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ABSTRACT

We propose an extrinsic regression framework for modeling data with manifold valued responses and
Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuro-
science, medical imaging, and many other areas. Our approach embeds the manifold where the responses
lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then
projects this estimate back onto the image of themanifold. Outside the regression setting both intrinsic and
extrinsic approaches have been proposed for modeling iid manifold-valued data. However, to our knowl-
edge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic
regression framework is general, computationally efficient, and theoretically appealing. Asymptotic distri-
butions andconvergence rates of theextrinsic regressionestimates arederivedanda large class of examples
is considered indicating the wide applicability of our approach. Supplementary materials for this article are
available online.

1. Introduction

Although the main focus in statistics has been on data belong-
ing to Euclidean spaces, it is common for data to have support
on non-Euclidean geometric spaces. Perhaps the simplest exam-
ple is to directional data, which lie on circles or spheres. Direc-
tional statistics dates back to R.A. Fisher’s seminal article (Fisher
1953) on analyzing the directions of the earth’s magnetic poles,
with key later developments byWatson (1983), Mardia and Jupp
(2000), Fisher, Lewis, and Embleton (1987) among others. Tech-
nological advances in science and engineering have led to the
routine collection of more complex geometric data. For exam-
ple, diffusion tensor imaging (DTI) obtains local information on
the directions of neural activity through 3 × 3 positive definite
matrices at each voxel (Alexander et al. 2007). Inmachine vision,
a digital image can be represented by a set of k-landmarks, the
collection of which form landmark-based shape spaces (Kendall
1984). In engineering and machine learning, images are often
preprocessed or reduced to a collection of subspaces, with each
data point (an image) in the sample data represented by a sub-
space. One may also encounter data that are stored as orthonor-
mal frames, surfaces, curves, and networks.

Statistical analysis of datasets whose basic elements are geo-
metric objects requires a precise mathematical characterization
of the underlying space and inference is dependent on the geom-
etry of the space. In many cases (e.g., space of positive definite
matrices, spheres, shape spaces, etc.), the underlying space cor-
responds to amanifold. Manifolds are general topological spaces
equipped with a differentiable/smooth structure that induces a
geometry that does not in general adhere to the usual Euclidean
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geometry. Therefore, new statistical theory and models have
to be developed for statistical inference of manifold-valued
data. There have been some developments on inferences based
on independent and identically distributed (iid) observations
on a known manifold. Such approaches are mainly based on
obtaining statistical estimators for appropriate notions of loca-
tion and spread on the manifold. For example, one could base
inference on the center of a distribution on the Fréchet mean,
with the asymptotic distribution of sample estimates obtained
(Bhattacharya and Patrangenaru 2003, 2005; Bhattacharya
and Lin 2017). There has also been some consideration of
nonparametric density estimation on manifolds (Pelletier 2005;
Bhattacharya and Dunson 2010; Lin et al. 2016). Bhattacharya
and Bhattacharya (2012) provided a recent overview of such
developments.

There has also been a growing interest in modeling the rela-
tionship between a manifold-valued response Y and Euclidean
predictors X . For example, many studies are devoted to investi-
gating how brain shape changes with age, demographic factors,
IQ, and other variables. It is essential to take into account the
underlying geometry of the manifold for proper inference.
Approaches that ignore the geometry of the data can potentially
lead to highly misleading predictions and inferences. Some
geometric approaches have been developed in the literature. For
example, Fletcher (2011) developed a geodesic regressionmodel
on Riemannian manifolds, which can be viewed as a counter-
part of linear regression on manifolds, and subsequent work of
Hinkle et al. (2012) generalizes polynomial regression model to
the manifold. These parametric and semiparametric models are
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elegant, but may lack sufficient flexibility in certain applications.
Shi et al. (2009) proposed a semiparametric intrinsic regression
model on manifolds, and Davis et al. (2007) generalized an
intrinsic kernel regression method on the Riemannian man-
ifold, considering applications in modeling changes in brain
shape over time. Yuan et al. (2012) developed an intrinsic local
polynomial model on the space of symmetric positive definite
matrices, which has applications in diffusion tensor imaging.
A drawback of intrinsic models is the heavy computational
burden incurred by minimizing a complex objective function
along geodesics, typically requiring evaluation of an expensive
gradient in an iterated algorithm. The objective functions often
have multiple modes, leading to large sensitivity to start points.
Further, existence and uniqueness of the population regression
function holds only under relatively restrictive support condi-
tions. Therefore, usual descent algorithms used in estimation
are not guaranteed to converge to a global optima.

With the motivation of developing general purpose compu-
tationally efficient, theoretically sound, and practically useful
regression modeling frameworks for manifold-valued response
data, we propose a nonparametric extrinsic regressionmodel by
first embedding the manifold where the response resides onto
some higher-dimensional Euclidean spaces. We use equivari-
ant embeddings, which preserve a great deal of geometry for
the images. A local regression estimate (such as a local poly-
nomial estimate) of the regression function is obtained after
embedding, which is then projected back onto the image of the
manifold. Outside the regression setting, both intrinsic and
extrinsic approaches have been proposed for modeling of
manifold-valued data and formathematically studying the prop-
erties of manifolds. However, to our knowledge, our work is the
first in taking an extrinsic approach in the regression modeling
context. Our approach is general, has elegant asymptotic theory,
and outperforms intrinsic models in terms of computation effi-
ciency. In addition, there is essentially no difference in inference
with the examples considered.

The article is organized as follows. Section 2 introduces the
extrinsic regression framework. In Section 3, we explore the full
utilities of ourmethod through applications to three examples in
which the response resides on different manifolds. A simulation
study is carried out for data on the sphere (Example 1) apply-
ing both intrinsic and extrinsic models. The results indicate the
overall superiority of our extrinsic method in terms of com-
putational complexity and time compared to that of intrinsic
methods. The extrinsic models are also applied to planar shape
manifolds in Example 2, with applications considered to simu-
lated data and to modeling the brain shape of the Corpus Callo-
sum from anADHD (AttentionDeficit/Hyperactivity Disorder)
study. In Example 3, our method is applied to data on the Grass-
mannian considering both simulated and real data. Section 4 is
devoted to studying the asymptotic properties of our estimators
in terms of asymptotic distribution and convergence rate.

