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a b s t r a c t

There is growing interest in using the close connection between differential geometry
and statistics to model smooth manifold-valued data. In particular, much work has been
done recently to generalize principal component analysis (PCA), the method of dimension
reduction in linear spaces, to Riemannian manifolds. One such generalization is known as
principal geodesic analysis (PGA). This paper, in a novel fashion, obtains Taylor expansions
in scaling parameters introduced in the domain of objective functions in PGA. It is shown
this technique not only leads to better closed-form approximations of PGA but also reveals
the effects that scale, curvature and the distribution of data have on solutions to PGA and on
their differences to first-order tangent space approximations. This approach should be able
to be applied not only to PGA but also to other generalizations of PCA and more generally
to other intrinsic statistics on Riemannian manifolds.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Principal component analysis (PCA) is an important statistical method for dimension reduction and exploration of the
variance structure of data in a linear space. PCA has been generalized to data in smooth manifolds in various principal
geodesic procedures in which projections are done to explanatory submanifolds which serve as non-linear analogues of the
linear subspaces of PCA.

Principal geodesic analysis (PGA), as introduced in [9], successively identifies orthogonal explanatory directions in the
tangent space at the intrinsicmean of data and then exponentiates the span of the results to form explanatory submanifolds.
In [9] first-order tangent space approximations of PGA were formulated. Subsequently methods for exact computation of
PGA in specific manifolds were offered as in [17,27]. Then in [29], using the derivative of the exponential map and ODEs if
necessary in gradient descent algorithms, procedures to find exact solutions in a general class of manifolds were outlined.

As pointed out in [28], however, exact computation of PGA can be computationally complex and time-intensive, and thus
there is interest in determining the accuracy and effectiveness of first-order approximations to PGA. This will depend on the
distribution of data and its dispersion from the tangent space, the curvature and shape of the manifold in question and the
interaction of these factors.

For illustration, as in [28], consider the position of the ‘‘wrist’’ of a moving robotic arm while its ‘‘elbow’’ and ‘‘body’’
are fixed. In Fig. 1 the motion is restricted to a two-dimensional surface. To analyze the movement of the wrist one might
collect motion capture data as represented by the red dots in the figure. Formulating the surface as a Riemannian manifold
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Fig. 1. First PGA motion capture data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

and using intrinsic distances, an intrinsic mean of the data, µ, might be located. Then a geodesic through µ, represented by
the blue curve on the surface, that best fits the data or best accounts for the data’s variability might be identified.

One can find a linear direction of maximum variability, the unit vector v1,0 in Fig. 1, of data projected by the Riemannian
log map to the tangent space at the intrinsic mean. v1,0 will be an approximation of the unit vector tangent to the geodesic
v1. Generally the greater the local curvature of the surface the less accurate this approximation will be with scale of the data
or its dispersion from the intrinsic mean augmenting this effect. Conversely, projections to the tangent space will converge
to the data, intrinsic distances will converge to tangent space distances and v1,0 will converge to v1 as the data draws in
towards µ.

In this paper we quantify such effects by introducing scaling parameters on projections of data to the tangent space and
by obtaining Taylor expansions of solutions to PGA procedures in these parameters. Leading terms, such as v1,0 in Fig. 1,
will originate from the Euclidean structure in the tangent space. Next-order terms will demonstrate how local curvature
and scale interact to contribute to differences between first-order approximations and exact solutions. This not only allows
for more accurate closed-form approximations of PGA but should also contribute to a better understanding of the parts
of PGA and corresponding statistics. In this paper data in three types of symmetric spaces which have regular application
are considered. Also using [17,27,29] we can compute exact solutions in these spaces which allows for comparison and
testing.

1.1. Outline

Section 2 includes notations and definitions. In Section 3 a proposition which allows the expansion of PGA directions in
this paper is stated and proved. In Section 4 we review the geometry of the n-spheres and obtain and test expansions using
our proposition. We also carry out experiments on data sampled from an anisotropic log-normal distribution on the unit
n-sphere to show improved approximations. In Section 5 we review the geometry of the space of positive definite matrices
and obtain expansions using our proposition and computer algebra. In Section 6 we review the geometry of the special
orthogonal group and obtain expansions of PGA in this space. Also, in Section 6.3 we take a closer look at PGA in Lie groups
in [10] to show how expansions can give insight into the formulation of such intrinsic manifold statistics. In Section 7, using
expansions, we obtain improvements of the linear difference indicators introduced in [28]. In Section 8 we discuss the results
and consider their applications in similar contexts.

2. Notations and definitions

LetM be a Riemannian manifold with Riemannian metric p → ⟨ , ⟩p for p ∈ M . Given p ∈ M, TpM is the tangent space

at p. The unit sphere at TpM is then SpM = {X ∈ TpM; ⟨X, X⟩p = 1}. The Riemannian exponential and Riemannian log maps

are denoted by Expp : TpM → M and Logp : M → TpM , respectively. Given smooth manifolds M1 and M2, p ∈ M1 and
smooth mapping λ : M1 → M2 we denote the differential of λ at p by dpλ. Then given smooth function f : M → R and
p ∈ M the gradient of f at p is denoted ∇pf so that ⟨∇pf , X⟩p = dpf (X) for all X ∈ TpM . Differential geometry texts [6,25]
provide a background for and definitions of these concepts.

All the manifolds we will deal with in the paper will be of the class defined below.
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Definition 1. LetM be a connected Riemannian manifold.M is a symmetric space if and only if for every p ∈ M there exists
an isometry φp : M 	, such that

φp(p) = p and ∀X∈TpM dpφp(X) = −X .

The tensors defined below are used to measure curvature in Riemannian manifolds.

Definition 2. The curvature tensor is the (1, 3) tensor given as

R(x, y)w = ∇x∇yw − ∇y∇xw − ∇[x,y]w

for vector fields x, y, w where ∇ is the covariant derivative and [·, ·] is the Lie bracket. The Riemann curvature tensor, also
denoted by R, is the (0, 4) tensor given, for all x, y, w, z ∈ TpM , as

Rp(x, y, w, z) = ⟨R(x, y)w, z⟩p.

The Riemann curvature tensor characterizes the more geometrical description of curvature given below.

Definition 3. The sectional curvature of σv,q = span({v, q}) is given, for all v, q ∈ TpM , as

K(σv,q) =
Rp(q, v, v, q)

⟨q, q⟩p⟨v, v⟩p − ⟨q, v⟩2p
. (1)

The sectional curvature is the Gaussian curvature of Expp



σv,q



. Also, as in [4, p. 16] the Riemann curvature tensor is
completely characterized by the sectional curvature.

The following definition generalizes orthogonal projection in an inner product space to projection to submanifolds.

Definition 4. Let p, µ ∈ M , Vk = {v1, . . . , vk} ⊂ TµM and H(Vk) = Expµ{span(Vk)}. The projection of p to H(Vk) is

πH(Vk)(p) = argmin
x∈H(Vk)

d(x, p).

As in [29], existence of projection is guaranteed when H(Vk) is compact which will be the case when projecting in the
special orthogonal group and in the n-spheres in this paper. Then as in [16] we will have uniqueness of projection almost
everywhere in these manifolds. Throughout we will assume uniqueness of projection in the special orthogonal group and
in the n-spheres. Also, with the positive definite matrices having non-positive curvature, as in [9] there is existence and
uniqueness of projection for every H(Vk).

