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Abstract: The Stiefel manifold V,, 4 is the space of all d x p orthonormal matrices,
with the d—1 hypersphere and the space of all orthogonal matrices constituting spe-
cial cases. In modeling data lying on the Stiefel manifold, parametric distributions
such as the matrix Langevin distribution are often used; however, model misspeci-
fication is a concern and it is desirable to have nonparametric alternatives. Current
nonparametric methods are mainly Fréchet-mean based. We take a fully genera-
tive nonparametric approach, which relies on mixing parametric kernels such as the
matrix Langevin. The proposed kernel mixtures can approximate a large class of
distributions on the Stiefel manifold, and we develop theory showing posterior con-
sistency. While there exists work developing general posterior consistency results,
extending these results to this particular manifold requires substantial new theory.
Posterior inference is illustrated on a dataset of near-Earth objects.

Key words and phrases: Bayesian nonparametric, kernel mixture, matrix Langevin,
orthonormal matrices, posterior consistency, Stiefel manifold, von Mises Fisher.

1. Introduction

Statistical analysis of matrices with orthonormal columns has diverse appli-

cations including principal components analysis, estimation of rotation matrices,
as well as in analyzing orbit data of the orientation of comets and asteroids.
Central to probabilistic models involving such matrices are probability distri-
butions on the Stiefel manifold, the space of all d x p orthonormal matrices.
Popular examples of parametric distributions are the matrix von Mises-Fisher
distribution (Khatri and Mardia (1977); Hornik and Griin (2013)) (also known
as the matrix Langevin (Chikuse (1993, 2003a, 2006))), and its generalization,
the Bingham-von Mises-Fisher distribution (Hoff (2009)). Maximum likelihood
estimation is often used in estimating the parameters, while recently Rao, Lin
and Dunson (2016) proposed a sampling algorithm allowing Bayesian inference

for such distributions.
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Current parametric models are overly simple for most applications, and non-
parametric inference has been mostly limited to estimation of Fréchet means
(Bhattacharya and Bhattacharya (2012); Bhattacharya and Lin (2016)). Chikuse
(1998) proposes a frequentist density estimator using kernel density estimation
on the Stiefel manifold and studies its asymptotic behavior. Model-based non-
parametric Bayesian inference has several advantages, including providing a fully
generative model for prediction and characterization of uncertainty, while allow-
ing adaptation to the complexity of the data. We propose a class of nonpara-
metric models based on mixing parametric kernels on the Stiefel manifold. Such
models have appealing properties including large support, posterior consistency,
and straightforward computation adapting the sampler of Rao, Lin and Dunson
(2016). Depending on the application, our models can be used to characterize
the data directly, or to describe latent components of a hierarchical model.

Section 2 provides some details on the geometry of the Stiefel manifold.
Section 3 introduces the matrix Langevin distribution, the nonparametric model,
and the posterior consistency theory. Section 4 illustrates the model through
application to an object orbits data set. All proofs are included in the appendix
and our code is available at https://github.com/varao/stiefel.

2. Geometry of the Stiefel Manifold

The Stiefel manifold V,, 4 is the space of all p-frames in R?, with a p-frame
consisting of p ordered orthonormal vectors in R?. Writing M (d, p) for the space
of all d x p real matrices, and letting I, represent the p x p identity matrix, the
Stiefel manifold can be represented as

Voa={X € M(d,p): XX = I,}. (2.1)

The Stiefel manifold V), 4 has the d — 1 hypersphere S9=1 as a special case when
= 1. When p = d, this is the space of all the orthogonal matrices O(d). V)4
is a Riemannian manifold of dimension dp —p — p(p —1)/2 = p(2d — p — 1)/2.
It can be embedded into the Euclidean space M (d,p) of dimension dp with the
inclusion map as a natural embedding, and is thus a submanifold of R,

Let G € V,, 4, and G be a matrix of size d x (d — p) such that [G : G1], the
augmented matrix obtained by concatenating the rows of G and Gy, is in O(d),
the group of d by d orthogonal matrices. The volume form on the manifold is
AdG) = AP /\?:iJrl g;fpdgi where g1, ..., g, are the columns of G, gp41,...,94
are the columns of Gy, and A represents the wedge product (Muirhead (2005)).
If p = d, that is when G € O(d), one can represent A(dG) = /\Z-<jngdgi. Note
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that A\(dG) is invariant under the left action of the orthogonal group O(d) and
the right action of the orthogonal group O(p), and forms the Haar measure on
the Stiefel manifold. For more details on the Riemannian structure of the Stiefel
manifold, we refer to Edelman et al. (1998).