2. Extrinsic Local Regression onManifolds

LetY ∈ M be the response variable in a regression model where
(M, ρ) is a general metric space with distance metric ρ. Let
X ∈ R

m be the covariate or predictor variable, which can be
random or fixed. Given data (xi, yi) (i = 1, . . . , n), the goal is

to model a regression relationship between Y and X . The typi-
cal regression frameworkwith yi = F(xi) + εi is not appropriate
here as expressions like yi − F(xi) are not well-defined because
the space M (e.g., a manifold) where the response variable lies
is in general not a vector space. Let P(x, y) be the joint distri-
bution of (X,Y ) and P(x) be the marginal distribution of X
with marginal density fX (x). Denote P(y|x) as the conditional
distribution of Y given X with conditional density p(y|x). One
can define the population regression function or map F(x) (if it
exists) as

F(x) = argmin
q∈M

∫

M

ρ2(q, y)P(dy|x), (1)

where ρ is a distance metric onM.
LetM be a d-dimensional differentiable or smoothmanifold.

A manifold M is a topological space that locally behaves like
a Euclidean space. To equip M with a metric space structure,
one can employ a Riemannian structure, with ρ taken to be the
geodesic distance, which defines an intrinsic regression function.
Alternatively, one can embed the manifold onto some higher
dimensional Euclidean space via an embedding map J and use
the Euclidean distance ∥ · ∥ instead. The latter model is referred
to as an extrinsic regression model. One of the potential hurdles
for carrying out intrinsic analysis is that uniqueness of the popu-
lation regression function in (1) (with ρ taken to be the geodesic
distance) can be hard to verify. Le and Barden (2014) established
several interesting results for the regression framework and pro-
vided broader conditions for verifying the uniqueness of the
population regression function. Intrinsic models can be compu-
tationally expensive, since minimizing their complex objective
functions typically require a gradient descent type algorithm.
In general, this requires fine tuning at each step, which results
in an excessive computational burden. Further, these gradient
descent algorithms are not always guaranteed to converge to a
global minimum or only converge under very restrictive con-
ditions. In contrast, the uniqueness of the population regres-
sion holds under very general conditions for extrinsic models.
Extrinsic models are extremely easy to evaluate and are orders
of magnitude faster than intrinsic models.

Let J : M → ED be an embedding of M onto some higher
dimensional (D ≥ d) Euclidean space ED and denote the image
of the embedding as M̃ = J(M). By the definition of embedding,
the differential of J is a map between the tangent space ofM at q
and the tangent space of ED at J(q), that is, dqJ : TqM → TJ(q)E

D

is an injective map and J is a homeomorphism of M onto its
image M̃. Here TqM is the tangent space ofM at q and TJ(q)E

D is
the tangent space of ED at J(q). Let || · || be the Euclidean norm.
In an extrinsic model, the true extrinsic regression function is
defined as

F(x) = argmin
q∈M

∫

M

||J(q) − J(y)||2P(dy|x)

= argmin
q∈M

∫

M̃

||J(q) − z||2P̃(dz|x), (2)

where P̃(· | x) = P(· | x) ◦ J−1 is the conditional probability
measure on J(M) given x induced by the conditional probability
measure P(· | x) via the embedding J.
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We now proceed to propose an estimator for F(x). Let
K : Rm → R be a multivariate kernel function such that∫
Rm K(x)dx = 1 and

∫
Rm xK(x)dx = 0. One can take K to

be a product of m one-dimensional kernel functions, for
example. LetH = Diag(h1, . . . , hm)with hi > 0 (i = 1, . . . ,m)
be the bandwidth vector and |H| = h1 . . . hm. Let KH (x) =
1

|H|
K(H−1x) and

F̂(x) = argmin
y∈ED

n∑

i=1

KH (xi − x)||y − J(yi)||
2

∑n
i=1 KH (xi − x)

=

n∑

i=1

J(yi)KH (xi − x)∑n
i=1 KH (xi − x)

, (3)

which is basically a weighted average of points J(y1), . . . , J(yn).
We are now ready to define the extrinsic kernel estimate of the
regression function F(x) as

F̂E (x) = J−1
(
P(F̂(x))

)
= J−1(argmin

q∈M̃

||q − F̂(x)||), (4)

where P denotes the projection map onto the image M̃. Basi-
cally, our estimation procedure consists of two steps. In step one,
it calculates a local regression estimate on the Euclidean space
after embedding. In step two, the estimate obtained in step one
is projected back onto the image of the manifold. Although we
assume the projection is unique, uniqueness needs to be veri-
fied for each manifold and embedding. In general, we require
that the image M̃ is closed in the Euclidean space. These condi-
tions tend to be straightforward to show, as is illustrated for the
examples considered in Section 3.

Note that, alternatively, we can obtain some robust estimator
under our proposed framework by first proposing a robust esti-

mator of F̂E (x). This can be done by replacing the terms with
∥ · ∥2 in Equation (3) with a term using ∥ · ∥.

A kernel estimate is obtained first in (3) before projection.
However, the framework can be easily generalized using higher
order local polynomial regression estimates (of degree p) (Fan
and Gijbels 1996). For example, one can have a local linear esti-
mator (Fan 1993) for F̂(x) before projection. That is, for any x,
let

(β̂0, β̂1) = argmin
β0,β1

n∑

i=1

∥∥J(yi) − β0 − βt
1(xi − x)

∥∥2
KH (xi − x).

(5)

Then, we have

F̂(x) = β̂0(x), (6)

F̂E (x) = J−1
(
P(F̂(x))

)
= J−1(argmin

q∈M̃

||q − F̂(x)||). (7)

The properties of the estimator F̂E (x)where F̂(x) is given by the
general pth local polynomial estimator of J(y1), . . . , J(yn) are
explored in Theorem 3.