The first intrinsic statistic we formulate is a generalization of the arithmetic mean in an inner product space. A general
notion of amean of a probability distribution on ametric spacewas first due to [11]. The following can be viewed as a Fréchet
mean with respect to the empirical distribution on {p1, . . . , pN} and the intrinsic distance d(·, ·).

Definition 5. Let D = {p1, . . . , pN} ⊂ M . The intrinsic mean of D is

µ(D) = argmin
x∈M

1

N

N


i=1

d(x, pi)
2.

The intrinsic mean is used as an offset in the following definition.

Definition 6. Given data D = {p1, . . . , pN} ⊂ M with intrinsic mean µ(D), the intrinsic variance of D is

σ 2(D) =
1

N

N


i=1

d{µ(D), pi}
2.

Principal geodesic analysis (PGA), as introduced in [9], is generalization of principal component analysis (PCA) and is
defined below.



D. Lazar, L. Lin / Journal of Multivariate Analysis 153 (2017) 64–82 67

Definition 7. Let D = {p1, . . . , pN} ⊂ M and K = dim(Tµ(D)M). PGA locates {v1, . . . , vK } ⊂ Sµ(D)M such that

v1 = argmin
∥v∥=1

1

N

N


i=1

d{pi, πH1(v)(pi)}
2 with H1(v) = Expµ(D){span(v)}

v2 = argmin
∥v∥=1, v∈C1

1

N

N


i=1

d{pi, πH2(v)(pi)}
2

...
...

vK = argmin
∥v∥=1, v∈CK−1

1

N

N


i=1

d{pi, πHK (v)(pi)}
2

where Vj = {v1, . . . , vj}, Cj = span(Vj)
⊥and Hj(v) = Expµ(D)[span({Vj−1 ∪ v})] for j = 2, . . . , K .

Objective functions in PCA are sum of squared distances of data to their orthogonal projections to linear subspaces. The
symmetric, linear operator defined below is the gradient of the objective function in PCA.

Definition 8. Given {q1, . . . , qN} ∈ TµM define

L : TuM → TuM, L(v) =
2

N

N


i=1

⟨qi, v⟩µqi.

Throughout we assume that {q1, . . . , qN} is distributed so that the eigenvalues of L are distinct. Thus we can assume
that the eigenvectors of L form an orthonormal set. We denote the eigenvectors of L by u1, . . . , uK with corresponding
eigenvalues β1, . . . , βK given in descending order by magnitude.

3. Expansion of PGA directions

Let Snr , P(n) and SO(n) denote the n-sphere of radius r , the space of positive definite matrices and the special orthogonal
group formulated as Riemannian manifolds as in Sections 4.1, 5.1 and 6.1, respectively. Using the above three spaces as
working examples, in the following proposition we explore the effects of scaling the Riemannian logs of the data in the
tangent space. Assume M in the proposition in this section is one of these spaces.

We let ϵ > 0 be the scaling parameter. The dispersion of data from the intrinsic mean,µ(D), depends on the norm of each
data point’s Riemannian log in the tangent space at µ(D). As the data becomes more greatly dispersed in this manner the
effects of curvature away from the tangent space should becomemore significant to the solutions to PGA and its components.
By simultaneously scaling the Riemannian logs of all the data by ϵ and by obtaining Taylor expansions in this parameter we
can discern and inspect this effect. In practice, such as in the simulations in Section 4.3 or in the improvement over the linear
difference indicators in Section 7, we can take ϵ = 1 with the norms of the Riemannian logs of the data determining the
data’s scale.

Proposition. Let µ ∈ M, {q1, . . . , qN} ∈ TµM and u1, . . . , uK be the eigenvectors of covariance operator L as in Definition 8.
Also letting, for all i ∈ {1, . . . ,N},

pi,ϵ = Expµ (ϵqi)

let Dϵ = {pj,ϵ}j. Assume µ(Dϵ) = µ and that

VK ,ϵ = {v1(ϵ), . . . , vK (ϵ)}

is the set of PGA directions of Dϵ for all ϵ ≠ 0.

Further, let fk(v, ϵ) be the objective function for vk(ϵ) in Definition 7 for k = 1, . . . , K , i.e.,

fk(v, ϵ) =
1

N

N


i=1

d{pi,ϵ, πHk(v)(pi,ϵ)}
2.

Then provided projection as in Definition 4, is unique, fk(v, ϵ) is even in ϵ and we expand

fk(v, ϵ) = fk,2(v)ϵ2 + fk,4(v)ϵ4 + O(ϵ6). (2)

Let gk,4(v) be as fk,4(v) with u1, . . . , uk−1 in place of previous PGA directions, v1(ϵ), . . . , vk−1(ϵ). Also, for j > k let

αk = ∇ukgk,4 and αk,j =


αk, uj



= dukgk,4(uj). (3)
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If C is the K × K skew-symmetric matrix C = (ck,j) where, for j > k,

ck,j =
αk,j

βj − βk

expanding vk(ϵ) = vk,0 + vk,2ϵ
2 + O(ϵ4) then yields, for all k ∈ {1, . . . , K},

vk(ϵ) = vk,0 + vk,2ϵ
2 + O(ϵ4) = uk +



K


j=1

ck,juj



ϵ2 + O(ϵ4).

Proof. The proof is by induction. The base case can be shown in a similar manner as the induction step. Thus we let k > 1,
assume the proposition holds for the first k − 1 PGA directions Vk−1,ϵ = {v1(ϵ), . . . , vk−1(ϵ)} and then show it holds
for vk(ϵ).

As in Sections 4.1, 5.1 and 6.1, M is a symmetric space. It thus follows that fk(v, ϵ) is even in ϵ as we assume projection
is unique and the mapping

ι : M 	, ι(p) = Expµ{−Logµ(p)} for p ∈ M (4)

is an isometry.
In Riemannian manifold M intrinsic distances between points local to µ are Euclidean distances between Riemannian

logs of these points in TµM and thus we have

fk,2(v) =
1

N

N


i=1



⟨qi, qi⟩ −
k−1


j=1



qi, uj

2
− ⟨qi, v⟩2



(5)

as the leading term of fk(v, ϵ). Computing a gradient

∇v fk,2 = −
2

N

N


i=1

⟨qi, v⟩ qi = −L(v)

so that

∇v fk(ϵ) = −L(v)ϵ2 + ∇v fk,4ϵ
4 + O(ϵ6). (6)

Using Lagrange multipliers (−λ1, . . . ,−λk−1, −(1/2)λk) we have

∇vk(ϵ)fk(ϵ) = −λ1v1(ϵ) − · · · − λkvk(ϵ) (7)

with constraints

⟨v1(ϵ), vk(ϵ)⟩ = · · · = ⟨vk−1(ϵ), vk(ϵ)⟩ = 0, ⟨vk(ϵ), vk(ϵ)⟩ = 1.

