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Abstract. Two central limit theorems for sample Fréchet means are derived,
both significant for nonparametric inference on non-Euclidean spaces. The
first theorem encompasses and improves upon most earlier CLTs on Fréchet
means and broadens the scope of the methodology beyond manifolds to diverse
new non-Euclidean data, including those on certain stratified spaces which are
important in the study of phylogenetic trees. It does not require that the
underlying distribution Q have a density and applies to both intrinsic and ex-
trinsic analysis. The second theorem focuses on intrinsic means on Riemannian
manifolds of dimensions d > 2 and breaks new ground by providing a broad
CLT without any of the earlier restrictive support assumptions. It makes the
statistically reasonable assumption of a somewhat smooth density of Q. The
excluded case of dimension d = 2 proves to be an enigma, although the first
theorem does provide a CLT in this case as well under a support restriction.
The second theorem immediately applies to spheres Sd, d > 2, which are also
of considerable importance in applications to axial spaces and to landmarks-
based image analysis, as these spaces are quotients of spheres under a Lie
group G of isometries of Sd.

1. Introduction

The present article focuses on the nonparametric, or model independent, statis-
tical analysis of manifold-valued and other non-Euclidean data that arise in many
areas of science and technology. The basic idea is to use means for comparisons
among distributions, as one does with Euclidean data. On a metric space (S, ρ)
there is a notion of the mean μ of a distribution Q, perhaps first formulated in
detail in [22], as the minimizer of the expected squared distance from a point,

(1.1) μ = argmin
p

∫
ρ2(p, q)Q(dq),

assuming the integral is finite (for some p) and the minimizer is unique, in which
case one says that the Fréchet mean of Q exists. This μ is called the Fréchet mean of
Q. In general, the set of minimizers is called the Fréchet mean set of Q, denoted CQ.
It turns out that uniqueness is crucial for making comparisons among distributions.
Usually the minimizer is unique under relatively minor restrictions if the distance ρ
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414 RABI BHATTACHARYA AND LIZHEN LIN

is the Euclidean distance inherited by the embedding J of a d-dimensional manifold
M in a Euclidean space EN , such that J(M) is closed. Indeed, under the relabeling
of M by J(M), the Fréchet mean set in this case is given by

argmin
p∈J(M)

‖p−m(Q ◦ J−1)‖2,(1.2)

where ‖x‖ is the Euclidean norm on EN and m(Q ◦ J−1) is the usual Euclidean
mean of the induced distribution Q ◦ J−1 on EN . Thus the minimizer is unique
if and only if the projection of the Euclidean mean on the image J(M) of M is
unique, in which case it is called an extrinsic mean. On the other hand, if ρg is
the geodesic distance on a Riemannian manifold M with metric tensor g having
positive sectional curvature (in some region of M), then conditions for uniqueness
are known only forQ with support in a relatively small geodesic ball [1,30,31], which
is too restrictive an assumption from the point of view of statistical applications.
If the Fréchet mean exists under ρg it is called the intrinsic mean. A complete
characterization of uniqueness of (1.1) for ρ = ρg on the circle S1 for probabilities
Q with a continuous density ([12], [10]) indicates that the intrinsic mean exists
broadly, without any support restrictions, if Q has a smooth density.

An important question that arises in the use of Fréchet means in nonparametric
statistics is the choice of the distance ρ on M . There are in general uncountably
many embeddings J and metric tensors g on a manifold M . For intrinsic analysis
there are often natural choices for the metric tensor g. A good choice for extrinsic
analysis is to find an embedding J : M → EN with J(M) closed, which is equi-
variant under a large Lie group G of actions on M . This means that there is a
homomorphism g → Φg on G into the general linear group GL(N,R) such that
J ◦g = Φg ◦J ∀g ∈ G. Such embeddings and extrinsic means under them have been
derived for Kendall type shape spaces in [14], [15], [4], [3], [19], and [8]. In most
data examples that have been analyzed, using a natural metric tensor g and an
equivariant J under a large group G, the sample intrinsic and extrinsic means are
virtually indistinguishable and the inferences based on the two different methodolo-
gies yield almost identical results [10]. This provides an affirmation of good choices
of distances. It also strongly suggests that the intrinsic mean is unique in many,
perhaps most, statistical applications.

Our focus in this article is to provide the asymptotic distribution theory which
is the basis of nonparametric inference based on Fréchet means. The omnibus CLT
Theorem 2.2 implies earlier results on CLT’s and, in particular, extends them to
certain stratified spaces. Unfortunately, for the intrinsic CLT a support condition
is still needed for the theorem to apply. In Section 3 we remove these support con-
ditions for CLT’s on Sd, d > 2, assuming statistically reasonable smooth densities.
The implications of these results for axial spaces and Kendall’s shape spaces, etc.,
are indicated.

Finally, it is important to distinguish the intrinsic mean on a Riemannian man-
ifold (M, g) from the Karcher mean of Q which minimizes the Fréchet function
restricted to an open set S containing the support of Q.
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OMNIBUS CLTS FOR FRÉCHET MEANS 415

2. An omnibus CLT for the Fréchet mean

Let (S, ρ) be a metric space and Q a probability measure on its Borel σ-field.
Define the Fréchet function of Q as

(2.1) F (p) =

∫
ρ2(p, q)Q(dq) (p ∈ S).

Assume that F is finite on S and has a unique minimizer μ = argminp F (p).
Then μ is called the Fréchet mean of Q (with respect to the distance ρ). Under
broad conditions, the Fréchet sample mean μn of the empirical distribution Qn =
1

n

∑n
j=1 δYj

based on independent S-valued random variables Yj (j = 1, . . . , n)

with common distribution Q is a consistent estimator of μ. That is, μn → μ almost
surely, as n → ∞. Here μn may be taken to be any measurable selection from
the (random) set of minimizers of the Fréchet function of Qn, namely, Fn(p) =
1

n

∑n
j=1 ρ

2(p, Yj) (see [44], [14], [15] and [10]).