Remark 1. The embedding J used in the extrinsic regression
model is in general not unique. It is desirable to have an embed-
ding that preserves as much geometry as possible. An equiv-
ariant embedding preserves a substantial amount of geometry.
Let G be some large Lie group acting on M. We say that J is

an equivariant embedding if we can find a group homomor-
phism φ : G → GL(D,R) from G to the general linear group
GL(D,R) of degree D such that

J(gq) = φ(g)J(q)

for any g ∈ G and q ∈ M. The intuition behind equivariant
embedding is that the image of M under the group action of
the Lie group G is preserved by the group action of φ(G) on
the image, thus preserving many geometric features. Note that
the choice of embedding is not unique and in some cases con-
structing an equivariant embedding can be a nontrivial task, but
inmost of the cases a natural embedding arises and such embed-
dings can often be verified as equivariant.

Note that our work addresses different problems from that of
Cheng andWu (2013), which provides an elegant framework for
high-dimensional data analysis and manifold learning by first
performing local linear regression on a tangent plane estimate
of a lower-dimensional manifold where the high-dimensional
data concentrate.

3. Examples and Applications

The proposed extrinsic regression framework is very general
and has appealing asymptotic properties as will be shown in
Section 4. To illustrate the wide applicability of our approach
and validate its finite sample performance, we carry out a study
by applying our method to various examples with the response
taking values in different well-known manifolds. For each of
the examples considered, we provide details on the embeddings,
verify such embeddings are equivariant, and give explicit expres-
sions for the projections to obtain the final estimate in each
case. In Example 1, we simulate data from a two-dimensional
sphere and compare the estimates from our extrinsic regression
model with that of an intrinsic model. The result indicates that
the extrinsic models clearly outperform the intrinsic models by
orders of magnitude in terms of computational complexity and
time. In Example 2, we first study a simulated example where a
comparison study shows even greater computational gain for the
extrinsic model over the intrinsic one compared with the sphere
case. We then consider a data example with response a planar
shape, in which the brain shape of the subjects are represented
by landmarks on the boundary. Example 3 provides details of
the estimator when the responses take values on a Stiefel or
Grassmannmanifold. The method is illustrated with a synthetic
dataset and a solar flare dataset, both of which have subspace
responses of possibly mixed dimension and covariates, which
are the corresponding time points.

We will not consider an example with DTI responses below
due to page concerns, but the extrinsic model can be applied in
a similar fashion by using the log matrix map as the embedding.
Yuan et al. (2013) considered varying coefficientmodel in which
the log matrix map is also used.

Example 1. Statistics on the two-dimensional sphere S2, often
called directional statistics, has a long history (Fisher 1953; Wat-
son 1983; Fisher, Lewis, and Embleton 1987; Mardia and Jupp
2000).Marzio, Panzera, and Taylor (2014) considered a smooth-
ing model for regression with both predictors and responses
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on spheres. Recently, Wang and Lerman (2015) applied a non-
parametric Bayesian regression model to an example with
response on the circle S1. We first work out the details for the
extrinsic regression method with the responses lying on a d-
dimensional sphere Sd , then illustrate themodel with simulation
data {(xi, yi), i = 1, . . . , n}, where yi ∈ S2, the two-dimensional
sphere.

Note that Sd is a submanifold ofRd+1; therefore, the inclusion
map ı : Sd (→ R

d+1, where ı(y) = y serves as a natural embed-
ding onto R

d+1. It is easy to check that the embedding is an
equivariant embedding. The intuition behind this embedding is
that it preserves a lot of the symmetry of the sphere.

Given J(y1), . . . , J(yn) with the embedding J = ı, one first
obtains F̂(x) as given in (3). Its projection onto the image M̃
is given by

F̂E (x) = F̂(x)/||F̂(x)||, when F̂(x) ̸= 0. (8)

In the following, we consider a simulation study for a regres-
sion model with responses on the two-dimensional unit sphere.
The objective of this simulation study is to illustrate the appli-
cation of the proposed extrinsic regression framework to data
with sphere-valued response and to demonstrate the computa-
tional advantages over the intrinsic methods via a comparison
study. To simulate the data, first consider a common and useful
distribution, the vonMises-Fisher distribution (Fisher 1953) on
the unit sphere, which has the following density:

pMF(y;µ, κ ) ∝ exp(κµTy),

where κ is a concentration parameter with µ a location param-
eter. We simulate the data (the y values) from the unit sphere by
letting the mean function be covariate-dependent. In particu-
lar, for this example, we will use data generated by the following
model

β ∼ N3(0, I), x1i ∼ N(0, 1), x2i ∼ N(0, 1), x3i

= x1i ∗ x2i , i = 1, . . . , n (9)

yi ∼ MF (µi, κ ) , µi =
β ◦ xi

|β ◦ xi|
, κ some fixed known value,

where β ◦ x is the Hadamard product (β1x
1, . . . ,βmx

m).
As an example of what the data looks like, we generate

one thousand (n = 1000) observations from the above model
with κ = 10 so that realizations are near their expected value.
Figure 1 shows this example in which 100 predictions from the
extrinsic model are plotted against their true values using 900

training points. To select the bandwidth h, we use 10-fold cross-
validation with h ranging from [0.1, 0.2, . . . , 1.9, 2] and choose
the value that givesminimumaveragemean square error (MSE).
Residuals for the mean square error are measured using the
intrinsic distance, or great circle distance, on the sphere.

To illustrate the utility and advantages of extrinsic regression
models, we compare our method to an intrinsic kernel regres-
sion model that uses intrinsic distance of the sphere to minimize
the objective function. Computations on the sphere are in gen-
eral not as intensive compared to more complicated manifolds
such as shape spaces, etc., but it still requires an iterative algo-
rithm, such as gradient descent, for the intrinsicmodel to obtain
a kernel regression estimate. The following simulation results
demonstrate extrinsic kernel regression gives at least as accurate
estimates as intrinsic kernel regression but in much less compu-
tation time even for S2.