Expand vk(ϵ) in ϵ, viz.

vk(ϵ) = vk,0 + vk,2ϵ
2 + O(ϵ4). (8)

Substituting this expansion and the expansions of {v1(ϵ), . . . , vk−1(ϵ)} in the constraints and equating coefficients in orders
of ϵ gives



vk,0, vj,0



= 0,


vk,0, vj,2



= −


vk,2, vj,0



for j = 1, . . . , k − 1,


vk,2, vk,0



= 0 and


vk,0, vk,0



= 1.
(9)

For each j ∈ {1, . . . , k}, expand the Lagrange multiplier

λj = λj,0 + λj,2ϵ
2 + λj,4ϵ

4 + O(ϵ6). (10)

In computations in Sections 4.2, 5.3 and 6.2 we have

∇vk(ϵ)fk,4 = ∇vk,0gk,4 + O(ϵ2).

Using this and substituting expansions (8), (10) and of {v1(ϵ), . . . , vk−1(ϵ)} in (7), using (6) and equating coefficients in
orders of ϵ gives

λ1,0v1,0 + · · · + λk,0vk,0 = 0 (⇒ λ1,0 = · · · = λk,0 = 0)

λ1,2v1,0 + · · · + λk,2vk,0 = L(vk,0) (11)

k


j=1

(λj,2vj,2 + λj,4vj,0) = −∇vk,0gk,4 + L(vk,2). (12)
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As L is a symmetric linear operator, (11) and (9) give

λj,2 =


L(vk,0), vj,0



=


vk,0, L(vj,0)


= βj



vk,0, vj,0



= 0 (13)

for each j ∈ {1, . . . , k − 1}.
Thus by (11), L(vk,0) = λk,2vk,0 and vk,0 is a normalized eigenvector of L with eigenvalue

λk,2 =
2

N

N


i=1



vk,0, qi
2

.

Further, letting Uk−1 = {u0, . . . , uk−1}, as

∀ϵ≠0 ∀v∈SV⊥
k−1,ϵ

fk{vk(ϵ), ϵ} ≤ fk(v, ϵ)

using (5)

∀v∈SU⊥
k−1

1

N

N


i=1



qi, vk,0

2
≥

1

N

N


i=1

⟨qi, v⟩2 .

Thus vk,0 is the dominant normalized eigenvector of L so that vk,0 = uk and βk = λk,2. Then with αk as in (3), by above, (12),
and (13) we have

(L − βk)vk,2 =
k


j=1

λj,4uj + αk. (14)

Consider the orthonormal expansion of vk,2, viz.

vk,2 =
K


j=1,j≠k

ck,juj. (15)

For j < k, using (9) and the form of the expansions of {v1(ϵ), . . . , vk−1(ϵ)}

ck,j =


vk,2, uj



= −


uk, vj,2



= −cj,k.

Also, substituting (15) into (14) gives

K


j=1,j≠k

ck,j(βj − βk)uj =
k


j=1

λj,4uj + αk

so that for j > k

ck,j =


αk, uj



/(βj − βk) = αk,j/(βj − βk).

Thus vk(ϵ) has the form given in the proposition and the proposition holds.

Remark 3.1. In vk(ϵ), vk,0 = uk minimizes fk,2(v) subject to ⟨v, v⟩ = 1. Then vk,2ϵ
2 is the first term which accounts for

fk,4(v)ϵ4 in the objective function.
For j > k the numerator of ck,j, αk,j, reflects the sensitivity of fk,4(v) evaluated locally, that is, gk,4(v), to a change in

direction from uk towards uj with a greater magnitude giving a greater ‘‘benefit’’ in minimizing fk,4(v) in the objective
function. The magnitude of the denominator, which is the difference of the shares of the data’s variability in the tangent
space accounted for by uj and uk, respectively, reflects the ‘‘cost’’, with respect to the minimization of fk,2(v), of this change
in direction. Further, for j < kwith vk(ϵ) minimizing the sum of square residuals after v1(ϵ), . . . , vk−1, αk,j accounts for the
sensitivity of gj,4(v) to a change from uj in the direction of uk but with an opposite sign than αj,k making C skew-symmetric.

Unlike the effect of the scaling parameter, ϵ, which is made explicit with the PGA expansion, the role of curvature on
the PGA directions is more subtle. In fk(v, ϵ), fk,4(v) is the first coefficient present due to non-linearity and thus generally
greater curvature will create greater αk,j’s. Greater scale of the data as measured by the norms of the Riemannian logs of the

data and by ϵ augments this effect with vk(ϵ) = vk,0 + vk,2ϵ
2 + O(ϵ4). Although the direct characterization of dependence

on curvature for general symmetric spaces is not available, for all of the examples we considered, as in (18), (19), (26), (29),
curvature appears explicitly in this manner.

4. PGA in S
n

r

We first examine the role of scale in PGA in the n-spheres. We denote the n-spheres of radius r by Snr . Spherical
data occurs in directional statistics, in preshapes in shape analysis, in text mining, in cluster analysis and others as in
[1,14,17,23].Weobtain the expansions of PGAdirections in Snr according to the proposition in Section 3, test these expansions
and then apply them to simulated data to show improved approximations of PGA directions.
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4.1. Snr as a Riemannian manifold

We have the identification

TpS
n
r ≡ {v ∈ R

n+1; ⟨v, p⟩ = 0}.

On Snr we use the Riemannian metric induced by the embedding Snr ↩→ R
n+1, i.e., for any p ∈ Snr and X, Y ∈ TpS

n
r , ⟨X, Y ⟩

is the dot product. The geodesics in Snr are great circles and the Riemannian exponential map in Snr is directly computed as
below.

Expp (X) = cos



∥X∥

r



p + r sin



∥X∥

r



X

∥X∥

for X ∈ {Y ∈ TpS(n); ∥Y∥ < πr}. Then

Logp (q) =











0, for ⟨p, q⟩ = r2,

r arccos


⟨p, q⟩ /r2
 q − ⟨p, q⟩ p/r2


q − ⟨p, q⟩ p/r2




for | ⟨p, q⟩ | < r2.
(16)

Given p, q ∈ Snr

d(p, q) =


Logp (q)


 = r arccos


⟨p, q⟩ /r2


,

that is, the distance between p and q is the ordinary spherical distance.

As in [18], Snr is a symmetric space with the symmetry at any point p ∈ Snr provided by reflection over the line containing

p in R
n+1. Also, we have K(σv,q) = 1/r2 for any plane σv,q ⊂ TpS

n
r .

4.2. Expansion of PGA directions in Snr

As in [17] the projection operator in Snr has closed-form. Given p, µ ∈ Snr and an orthonormal set Vk = {v1, . . . , vk} ⊂

TµS
n
r , set v0 = µ/r . With p ∉ span(µ ∪ Vk)

⊥ so that projection is unique then

πH(Vk)(p) = rw/ ∥w∥ , (17)

where w = ⟨v0, p⟩ v0 + · · · + ⟨vk, p⟩ vk. That is, projection of p is first done to span(µ ∪ Vk) in R
n+1 and the result scaled to

obtain projection to the hypersphere H(Vk).

Let q ∈ TµS
n
r , ϵ ≠ 0, pϵ = Expµ (ϵq) and, for all j ∈ {1, . . . , k},

tj(ϵ) =


Logµ{πH(Vk)(pϵ)}, vj



,

so that

πH(Vk)(pϵ) = Expµ



k


j=1

tj(ϵ)vj



.