We make the following assumptions.

(A1) (Uniqueness of μ) The Fréchet mean μ of Q is unique.
(A2) μ ∈ G, where G is a measurable subset of S, and there is a homeomorphism

φ : G → U , where U is an open subset of Rs for some s ≥ 1 and G is given
its relative topology on S. Also,

(2.2) x 	→ h(x; q) := ρ2(φ−1(x), q)

is twice continuously differentiable on U , for every q outside a Q-null set.
(A3) P (μn ∈ G) → 1 as n → ∞.
(A4) Let Drh(x; q) = ∂h(x; q)/∂xr, Dr,r′ = DrDr′ , 1 ≤ r, r′ ≤ s. Then

(2.3) E|Drh(φ(μ);Y1)|2 < ∞, E|Dr,r′h(φ(μ);Y1)| < ∞ for r, r′ = 1, . . . , s.

(A5) (Locally uniform L1-smoothness of the Hessian) Let ur,r′(ε; q) =
sup{|Dr,r′h(θ; q)−Dr,r′h(φ(μ); q)| : |θ − φ(μ)| < ε}. Then

(2.4) E|ur,r′(ε;Y1)| → 0 as ε → 0 for all 1 ≤ r, r′ ≤ s.

(A6) (Nonsingularity of the Hessian) The matrix Λ=[EDr,r′h(φ(μ);Y1)]r,r′=1,...,s

is nonsingular.

Remark 2.1. Observe that Eh(x, Y1) = F (φ−1(x)) = EDrh(x, Y1) = DrF (φ−1(x)),
1 ≤ r ≤ s, x ∈ U . Also, EDrh(φ(μ), Y1) = DrF (φ−1(x)) |x=φ(µ)= 0, 1 ≤ r ≤ s,

since F (φ−1(x)) attains a minimum at x = φ(μ).

Theorem 2.2. Under assumptions (A1)-(A6),

(2.5) n1/2[φ(μn)− φ(μ)]
L−→ N(0,Λ−1CΛ−1), as n → ∞,

where C is the covariance matrix of {Drh(φ(μ);Y1), r = 1, . . . , s}.

Proof. The function x → Fn(φ
−1x) =

1

n

∑n
j=1 h(x, Yj) on U attains a minimum at

φ(μn) ∈ U for all sufficiently large n (almost surely). For all such n one therefore
has the first order condition

(2.6) ∇ Fn(φ
−1νn) =

1

n

n∑

j=1

∇ h(νn, Yj) = 0,
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416 RABI BHATTACHARYA AND LIZHEN LIN

where ν = φ(μ), νn = φ(μn) (column vectors in U). Here ∇ is the gradient
(D1, . . . , Dr). A Taylor expansion yields

(2.7) 0 =
1

n

n∑

j=1

∇ h(νn, Yj) =
1

n

n∑

j=1

∇ h(ν, Yj) + Λn(νn − ν)

where Λn is the s× s matrix given by

(2.8) Λn =
1

n

n∑

j=1

[Dr,r′h(θn,r,r′ , Yj)]r,r′=1,...,s,

and θn,r,r′ lies on the line segment joining νn and ν. We will show that

(2.9) Λn → Λ in probability, as n → ∞.

Fix r, r′ ∈ {1, . . . , s}. For δ > 0, write Eur,r′(δ, Y1) = γ(δ). There exists n = n(δ)
such that P (|νn − ν| > δ) < δ for n > n(δ). Now

E
∣∣[ 1
n

n∑

j=1

Dr,r′h(νn, Yj)−
1

n

n∑

j=1

Dr,r′h(ν, Yj)] · 1[|νn−ν|≤δ]

∣∣ ≤ E
1

n

n∑

j=1

ur,r′(δ, Yj)

= Eur,r′(δ, Y1) = γ(δ) → 0

as δ → 0. Hence, by Chebyshev’s inequality for first moments, for n > n(δ) one
has for every ε > 0,
(2.10)

P (
∣∣ 1
n

n∑

j=1

Dr,r′h(νn, Yj)−
1

n

n∑

j=1

Dr,r′h(ν, Yj)
∣∣ > ε) ≤ δ + γ(δ)/ε → 0 as δ → 0.

This shows that

(2.11)
[ 1
n

n∑

j=1

Dr,r′h(νn, Yj)−
1

n

n∑

j=1

Dr,r′h(ν, Yj)
]
→ 0; in probability as n → ∞.

Next, by the strong law of large numbers,

(2.12)
1

n

n∑

j=1

Dr,r′h(ν, Yj) → EDr,r′h(ν, Y1) almost surely, as n → ∞.

Since (2.10) – (2.12) hold for all r,r′, (2.9) follows. The set of symmetric s × s
positive definite matrices is open in the set of all s× s symmetric matrices, so that
(2.9) implies that Λn is nonsingular with probability going to 1 and Λ−1

n → Λ−1 in
probability, as n → ∞. Note that E∇h(ν, Y1) = 0 (see Remark 2.1). Therefore,
using (A4), by the classical CLT and Slutsky’s Lemma, (2.7) leads to

(2.13)
√
n(νn − ν) = Λ−1

n [−(1/
√
n)

1

n

n∑

j=1

∇ h(ν, Yj)]
L−→ N(0,Λ−1CΛ−1),

as n → ∞. �

A preliminary version of Theorem 2.2 was presented in [11].