The intrinsic kernel regression estimate minimizes objective
function f (y) =

∑n
i=1 wid

2(y, yi), where y and yi are points on
the sphere S2, wi are determined by the Gaussian kernel func-
tion, and d(·, ·) in this case is the great circle distance. Then the
gradient of f on the sphere is given by

∇ f (y) =

n∑

i=1

wi2d(y, yi)
logy(yi)

d(y, yi)

=
∑

i=1

2wi

arccos(yTyi)√
1 − (yTyi)2

(yi − (yTyi)y),

where logy(yi) is the log map or the inverse exponential map
on the sphere. Estimates for y can be obtained through a gradi-
ent descent algorithm with step size δ and error threshold ε. We
applied the intrinsic and extrinsic models to the same set of data
using the Gaussian kernel function.

Twenty different datasets of 2000 observations were gener-
ated from the above sphere regression model with von-Mises
Fisher concentration parameter κ = {1, 2, . . . , 20}. Of the 2000
observations, 50 were used to check the accuracy of the extrin-
sic and intrinsic estimates. To see the effect of training sam-
ple size on the quality of the estimates, the estimates were also
made on subsets of the 1950 training observations, starting with
2 observations and increasing to all 1950 observations. The
same training observationswere always used for bothmodels. In
both models, the bandwidth was chosen through 10-fold cross-
validation. The intrinsic kernel regression was fit with step size
δ = 0.01 and error threshold ε = 0.001. The performance of the
two methods is compared in terms of MSE and predictive MSE.
The MSE is calculated using the great circle distance between

Figure . Left: The training values on the sphere. Middle: The held out values to be predicted through extrinsic regression. Right: The extrinsic predictions (blue) plotted
against the true values (red).
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Figure . The performance of extrinsic and intrinsic regression models on  test observations from sphere regression models with concentration parameters from  to .
Each color corresponds to a concentration parameter. The extrinsic and intrinsic models have similar performance in predictive MSE with low concentration parameters.
However in terms of MSE, the extrinsic model appears to perform better with lower sample sizes even with lower concentration parameters.

predicted values and the true expected value, while predictive
MSE is calculated using the great circle distance between the pre-
dicted values and the realized values. The performance results
using 50 hold out observations can be seen in Figure 2.

Predictive MSE does not converge to 0 because the generat-
ing distribution has a high variance; however, as the concentra-
tion increases, the predictive MSE does approach 0. The extrin-
sic and intrinsic kernel regressions perform similarly with large
sample sizes. The extrinsic kernel regression drops in predictive
MSE faster than the intrinsic model, which may stem from only
having the kernel bandwidth as a tuning parameter, which can
be selected more easily than choosing the bandwidth, step-size,
and error thresholds even through cross-validation.

A significant advantage of the extrinsic kernel regression is
the speed of computation. Both methods were implemented in
C++ using Rcpp (Eddelbuettel and François 2011), and resulted
in up to a 60× improvement in speed in making a single pre-
diction using all of the training observations. For speed com-
parisons, a single prediction was made given the same number
of test observations, and the time to produce the estimate was
recorded. Each of these trials was done five times, and we com-
pare the mean time to producing the estimate in Figure 3.

Note that the same kernel weights are computed in both algo-
rithms, so the difference is attributable to the gradient descent

versus extrinsic optimization procedures. Since the speed
comparisons were done for computing a single prediction and
the difference is due almost entirely to the gradient descent steps,
making multiple predictions results in an even more favorable
comparison for the extrinsic model. This experiment shows that
the extrinsic kernel regression applied to sphere data performs
at least as well on prediction and can be computed significantly
faster.

Example 2. We now consider an example with responses on pla-
nar shapes. Planar shapes are one of the most important classes
of landmark-based shapes spaces. Such spaces were defined
by Kendall (1977, 1984) with pioneering work by Bookstein
(1978) motivated from applications on biological shapes. We
now describe the geometry of the space that will be used in
obtaining regression estimates for ourmodel. Roughly speaking,
the planar shape consists of a collection of k-landmarks modulo
the action of Euclidean motions such as translations, scalings,
and rotations. Let z = (z1, . . . , zk)with z1, . . . , zk ∈ R

2 be a set
of k landmarks, and < z >= (z̄, . . . , z̄) where z̄ =

∑k
i=1 zi/k.

We first center and normalize z to get u = z−<z>
||z−<z>||

. u can be

viewed as an element on some high-dimensional sphere S2k−3,
which is called the preshape. The planar shape 'k

2 can now be
represented as the quotient of the preshape under the action of
the rotation group SO(2), or the 2 by 2 special orthogonal group.
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1266 L. LIN ET AL.

Figure . Speed comparisons between the extrinsic and intrinsic kernel regressions as a function of the number of training observations. The average seconds to produce
an estimate for a single test observation are plotted in red for the intrinsic model, and black for the extrinsic model. The multiple between the speed for the intrinsic and
extrinsic estimates plotted are also plotted for reference.

Therefore, a point on the planar shape can be identified as
the orbit or equivalent of z which we denote by σ (z). View-
ing z as elements in the complex plane, one can embed 'k

2 onto
the S(k,C), the space of k × k complex Hermitian matrices via
the Veronese–Whitney embedding (see, e.g., Bhattacharya and
Bhattacharya 2012):

J(σ (z)) = uu∗ = ((uiū j))1≤,i, j≤k, (10)

where u∗ is the conjugate transpose of u and ū j is the conjugate
of u j. One can verify the embedding is equivariant (see Kendall
1984) by taking the Lie group G to be the special unitary group
SU(k) = {A ∈ GL(k,C),AA∗ = I, det(A) = I}.

We now describe the projection after F̂(x) is given by (3),
where J(yi) (i = 1, . . . , n) are obtained using the embedding
given in (10). Letting v(x) be the eigenvector corresponding to
largest eigenvalue of F̂(x), by a careful calculation, one can show
that the projection of F̂(x) is given by

PJ(M)

(
F̂(x)

)
= v(x)v(x)∗.

Therefore, the extrinsic kernel regression estimate is given by

F̂E (x) = J−1(v(x)v(x)∗). (11)

Comparison to Intrinsic model on synthetic dataset:We com-
pare the extrinsic model to an intrinsic model on synthetic pla-
nar shape data to understand if the great computational benefits
observed for sphere data extend to other manifolds. Intuitively,
as the Log map on a manifold grows in complexity, we would
expect that the gains fromusing the extrinsicmethodwould also
grow, since we can avoid iteratively computing the Log map.

