend to remove the cold bias in 2015, which 231 

was found in 2012-2014. Further experiments are required to confirm the role of SST in the 232 

improvements in bias. 233 

In contrast to the situation in the Northern Hemisphere, RTG SSTs are colder in the 234 

Southern Ocean. But we still find a reduction of cold bias in forecasted temperature. This is a 235 

result of updating the CRTM which improved the analysis of near surface temperature over 236 

water, especially in the Southern Oceans by improving specification of microwave sea surface 237 

emissivities (http://www.nws.noaa.gov/om/notification/tin14-46gfs_cca.htm,D. Kleist, pers. 238 

comm., 2017). 239 

http://www.nws.noaa.gov/om/notification/tin14-46gfs_cca.htm
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 240 

Figure 7. Comparison of change in surface air temperature mean bias, June 2014 (a) - June 241 

2015(b) with the difference in RTG and OI SST (c). Warm colors indicate that RTG SSTs are 242 

warmer than the OI SSTs. 243 

4 Periodic Bias Estimation 244 

 The periodic bias at sub-monthly periods is dominated by the daily cycle, which 245 

includes stationary components, a large diurnal component that progresses westward following 246 

the motion of the Sun and a significant semi-diurnal signal (Fig. 8). The size of these are 247 

comparable to the seasonal bias, thus making correction of diurnal and semi-diurnal bias also 248 

critical to improving the model performance. To separate these components, we conduct a 249 

standard EOF analysis of the 6-hourly AIs each month and then focus on those terms associated 250 

with the daily cycle.  251 

Over the eastern Atlantic and Pacific Oceans, the model tends to overestimate humidity 252 

and underestimate temperature during daytime and underestimate night-time humidity and 253 

overestimate night-time temperature. The bias has a semi-diurnal component during the 254 

southwest monsoon season JJA over Europe and Asia, with peaks in cold bias both in early 255 

morning and dusk and warm bias late morning and night. 256 
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 257 

Figure 8. JJA AIs for 2014, at 00 Z to 18 Z (from left to right) for temperature, specific 258 

humidity, zonal and meridional winds (top to bottom) at approximately 850 mb. 259 

The monthly EOFs, which consist of 120 modes, are dominated by the four leading daily 260 

modes which explain 24% (surface pressure), 11% (temperature), and 10% (humidity), and 261 

nearly completely describe the daily cycle (Fig. 9). The diurnal cycle biases in 2015 and 2016 262 
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show similar structure with reduced magnitude. 263 

 264 

Figure 9. Comparison of the diurnal cycle (September, 2014) constructed using the first four 265 

modes for (top row) with the total diurnal cycle (bottom row) errors at 00Z, 06Z, 12Z and 18 Z 266 

(left to right) for surface pressure.  This is also true for other variables in different months (not 267 

shown). 268 

5 Summary and Discussion 269 

 In this paper, we estimate the model deficiencies in the Global Forecasting 270 

System (GFS) that lead to systematic errors in the forecast, as a first step towards correcting 271 

them online (i.e., within the model) as in Danforth and Kalnay 2008. For this, we examine six-272 

hour averaged AIs for the years 2012-2016. AIs are the difference between the gridded analysis 273 

and forecast, with the former providing our best gridded estimate of the true state of the 274 

atmosphere. They contain information about the physical processes that the model lacks and give 275 

the best estimate of the systematic errors arising due to model deficiencies. The 6-hr cycle time 276 

is sufficiently short that the errors are still linear. This reduces the likelihood of having errors in 277 
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one variable at one location inducing errors in another variable at a different location, and thus 278 

simplifies the identification of causes of the errors.  279 

Our results reveal the presence of significant bias that is geographically anchored with 280 

continental scales in the GFS. The model has excess heating and drying of south and east Asia 281 

especially during JJA, which leads to a lower pressure forecasts. A likely cause is weaker 282 

moisture-carrying monsoon winds from the Southern Hemisphere, which also affects monsoon 283 

convection and circulation. Warm and dry anomalies are also present in the regions where GFS 284 

is unable to maintain sufficient stratus clouds, i.e. the zone west of South Africa, and the 285 