Corollary 2.3 (CLT for intrinsic means-I). Let (M, g) be a d-dimensional complete
Riemannian manifold with metric tensor g and geodesic distance ρg. Suppose Q is
a probability measure on M with intrinsic mean μI and that Q assigns zero mass
to a neighborhood, however small, of the cut locus of μI . Let φ = expμ−1

I be the
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OMNIBUS CLTS FOR FRÉCHET MEANS 417

inverse exponential, or log-, function at μI defined on a neighborhood G of μ = μI

onto its image U in the tangent space TµI
(M). Assume that the assumptions (A4)-

(A6) hold. Then, with s = d, the CLT (2.5) holds for the intrinsic sample mean
μn = μn,I , say.

Remark 2.4. Corollary 2.3 improves the CLT for the intrinsic mean due to [15],
and also Theorem 2.3 and Theorem 5.3 in [10].

For the case of the extrinsic mean, let M be a d-dimensional differentiable mani-
fold, and J : M → EN an embedding of M into an N -dimensional Euclidean space.
Assume that J(M) is closed in EN , which is always the case, in particular, if M is
compact. The extrinsic distance ρE,J on M is defined as ρE,J (p, q) = ‖J(p)−J(q)‖
for p, q ∈ M , where ‖ · ‖ denotes the Euclidean norm of EN . The image μ in
J(M) of the extrinsic mean μE,J is then given by μ = P (m), where m is the usual
mean of Q ◦ J−1 thought of as a probability on the Euclidean space EN , and P
is the orthogonal projection defined on an N -dimensional neighborhood V of m
into J(M) minimizing the Euclidean distance between p ∈ V and J(M). If the
projection P is unique on V , then the projection μn = P (mn) of the Euclidean
mean mn =

∑n
j=1 J(Yj)/n on J(M) is, with probability tending to one as n → ∞,

unique and lies in an open neighborhood G of μ = P (m) in J(M). Theorem 2.2
immediately implies the following result of [14] (also see [10], Proposition 4.3).

Corollary 2.5 (CLT for extrinsic means on a manifold). Assume that P is uniquely
defined in a neighborhood of the N-dimensional Euclidean mean m of Q ◦ J−1. Let
φ be a diffeomorphism on a neighborhood G of μ = P (m) in J(M) onto an open
set U in Rd. Assume (A1), (A4)-(A6). Then, using the notation of (2.5),

√
n [φ(μn)− φ(μ)] =

√
n [φ(P (mn))− φ(P (m))]

L−→ N(0,Λ−1CΛ−1), as n → ∞.

Remark 2.6. In Corollary 2.5, one may, in particular, choose (U, φ) to be a coordi-
nate neighborhood of μ = P (m) in J(M). In [14], however, φ is chosen to be the
linear orthogonal projection on G into the tangent space TµJ(M).

Remark 2.7. In the case S = M is a Riemannian manifold and (G = M), the
dispersion matrix in Theorem 2.2 ( and Theorem 3.3 in the next section) is related
to the sectional curvature of M . For M with constant curvature such as Sd one
may express this matrix explicitly (see [9]). Recently, [32] has extended this result
to the important case of planar shape space Σk

2 and, more generally, to manifolds
with constant holomorphic curvature.

We now turn to applications of Theorem 2.2 to the so-called stratified spaces S
which are made up of several subspaces of different dimensions. In particular, we
next consider an example where S is a space of nonpositive curvature (NPC), which
is not in general a differentiable manifold, but has a metric with properties of a
geodesic distance (namely, minimum length of curves between points) and which
is also somewhat analogous to differentiable manifolds of nonpositive curvature.
These spaces were originally studied by A. D. Alexandrov and developed further
by Yu. G. Reshetnyak and M. Gromov (see [41] for a detailed treatment). Unlike
differentiable manifolds of positive curvature where uniqueness of the intrinsic mean
is known only under very restrictive conditions (see [30], [31] and [1]), on an NPC
space the Fréchet mean is always unique if the Fréchet function (2.1) is finite [41].
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418 RABI BHATTACHARYA AND LIZHEN LIN

We will consider a stratified NPC space S which is the union of a finite number
of disjoint sets Uk, each of which in its relative topology in S is homeomorphic to
an open subset of Rs, including possibly the degenerate case s = 0, R0 being a
singleton.

The results described below originated in a SAMSI working group (http://www
samsi.info/working-groups/data-analysis-sample-spaces-manifold-strati

fication), and are further developed in [13], [26]. Also see [6], [36] and [28].
Let Q be a probability measure on S. We define the Wasserstein distance dW

on the space P(S) of probability measures on the Borel sigma-field of S as

(2.14) d2W (Q1, Q2) = inf{Eρ2(X,Y ) : L(X) = Q1,L(Y ) = Q2},
where L(Z) denotes the law, or distribution, of Z. That is, the infimum on the right
is over the set of all (joint) distributions of (X,Y ) (in P(S × S)) with marginals
Q1 and Q2. For considering finite Fréchet functions the appropriate space of prob-

abilities that we consider below is {Q̃ ∈ P(S) : Fréchet function of Q̃ is finite},
endowed with the Wasserstein distance.

On a stratified space S, we say that the Fréchet mean μ of Q is sticky on

Uk if there exists a Wasserstein neighborhood of Q such that for every Q̃ in this

neighborhood the Fréchet mean of Q̃ lies in the same stratum Uk.
As an immediate consequence of Theorem 2.2, we get the following result.

Proposition 2.8. Suppose the Fréchet mean μ of Q on a stratified NPC space
S is sticky on a stratum Uk which is not degenerate. Then, with G = Uk, the
CLT in Theorem 2.2 holds under the given assumptions (2.2) and (A4)-(A6). In
the degenerate case, i.e., Uk = {μ}, the sample Fréchet mean μn equals μ for all
sufficiently large n, almost surely.