Planar shape data were generated using a scheme for polar
coordinates. First, we generatem-dimensional covariates for the
observation that will be linked to the responding shape. For
each of the k landmarks that are in the dataset, we generate an
intercept for that landmark by getting one angle in [0, 2π] and
one radius in R

+. Together, these specify an intercept shape.
We add random noise, centered at a function of the covariates,
to the angle and radius, potentially using different functions.
This procedure generatesK (k = 1, . . . ,K) landmarks linked to
m-dimensional ( j = 1, . . . ,m) covariates forN (n = 1, . . . ,N)
observations.

φ0k ∼ Unif (0, 2π ) Generate intercept angles

r0k ∼ N(r, σ 2
r0
) Generate intercept radii

xn, j ∼ Ga(a, b) Generate covariates

rn,k ∼ N(r0k + β1xn,1, σ
2
r ) Generate shape radii

φ′
n,k ∼ N(φ0k + β2xn,2 + β3xn,3, σ

2
φ ) Generate shape angles

φn,k mod φ′
n,k(mod 2π ) Standardize angles

zn,k = rn,k(cos(φn,k) + isin(φn,k)) Convert to complex

form for the landmarks.

Here, yn = (zn,1, . . . , zn,K ) is the nth response on the planar
shape for covariate xn = (xn,1, xn,2, xn,3). In our case, we sim-
plified testing by letting σr = σφ for values in {0.1, 0.2, . . . , 2}.
See Figure 4 for an example of planar shapes resulting from this
procedure with a low level of noise (σ = 0.1).

For the intrinsicmodel, we canuse the samemethod as before
in the sphere example with a gradient descent type algorithm for
obtaining the estimate. We replace the log map on the sphere
with a log map for the planar shape. If pỹ(y) = ỹ⟨ỹ, y⟩/||ỹ||2 is
the projection of y onto ỹ, the Log map between two points ỹ, y
on the planar shape is defined as

Logỹ(y) =
θ (y − pỹ(y))

||y − pỹ(y)||
, where θ = arccos

|⟨ỹ, y⟩|

||ỹ||||y||
.

We simulated 2000 observations with 3 covariates and
20 landmarks from our synthetic data procedure, and held 50
out as a validation set for measuring the predictive error. The
kernel bandwidth was chosen for each model using 10-fold
cross-validation on the full training set. We measured the train-
ing error and predictive error for training sample sizes starting
at 100, increasing to 1950 by steps of 25. When predicting the
holdout sample of 50, we tracked the computation time to make
the estimate. The results are shown in Figure 5.

The results are consistent with what we expected from both
theory and what we observed from the sphere example. The
performance in terms of root mean squared error, which is
measured intrinsically on the shape space for both models, is
similar. However, the computation time is drastically reduced
for the extrinsicmodel, with the extrinsicmodel being hundreds
of times faster than the intrinsic model.

We also noticed in this example that the intrinsic model was
muchmore sensitive to the choice of bandwidth.When inspect-
ing the RMSE results of each validation test, the extrinsic RMSE
results could vary from 1 to 2, while the intrinsic RMSE could
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Figure . Examples of synthetic planar shapes with  landmarks generated using σ
r
= σ

φ
= 0.1. The variation in shape is driven by the covariates linked to each shape

and the idiosyncratic error.

vary from 1 to 15 over the same bandwidth range. Because the
choice of intrinsic bandwidth is so important, this might explain
why the intrinsic model seems to slightly over fit on lower train-
ing sample sizes, leading to the slightly worse predictive RMSE
and slightly better training RMSE.

Corpus Callosum (CC) dataset:We study ADHD-200 dataset
(http://fcon_1000.projects.nitrc.org/indi/adhd200/) in which the
shape contour of the brainCorpusCallosum is recorded for each
subject along with variables such as gender, age, and ADHD
diagnosis. Fifty landmarks were placed outlining the CC shape
for 647 patients for the ADHD-200 dataset. The age of the
patients ranges from 7 to 21 years old, with 404 typically devel-
oping children and 243 individuals diagnosed with some form
of ADHD. The original dataset differentiates between types of
ADHD diagnoses, and we simplify the problem of choosing a
kernel by using a binary response for an ADHD diagnosis.

According to the findings in Huang, Styner, and Zhu (2015),
there is not a significant effect of gender on the area of different
segments of the CC; however diagnosis and the interaction
between diagnosis and age were found to be statistically signifi-
cant (p < 0.01). With knowledge of these results, we performed
the extrinsic kernel regression method for the CC planar
shape response using diagnosis, x1, and age, x2, as covariates.
Therefore, one is interested in the regression analysis of y ( the
planar shape) as a function of age and diagnostic status. The
choice of kernel between two sets of covariates x1 = (x11, x

2
1)

and x2 = (x12, x
2
2) is

KH (x1, x2) =

⎧
⎨
⎩
exp

(
−

(x21−x22 )
2

h

)/
h2 if x11 ≡ x12

0 if x11 ̸≡ x12.

The motivation for using this kernel is that one wishes to
essentially run local smoothing within each diagnostic group

given the significant diagnostic variable. We visualize how the
CC shape develops over time by making predictions at different
time points. We show predictions for ages 9, 12, 16, and 19 year
old children of ADHD diagnosis or typical development. The
results can be seen in Figure 6.

What we can observe from the two plots is that the CC
shapes for the 8-year-olds seem to be close, but by age 12 the
shapes have diverged substantially, with shrinking of the CC
being apparent in later years in development. This quality of the
CC shapes between ADHD and normal development is con-
sistent with results found in the literature (Huang, Styner, and
Zhu 2015).

In previous studies, ADHD diagnoses were clustered using
the shape information to predict the diagnosis class, and the cen-
troid of the cluster is the predicted shape for that class (Huang,
Styner, and Zhu 2015). Our method adds to this analysis from a
regression perspective and predicts the CC shape as a function
of age and diagnosis. Our method also has the benefit of evalu-
ating quickly, making selection of the bandwidth for the kernel
through cross-validation feasible.