3. Bayesian nonparametric model

Let X be a random variable on V,, 4. A popular parametric distribution of X
is the matrix Langevin distribution that has, with respect to the invariant Haar
volume measure on V,, 4, the density
etr(FTX)

Z(F) ~
where etr stands for the exponential trace function. The parameter F is a d X p
matrix, and the normalization constant Z(F) = oFy(3d, YFTF) is the hyper-
geometric function with matrix arguments (Herz (1955)), evaluated at §F7F
(Chikuse (2003b)). Write the singular value decomposition (SVD) of F' as
F =GrHT, with G and H, d x p and p x p orthonormal matrices, and & a diag-

Py (X[ F) = (3.1)

onal matrix with positive elements. One can think of G and H as orientations,
with & controlling the concentration in the directions determined by these orien-
tations. Large values of k imply concentration along the associated directions,
while setting k to zero recovers the uniform distribution on the Stiefel manifold.
Khatri and Mardia (1977) show that oFy(d/2, (FTF)/4) = oFi(d/2, (kTK)/4), so
that the normalization constant depends only on k, and we write it as Z(x). The
mode of the distribution is given by GH” and, from the characteristic function
of X, one can show FE(X) = FU, where the (7, j)th element of the matrix U is
given by

dlogoFy(d/2,(FTF)/4)

i = 2
Uij O(FTF);

Consider n observations Xi,..., X, drawn ii.d. from Py (X|F). A sim-
ple approach to characterizing these observations is via a maximum likelihood
estimate of the parameter F. This is complicated by the dependence of the
normalization constant Z(F') on F', and Chikuse (2003b) describes an approach
based an asymptotic approximation to Z(F'). The intractable normalizing con-
stant makes Bayesian estimation of F' even more challenging, since quantifying
the effects of such approximations is very difficult. Rao, Lin and Dunson (2016)
propose an exact sampling scheme based on a data augmentation technique to
solve this intractability problem.
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In many situations, assuming the observations come from a particular para-
metric family such as matrix Langevin is restrictive, and raises concerns about
model misspecification. Nonparametric alternatives, on the other hand, have
much wider applicability, and we consider these in the following.

Denote by M the space of all densities on V), 4 with respect to the Haar
measure A. Let g(X, G, k) be a parametric kernel on the Stiefel manifold with a
‘location parameter’ G and a vector of concentration parameters K = (K1, ..., Kp).
One can place a prior II on M by modelling the random density f as

F(X) = / o(X, G, 8) P(dRdG), (3.2)

with the mixing measure P a random probability measure. A popular prior over
P is the Dirichlet process (Ferguson (1973)), parametrized by a base probability
measure Py on the product space Rﬂ x Vp 4, and a concentration parameter o > 0.
We denote by Iy the DP prior on the space of mixing measures, and assume Py
has full support on R, x V,, 4.

The model in (3.2) is a ‘location-scale’ mixture model, and corresponds to
an infinite mixture model where each component has its own location and scale.
One can also define the following ‘location’ mixture model given by

F(xX) = / 4(X, G, ) P(dG)u(dr), (3.3)

where P is given a nonparametric prior like the DP and p(dk) is a parametric
measure (like a product of Gamma or Weibull distributions). In this model, all
components are constrained to have the same scale parameters . This model
is analogous to a mixture of Gaussians with all components constrained to have
the same covariance. We show later that with an appropriate prior over k,
this constrained model is still asymptotically consistent. However, in practical
settings, care must be taken to ensure that this assumption is appropriate, if not,
the model can infer an inappropriately large number of mixture components.

When II; corresponds to a DP prior, one can precisely quantify the mean of
the induced density II. For model (3.2), the prior mean is given by

E(f(X)) —/g(X, G,k)E(P(drdG)) :/g(X, G, k) Py(drdG), (3.4)
while for model (3.3), it is
E(F(X)) = [ 9(X.G.rouldm)(dG). (35)

The parameter a governs the number of components in the mixing density and
roughly controls the concentration of the prior around the mean density, and one
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can place a hyperprior on « as well.
In the following, we set g(X, G, k) to be the matrix Langevin distribution
with parameter F' = Gk. Thus,
(X, Gk = TECX) o etr(wGTX), (3.6)
Z(k)
with C(k) = 1/Z(k) = 1/0F1(d/2, (kTK)/4). We have restricted ourselves to
the special case where the matrix Langevin parameter F' has orthogonal columns
(or equivalently, where H = I,). While it is easy to apply our ideas to the
general case, we demonstrate below that even with this restricted kernel, our

nonparametric model has such properties as large support and consistency.

3.1. Posterior consistency

With our choice of parametric kernel, a DP prior on II; induces an infinite
mixture of matrix Langevin distributions on M. Call this distribution II; we will
show that this has large support on M, and that the resulting posterior distribu-
tion concentrates around any true data generating density in M. Our modelling
framework and theory builds on Bhattacharya and Dunson (2010, 2012), who
developed consistency theorems for density estimation on compact Riemannian
manifolds, and considered DP mixtures of kernels appropriate to the manifold un-
der consideration. However, they only considered simple manifolds, and showing
that our proposed models have large support and consistency properties requires
substantial new theory.