By using (16) and (17), taking an inner product and computing Taylor expansions we obtain the following expansion of

projection coefficients in Snr :

tm(ϵ) = ⟨q, vm⟩ ϵ +
⟨q, vm⟩

3r2



⟨q, q⟩2 −
k


j=1



q, vj

2



ϵ3 + O(ϵ5)

= cos θm ∥q∥ ϵ +
cos θm

3r2



1 −
k


j=1

cos2 θj



∥q∥3 ϵ3 + O(ϵ5) (18)

for eachm ∈ {1, . . . , k}, where θm the angle formed by q and vm.

As in the proposition in Section 3 assume µ ∈ Snr , qi ∈ TµS
n
r and pi,ϵ = Expµ (ϵqi) for each i ∈ {1, . . . ,N}

with Vk−1,ϵ = {v1(ϵ), . . . , vk−1(ϵ)} the first k − 1 PGA directions. Using the proposition we find vk(ϵ). Let v ∈ SµS
n
r ,

Vk,ϵ = {Vk−1,ϵ ∪ v} and

ti,j =


Logµ{πH(Vk,ϵ )(pi,ϵ)}, vj



and ti,k =


Logµ{πH(Vk,ϵ )(pi,ϵ)}, v


for all i ∈ {1, . . . ,N} and j ∈ {1, . . . , k − 1}.
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Our objective function is

fk(v, ϵ) =
1

N

N


i=1

r2 acos2


Expµ



ti,1v1 + · · · + ti,kv


, Expµ (ϵqi)
 

r2


=
1

N

N


i=1

r2 acos2







cos













k


j=1

t2i,j



r



 cos



ϵ ∥qi∥

r



+ sin













k


j=1

t2i,j



r



 sin



ϵ ∥qi∥

r



k−1


j=1



ti,jvj, qi


+


ti,kv, qi


∥qi∥



k


j=1

t2i,j























.

Then by taking Taylor expansions in ϵ and with fk,4(v) as in (2) in the proposition in Section 3 we obtain

fk,4(v) =
1

3Nr2

N


i=1



k−1


j=1



qi, vj

2
+ ⟨qi, v⟩2



k−1


j=1



qi, vj

2
+ ⟨qi, v⟩2 − ⟨qi, qi⟩



.

With αk,m as in (3), taking a gradient and evaluating gives the following expansion of vk’s in Snr .

αk,m =


∇ukgk,4, um



=
2

3Nr2

N


i=1



k


j=1

2


qi, uj

2
− ⟨qi, qi⟩



⟨qi, uk⟩ ⟨qi, um⟩

=
2

3Nr2

N


i=1

∥qi∥
4



k


j=1

2 cos2 θi,j − 1



cos θi,k cos θi,m, (19)

where θi,a is the angle formed by qi and ua for all i, a and which is used in the proposition to obtain, for each k ∈ {1, . . . , n},
the expansion

vk(ϵ) = vk,0 + vk,2ϵ
2 + O(ϵ4).

Let Sn be the unit sphere Sn1 . In Fig. 2 the expansions of PGA directions obtained above are tested in S10. With µ ∈ S10, 50

tangent vectors are sampled from TµS
10 with the entries of {qi} having normal distributions and variances varying by entry

so that principal geodesic directions can be identified. We then take Dϵ = {pi,ϵ}i = {Expµ (ϵqi)}i. PGA directions are located
in MATLAB by using fixed-point algorithms such as those in [17] used to compute principal component geodesics. Ln–ln plots
are shown for v1(ϵ), v2(ϵ), v4(ϵ) and v9(ϵ). Similar plots were obtained for expansions of the other PGA directions.

4.3. Approximations of PGA on simulated data in Sn

In this section we sample data from a generalization of the log-normal distribution in S15. Specifically we sample from X

where X ∼ Expµ (N (0, κΣ)) with µ ∈ S15, κ > 0 and Σ a fixed positive definite matrix. Σ has distinct eigenvalues with

the largest eigenvalue having 20 times the magnitude of the smallest so that our distribution on S15 is anisotropic and the
population PGA directions exist. We compare PGA directions to approximations while varying κ which positively correlates
with the expected dispersion of the data from its mean.

In Table 1 for each value of κ 100 data points are sampled in 5 runs each. For each run all 14 PGA directions are computed.
Also, their leading- and next-order approximations in the scale of the data are located, that is, vk,0 (using PCA in the tangent
space) and vk,0 + vk,2, respectively, with ϵ = 1 as the norms of the Riemannian logs of the data scale the approximations.
Across all runs and for each value of κ the means of the angles in radians the approximations make (m.est. θ0 and m.est. θ2)
with the exact PGA directions and the mean of the norms of the Riemannian logs of the data (m.scale) are computed.

Also, as proposed in [29], an iterative algorithm to locate PGA direction vk can be initialized by doing PCAwith projections
of the Riemannian logs of the data into span(V⊥

k−1). We compare this method with initialization by projection of the next-

order approximations into span(V⊥
k−1) by computing the means of the angles these initializations make (m.init.θ0 and

m.init.θ2, respectively) with the vj’s across the 5 runs for each value of κ .
At κ = 1 the data is nearly uniformly distributed which is reflected in m.scale = 1.4684 nearly π/2. Even at κ = 1

the next-order estimates are an improvement over the leading-order estimates for this distribution. Note the next-order
estimates holding for data dispersed significantly from themean are also reflected in the plots with nearly correct intercepts
at ln(ϵ) = 0 ⇒ ϵ = 1 in Fig. 2. As κ decreases and the samples draw in towards their computed means both estimates
improve with the next-order estimates improving more sharply as they should.
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(a) ln – ln, v1(ϵ). (b) ln – ln, v2(ϵ).

(c) ln – ln, v5(ϵ). (d) ln – ln, v9(ϵ).

Fig. 2. Tests of PGA expansions in S15 .

Table 1

Estimates of PGA in S15 from Log-normal samples.

κ 1 0.850 0.700 0.550 0.400 0.250 0.100 0.050

m.scale 1.4684 1.3361 1.2278 1.1867 0.9784 0.7472 0.4843 0.3399

m.est.θ0 0.3400 0.2558 0.2327 0.1659 0.1442 0.0921 0.0576 0.0190

m.est.θ2 0.2654 0.2323 0.1595 0.0959 0.0541 0.0371 0.0215 0.0017

m.init.θ0 0.2329 0.1717 0.1573 0.1146 0.0972 0.0613 0.0347 0.0123

m.init.θ2 0.1882 0.1528 0.1014 0.0636 0.0347 0.0225 0.0120 0.0010

m.scale = mean of norms of Riemannian logs.

m.est.θ0 , est.θ2 = mean angles of leading and next order estimates w/vj ’s.

m.init.θ0 , init.θ2 = mean angles of leading and next order initializations w/vj ’s.

Also, projecting the next-order estimates into span(V⊥
k−1) provides an improvement here over doing PCA in span(V⊥

k−1)
with m.init. θ2 < m.init. θ0 for all values of κ .