Americas.  286 

At higher latitudes, the oceans have a cold bias during local summer with northward 287 

displacement of the band of intense easterlies over the Southern Ocean. The amplitude of the 288 

bias declines in 2015, especially over the ocean. We are able to identify one possible cause of the 289 

reduction in the Northern Hemisphere, which was the switch in 2015 to an improved, higher 290 

spatial and temporal resolution in the estimation of SST boundary conditions. However, the bias 291 

represented by AIs over oceans in 2012-2014 are not completely due to model deficiencies, but 292 

also arise from bias in prescribed SSTs and a problem with observational assimilation. The mean 293 

bias is also reduced over the Southern Ocean in 2015. In this region, the change in SST has less 294 

impact. Instead, we think the reduction in bias is due to updating of the Community Radiative 295 

Transfer Model and improvements in radiance assimilation. 296 

In addition to time mean bias, we find strong daily bias in temperature, surface pressure, 297 

specific humidity, and winds. Specific humidity has a strong diurnal bias pattern while the 298 

periodic component of temperature bias shows a complex pattern, with both semidiurnal and 299 

diurnal components, where polarity changes every 6-hrs at some places and every 12 hours at 300 
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other places. The daily biases are similar from 2012 to 2014, and are almost perfectly captured 301 

by the four leading EOFs, computed every month, for surface pressure, temperature, and 302 

humidity for all months. The amplitude of the daily biases also declines in 2015, especially over 303 

the ocean. Here also, we think the decline in bias is due to the improved SST boundary 304 

conditions. 305 

Our results for bias estimation in GFS support the application of the approaches used by 306 

DKM07 to correct the mean and diurnal systematic errors. As the error growth in the short-term 307 

is still linear, we can use the estimated model bias corrections and add them as a forcing term in 308 

the model tendency equation. With the best estimate of model biases prior to non-linear growth, 309 

the challenge that now arises is how to utilize the past estimates to correct present models. An 310 

important challenge in using the past AIs as correction for model bias is accounting for 311 

contributions of observation biases to the AIs. If the observations have negligible errors, for 312 

short-term, the AIs represent the bias due to lack of model dynamics. But AIs should be adjusted 313 

for observation biases before using them to correct the model bias. The presence of observation 314 

bias can be tested by their impact on the online correction of the bias, since erroneously 315 

correcting the model for an observation bias should result in an increase of the AIs.  316 

In the continuation of this work, we plan to use the successful approach of Greybush et 317 

al. [2012], who used the mean of a limited number of past AIs (e.g., the past 15 days) to correct 318 

the model online. As diurnal and semidiurnal errors contribute significantly to the total bias, 319 

correcting only the mean bias should not be enough. The diurnal and semidiurnal biases 320 

dominate the higher frequencies (sub-monthly) in GFS. As these are reproduced by four 321 

eigenmodes out of 120 modes, we plan to use the low dimensional approach as used by Li et al. 322 

[2009] to correct the sub-monthly periodic bias online. Once the corrections for the mean bias 323 
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and periodic biases are applied, we would test if the forecast bias improvement achieved online 324 

is comparable to the standard operational statistical bias correction made a posteriori. We also 325 

plan to test whether the reducing the mean and periodic bias reduces the forecast random errors 326 

during their nonlinear growth. 327 

We emphasize that the ultimate goal of this study is not to empirically correct the model 328 

bias and improve the forecasts only. If our results show that this goal can be achieved, this 329 

approach can then be used to guide and optimize the design of subgrid-scale physical 330 

parameterizations, more accurate discretizations of the model dynamics, boundary conditions, 331 

radiative transfer codes, and other potential model improvements that can then replace the 332 

empirical correction scheme. The methodology we propose, if successful, can be also used to 333 

efficiently check potential improvements by testing whether they reduce the mean Analysis 334 

Increments as expected from their design. 335 
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