We first introduce some notions of distance and neighborhoods on M. A
weak neighborhood of fy with radius € is defined as

Welfo) = {f : ‘ [ #83@x) - zfarax)

where Cy(V}, q) is the space of all continuous and bounded functions on V}, 4. The
Hellinger distance dg(f, fo) is defined as

1/2
autr. 0 = (5 [(VIT - VREOA@D)

We let Uc(fo) denote an e-Hellinger neighborhood around fy with respect to dp.
The Kullback-Leibler (KL) divergence between fy and f is defined to be
Jo(X)
dicifo.£) = [ £o(X)log
(o) = [ FolX) 108555
with K.(fp) denoting an e-KL neighborhood of fj.
Let Xi,...,X,, be n observations drawn i.i.d. from some true density fq

<eforall z € C’b(Vp,d)} , (3.7

A(dX), (3.8)
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on V, 4. Under our model, the posterior probability II, of some neighborhood
We(fo) is given by

wg iz F(XDTI(AS)

IL, (We(fo)| Xq,...,Xn) = - (3.9)
fM Hi:l f(Xi)H(df)
The posterior is weakly consistent if for all € > 0,
I, (We(fo)| X1,..., Xn) = Las. Pf5° asn — oo, (3.10)

where P f§° represents the true probability measure for (X, Xo,...).

We assume the true density fy is continuous with Fy as its probability dis-
tribution. The following theorem on the weak consistency of the posterior under
the mixture prior is for both models (3.2) and (3.3), the proof of which is included
in the Appendix.

Theorem 1. The posterior 11, in the DP-mizture of matriz Langevin distribu-
tions is weakly consistent.

We now consider the consistency property of the posterior 1I,, with respect
to the Hellinger neighborhood U,( fy); this is referred to as strong consistency.

Theorem 2. Let 7, be the prior on k, and let 11 be the prior on M induced by
I1; and my via the mizture model (3.3). Let 11y ~ DP,p, with Py a base measure
having full support on V, q. Assume 7. (k : (k) < n®) < exp(—nf3) eventually
for some a < 1/((p+ 2)dp) and B > 0 with ¢p(k) = P (ki +1)%2. Then the
posterior 11, is consistent with respect to the Hellinger distance dg.

REMARK 1. For prior m, on the concentration parameter k to satisfy the
condition 7 (K : ¢(k) < n®) < exp(—np), for some a < 1/(dp(p + 2)) and 5 >
0, requires fast decay of the tails for m,. One can check that an independent
(1/a)-1 exp(—bm(l/a)) satisfies the

Weibull prior for x;, i = 1,...,p with k; ~ K, i
tail condition.

Another choice is to allow 7, to be sample size dependent as suggested by
Bhattacharya and Dunson (2012). In this case, one can choose independent
Gamma priors for k; with k; ~ k§ exp(—byk;) where ¢ > 0 and n'=/b, — 0 with

0<a<1/(dp(p+2).

4. Inference for the Nonparametric Model

A common approach to posterior inference for the Dirichlet process is Markov
chain Monte Carlo (MCMC) based on the Chinese restaurant process (CRP)
representation of the DP (Neal (2000)). The Chinese restaurant process describes
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the distribution over partitions of observations that results from integrating out
the random probability measure II;, and a CRP-based Gibbs sampler updates
this partition by reassigning each observation to a cluster conditioned on the rest.
The probability of an observation X; joining a cluster with parameters (G, k)
is proportional to the likelihood ¢(X;, G,k) times the number of observations
already in that cluster (for an empty cluster, the latter is the concentration
parameter «). Our case is complicated by the intractable likelihood g(-); this
also makes updating the cluster parameters not straightforward. One possibility
is to use an asymptotic approximation to the normalization constant Z (k) (Hoff
(2009)). We instead use a recently proposed data augmentation scheme by Rao,
Lin and Dunson (2016) to construct a Markov chain with the ezact stationary
distribution.

This approach builds on a rejection sampling scheme by Hoff (2009) that
produces samples from a matrix Langevin distribution by accepting or rejecting
proposals from a simpler, tractable distribution on the Stiefel manifold. Under
this scheme, every sample from the matrix Langevin distribution is preceded
by a sequence of rejected proposals from the proposal distribution. Updating
the parameters of this proposal distribution (which are the same parameters as
the matrix Langevin distribution) is easy, however this requires imputing the
rejected proposals that precede each observation. Rao, Lin and Dunson (2016)
show how to carry out this step, and thus run MCMC on the augmented (and
now tractable) space. We refer the reader to that paper for more details about
this auxiliary variable Gibbs sampler. Below we detail the steps of the algorithm.
We write 0 = (k,G), and ¢o(X) for the proposal distribution of Hoff (2009).