Example 2.9 (Open book). Let S = (
⋃

k=1,...,K Hk) ∪ S0 where Hk := {k} ×H,

H = R
D × [0,∞), S0 = {0} × R

D, with the boundary point (k; 0, x1, . . . , xD) of
Hk identified with the point (0, x1, . . . , xD) of S0 for all k. That is, S is the union
of K copies of the half space H glued together at the common border or spine
S0 = {0}×RD. We express S as the disjoint union S = (

⋃
k=1,...,K Sk)∪S0, where

the k-th leaf is Sk = {(k;x0, x1, . . . , xD)} with x0 ∈ (0,∞), xj ∈ R for j = 1, . . . , D.
For a point x = (x0, x1, . . . , xD) ∈ H we define its reflection across the spine S0 as
Rx = (−x0, x1, . . . , xD). Using ‖ · ‖ for the Euclidean norm, the distance ρ on S is
then defined by

ρ((k;x), (k;y)) = ‖x− y‖ ∀x,y ∈ H = R
D × [0,∞), k = 1, . . . ,K;

(2.15)

ρ((k;x), (k′;y)) = ‖x− Ry‖ = ‖Rx− y‖ ∀x,y ∈ H = R
D × [0,∞), if k �= k′.

Note that while the zero-th coordinate x0 of x is nonnegative, that of Rx is −x0

and is negative or zero, so that if k �= k′, then
(2.16)

ρ
2
(

(k;x0
, x

1
, . . . , x

D), (k′; y0
, y

1
, . . . , y

D)
)

=(x0 + y
0)2 + ‖(x1

, . . . , x
D)− (y1

, . . . , y
D)‖2.

We now provide an exposition of a characterization of sticky Fréchet means
on open books due to [26]: “Sticky central limit theorems on open books”, with
slightly different notation and terminology. Assume that wk = μ(Sk) > 0 for all
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OMNIBUS CLTS FOR FRÉCHET MEANS 419

k = 1, . . . ,K. Define the following k-th folding map fk on S into RD+1 as

(2.17) fk((k : x)) = x, fk((k
′ : x)) = Rx if k′ �= k (k = 1, . . . ,K),

and denote by mk the usual (one-dimensional) mean of the zero-th coordinate of
fk:
(2.18)

mk =

∫
z0(Q ◦ f−1

k )(dz) = −(1/2)

[
∂/∂x0

∫

Rd+1

‖z − x‖2(Q ◦ f−1
k )(dz)

]

x0=0

.

Let Q̃ be the distribution induced by Q on H under the projection π on S into

H defined by π(k;x) = x (and π(x) = x on S0). Let Qk be the measure Q̃
restricted to π(Sk). Note that Qk = Q ◦ f−1

k restricted to Sk. Also, let Q0 be the

restriction of Q (or Q̃) to S0. In view of the additive nature of ρ2, the minimization
of the Fréchet function is achieved separately for the zero-th coordinate x0 of x
along with the leaf on which it lies and the remaining D coordinates (x1, . . . , xD).
The last D coordinate of the Fréchet mean on S is simply the mean μ1D, say, of

(x1, . . . , xD) under Q̃. The position of the Fréchet mean μ, or whether it is sticky
on the spine S0 or to some other stratum, is determined by mk (k = 1, . . . ,K).
Since the integral on the right side of (2.18) is the Fréchet function of Q evaluated
on the leaf Sk at the spine, it follows from (2.18) that if mk > 0, then, for a while,
the Fréchet function is strictly decreasing on Sk along the zero-th coordinate as it
moves away from the spine S0. On the other hand, if mk > 0, then mk′ < 0
for all k′ �= k. For this note that mk =

∫
H
z0Qk(dz) −

∑
1≤k′ �=k

∫
H
z0Qk′(dz).

Comparing this with the corresponding expression for mk′ , we see that mk′ ≤∫
H
z0Qk′(dz) −

∫
H
z0Qk(dz) < 0, since mk > 0. Hence the Fréchet function is

strictly increasing on Sk′ for all k′ �= k along the zero-th coordinate as it increases,
i.e., as the point moves away from the spine S0. It follows that μ ∈ Sk. Also,
if mk > 0, then there exists a neighborhood of Q in the Wasserstein distance on
which mk > 0. That is, if mk > 0 for some k, then μ is sticky on the stratum
Sk, and Theorem 2.2 applies with s = D + 1 = d. It is clear that the Fréchet
mean in this case is μ = (k;mk, μ1D), and the asymptotic distribution of π(μn) is
normal with mean (mk, μ1D) and covariance matrix n−1Σ, where Σ is the d × d
covariance matrix of Q ◦ f−1

k , which follows from the classical multivariate CLT

for i.i.d. summands with common distribution Q ◦ f−1
k . The above argument also

shows that if mk < 0 for all k = 1, . . . ,K, then μ belongs to S0, and it is sticky on
the spine S0, so that Theorem 2.2 applies with s = D. In this case μ = (0, μ1D)
and, with probability tending to one as n → ∞, μn lies in S0, with its zero-th
coordinate as 0 and its remaining D coordinates comprising the mean of n i.i.d.
vectors with the common distribution that of (X1, . . . , XD) under Q. Thus, again,
by the classical multivariate CLT for i.i.d. summands, the asymptotic distribution
of μn = π(μn) on S0 is normal N((0, μ1D), n−1Σ0). Note that Σ0 is the same as
the D ×D upper sub-matrix of Σ.

To complete the picture consider the case mk = 0 for some k. Then once
again mk′ < 0 for all k′ �= k, and the minimum of the Fréchet function occurs on
S0∪Sk = S̄k. Let mk,n be the sample mean of the zero-th coordinate under Q◦f−1

k .
Since the set {Q′ : mk′ < 0 for all k′ �= k} is open in the Wasserstein distance (in
the set of probabilities {Q′ : Fréchet function of Q′ is finite}), if mk,n ≤ 0, then
the sample Fréchet mean μn lies in S0. If mk,n > 0, then μn lies in Sk. Since
E(mk,n) = mk = 0, it follows by the classical CLT that the asymptotic distribution
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420 RABI BHATTACHARYA AND LIZHEN LIN

of μn is, with probability 1
2 , N((0, μ1D), n−1Σ0) on S0 and, with probability 1

2 , it
has the asymptotic distribution on Sk of its numerical coordinates as the conditional
distribution of (X0, X1, . . . , XD), given X0 > 0, where (X0, X1, . . . , XD) has the
distribution N((0, μ1D), n−1Σ).