In Fig. 3, κ = 0.4 and for each PGA directionwe plot the values of est. θ0, est.θ2 and init. θ0, init.θ2 which aremeans across
5 runs. Similar plots were obtained for other values of κ .

5. PGA in P(n)

Wedenote the space of positive definitematrices by P(n). The imaging technology diffusion tensorMRI as in [2] produces
data known as diffusion tensors in P(3). In [9] PGA in Definition 7 was proposed to allow the proper analysis of statistical
variability of diffusion tensor data by formulating P(3) as a manifold and generalizing PCA.

In this section using the proposition in Section 3 and computer algebra we obtain expansions of PGA directions in P(n).
We test the expansions and we take a closer look at the geometry of the first projection coefficient.
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(a) Estimates of vj ’s. (b) Initializations of vj ’s.

Fig. 3. Estimates of PGA in S15 with κ = 0.4.

5.1. P(n) as a Riemannian manifold

As in [22], P(n) is an open set in the vector space of n × n symmetric matrices. Thus, we have the identification

TpP(n) ≡ n × n symmetric matrices.

Denote the general linear group by GL(n). Consider the following action on P(n), ϕ

ϕ : GL(n) × P(n) → P(n), ϕ(g, p) = ϕg(p) = gpg⊤. (20)

As in [3] this action is transitive.We have the following Riemannianmetric on P(n) forwhichϕg is an isometry up to a positive
scalar multiple.

⟨X, Y ⟩p = (1/2)tr


p−1Xp−1Y


for p ∈ P(n), X, Y ∈ TpP(n) and where tr denotes the matrix trace.

As in [3] settingM = P(n) and φp(q) = pq−1p for q ∈ P(n) in Definition 1 makes P(n) a symmetric space.

For vector fields x, y on P(n), [x, y] = xy − yx is the commutator of x, y. Also, as P(n) is a symmetric space, by [25], we
have

R(x, y)z = [z, [x, y]]. (21)

As in [3], at I ∈ P(n), ExpI is the matrix exponential function and we have the following Riemannian exponential map on

P(n), for X ∈ TIP(n),

ExpI (X) =
∞


i=0

X i/i! (22)

and for any p = gg⊤ ∈ P(n), where g ∈ GL(n) we have

Expp (X) = φg [ExpI{dpφg−1(X)}] = g ExpI{g
−1X(g−1)⊤}g⊤

for X ∈ TpP(n).

Also in [3], for all p ∈ P(n), Expp is bijective and thus Logp is well-defined.

5.2. Computer algebra

Expansions in this section and in Sections 6.3 and 7 were obtained with the help of the Maxima computer algebra
system. A matrix Taylor function and a function with the distributive and cyclic properties of the trace were coded to
compute expansions involving LogI and ExpI in ϵ. This code along with the data sets used in this paper is available at
https://github.com/DMLazar/PGAScale.

https://github.com/DMLazar/PGAScale
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(a) ln – ln plot. (b) Approximations.

Fig. 4. Tests of expansion of t(ϵ).

5.3. Expansion of PGA directions in P(n)

By employing the transitive action by isometries in (20) PGA in P(n) can be carried out in the tangent space at the identity.
Let v ∈ SIP(n), q ∈ TIP(n)and pϵ = ExpI (ϵq) for ϵ ≠ 0. To project pϵ to H(v) = ExpI{span(v)} find

t(ϵ) = argmin
s∈R

d{ExpI (sv) , ExpI (ϵq)}
2. (23)

Define Oϵ,s(ℓ) as

f (s, ϵ) is Oϵ,s(ℓ) ⇔ f (s, ϵ) ≤
ℓ


k=0

Akϵ
ksℓ−k

for some A1, . . . , Aℓ ∈ R. Then let

g(s, ϵ) = ExpI (−sv/2) ExpI (ϵq) ExpI (−sv/2)

and setting h(s, ϵ) as the cost function in (23) and expanding

h(s, ϵ) = (1/2)tr[LogI{g(s, ϵ)}LogI{g(s, ϵ)}]

=
ϵ2tr (qq)

2
+ s2 − ϵs tr (qv) +

tr{q2v2 − (qv)2}ϵ2s2

12
+ Oϵ,s(6). (24)

Using (4), t(ϵ) is odd in ϵ and we expand

t(ϵ) = t1ϵ + t3ϵ
3 + O(ϵ5)

for some t1, t3 ∈ R. Solving for t1 and t3 in

∂hs(t(ϵ), ϵ)

∂s
= 0

gives

t(ϵ) =
1

2
tr (qv) ϵ +

1

24
tr (qv)



tr{(qv)2 − q2v2}


ϵ3 + O(ϵ5). (25)

Using (1) in (25) we have the expansion of a projection (to a geodesic) coefficient in P(n) below

t(ϵ) =
1

2
tr (qv) ϵ +

1

24
tr (qv)



tr{(qv)2 − q2v2}


ϵ3 + O(ϵ5)

= cos θ ∥q∥ ϵ +
1

12
cos θ sin2 θK(σv,q) ∥q∥3 ϵ3 + O(ϵ5), (26)

where θ is the angle formed by q and v.
In Fig. 4 v and q are sampled from the uniformdistribution on the unit sphere in TIP(n) and plots are generated inMATLAB

to test the expansions.
As in Fig. 5, letting ∥q∥ = 1 so that |ϵ| = d(pϵ, I), as ϵ goes to zero the tangent vectors become more like their

exponents and projection in the tangent space becomesmore like projection in themanifold. The third-order term accounts
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Fig. 5. Approximation of projection coefficient.

for the difference in the approximating Euclidean triangle in the tangent space and the geodesic triangle in the manifold.
As in [3] P(n) is of non-positive sectional curvature. Thus cos θ sin2 θK(σv,q)/12 will be non-positive for acute angle θ
with greater local curvature of Expµ{span(v, q)}, as measured by the magnitude of K(σv,q), contributing to a less accurate
approximation.

We apply the proposition to compute the expansions of the first PGA directions in P(n). First we have

f1(v, ϵ) =
1

N

N


i=1

d[ExpI{ti(ϵ, v)v}, ExpI (ϵqi)]
2. (27)

With f1,4(v) as in (2) in the proposition in Section 3, using (25) in (27) and expanding in ϵ gives

f1,4(v) =
1

48N

N


i=1

tr (qiv)2 {tr


q2i v
2


− tr (qivqiv)}. (28)

With α1,j as in (3), taking a gradient and evaluating gives the following expansion of v1(ϵ) in P(n).

α1,j =


∇u1g1,4, uj



= (1/2)tr


α1uj



=
1

48N

N


i=1

tr (qiu1)
2 tr



q2i u1uj + q2i uju1 − 2qiu1qiuj



+ 2tr (qiu1) tr


qiuj



tr{q2i u
2
1 − (qiu1)

2}

= −
1

6N

N


i=1

∥qi∥
4


cos2 θi,1RI(u1, q̃i, q̃i, uj) + cos θi,1 cos θi,jRI(u1, q̃i, q̃i, u1)


= −
1

6N

N


i=1

∥qi∥
4


cos2 θi,1RI(u1, q̃i, q̃i, uj) + cos θi,1 cos θi,j sin
2 θi,1K(σqi,u1)



(29)

where θi,m is the angle formed by qi and um and q̃i = qi/ ∥qi∥ for all i,m and which can be used in the proposition to obtain
the expansion of v1(ϵ).