Algorithm 1: MCMC sampler for DP mixture of Matrix Langevin distributions

Input: A partition of observations and a set of cluster parameters
Output: A new partition and a new set of cluster parameters

1: Update cluster assignments: For each observation z:
e Let 0* be the parameter of its current cluster.
e Sample from gp- till acceptance (Hoff (2009)), calling the rejected proposals V.

e Treat the vector (z,)) as the actual observation, with the likelihood corre-
sponding to drawing its components independently from the tractable gg. Un-
der this likelihood, assign (z,)) to a new cluster according to the usual Chinese
restaurant process (Neal (2000)). Then discard ).
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2: Update cluster parameters: For each cluster ¢ (with parameters * = (k*, G*)):

e Write X, for all observations at this cluster, and |X,| for the cardinality.

Sample independently from ¢; until |X,| samples are accepted.

Write ), for all rejected proposals.

Update k* as if (X, ).) were observations at this cluster with likelihood gy.

Discard ), and update G*.

We apply our nonparametric model to a dataset of near-Earth astronomical
objects (comets and asteroids). Inferences were based on 5,000 samples from the
MCMC sampler, after a burn-in period of 1,000 samples.

4.1. Near Earth Objects dataset

The Near Earth Objects dataset was collected by the Near Earth Object
Program of the National Aeronautics and Space Administration', and consists of
162 measurements of Near-Earth Comets (NECs). Each data point characterizes
the orientation of a two-dimensional elliptical orbit in three-dimensional space,
and thus lies on the Stiefel manifold V32. Analysis of such data is important
towards better understanding the origin and evolution of the NEOs population
(Morbidelli et al. (2002)). The left subplot in Figure 1 shows these data, with
each 2-frame represented as two orthonormal unit vectors. The first column
(representing the latitude of perihelion) is the set of cyan lines arranged as two
horizontal cones. The magenta lines (arranged as two vertical cones) form the
second column, the longitude of perihelion.

We model this dataset as a DP mixture of matrix Langevin distributions. We
set the DP concentration parameter « to 1 and, for the DP base measure, placed
independent probability measures on the matrices G and . For the former, we
used a uniform prior (as in Section 3); however we found that an uninformative
prior on k resulted in high posterior probability for a single diffuse cluster with
no interesting structure. To discourage this, we sought to penalize small values
of k;. One way to do this is to use a Gamma prior with a large shape parameter.
Another is to use a hard constraint to bound the k;’s away from small values.
We took the latter approach, placing independent exponential priors restricted
to [5,00) on the diagonal elements of k. Our choice was motivated by the fact

I'Downloaded from http://neo. jpl.nasa.gov/cgi-bin/neo_elem
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Figure 1. The Near Earth Objects dataset (left), and the adjacency matrix inferred by
the DP mixture model (right).
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Figure 2. Posterior over the number of clusters for the Near Earth Objects dataset (left),
and location and scale parameters of an MCMC sample with three clusters (right). The
circles associated with each cluster correspond to 75% predictive probability regions for
the associated component.

that for the one-dimensional von Mises distribution on the unit circle, Kk = 5 gives
a distribution of angles with standard deviation approximately equal to one.

The right plot in Figure 1 shows the adjacency matrix summarizing the
posterior distribution over clusterings. An off-diagonal element (i, j) gives the
number of times observations ¢ and j were assigned to the same cluster under the
posterior. We see a highly coupled set of observations (from around observation
20 to 80 keeping the ordering of the downloaded dataset). This cluster corre-
sponds to a tightly grouped set of observations, visible as a pair of bold lines in
the left plot of Figure 1.
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Figure 3. Posterior over the number of clusters for x restricted to [1,00) (left) and [3, c0)
(middle). The rightmost plot shows a traceplot of the number of clusters over MCMC
iterations.
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Figure 4. Log predictive probabilities of first and second orthonormal components.