We refer to other examples of stratified spaces such as considered in [21] and [5],
where also Theorem 2.2 applies. These may be thought of as toy models for the
study of phylogenetic trees pioneered by S. Holmes and her collaborators (see, e.g.,
[16], [24]).

3. A CLT for the intrinsic mean

We begin with the circle S1. Under the assumption of a continuous density f of
Q on S1, a necessary and sufficient condition for the existence of a unique minimizer
of the intrinsic Fréchet function on the circle S1 was given in the manuscript [12],
showing, in particular, the twice continuous differentiability of the intrinsic Fréchet
function. It is further shown there that the Fréchet function is convex at p ∈ S1 if
f(−p) < 1/2π, concave if f(−p) > 1/2π . This work is mentioned in [25], p. 182,
and also appears in [10], pp. 73-75, 31-33. Under a continuity assumption, a direct
proof of the CLT of the Fréchet mean is given in [34], and extended further in [25]
when the continuity assumption does not hold.

Proposition 3.1. On Sd the Fréchet function is twice continuously differentiable
if Q has a twice continuously differentiable density f .

Proof. For this one expresses the Fréchet function as F (p)=
∫
Dπ

‖v‖2f(expp v)m(dv)

with a natural identification with the disc Dπ = {v : 0 ≤ ‖v‖ < π} (⊂ R
d) of the

image of Sd\{−p} in TpS
d under the map logp, and m(dv) denoting the measure

induced on TpS
d from the volume measure on Sd by the map logp, thought of as a

measure on Dπ by corresponding identifications for all p. �

Remark 3.2. Since the squared intrinsic distance ρ2g(p, q) is smooth in p for q outside
any neighborhood of {−p}, it is probably enough to assume that f has continuous
derivatives of order one, or even that f is continuous. Also, we expect Proposition
3.1 and its proof to carry over to more general Riemannian manifolds such as those
which are homogeneous ([17], p. 154).

On a general complete connected d-dimensional Riemannian manifold (M, g),
the cut point of a point p along a geodesic γ(t), t ≥ 0 (γ(0) = p), is γ(t0), where
t0 = sup{t ≥ 0 : γ(u), 0 ≤ u ≤ t, is the unique distance minimizing segment of γ
between p and γ(t)}. The set of all cut points of p along geodesics is called the
cut locus of p and is denoted C(p) ([17], p. 207). Suppose the intrinsic mean μI

of a probability measure Q on M exists. Take μ = μI , φ(p) = logµ(p) defined on

M\C(μ). Then φ−1(x) = expµ(x) and x → h(x, q) is twice continuously differen-
tiable on J((M\C(μ))\C(q)). Observe that p ∈ C(q) if and only if q ∈ C(p) ([17],
p. 271). By a slight abuse of notation, we will denote by C(U) the set of cut loci of
all points in a set U ⊂ M . Let B(μ; ε) denote the geodesic ball with center μ and
radius ε. Then φ(B(μ; ε)) is the ball in TµM with center ν = φ(μ) = 0 and radius
ε. We then have the following result.

Theorem 3.3 (CLT for intrinsic means-II). Suppose that Q has an intrinsic mean
μ and that Q is absolutely continuous in a neighborhood W of the cut locus of μ with
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OMNIBUS CLTS FOR FRÉCHET MEANS 421

a continuous density there with respect to the volume measure. Assume also that (i)
Q(C(B(μ; ε))) = O(εd−c), ε → 0, for some c, 0 ≤ c < d; (ii) on some neighborhood
V of ν = φ(μ) = 0 the function θ → F

(
φ−1(θ)

)
is twice continuously differentiable

with a nonsingular Hessian Λ(θ); and (iii) (A4) holds with φ(μ) replaced by θ,
∀θ ∈ V . Then, if d > c + 2, one has the CLT (2.5) for the sample intrinsic mean
μn.

Proof. Without loss of generality we take the neighborhood V of ν = 0 sufficiently
small such that C(φ−1(V )) ⊂ W . Then Zn(θ) := n−1

∑
1≤j≤n grad h(θ, Yj) is well

defined for Yj �∈ C(φ−1θ), j = 1, . . . , n, that is, with probability one, provided θ ∈
V , sinceQ(C(φ−1θ)) = 0. By the classical CLT, Zn(0) := n−1

∑
1≤j≤n grad h(0, Yj)

is of the order Op(n
−1/2). Let Bn be the ball in TµM with center ν = φ(μ) = 0

and radius n−1/2 log n. By hypothesis, the probability that Yj ∈ C(φ−1(Bn))

is O((n−1/2 log n)d−c). For φ−1(Bn) is the geodesic ball B(μ;n−1/2 log n);
hence the probability that the set {Yj : j = 1, . . . , n} intersects C(φ−1(Bn)) is

O(n(n−1/2 log n)d−c) = o(1) if d > c + 2. Hence with probability converging to 1,
one may use a Taylor expansion of Zn(θ) in Bn,

Zn(θ) = Zn(ν) + Λn(θ)(θ − ν), (θ ∈ Bn), (ν = 0),(3.1)

where Λn(θ) is the d× d matrix whose (r, r′) element is

n−1
∑

1≤j≤n

Dr,r′h(θ(n; r, r
′, Yj), Yj)

with θ(n; r, r′, Yj) lying on the line segment joining θ and ν = 0. By hypothesis
(ii), with probability converging to one as n → ∞, Λn(θ) is nonsingular for all large
n (θ ∈ Bn) since its difference (in norm) from the Hessian Λ(θ) goes to zero as
n → ∞, by the strong law of large numbers. Now, with probability going to 1,
the function θ → Hn(θ) = 0 − Λn(θ)