PGA directions in addition to the first can be found by first solving for projection coefficients in systems of equations. As
in (29) substituting the projection coefficients in the PGA objective function, taking a gradient and evaluating gives αk,j. At
https://github.com/DMLazar/PGAScale the Maxima code for and the form of v2(ϵ) can be found.

In Fig. 6, the expansions of v1(ϵ) and v2(ϵ) in P(n) are tested. 75 matrices {qi}i are sampled from TIP(3) with entries
distributed as in the test in Fig. 2 and the data is set as Dϵ = {pi,ϵ}i = {ExpI (ϵqi)}i. The computations of the projection
operator and principal geodesic directions are done using MATLAB minimization routines and user-supplied gradients as
formulated in [29] with the derivative of the matrix exponential map provided by [24, Theorem 4.5].

6. PGA in SO(n)

We denote the special orthogonal group by SO(n). SO(n) is the group of rigid rotations of R
n. In particular it includes

the rotation group SO(3) in which data naturally arises in robotics, computer vision and others (see [13,21,30]). We obtain
expansions in SO(n) and apply them to the formulation of PGA in [10] for Lie groups. We use the identification of SO(3)with
SU(2) as in [27] and fixed-point algorithms as in [17] to carry out PGA.

https://github.com/DMLazar/PGAScale
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(a) ln – ln, v1(ϵ). (b) ln – ln, v2(ϵ).

Fig. 6. Tests of PGA expansions in P(n).

6.1. SO(n) as a Riemannian manifold

As in [5] SO(n) is a closed and bounded subset of R
n2 and is thus a compact set. Also, we have the identification

TISO(n) ≡ so(n) = {n × n skew-symmetric matrices}.

SO(n) is a matrix Lie group and we have the following transitive action on SO(n), ϕ by left multiplication

ϕ : SO(n) × SO(n) → SO(n),

ϕ(g, p) = ϕg(p) = gp.

We then have the Riemannian metric for which ϕg is an isometry up to a positive scalar multiple.

⟨X, Y ⟩p = −(1/2)tr


p−1Xp−1Y


(30)

for p ∈ SO(n), X, Y ∈ TpSO(n).

As in P(n) setting M = SO(n) and φp(q) = pq−1p for q ∈ SO(n) in Definition 1 makes SO(n) a symmetric space. Further,
as SO(n) is a symmetric space we have (21) as in P(n).

As in [7], at I ∈ SO(n), ExpI is the matrix exponential function and we have the Riemannian exponential map on SO(n),
defined, for X ∈ {Y ∈ TISO(n)such that ∥Y∥ < π} by (22) and for any p ∈ SO(n) we have

Expp (X) = φp



ExpI{dpφp−1(X)}


= pExpI



p−1X


for X ∈ {Y ∈ TpSO(n) such that ∥Y∥ < π}.
Also, using the results in [12], for any p, Expp is a diffeomorphism on {X ∈ TpSO(n); ∥X∥ < π}.

6.2. Expansion in SO(n)

Both P(n) and SO(n) are symmetric spaces that have the matrix exponential as the Riemannian exponential map at I.
At I, the inner products of P(n) and SO(n) are scalar multiples of the trace of matrix products of tangent vectors. Also, the
action in (20), with SO(n) replacing GL(n) and P(n), is an action by isometries which is transitive as any p ∈ SO(n) can be
decomposed as p = gg where g = ExpI{(1/2)LogI (p)}. Thus, the expansions in ϵ in SO(n) are the expansions in Section 5.3
for P(n) with the inner product of SO(n) replacing the inner product of P(n).

6.3. Lie group PGA

By use of expansions in scaling parameter ϵ, in the case of SO(n), we take a look at the first iteration of PGA in [10]. In a
Lie group such as SO(n), PGA was formulated in [10] as recursive variance removal through left multiplication as below.

Definition 9 (PGA Alternative). Given Lie group M and D = {p1, . . . , pN} ⊂ M with µ(D) = µ, PGA directions {v1, . . . , vK }
⊂ Sµ(D)M are given

Set k = 1.
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I. Find vk = argmin
∥v∥=1



d{πH(v)(pi), pi}
2 with H(v) = Expµ{span(v)}

II. Set D′ = {g−1
1 p1, . . . , g

−1
N pN} where gi = πH(vk)(pi) for all k

III. If k < K set k = k + 1,D = D′ and return to I, else stop.

In SO(n) we can decompose any projection gi = Expµ (tivk) above as

gi = Expµ (ativk) Expµ (btivk) ,

where a + b = 1. Then γa,b : p → Expµ{−a(tivk)} p Expµ{−b(tivk)} is an isometry as for all X ∈ TµSO(n),

dµγa,b(X) = Expµ{−a(tivk)} X Expµ{−b(tivk)}

and through direct computation and using (30) we have, for all X, Y ∈ TµSO(n),

⟨dµγa,b(X), dµγa,b(Y )⟩γa,b(µ) = ⟨X, Y ⟩µ.

Of these isometries we should choose the one that ‘‘minimizes energy’’ in moving parts of data along the geodesic from gi
to µ. Assuming D has been demeaned so that µ = I, letting pi = ExpI (ϵqi) and expanding

LogI[γa,b{ExpI (ϵqi)}] = {qi + (1/2)tr (qivk) vk}ϵ − (1/4)tr (qivk) (b − a)(vkqi − qivk)ϵ
2 + O(ϵ3)

= ∥qi∥ (q̃i − cos θivk)ϵ + ∥qi∥
2 (1/2) cos θi(b − a)[vk, q̃i]ϵ

2 + O(ϵ3)

where θi is the angle formed by qi and vk. Thus for a ≠ b we have additional movement in the orthogonal complement of
explanatory direction vk. Note that accordingly, making the identification of SO(3) with SU(2), it is straightforward to show
that with a = b, γa,b corresponds to a simple plane rotation.

Also to consider in this method of PGA is the displacement of the mean as a result of curvature after removing variability
in an explanatory direction. We quantify this effect in SO(n) by letting Dϵ = {p1,ϵ, . . . , pN,ϵ} ⊂ SO(n) be such that
µ(Dϵ) = I for all ϵ, vk ∈ SISO(n) and

Case1. D′
ϵ = {g

−1/2

1 p1,ϵg
−1/2

1 , . . . , g
−1/2

N pN,ϵg
−1/2

N } using a = b = 1/2 and

Case2. D′
ϵ = {g−1

1 p1,ϵ, . . . , g
−1
N pN,ϵ} using a = 1, b = 0 as in Definition 9

and by obtaining the expansion of x(ϵ) =


LogI{µ(D′
ϵ)}


 in both cases.