To investigate the underlying structure more carefully, we plot in Figure 2 the
posterior distribution over the number of clusters. The figure shows this number
is peaked at 4, extending up to 9. However, in most instances, most clusters have
a small number of observations, with the posterior dominated by 2 or 3 large
clusters. A typical two-cluster realization is fairly intuitive, with each cluster
corresponding to one of the two pairs of cones at right angles, and these clusters
were identified quite consistently across all posterior samples. Occasionally, one
or both of these might be further split into two smaller clusters, resulting in 3 or
4 clusters. A different example of a three cluster structure is shown in the right
subfigure (this instance corresponded to the last MCMC sample of our chain that
had three large clusters). In addition to the two aforementioned clusters, this
assigns the bunched group of observations mentioned earlier (see the bunched
cyan lines in figure 1) to their own cluster. In figure 3, we show the number of
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clusters when the diagonal elements of k are limited to [1, 00)(left) and [3, c0)
(middle). In the former case, the posterior is dominated by a single large cluster,
while the latter places more posterior mass on 2 to 3 clusters, the ideal solution.
We also repeated the analysis of this section with a more general kernel that was
not limited to having H equal to the identity matrix. The results we obtained
were largely the same, the only difference being a slight but insignificant decrease
in the number of clusters observed under the posterior. This is to be expected.
Finally, in the rightmost subplot, we plot a trace of the number of clusters under
the posterior, demonstrating that our sampler mixes well.

Parametric analysis of this dataset typically requires identifying this cluster
and treating it as a single observation (Sei et al. (2013)); by contrast, our non-
parametric approach handles this much more naturally. Further, our Bayesian
approach allows incorporating such an analysis as part of a larger hierarchical
model. Figure 4 show the log predictive-probabilities of observations given this
dataset, with the left subplot giving the distribution of the first component, and
the right, the second. The peak of this distribution (the red spot to the right for
the first plot, and the spot to the bottom left for the second), corresponds to the
bunched set of observations mentioned earlier.

REMARK 2. Chikuse (1998) proposed a kernel density estimator on the
Stiefel manifold. The estimator is slightly technical and requires proper estima-
tion of the smoothing parameter. Our model is fully generative and allows fully
MCMC based inference for estimation, prediction, and uncertainty quantifica-
tion. In addition, fitting our model via MCMC returns a clustering of the data,
which is useful in many applications.

5. Proofs

Proof of Theorem 1. In order to show weak consistency of the posterior distri-
bution, it suffices to show that the prior distribution assigns positive mass to
Kullback-Leiber neighborhoods of the true density fo. This is a well-known re-
sult from Schwartz (1965). For density estimation on a manifold, Bhattacharya
and Dunson (2012) derive some sufficient conditions for the KL support condition
to hold on a general Riemannian manifold. We strive to check these conditions
under our model.

By slightly abuse of notation, let f be any continuous function on V,, 4 in
this proof. We star by checking the KL condition. Bhattacharya and Dunson
(2012) derive the following sufficient conditions for the KL support condition to
hold on a general Riemannian manifold.
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(1) The kernel g(X, G, k) is continuous in all of its arguments.

(2) The set {Fp} x D¢ intersects the support of I1; x 7, with D¢ as the interior
of D, a compact neighborhood of some {1, ...,x,} in R?.

(3) For any continuous function f on M, there exists a compact neighborhood
D of {k1,...,kp}, such that

‘f(X) - [axc. n)f(G)A(d@H <e

sup
X€Vp,a, kED.

For (1) one can write

P
9(X,G, k) = C(k)etr(FTX) = C(k) exp (Z HiG{ﬂX[ﬂ) .
i=1
Here g is continuous with respect to k since the hypergeometric function C(k)
is continuous and etr(F7 X) is clearly continuous with respect to & as the expo-
nential term can be viewed as a linear combination of k;’s.

Now rewrite the density as

P 52 - 2
9(X, G, k) = C(k)etr(FTX) = C(k) exp (p + 20 K — p(FX) ) |

2

where p is the Frobenius distance between two matrices F' and X. Therefore
etr(FT X) is a continuous density of X with respect to the Frobenius distance.
Vp,da can be embedded onto the Euclidean space M(d, p) via the inclusion map,
so one can equip V), 4 with a metric space structure via the extrinsic distance p in
the Euclidean space. From the symmetry between G and X, ¢ is also continuous
with respect to G.

To prove (2), note that DP has weak support on all the measures whose
support is contained by the base measure Py (See Theorem 3.2.4 in Ghosh and
Ramamoorthi (2003), pp. 104). As Py and 7, have full support, (2) follows
immediately.

Let I(X) = f(X) — [ 9(X, G, k) f(G)A(dG). For the last condition, we must
show that there exists some compact subset in RP with non-empty interior, D,
such that

sip (X)) < (5.1)
XGVpﬁd, K;EDE

From symmetry of g with respect to G and X, one can write
I(X) = C(k) / (f(X) = f(@)) etr(FT X)A(dG).