−1Zn(ν) maps B̄n into itself, where B̄n is the
closure of Bn. For this argument recall that Zn(0) = Op(n

−1/2) by the classical
CLT. By the Brouwer fixed point theorem ([35]), Hn(θ) has a fixed point. Letting
νn denote a measurable selection from the set of fixed points in B̄n , it follows that,
with probability going to 1, νn converges to ν and satisfies the first order equation
(2.7). Hence one may take νn as the sample intrinsic mean (note that the Fréchet
function is strictly convex in a neighborhood of ν). The CLT now follows as in the
last line of the proof of Theorem 2.2. �

Remark 3.4. For d ≤ c + 2 the condition (i) in Theorem 3.3 does not imply that
the probability the set {Y1, . . . , Yn} intersects C(φ−1(Bn)) goes to zero. Intuitively
one may think that the cut locus of the image under φ−1 of a small neighborhood
of the random line joining νn and 0 intersecting {Y1, . . . , Yn} is negligible, but we
do not know how to justify this intuition or that it is even true.

Corollary 3.5. Suppose Q on M = Sd (d > 2) has an intrinsic mean μ and is
absolutely continuous on a neighborhood W of C(μ) with a continuous density on
W . Suppose that the hypotheses (ii), (iii) of Theorem 3.3 hold. Then the CLT for
the sample intrinsic mean holds.
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Proof. It is enough to note that the hypothesis (i) in Theorem 3.3 holds. Note
that in the present case C(μ) = {−μ} and C(φ−1(Bn)) is the set −φ−1(Bn) =
{−B(μ;n−1/2 log n)} = B(−μ;n−1/2 log n). The probability that {Y1, . . . , Yn} in-
tersects this last set is O(n(n−1/2 log n)d), since the density of Q on a small compact
neighborhood of C(μ) is bounded. �

Remark 3.6. As mentioned at the beginning of this section, F is twice continuously
differentiable if Q has a twice continuously differentiable density. We expect that
the proof can be extended to the case where Q has a smooth density only in a
neighborhood of C(μ). In the case of S1 this is known under the assumption of
just continuity of the density at μ (see [25] or the proof in [10] or [12]). It is for
this reason we have not assumed in Theorem 3.3 and Corollary 3.5 that Q has a
smooth density, although the Fréchet function is assumed to be twice continuously
differentiable in a neighborhood C(μ).

Remark 3.7. Although it is curious that the proof of Theorem 3.3 does not hold
for d = 2, the authors expect that a proof of Corollary 3.5 for the case d = 2 may
be given using polar coordinates. For the moment the CLT for S2 is derived only
under the support restriction of Corollary 2.3.

Remark 3.8. Suppose G is a Lie group of isometries on Sd, d > 2, acting freely on
Sd Then the projection π : Sd → Sd/G is a Riemannian submersion on Sd onto its
quotient space M = Sd/G ([23], pp. 63-65, 97-99). Let Q be a probability measure
on Sd with a twice continuously differentiable density and a Karcher or intrinsic
mean μ. Let μ̃ be the projection of μ. Then, in local coordinates, the differential of
the Fréchet function on M vanishes at μ̃, because π is smooth and the differential
of the Fréchet function on Sd vanishes at μ. If μ̃ is a Karcher or intrinsic mean
of Q̃, then the delta method provides a CLT for the corresponding sample Fréchet
mean μ̃n in local coordinates. If μ̃ is just a local minimum, one can still use the
CLT for two sample problems (see [9,10]). One may also explore the opposite route

for a probability Q̃ on M with a density and a unique intrinsic/Karcher mean μ̃
and a probability Q, among a family of distributions with smooth densities on Sd

whose projection on M is Q̃, such that Q satisfies the hypothesis of Corollary 3.5
with π(μ) = μ̃ . One may then apply the CLT on Sd to derive one on Sd/G. As

an example consider the antipodal map g(p) = −p, and G = {g, identity}. Let Q̃
be a probability on M = Sd/G = RP d (the real projective space) thought of as a
probability on the upper hemisphere vanishing smoothly at the boundary and with
a unique intrinsic mean μ̃ = {μ,−μ}, where μ is the Karcher mean of Q (restricted
to the hemisphere). This opens a way for CLTs on Kendall’s shape spaces as well.

Remark 3.9. Instead of defining the Fréchet mean restricted to the squared distance
ρ2, one may define it with respect to ρα, α ≥ 1, in (1.1), and derive Theorems 2.2,
3.3 if the assumptions hold with respect to ρα in place of ρ2. Note that Proposition
3.1 extends easily to this case.

Remark 3.10. As indicated in Remark 3.8, one of the significances of a CLT on Sd

is that it may provide a route to intrinsic CLTs on Sd/G, the space of orbits under
a Lie group G of isometries of Sd. Such spaces include the so-called axial spaces
(or real projective spaces RP d) and Kendall type shape spaces (after omitting a
singular set) which are important in shape-based image analysis. For the latter
spaces Sd is the so-called preshape sphere (see, e.g., [10], p. 82). Observe that
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the hypothesis (i) of Theorem 3.3 may not hold in all such quotient spaces. For
example, on RP d one only has the order O(ε) in hypothesis (i) in Theorem 3.3, since
the cut locus of a point in RP d is isomorphic to RP d−1. For Kendall’s planar shape
space, identified as the complex projective space CP k−2, of dimension d = 2k − 4,
the volume measure of C (B(μ; ε)) is O(ε2), since the cut locus of a point of CP k−2

is isomorphic to CP k−3. For these facts refer to [23], Section 2.114, pp. 102, 103.