Example 3. We now consider another two importantmanifolds,
the Stiefel manifolds and Grassmann manifolds (Grassman-
nians). The Stiefel manifold, Vk(R

m), is the collection of
k orthonormal frames in R

m, which consists of k ordered
unit vectors in R

m that are orthonormal to each other. That
is, Vk(R

m) = {X ∈ S(m, k),XXT = Im}. The Stiefel manifold
includes them-dimensional sphere Sm as a special case with k=1
and O(m) the orthogonal group when k = m. The Stiefel man-
ifold is a compact manifold of dimension km − k − k(k − 1)/2
and it is a submanifold ofRkm. The inclusion map ontoRkm can
be further shown to be an equivariant embedding. Applications
of Stiefel manifold are present in earth sciences, medicine,
astronomy, meteorology, and biology. Examples of data on the
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1268 L. LIN ET AL.

Figure . Results from training Intrinsic and Extrinsic models on synthetic planar shape data. Each line in the RMSE plots corresponds to synthetic data generated from the
same variance level in {0.1, . . . , 2.0}. For computation time, the red line is the Intrinsic model, the black line is the Extrinsic model. Each point is the average computation
timeover all the variance levels tested. Like in the spheremodel, performance is similar in termsof RMSE. Themostnoticeabledifferencebetween the two is the computation
time (in minutes) for the intrinsic model to make estimates.

Stiefel manifold include the orbit of the comets and the vector
cardiogram. As stated by Chikuse (2003), the vector cardiogram
is in general considered as an oriented closed-space curve gen-
erated by a point moving in time, and each point on the curve
represents the resultant electrical activity of the heart at that
instant. A vector cardiogram (the orientation) is represented
by two orthonormal unit vectors in R

3, thus a point in V2,3.
Similarly, the orientations of the orbits of the comets given by
the direction of the perihelion and the directed unit normal
vector to the orbit can also be represented by elements inV2,3.

Considering the extrinsic regression method for Stiefel
manifold-valued response data, we first obtain F̂(x), and the

next step is to obtain the projection of F̂(x) onto M̃ = J(M).

We first make an orthogonal decomposition of F̂(x) by letting
F̂(x) = U(x)S(x), where U(x) ∈ Vk,m, which can be viewed as
the orientation of F̂(x) and S(x) is positive semidefinite, which
has the same rank as F̂(x). Then the projection of F̂(x) (or pro-
jection set) is given by

PM̃(F̂(x)) = {U (x) ∈ Vk,m : F̂(x) = U (x)(F̂(x)T F̂(x))1/2}.

See Theorem 10.2 in Bhattacharya and Bhattacharya (2012) for
a proof of this result. The projection is unique, that is, the above
set is a singleton if and only if F̂(x) is of full rank.
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Figure . Predicted CC shape for children ages , , , and . The black shape corresponds to typically developing children, while the red shape corresponds to children
diagnosed with ADHD. Kernel regression allows us to visualize how CC shape changes through development.

The Grassmann manifold or the Grassmannian Grk(R
m) is

the space of all the subspaces of a fixed dimension kwhose basis
elements are k orthonormal unit vectors in R

m, which is closely
related to the Stiefel manifoldVk,m. The key difference between
a point on the Grassmannian and a point on the Stiefel mani-
fold is that the ordering of the k orthonormal vectors inRm does
not matter for the former. The Grassmannian can be viewed as
the quotient space of the Stiefel manifold modulo O(k), the k
by k orthogonal group. That is, Grk(R

m) = Vk(R
m)/O(k). A

point on the Stiefel manifold can be viewed as a representa-
tive of the orbits for the Grassmannian. The equivariant embed-
ding for Grk(R

m) also exists (Chikuse 2003). Let X ∈ Vk,m be a
representative element of any equivalent class in Grk(R

m). So
a point in the Grassmannian can be represented by the orbit
σ (X ) = XR where R ∈ O(k). Then an embedding can be given
by

J(σ (X )) = XXT .

The collection of XXT forms a subspace of Rm2

. We can verify
that J is an equivariant embedding under the group action of
G = O(m).

There are many applications of Grassmann manifolds, in
which the subspaces are the basic element in signal processing,

machine learning and so on. We consider a regression model
with subspace valued response. Given the estimate F̂(x), the
next step is to derive the projection of F̂(x) onto M̃ = J(M).
Since allXXT form a subspace, one can use the following proce-
dure to calculate the projection map of F̂(x) to the Grassmann
manifold by finding an orthonormal basis for the image. This
algorithm is a special case of the projection via Conway embed-
ding (St. Thomas et al. 2014).

1. Find the eigendecomposition F̂(x) = Q+Q−1

2. Take the k eigenvectors corresponding to the top
k eigenvalues in + as an orthonormal basis for
F̂E (x), Q[1:k,].

We consider two illustrative examples, one synthetic and
one from a series of images from a solar flare, for extrinsic
kernel regression with subspace valued response variables. In
the examples, we allow the responses to be subspaces of dif-
ferent dimensions. The technique is unique compared to other
subspace regression techniques because the extrinsic distance
offers a well-defined and principled distance between responses
of different dimension. This avoids the need to constrain the
responses to be a fixed dimension or hard coding a heuristic
distance between subspaces of different dimension into the dis-
tance function.
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1270 L. LIN ET AL.

Figure . The estimated dimension and residual for the extrinsic kernel regression estimate at each time point t from data generated from the specified model. The
regression estimate is accurate on the dimension of the subspace and prediction residuals are consistent with a concentration parameter κ = 1.