Let G = Q(d)T'G, where Q(d) is an orthogonal matrix with first p columns as
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X. Then G = Q(d)é. As the volume form is invariant under the group action
of the orthogonal matrices O(d) on the left, one has A(dG) = \(dG). First,

PA(X, Q(d)@) = Trace ((X - Q(d)@> (X n Q(d)a)T>

= 2p — 2 Trace (Q(d)TXCA}T)

P
= 22 (1 —9ii)
i=1

with g;; being the diagonal elements of G. Let (1 —94) = sii/ri fori=1,...,p,
with s;; € [0,2k;]. Then p?(X, Q(d)G) = 2 >-P | sii/ ki for any given £;. Since the
Stiefel manifold is compact and f is continuous with respect to p, f is uniformly
continuously on V,, 4 with respect to the distance. Therefore, when x; — oo for

alli=1,...,p, one has for s = {s11,...,5pp},
s [(£() = FQ)E)| — 0. (5.2)
XeV, 4

Let F be the matrix whose kth column is K/kQ(d)@[:k}. One has

sup [I(X)]
XeV,.a

< s Clr) 1700 - 1@u@)G)) | en(FTX)MdC)
(£(X) - rQ)G)) \ } exp (i m@-i) A(dG)
i=1

ol

p : . p .
= C(k)exp (Zl 51’) / {Xseuvgd (f(X) - f(Q(d)G)> ‘ } exp (— Zl 3ii> A(dG).
(5.3)

Let 7 be the transformation given by m(gi;) = gi; when i # j and 71(gi;) =
sii = Kki(1 — gii). Let )\(dé\s) be new volume measure after change of variables
with respect to m. Let J; be the Jacobian of the map 7. Rewrite )\(d@) =
w(a)dﬁu Adgi2 - - -Ngap where go(@) is some function of G. Similarly, let )\(d@s) =

~

©(Gs)dsii A -+ Adsgp. One has

p
ANdGs) = 3(Gs) [ [ widga A dgrz- -+ A Gap
i=1

Q)

NIE L \dd). (5.4)

= #(C)
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The last term of (5.3) is

<) exp (z ) I/ {Xseuvgd

exp (i —) 26 \ag), 59

(£ - 1Q)G)) ]} x

Pt $(Gs)
with appropriate change of the range of integration. It is not hard to see that
/exp <— is) #(C) A(dG) < oo (5.6)
i) e(Gs)

We now proceed to show that even as x; — oo,

K) exp (Z m) H — < 0. (5.7)

=1
One has

eX K i:l(l/“z)
P (Z ) H ki oFh (1/2d,1/4diag {x3,...,k2}) / TTH—; exp(ri)

Write (see Butler and Wood (2003))

1 1
oF1 <2d, Zdiag{n%,..., p}> / etr (diag {k1,...,Kp} T)dT (5.8)

P

with T € O, the group of all the p by p orthogonal matrices with d71" given by
/\Z<]t dt;. When k; > 1 fori=1,...,p, one looks at

etr (diag {x1,...,6p}T) ., e [ p .
/o,, T ol /O p( (Z i(1 tu)>>dT,

=1

where t;; are the diagonal elements of 7. For 7y the map such that mo(t;;) = t;;
for ¢ # j, and w;; = ma(ti;) = Ki(1 — t;), one has w;; € [0,2k;]. Let dT be the
volume form after change of variable. By the argument given in (5.4), we have

[=( (£ o/ (£t

where det(.J2) corresponds to determlnants of the Jacobian of maps 7y, which is

P
essentially the same map as 7 but with domain 7" € O,.. Note [ exp < (Z uu)>
i=1
(1/det(J2))dT" is bounded away from zero and infinity as k; — co. Therefore, we

K) exp (Z m) H — < o0. (5.9)

1= 1

can conclude
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Combining (5.2) and (5.9), by the Dominated Convergence Theorem, one has
sup [I(X)| =0
XeVya
as k; — oo for all i = 1,...,p. Thus for all € > 0, there exists M; large enough
such that, when x; > M;, supxcy ,[{(X)| < e. One can take D, to be a ¢
neighborhood of {k1,...,K,} with x; > max{M;,i =1,...,p}.

Proof of Theorem 2. In order to establish strong consistency, it is not sufficient
for the prior II to assign positive mass to any Kullback-Leibler neighborhood of
fo; we need to construct high mass sieves with metric entropy N (e, F) bounded
by certain order, where N (e, F) is defined as the logarithm of the minimum
number of balls with Hellinger radius € to cover the space F. We refer to Barron,
Schervish and Wasserman (1996) for some general strong consistency theorems.
We first proceed to verify two conditions on the kernel g(X, G, k).

(a) There exists positive constants kg, ai, and A; such that for all & > ko,
G1,G2 € V) 4, one has

sup |9(X, G k) = g(X, Ga, k)| < Aik™ p(Gr,Ga),  (5.10)
X€Vp.a,k€0[0,K]

where ¢ : RP — [0, 00) is some continuous function of k.

(b) There exists positive constants ag and Ay such that for all k, & € ¢~1[0, k],

k > k()u
sup  [g(X, G, k) — g(X, G, K)| < A2k pa(k, K), (5.11)
X,GEVp
where po is the Euclidean distance || - |2 on RP.