4. Real data examples

4.1. Kendall’s planar shape space (Corpus callosum shapes of normal and
ADHD children). We consider a planar shape data set, which involves measure-
ments of a group typically developing children and a group of children suffering the
ADHD (attention deficit hyperactivity disorder). ADHD is one of the most com-
mon psychiatric disorders for children that can continue through adolescence and
adulthood. Symptoms include difficulty staying focused and paying attention, diffi-
culty controlling behavior, and hyperactivity (over-activity). ADHD in general has
three subtypes: (1) ADHD-hyperactive-impulsive, (2) ADHD-inattentive, (3) com-
bined hyperactive-impulsive and inattentive (ADHD-combined) [39]. ADHD-200
Dataset (http://fcon_1000.projects.nitrc.org/indi/adhd200/) is a data set
that records both anatomical and resting-state functional MRI data of 776 labeled
subjects across eight independent imaging sites, 491 of which were obtained from
typically developing individuals and 285 in children and adolescents with ADHD
(ages: 7-21 years old). The corpus callosum shape data are extracted using the
CCSeg package, which contains 50 landmarks, with 50 landmarks on the contour of
the corpus callosum of each subject (see [27]). After quality control, 647 CC shape
data out of 776 subjects were obtained, which included 404 (n1) typically developing
children, 150 (n2) diagnosed with ADHD-combined, 8 (n3) diagnosed with ADHD-
hyperactive-impulsive, and 85 (n4) diagnosed with ADHD-inattentive. Therefore,
the data lie in the space Σ50

2 , which has a high dimension of 2 × 50 − 4 = 96.
To provide a better picture of the data, we give displays of the landmark data by
making the scatter plots of the landmarks selected from the contours of the CC
midsections for the 243 young individuals diagnosed with ADHD. See Figure 1.

We carry out extrinsic two-sample tests based on Corollary 2.5 between the
group of typically developing children and the group of children diagnosed with
ADHD-combined, and also between the group of typically developing children and
ADHD-inattentive children. We construct test statistics based on the asymptotic
distribution of the extrinsic mean for the planar shapes.

The p-value for the two-sample test between the group of typically developing
children and the group of children diagnosed with ADHD-combined is 5.1988 ×
10−11, which is based on the asymptotic chi-squared distribution given in Corollary
2.5. The p-value for the test between the group of typically developing children and
the group ADHD-Inattentive children is smaller than 10−50. It has been suggested
the small p-values may result from the high dimension of the data. An alternative
approach may perhaps be based on neighborhood testing in the context of Hilbert
manifolds in which the shape contour is treated as an infinite-dimensional object
[20, 37, 38].

The planar shape data and the codes used for computing the p-values can be
found in http://www.stat.duke.edu/~ll162/research/planar.zip.
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Figure 1. Raw landmarks from the contour of the Corpus Callo-
sum for 243 ADHD children.

4.2. Positive definite matrices with application to diffusion tensor imag-
ing. We consider Sym+(p), the space of p × p positive definite matrices. Let
A ∈ Sym+(p) which follows a distribution Q. The Euclidean metric of A is given
by ‖A‖2 = Trace(A)2. Since Sym+(p) is an open convex subset of Sym(p), the
space of all p× p symmetric matrices, the mean of Q with respect to the Euclidean
distance is given by the Euclidean mean

(4.1) μE =

∫
AQ(dA).

Another metric for Sym+(p) is the log-Euclidean metric [2]. Let J ≡ log :
Sym+(p) → Sym(p) be the inverse of the exponential map B → eB, Sym(p) →
Sym+(p), which is the matrix exponential of B. J is a diffeomorphism. The log
Euclidean distance is given by

(4.2) ρLE(A1, A2) = ‖ log(A1)− log(A2)‖.

Note that J is an embedding on Sym+(p) onto Sym(p) and, in fact, it is an equi-
variant embedding under the group action of GL(p,R), the general linear group of
p× p nonsingular matrices. The extrinsic mean of Q under J is given by

(4.3) μE,J = exp(

∫
(log(A))Q(dA)).
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Also, this is the intrinsic mean of Q under the bi-invariant metric of Sym+(p)
as a Lie group under multiplication: A1 ◦ A2 = exp(log(A1) + log(A2)). Since
it is also the metric inherited from the vector space Sym(p), Sym+(p) has zero
sectional curvature. Another commonly used metric tensor on Sym+(p) is the
affine metric: 〈〈Y, Z〉〉A = Trace(A−1Y A−1Z) ∀Y, Z ∈ Sym(p). It is known that,
with this metric, Sym+(p) has nonpositive curvature [33]. We do not use this in
our DTI data example, because it is computation intensive and yields results that
are often indistinguishable from those using the log-Euclidean metric [40].

Theorem 2.2 applies to sample Fréchet means under both the Euclidean and
log-Euclidean distances. Let X1, . . . , Xn1

be an i.i.d. sample from Q1 on Sym+(p)
and Y1, . . . , Yn2

be an i.i.d. sample from distribution Q2 on Sym+(p), with X̄ and
Ȳ their corresponding sample means. Consider the case p = 3: X̄ and Ȳ are
the sample mean vectors of dimension 6 for the 6 distinct values of the vectorized
data. Let ΣX and ΣY be the sample covariance matrices. For testing the two-
sample hypothesis H0 : Q1 = Q2, use the test statistic (X̄ − Ȳ )Σ−1(X̄ − Ȳ )T with
Σ = (1/n1ΣX + 1/n2ΣY ), which has the asymptotic chi-square distribution χ2(6).
A similar test statistic is used for the log-Euclidean distance after taking matrix-log
of the data.