We consider a synthetic example in which the predictors are
the time points and the responses are points on the Grassmann
manifold. We draw orthonormal bases from the Matrix von
Mises-Fisher distribution as their representation. We generate
N draws from the following process with concentration param-
eter κ , in which the first n1 draws are of dimension 4 and the last
n2 draws are of dimension 5,

for 1 ≤ t ≤ N do

Draw X ∼ MN(0, Im, I5)
µ[,1] := t + X[,1], µ[,2] := t − X[,2], µ[,3] := t2 + X[,3],
µ[,4] := tX[,4]

if t > n1 then
µ[,5] := t + tX[,5]

end if

Yt := vMF(κM)

end for

Here the only covariate associated with Yt is t . With a concen-
tration of κ = 1, and n1 = n2 = 50, we generate much noisier
data than before, and are able to correctly predict the dimension
of the subspace at each time point. The predicted dimension at
each time point and the residuals are plotted in Figure 7.

The key advantage of this method is not requiring any con-
straints on the dimension of the input or output subspaces. This
is important in some examples, such as the solar flare example
we will illustrate. The solar flare data consist of a large quan-
tity of images in a series that is difficult to analyze. By divid-
ing the images into smaller sets, and summarizing each set
of images as a subspace, we reduce the amount of data and
processing power required to analyze when a solar flare may
have activated. In some cases, because of sporadic activity, we
are not guaranteed that the dimension of the subspace is the
same, leading to substantial problems in implementing intrinsic
methods.

We apply this method to a series of images from a solar flare
in Hall and Willett (2015). The data contain 300 snapshots of
232 × 292 pixel data, which were collected from the Solar Data
Observatory. For each set of 10 images, we vectorize the pixel
data and concatenate the vectors to obtain a matrix for subspace
estimation. The left singular vectors give the subspace spanning
the images, with the dimension chosen by the top d singular val-
ues explaining 90% of the total variation. The extrinsic kernel

regression procedure is then applied to the 30 periods and their
images are recovered treating the kernel estimate of the subspace
as the new left singular vectors. The original data and the recov-
ered estimates at the given time point (measured in snapshots)
can be seen in Figure 8.

When there is no solar flare, the subspace describing each
image set is fairly static, and the kernel regression can be trained
to be quite smooth. When looking at the residuals of the kernel
regression, it becomes very obvious when the solar flare activity

begins and ends. The residuals ||Y − Ŷ ||2 of each image and the
estimated image are shown in Figure 9.

For all the examples considered above for which equivari-
ant embeddings are available, extrinsic approaches are in gen-
eral advantageous over the intrinsic models. But there are com-
plex manifolds such as higher-dimensional shape spaces for
which good embedding are hard to construct. For these cases,
we expect intrinsic models to perform better than extrinsic
ones.

4. Asymptotic Properties of the Extrinsic Regression
Model

In this section, we investigate the large sample properties of
our extrinsic regression estimates.We assume themarginal den-
sity fX (x) is differentiable and the absolute value of any of the
partial derivatives of fX (x) of order two are bounded by some
constant C. In our proof, we assume our kernel function K
takes a product form. That is, K(x) = K1(x

1) . . .Km(xm) where
x = (x1, . . . , xm) and K1, . . . ,Km are one-dimensional sym-
metric kernels such that

∫
R
Ki(u)du = 1,

∫
R
uKi(u)du = 0 and∫

R
u2Ki(u)du < ∞ for i = 1, . . . ,m. The results can be gener-

alized to kernels with arbitrary form andwithH given by amore
general positive definite matrix instead of a diagonal matrix.
Theorem 1 derives the asymptotic distribution of the extrinsic
regression estimate F̂E (x) for any x.

Theorem 1. Let µ(x) = E
(
P̃(dy|x)

)
, which is the conditional

mean regression function of P̃ and assumeµ(x) is differentiable.
Assume n|H| → ∞. Denote x = (x1, . . . , xm). Let µ̃(x) =

µ(x) + Z(x)
fX (x)

, where the ith component Zi(x) (i = 1, . . . ,D) of
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Figure . Pixel representation of the data (left column) and the extrinsic kernel estimates (right column) for the th frame of the solar flare video (top row) when the flare
is not active, and then the th frame of the video (bottom row) when the flare is at its peak intensity.

Z(x) is given by

Zi(x) =

h21

(
∂ f

∂x1
∂µi

∂x1
+

1

2
fX (x)

(
∂2µi

∂(x1)2
+ · · · +

∂2µi

∂xmx1

))

×

∫
v
2
1K1(v1)dv1 + · · ·

+ h2m

(
∂ f

∂xm
∂µi

∂xm
+

1

2
fX (x)

(
∂2µi

∂x1xm
+ · · · +

∂2µi

∂(xm)2

))

×

∫
v
2
mKm(vm)dvm. (12)

Assume the projection P of µ̃(x) onto M̃ = J(M) is unique
andP is continuously differentiable in a neighborhood of µ̃(x).
Then the following holds assuming P(dy | x) ◦ J−1 has finite

Figure . The residuals of the solar flare images and the extrinsic kernel estimates
over time. The spikes indicate solar flare activity.
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1272 L. LIN ET AL.

second moments:
√
n|H|dµ̃(x)P

(
F̂(x) − µ̃(x)

) L
−→ N(0, '̃(x)), (13)

where dµ̃(x)P is the differential from Tµ̃(x)R
D to TP(µ̃(x))M̃ of

the projection map P at µ̃(x) = µ(x) + Z(x)
fX (x)

. Here '̃(x) =

BT '̄(x)B, where B is the D × d matrix of the differential
dµ̃(x)P with respect to given orthonormal bases of Tµ̃(x)R

D and
TP(µ̃(x))M̃, and the ( j, k)th entry of '̄(x) is given by (14) with

'̄ jk =
σ (J j(y), Jk(y))

∫
K(v )2dv

fX (x)
, (14)

where σ (J j(y), Jk(y)) = cov(J j, Jk), and J j is the jth element of

J(y). Here
L
−→ indicates convergence in distribution.

Corollary 1 is on the mean integrated squared error of the
estimates.

Corollary 1. Assuming the same conditions of Theorem 1 and
the covariate space is bounded, the mean integrated squared
error of F̂E (x) is of the orderO(n−4/(m+4)), with the choice of hi’s
(i = 1, . . . ,m) to be of the same order, that is, of O(n−1/(m+4)).