Let G1,G2 € V), 4 and F1 and F» be such that their 7th columns are given by
kiG1,.,, and kG, respectively. For s,t € [0,¢| and ¢ > 0, one has

82 t2 ,,72
’eXp <2> — exp <2> ‘ < ’nexp (2> (s — t)’ <cls -1,

where 7 is some point between s and t. Let kmax = max{ri,...,xp}. A little

calculation shows that p(F, X) < /> 7 _;(k; +1)2, so that

sup 9(X,G1, k) — 9(X, G2, k)
Xe%,dvne¢7l[07k}
- p
= sup C(k)exp <7>
X€V,.a,m€0-1[0,k] 2

exp (%1&> <exp <p2(FQl’X)> — exp (pz(F;’X)>> ‘
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C(k) exp <£> exp (W)

<
sup 9 9

XEV,, 4,k€0~1[0,k]

< exp (B) sup
2/ XeV,.4med1(0K]

C(k) exp <Zp;1“) p(F, Fy)

< 2exp <£> sup
2/ XeV, umes 1 [0,K]

P
Zm+1

p
> 62p(Gh,Go)
=1

i=1
» P P
< 2exp <7> sup Cl |k K2 ki +1)2p(G1, G2)|,
2/ XeV, ames 1 0 Hl Z; Z 2
where C' is some constant according to (5.9). Let ¢(k) = b (ki +1)2

d(k) <k, then \/> P | k? < ¢p(k) <k and k; < k for each i. Thus [[}_; r; < kP.
Therefore,

sup 19(X,G1, k) — g(X,Ga, k)| < C1EPT2p(G, Ga),
X€eV, q4,kE€EP(0,k]
with C; some constant. With a; = p + 2, Condition (a) holds.
Let k, K € RP be two vectors of the concentration parameters. By the Mean
Value Theorem, one has, for some ¢ € (0,1),

9(X,G, k) — g(X, G, R) (vgx G, (1—t)m+m)) (K —R),

where \/ g(X, G, (1 — t)k + tK) is the gradient of g(X,G, k) with respect to K
evaluated at (1—t)k+tk and - denotes the inner product. By the Cauchy-Schwarz
inequality, one has

|g(X, Ga ’{) —g(X, Ga E)| < ” VQ(X, Gv (1 - t)’{+t%)||2”n - %”2
Note that for i =1,...,p,
9g
a/ii

p

- T T 9C (k) -
= exp —an( = G X)) | | C(R)G X exp(z Ki) + Tmexp(z Ki)

i=1 =1
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P P
= exp (—Zm(l - G@]X[:i])> <C( G[ X[ €xp Em
i=1 i=1
F 1d .
. )80 1 (3d 1ag{t€1, K2 }) GXPZ/%))-
=1

Ok

By applying the general Leibniz rule for differentiation under an integral
sign, one has

OoF1 ((1/2)d, (1/4)diag {fi%a ceey RIQ,}) B / Oetr (diag {K1,...,Kp} S) S
OK; N 0, 0K

p
= / Si; €XP < E Hz‘Sn’) ds
[e) ;

P =1
& 1
< exp KiSii | dS = ——.
oo () 5= g
Then one has
d9(X, G, k)
8/@

P 8 Fi (L4, idi 2.
K)exp (Z > +C%(k b (5% 3 1;3{'@17 1)) exp (Zm)
v i=1
p
< 2C(k)exp (Z ) SCQH’%
—1 i=1

for some constant Co by (5.9). Therefore, ||/ g(X,G, (1 — )k + tK)||2 < CokP,
and one has [¢(X,G, k) —g(X,G,K)| < CokP||k —K||2. Letting ag = p, Condition
(b) is verified.

We proceed to verify two entropy conditions:

(c) For any k > ko, the subset ¢~1[0, k] is compact and its e-covering number
is bounded by (ke~1)? for some constant by independent of k and e.

(d) The € covering number of the manifold V,, 4 is bounded by Aze™* for any
e> 0.

It is easy to verify Condition (c) as ¢~1([0,k]) = {K,>_?_; (x; +1)? < k?}, which
is a subset of a shifted Euclidean ball in RP with radius k. With a direct argument
using packing numbers (Pollard, 1990, Sec.4), one can obtain a bound for the
entropy of ¢~1[0, k] given by 3kP/e?. Thus Condition (c) holds with by = p

Let N(€) be the entropy of V,, 4 and Ng(e) be the entropy of V), 4 viewed as
a subset of RP? (points covering Vp.a do not necessarily lie on V), 4 for the latter
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case). One can show that N(2¢) < Ng(e). Here V4 C [—1,1P4, which is a
subset of a Euclidean ball of radius 1/dp centered at zero, the e number of which
is bounded by ((3v/dp)/e) % Therefore, Condition (d) holds with ag = dp. Then
by Corollary 1 in Bhattacharya and Dunson (2012), strong consistency follows.