Sym+(3), the space of 3×3 positive definite matrices, has important applications
in diffusion tensor imaging (DTI). Diffusion tensor imaging provides measurements
of 3× 3 diffusion matrices of molecules of water in tiny voxels in the white matter
of the brain. When there are no barriers, the diffusion matrix is isotropic. When
a trauma occurs, due to an injury or a disease, this highly organized structure,
due to axon (nerve fiber) bundles and their myelin sheaths (electrically insulating
layers), is disrupted and anisotropy decreases. Statistical analysis of DTI data using
two- and multiple-sample tests is important in investigating brain diseases such as
autism, schizophrenia, Parkinson’s disease and Alzheimer’s disease. There has been
a growing body of work on DTI data analysis [18, 29, 40].

We now consider a diffusion tensor imaging (DTI) data set consisting of 46
subjects with 28 HIV+ subjects and 18 healthy controls. Diffusion tensors were
extracted along the fiber tract of the splenium of the corpus callosum. The DTI
data for all the subjects are registered in the same atlas space based on arc lengths,
with 75 features obtained along the fiber tract of each subject. This data set has
been studied in a regression setting in [43]. Our results are new and do not follow
from [43]. We carry out two-sample tests between the control group and the HIV+
group for each of the 75 sample points along the fiber tract. Therefore, 75 tests
are performed in total. Two types of tests are carried out based on the Euclidean
distance and the log-Euclidean distance.

The simple Bonferroni procedure for testing H0 yields a p-value equal to 75
times the smallest p-value which is of order 10−7. To identify sites with significant
differences, the 75 p-values are ordered from the smallest to the largest with a false
discovery rate of α = 0.05; 58 sites are found to yield significant differences using
the Euclidean distance and 47 using the log-Euclidean distance (see [7]).

Remark 4.1. Extremely small p-values such as of the order O(10−5) or smaller,
computed using the chi-square approximation, are subject to coverage errors. They
simply indicate that the p-value is extremely small. With such large observed values
of the statistic, von Bahr’s inequality [42], showing the tail probability under H0

to be smaller than o(n−r) for every r > 0, may perhaps be used as a justification.
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[33] Christophe Lenglet, Mikaël Rousson, Rachid Deriche, and Olivier Faugeras, Statistics on
the manifold of multivariate normal distributions: theory and application to diffusion tensor
MRI processing, J. Math. Imaging Vision 25 (2006), no. 3, 423–444, DOI 10.1007/s10851-
006-6897-z. MR2283616

[34] Robby G. McKilliam, Barry G. Quinn, and I. Vaughan L. Clarkson, Direction estimation by
minimum squared arc length, IEEE Trans. Signal Process. 60 (2012), no. 5, 2115–2124, DOI
10.1109/TSP.2012.2186444. MR2954196

[35] John W. Milnor, Topology from the differentiable viewpoint, based on notes by David W.
Weaver. Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ,
1997. Revised reprint of the 1965 original. MR1487640

[36] Daniel Osborne, Vic Patrangenaru, Leif Ellingson, David Groisser, and Armin Schwartzman,

Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decom-
positions and diffusion tensor image analysis, J. Multivariate Anal. 119 (2013), 163–175,
DOI 10.1016/j.jmva.2013.04.006. MR3061421

[37] D. Osborne, V. Patrangenaru, M. Qiu, and H. W. Thompson, Nonparametric data analysis
methods in medical imaging, John Wiley & Sons, Ltd, 2015, pp. 182–205.

Licensed to Univ of Notre Dame. Prepared on Wed Jun  6 03:06:44 EDT 2018 for download from IP 129.74.250.206.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



428 RABI BHATTACHARYA AND LIZHEN LIN

[38] V. Patrangenaru and L. Ellingson, Nonparametric statistics on manifolds and their applica-
tions, Texts in Statistical Science, Chapman & Hall/CRC, 2015.

[39] J. R. Ramsay, Current status of cognitive-behavioral therapy as a psychosocial treatment for
adult attention-deficit/hyperactivity disorder, Curr Psychiatry Rep. 9(5) (2007), 427–433.

[40] A. Schwartzman, Lognormal distributions and geometric averages of positive definite matri-
ces, arXiv e-prints (2014).

[41] Karl-Theodor Sturm, Probability measures on metric spaces of nonpositive curvature,

Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Con-
temp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 357–390, DOI
10.1090/conm/338/06080. MR2039961

[42] Bengt von Bahr, On the central limit theorem in Rk, Ark. Mat. 7 (1967), 61–69 (1967).
MR0224128

[43] Ying Yuan, Hongtu Zhu, Weili Lin, and J. S. Marron, Local polynomial regression for sym-
metric positive definite matrices, J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 (2012), no. 4,
697–719, DOI 10.1111/j.1467-9868.2011.01022.x. MR2965956

[44] Herbert Ziezold, On expected figures and a strong law of large numbers for random elements
in quasi-metric spaces, Transactions of the Seventh Prague Conference on Information The-
ory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting
of Statisticians (Tech. Univ. Prague, Prague, 1974), Reidel, Dordrecht, 1977, pp. 591–602.
MR0501230

Department of Mathematics, The University of Arizona, Tucson, Arizona 85721

E-mail address: rabi@math.arizona.edu

Department of Statistics and Data Sciences, The University of Texas at Austin,

Austin, Texas 78712

E-mail address: lizhen.lin@austin.utexas.edu

Licensed to Univ of Notre Dame. Prepared on Wed Jun  6 03:06:44 EDT 2018 for download from IP 129.74.250.206.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


	1. Introduction
	2. An omnibus CLT for the Fréchet mean
	3. A CLT for the intrinsic mean
	4. Real data examples
	4.1. Kendall’s planar shape space (Corpus callosum shapes of normal and ADHD children)
	4.2. Positive definite matrices with application to diffusion tensor imaging

	Acknowledgements
	References