By [20] for function f (y) = d(y, p)2 =


Logy (p)




2
we have

∇yf = −2Logy (pi) . (31)

Using this gradient in Definition 5 x(ϵ) is such that

N


i=1

LogI[ExpI{−x(ϵ)/2}ExpI (ϵri) ExpI{−x(ϵ)/2}] = 0 (32)

with

1. ExpI (ϵri) = ExpI{−ti(ϵ, vk)vk/2}ExpI (ϵqi) ExpI{−ti(ϵ, vk)vk/2} and
2. ExpI (ϵri) = ExpI{−ti(ϵ, vk)vk}ExpI (ϵqi)

for i = 1, . . . ,N in cases 1 and 2, respectively. Letting

x(ϵ) = x1ϵ + x2ϵ
2 + x3ϵ

3 + x4ϵ
4 + O(ϵ5)

substituting into (32) and solving for x1, x2, x3and x4 gives the expansions

1. x(ϵ) = x3ϵ
3 + O(ϵ5) where

x3 =
1

96

N


i=1

{tr (qivk)
2}(2vkqivk − qivkvk − vkvkqi) − 4{tr (qivk)}(2qivkqi − qiqivk − vkqiqi)

+ 4{tr (qivk)}


tr (qiqivkvk) − tr (qivkqivk)


vk

=
1

24

N


i=1

∥qi∥
3


cos2 θiR(qi, vk)vk + 2 cos θiR(vk, qi)qi − 2 cos θi sin
2 θiK(σqi,vk)vk



and

2. x(ϵ) = x2ϵ
2 + O(ϵ3) where

x2 =
N


i=1

(1/4)tr (qivk) (vkqi − qivk) = −
N


i=1

(1/2) ∥qi∥
2 cos θi[vk, q̃i]
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Table 2

Comparisons of alt-PGA.

θ w/e.v.’s θ w/PGA µ disp. R.E.

Simulated data, 500 runs, mean intrinsic var. = 1.4878

a = b = 1
2

First dir. 0.0844 0.00 0.0109 0.4640

Second dir. 0.1180 0.0021 0.0057 0.2530

a = 1, b = 0
First dir. 0.0844 0.00 0.0196 0.4640

Second dir. 0.6322 0.5880 0.0112 0.2610

Wrist rotation data, intrinsic var. = 0.2912

a = b = 1
2

First dir. 1.308e−3 0.00 110.418e−6 43.853e−3

Second dir. 2.01e−3 27.997e−6 42.035e−6 19.926e−3

a = 1, b = 0
First dir. 1.308e−3 0.00 437.222e−6 43.853e−3

Second dir. 63.526e−3 61.940e−3 189.840e−6 20.247e−3

in case 1 and case 2, respectively with ∥x(ϵ)∥ = O(ϵ3) in case 1 and ∥x(ϵ)∥ = O(ϵ2) in case 2.

Considering these expansions, a = b = 1/2 gives less local displacement of the mean and a = b = 1/2 is preferable.
Still, the use of a centering or normalization step in this form of PGA might be considered, particularly when there is still
significant variability in the data and if some degree of degeneracy in explanatory directions is observed.

In Table 2 in 500 runs I generated 50 vectors in TISO(3)with entries having a standard Gaussian distribution and differing
variances. I compare the mean angles over the 500 runs that located explanatory directions, both for a = 1, b = 0 (as in
Definition 9) and a = b = 1/2, make with the eigenvectors of covariance operator L (θ w/ e.v.’s) and with PGA directions
in Definition 7 (θ w/ PGA). I also measure the displacement of the intrinsic mean after removing an explanatory direction
(µ disp.) and the average reconstruction error, i.e., the intrinsic variability remaining in the data after removing explanatory
directions (R.E.) under a = b = 1/2 and a = 1, b = 0.

We repeat the experiment for data given in [26] which was collected to investigate the variability in six subjects’
movements while completing a drilling task. The data we use is motion capture data of the rotation of the first subject’s
wrist. This data has little variability which is claimed in [26] is common in human kinetics studies and accordingly in [26]
tangent space methods are used for analysis.

The tables show better agreement with the eigenvectors of L and variability as identified by PGA for a = b = 1/2. Also,
there is less displacement of the mean for a = b = 1/2 in agreement with the expansions above. There is also slightly less
reconstruction error for a = b = 1/2 in these experiments. These effects are greater in magnitude for the simulated data
which has greater tangent space variability.

7. Linear difference indicators

In [28] differences between exact solutions to PGA and tangent space approximations were explored. To this end [28]
introduced measures of the accuracy of approximations of the projection operator and of approximations of explanatory
directions obtained by orthogonal projection and PCA in the tangent space, respectively. Given D = {p1, . . . , pN} ⊂ M with
µ(D) = µ, PGA directions Vk−1 = {v1, . . . , vk−1} and v ∈ SV⊥

k−1 the average projection difference is formulated as

τH =
1

N

N


i=1

d{pi, π̂H(v)(pi)}
2 − d{pi, πH(v)(pi)}

2 (33)

where H(v) = Expµ (span(Vk−1 ∪ v)) and π̂H(v)(pi) is the exponentiation of the orthogonal projection of qi = Logµ(pi) in
TµM to span(Vk−1 ∪ v).

Then setting v = vk where vk is the kth PGA direction and letting v̂ be its first-order approximation obtained in TµM the
average residual difference is formulated as

ρ =
1

N

N


i=1

d{pi, πH(v̂)(pi)}
2 − d{pi, πH(v)(pi)}

2.

In [28] difference indicators which are shown to be correlated to these statistics and which can be computed before
carrying out exact PGA are proposed. The indicator for the average projection difference is given as

τH ≈ τ̃H(v) =
2

N

N


i=1

∥∇π̂H(v)(pi)
f ∥, (34)

where f (y) = d(pi, y)
2. Using (31), ∥∇π̂H(v)(pi)

f ∥ can be computed as the magnitude of the component of −2Logπ̂Hv (pi)
(pi)

in Tπ̂H(v)(pi)
M .
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The indicator for the average residual difference is given as the standard deviation of the differences of the distances
of the qi’s to their orthogonal projections to span(Vk−1 ∪ v̂) and the distances of the pi’s to the exponentiation of those
orthogonal projections. That is,

σ =









1

N

N


i=1



∥qi − Logµ{π̂H(v̂)(pi)}∥ − d{pi, π̂H(v̂)(pi)} − m
2

wherem is the mean of the differences between the distances.

7.1. Expansions of τH and ρ

We obtain expansions in scaling parameter ϵ of τH and ρ in P(n) and SO(n). Then in Section 7.2 we apply the difference
indicators and the expansions to two data sets in experiments similar to the ones in [28] and show the expansions provide
good approximations of τH and ρ. Note that although τ̃H(v) and σ show correlation only τ̃H(v) is an approximation. These
expansions will also give a better understanding of how scale and curvature terms affect τH and ρ which then can be used
to make the type of decisions about the use of linear approximations demonstrated in [28]. Wewill obtain these expansions
for k = 1 which will allow us to carry out the type of experiments done in [28]. Expansions for k > 1 can be obtained in a
similar manner.

Let pi,ϵ = Exp (ϵqi) and ti(ϵ) = ti,1ϵ + ti,3ϵ
3 + O(ϵ5) be the expansion of the projection coefficient to a geodesic as

Section 5.3. Using the expansion of the objective function in (24) and of ti(ϵ) given in (25) we obtain

τH =
1

N

N


i=1

hi(ti,1, ϵ) − hi(ti(ϵ), ϵ)

=
1

N

N


i=1

(ti,3)
2ϵ6 + O(ϵ8)

=
1

144N

N


i=1

∥q∥6 cos2(θi) sin
4(θi){K(θv,qi)}

2ϵ6 + O(ϵ8).