Acknowledgment

The authors sincerely thank an associate editor and the referees for their
valuable input, which has led to improvements of the paper. This work was
supported by grant RO1ES017240 from the National Institute of Environmental
Health Sciences (NIEHS) of the National Institute of Health (NIH) and a National
Science Foundation (NSF) grant 11S1546331.

References

Barron, A., Schervish, M. and Wasserman, L. (1996). The consistency of posterior distributions
in nonparametric problems. The Annals of Statistics. 27, 536-561.

Bhattacharya, A. and Bhattacharya, R. (2012). Nonparametric Inference on Manifolds: With
Applications to Shape Spaces. Cambridge University Press.

Bhattacharya, A. and Dunson, D. (2010). Nonparametric Bayesian density estimation on man-
ifolds with applications to planar shapes. Biometrika. 97, 851-865.

Bhattacharya, A. and Dunson, D. (2012). Strong consistency of nonparametric Bayes density
estimation on compact metric spaces. Ann Inst Stat Math. 64, 6837-T14.

Bhattacharya, R. and Lin, L. (2016). Omnibus CLTs for Fréchet means and nonparametric
inference on non-Euclidean spaces. The Proceedings of the American Mathematical Society,
to appear.

Butler, R. and Wood, A. (2003). Laplace approximation for Bessel functions of matrix argument.
Journal of Computational and Applied Mathematics. 155, 359-382.

Chikuse, Y. (1993). High dimensional asymptotic expansions for the matrix langevin distribu-
tions on the stiefel manifold. Journal of Multivariate Analysis. 44, 82—-101.

Chikuse, Y. (1998). Density estimation on the stiefel manifold. Journal of Multivariate Analysis.
66, 188-206.

Chikuse, Y. (2003a). Concentrated matrix langevin distributions. Journal of Multivariate Anal-
ysts. 85, 375-394.

Chikuse, Y. (2003b). Statistics on Special Manifolds. Springer, New York.

Chikuse, Y. (2006). State space models on special manifolds. Journal of Multivariate Analysis.
97, 1284-1294.

Edelman, A., Arias, T. and Smith, S. T. (1998). The geometry of algorithms with orthogonality
constraints. SIAM J. Matriz Anal. Appl. 20, 303-353.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of
Statistics. 1, 209-230.




BAYESIAN INFERENCE ON THE STIEFEL MANIFOLD 553

Ghosh, J. and Ramamoorthi, R. (2003). Bayesian Nonparametrics. Springer, New York.
Herz, C. S. (1955). Bessel functions of matrix argument. Annals of Mathematics. 61, 474-523.

Hoff, P. D. (2009). Simulation of the matrix Bingham-von Mises-Fisher distribution, with ap-
plications to multivariate and relational data. Journal of Computational and Graphical
Statistics. 18, 438—456.

Hornik, K. and Griin, B. (2013). On conjugate families and Jeffreys priors for von Mises Fisher
distributions . Journal of Statistical Planning and Inference. 143, 992—999.

Khatri, C. G. and Mardia, K. V. (1977). The von mises-fisher matrix distribution in orientation
statistics. Journal of the Royal Statistical Society. B. 39, 95-106.

Morbidelli, A., Bottke, Jr., W. F., Froeschlé, C. and Michel, P. (2002). Origin and evolution of
near-earth objects. Asteroids I11, 409—-422.

Muirhead, R. J. (2005). Aspects of Multivariate Statistical Theory. Wiley-Interscience.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models.
Journal of Computational and Graphical Statistics. 9, 249-265.

Pollard, D. (1990). Empirical Processes: Theory and Applications, volume 2. NSF-CBMS Re-
gional Conference Series in Probability and Statistics.

Rao, V., Lin, L. and Dunson, D. (2016). Data augmentation for models based on rejection
sampling. Biometrika. doi: 10.1093/biomet/asw005.

Schwartz, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete. 4, 10-26.

Sei, T., Shibata, H., Takemura, A., Ohara, K. and Takayama, N. (2013). Properties and ap-
plications of Fisher distribution on the rotation group. Journal of Multivariate Analysis.
116, 440-455.

Department of Applied and Computational Mathematics and Statistics, The University of Notre
Dame, Notre Dame, IN, 46556, USA.

E-mail: lizhen.lin@nd.edu

Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA.
E-mail: varao@purdue.edu

Department of Statistical Science, Duke University, Durham, North Carolina, 27707, USA.

E-mail: dunson@duke.edu

(Received January 2016; accepted February 2016)