Remark 2. Note that in nonparametric regression with both
predictors (m-dimensional) and responses in the Euclidean
space, the optimal order of the mean integrated squared error
is O(n−4/(m+4)) under the assumption that the true regression
function has bounded second derivative. Our method achieves
the same rates. However, whether such rates are minimax in the
context of manifold valued response is not known.

Theorem 2 shows some results on uniform convergence rates
of the estimator.

Theorem 2. Assume the covariate space x ∈ X ⊂ R
m is compact

and P has a continuous first derivative. Then

sup
x∈X

∥dµ̃(x)P
(
F̂(x) − E(F̂(x))

)
∥ = Op

(
log1/2 n/

√
n|H|

)
.

(15)

As pointed out in Section 2, it is ideal in many cases to fit
a higher order (say pth order) local polynomial model in esti-
matingµ(x) before projecting back onto the image of the mani-
fold. Such estimates are more appealing especially when F(x) is
more curved over a neighborhood of x. One can show that sim-
ilar results as those of Theorem 1 hold, though with much more
involved argument.

We now give details of such estimators and their asymp-
totic distributions are derived in Theorem 3. Recall F(x) =

E(P(dy | x)) andµ(x) = E(P̃(dy | x)) and J(y1), . . . , J(yn) are
the points on M̃ = J(M) after embedding J. We first obtain an
estimate F̂(x) ofµ(x) using pth-order local polynomial estima-
tion. The intermediate estimate F̂(x) is then projected back to
M̃ to obtain the final estimate of F(x). The general framework
is given as follows:

{β̂
j

k
(x)}0≤|k|≤p, 1≤ j≤D = argmin

{β
j

k
(x)}0≤|k|≤p, 1≤ j≤D

n∑

i=1

(∥∥J(yi)

× −

( ∑

0≤|k|≤p

β1
k
(x)(xi − x)|k|, . . . ,

×
∑

0≤|k|≤p

βD
k
(x)(xi − x)|k|

)T∥∥2
KH (xi − x)

)
. (16)

Some of the notation used in (16) are given as follows:

k = (k1, . . . , km), |k| =

m∑

l=1

kl, |k| ∈ {0, . . . , p},

k! = k1! × · · · × km!, xk = (x1)k1 × · · · × (xm)km

∑

0≤|k|≤p

=

p∑

j=0

j∑

k1=0

· · ·

j∑

km=0

|k|=k1+···+km= j

.

When k = 0, (β̂1
0
, . . . , β̂D

0
)T corresponds to the kernel estima-

tor, which is the same as the estimator given in (3).When p = 1,
(β̂1

k=0, . . . , β̂
D
k=0)

T coincides with the estimator β̂0 in (5).
Finally, we have

F̂(x) = β̂0(x) =
(
β̂1
k=0, . . . , β̂

D
k=0

)T
, (17)

F̂E (x) = J−1
(
P(F̂(x))

)
= J−1(argmin

q∈M̃

||q − F̂(x)||). (18)

Theorem 3 derives the asymptotic distribution of F̂E (x), with
F̂(x) obtained using pth-order polynomial local regression of
J(y1), . . . , J(yn) given in (17).

Theorem 3. Let F̂E (x) be given in (18). Assume the (p+

2)th moment of the kernel function K(x) exists and µ(x)
is (p+ 2)th-order differentiable in a neighborhood of x =

(x1, . . . , xm). Assume the projectionP of µ̃(x) onto M̃ = J(M)

is unique andP is continuously differentiable in a neighborhood
of µ̃(x), where µ̃(x) = µ(x) + Bias(x), with Bias(x) given in
Equations (20) and (21) of the web supplementary. If P(dy |

x) ◦ J−1 has finite second moments, then we have

√
n|H|dµ̃(x)P

(
F̂(x) − µ̃(x)

) L
−→ N(0, '̃(x)), (19)

where dµ̃(x)P is the differential from Tµ̃(x)R
D to TPµ̃(x)M̃ of the

projection map P at µ̃(x). Here '(x) = BT '̄(x)B, where B is
theD × dmatrix of the differential dµ̃(x)P with respect to given
orthonormal basis of tangent space Tµ̃(x)R

D and tangent space

TPµ̃(x)M̃ and the jkth entry of '̄(x) is given by (14). Here
L
−→

indicates convergence in distribution.

Remark 3. Note that the order of the bias term Bias(x) differs
when p is even and when p is odd (see the web supplementary
for more details).

Remark 4. Our theoretical results are characterized in terms of
the integrated mean squared error and the asymptotic distribu-
tion of the regression estimate. Wang and Lerman (2015) used
a Bayesian nonparametric model that provides a posterior dis-
tribution on the regression function, and the theoretical results
are quantified in terms of posterior contraction rates. Bayesian
inference for regression onmanifold is in general difficult due to
the inherent difficulty in specifying a valid likelihood. Further,
full Bayesian inference requires developingMarkov chainMonte
Carlo (MCMC) algorithms for sampling the posterior distribu-
tion, which can be highly nontrivial and also computationally
extensive.
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5. Conclusion

We have proposed an extrinsic regression framework for mod-
eling data with manifold-valued responses and shown desirable
asymptotic properties of the resulting estimators. We applied
this framework to a variety of applications, such as responses
restricted to the sphere, shape spaces, and linear subspaces. The
principle motivating this framework is that kernel regression
and Riemannian geometry both rely on locally Euclidean struc-
tures. This property allows us to construct inexpensive estima-
tors without loss of predictive accuracy as demonstrated by the
asymptotic behavior of the mean integrated square error, and
also the empirical results. Empirical results even suggest that the
extrinsic estimators may perform better due to their reduced
complexity and ease of optimizing tuning parameters such as
kernel bandwidth. Future work may also use this principle to
guide samplingmethodology when trying to sample parameters
from a manifold or optimizing an EM-algorithm, where it may
be computationally or mathematically difficult to restrict inter-
mediate steps to the manifold.

SupplementaryMaterials

The supplementary material contains proofs of Theorems 4.1, 4.3, 4.4 and
Corollary 4.2.
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