Consider the cost function f1(v, ϵ) in (2) and the expansion

v1(ϵ) = v1,0 + v1,2ϵ
2 + v1,4ϵ

4 + O(ϵ6).

We have

ρ = f1(v1,0, ϵ) − f1{v1(ϵ), ϵ}. (35)

Given the constraint ∥v1(ϵ)∥ = 1 and that for

va
1(ϵ) =

a


j=0

v2jϵ
2j,



va
1(ϵ)



 is not necessarily 1 for any a, consider the expansion

1


va
1(ϵ)





=
1



1 + ⟨v1,2, v1,2⟩Iϵ4 + O(ϵ8)
= 1 −

⟨v1,2, v1,2⟩I

2
ϵ4 + O(ϵ8)

and set

ṽa
1(ϵ) = va

1(ϵ)/ ∥va(ϵ)∥

= v1,0 + v1,2ϵ
2 +



v1,4 − v1,0

⟨v1,2, v1,2⟩I

2



ϵ4 + O(ϵ6).

Then we have v1(ϵ) = lima→∞ ṽa
1(ϵ) and as in (5) we have

[f1,2(v1,0) − f1,2{v1(ϵ)}]ϵ
2 =



1

N

n


i=1

⟨qi, v1(ϵ)⟩
2
I − ⟨qi, v1,0⟩

2
I



ϵ2

=
1

N

N


i=1



⟨qi, v1,2⟩
2
I − ⟨qi, v1,0⟩

2
I ⟨v1,2, v1,2⟩I



ϵ6 + O(ϵ8) (36)
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(a) Difference indicator, σ . (b) Expansion term, ρ6 .

Fig. 7. ρ for wrist rotation.

with the second equality using

1

N

N


i=1

⟨qi, v1,0⟩I⟨qi, v1,k⟩I = ⟨L(v1,0), v1,k⟩I = β1⟨u1, v1,k⟩I = 0

for k = 2, 4. Using (28), in P(n) we have

[f1,4(v1,0) − f1,4{v1(ϵ)}]ϵ
4 =

1

48N

N


i=1



tr(qiv1,0)
2tr


2qiv1,0qiv1,2 − qiqiv1,0v1,2 − qiqiv1,2v1,0



+ 2tr


qiv1,0



tr


qiv1,2



tr


qiv1,0qiv1,0 − qiqiv1,0v1,0





ϵ6 + O(ϵ8)

=
1

6N

N


i=1



cos2 θi,1RI(v1,0, q̃i, q̃i, v1,2)

+ cos θi,1 sin
2 θi,1 cos θ̂i,1K(σv,qi)



∥qi∥
6 ϵ6 + O(ϵ8). (37)

In SO(n), using the metric in (30), we just take the negative of this expression. Then using (35) the expansion of ρ in P(n) or
SO(n) is the sum of (36) and (37).

7.2. Experiments comparing difference indicators and expansions

Set the expansion of ρ as ρ = ρ6ϵ
6 + O(ϵ8) and the expansion of τH as τH = τH,6ϵ

6 + O(ϵ8), as derived above in
Section 7.1. The first data set is the wrist rotation data set in SO(3) from Section 6.3. The second is a synthetic data set in
P(n)with a sample of 36 from a distribution as in the test in Fig. 6. As in [28] for each experiment we draw a random sample
of size 8 from the data set 20 times and compute the relevant statistics each time for comparison. For the wrist rotation data
in SO(3), τH is not computed as projection has closed-form in this case.

Experiment 1. Wrist Rotation Data

As indicated in Section 6.3 this data set has little variability. Accordingly, ρ6 in Fig. 7 is a very close estimate of ρ and
provides a nearly perfect picture of the penalty (very small in this case) of using the first-order approximation of PGA. At
the same time σ has a lower correlation with ρ and is of a much different scale and is thus of less value in assessing the use
of a first-order approximation of PGA.

Experiment 2. Synthetic Data

As in [28] the first PGA direction v1 is set to v in (33) and used to compute τH . In Fig. 8 both τH,6 and ρ6 provide good
estimates of τH and ρ with correlation coefficients of 0.993 and 0.981, respectively. Also to note, one might square the norm
of the gradient in (34) to use the Pythagorean theorem in each Tπ̂H(v)(pi)

M to get another improved estimate of τH over τ̃H .

8. Discussion and conclusions

In [31] PGA is formulated as a probabilitymodel (PPGA) inwhichdata is distributed according to amanifold generalization
of the normal distribution. Explanatory directions are included as parameters to be estimated bymaximum likelihood. Also,
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(a) Difference Indicator, τ̃H . (b) Expansion term, τH,6 .

(c) Difference indicator, σ . (d) Expansion term, ρ6 .

Fig. 8. τH , ρ for data in P(3).

a location parameter and scaling parameters for the explanatory directions and for the variability or dispersion of the data
are fit. Thus, as an advantage, not only are the mean and explanatory directions jointly estimated but the dispersion of the
data is also taken into account.

In the descriptive setting, in this paper, consideration of a dispersion or scaling factor was shown to be an essential
element in revealing the underlying structure of solutions to PGA. In the proposition in Section 3, for example, we see how
the share of variability in the tangent space, accounted for by eigenvector uk and measured by eigenvalue βk, weights the
curvature terms in vk,2 to determine the difference, at least locally, between the first-order approximation and the exact
solution. Or in expansions of Section 7 we see the explicit interaction between scale, curvature and the distribution of data
in determining the local difference between the projection operator, the PGA directions and their linear approximations.

Also, we see in this paper, at least experimentally, that the approximations obtained by expansion hold for data
significantly dispersed from the tangent space. In Fig. 4, for example, with q, v uniformly distributed in SIP(n) the third- and
fifth-order approximations in ϵ hold for ϵ > 2. In this case, one can readily obtain bounds on the ratios of the coefficients in
the expansion and derive expected values of those ratios to explain this plot. Such an approach should be able to be taken
with other expansions and distributions of data as well. Also, in a bounded manifold the variability of data and thus ϵ is
restricted. In Sn or SO(n), for example, we take |ϵ| < π/ ∥qi∥ for data pi,ϵ = Expµ (ϵqi) so that the expansions only need to
hold for these values of ϵ.

Since PGA was introduced in [10] and then [9] a number of other methods to analyze the variability of manifold-valued
data have been proposed. For example, [19] accounts for non-geodesic variability in spheres and [17] projects to geodesics
that intersect orthogonally at a mean on the first geodesic that best fits the data. One could use the approach of this paper in
these contexts, for example, an expansion of the difference between the mean located in [17] and the intrinsic mean might
be obtained.

In addition, this paper and others use a definition of PGA that minimizes residual error while PGA was defined in [10]
as maximizing projected variability. Expansions of solutions of PGA using the latter definition might be obtained and the
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higher-order terms compared to determine what accounts for the differences and how these differences might be taken
into account in deciding which definition to employ. Also, the approach of this paper might be used to quantify differences
between other generalizations of linear statistics such as intrinsic MANOVA in [15] and geodesic regression in [8] and their
local, linear approximations.
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