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N o n- C o n v e x  P h as e   R etri e v al  Fr o m
S T F T   M e as ur e m e nts

Ta mir   B e n d or y,   Yo ni n a   C.   El d ar, Fell o w,  I E E E ,  a n d   Ni c ol a s   B o u m al

A bstr a ct —  T h e  p r o bl e m  of  r e c o v e ri n g  a  o n e- di m e n si o n al si g n al
f r o m  its   F o u ri e r  t r a n sf o r m   m a g nit u d e,  c all e d   F o u ri e r  p h as e
r et ri e v al, is ill- p os e d i n   m ost c as es.   We c o n si d e r t h e cl os el y- r el at e d
p r o bl e m  of  r e c o v e ri n g  a  si g n al  f r o m  its  p h as el ess  s h o rt-ti m e
F o u ri e r  t r a n sf o r m  ( S T F T)   m e as u r e m e nts.   T his  p r o bl e m  a ris es
n at u r all y  i n  s e v e r al  a p pli c ati o ns,  s u c h  as  ult r a-s h o rt  l as e r  p uls e
c h a r a ct e ri z ati o n  a n d  pt y c h o g r a p h y.   T h e  r e d u n d a n c y  off e r e d
b y  t h e  S T F T  e n a bl es  u ni q u e  r e c o v e r y  u n d e r   mil d  c o n diti o n s.
We  s h o w t h at i n  s o m e  c as es  t h e  u ni q u e s ol uti o n  c a n  b e  o bt ai n e d
b y  t h e  p ri n ci p al  ei g e n v e ct o r  of  a   m at ri x,  c o n st r u ct e d  as  t h e
s ol uti o n of  a si m pl e l e ast- s q u a r es  p r o bl e m.   W h e n t h es e c o n diti o n s
a r e  n ot   m et,   w e  s u g g est  u si n g  t h e  p ri n ci p al  ei g e n v e ct o r  of  t his
m at ri x t o i niti ali z e  n o n- c o n v e x l o c al  o pti mi z ati o n  al g o rit h ms  a n d
p r o p os e  t w o  s u c h   m et h o d s.   T h e  fi rst  is  b as e d  o n   mi ni mi zi n g
t h e  e m pi ri c al  ris k  l oss  f u n cti o n,   w hil e  t h e  s e c o n d   m a xi mi z es
a  q u a d r ati c  f u n cti o n  o n  t h e   m a nif ol d  of  p h as es.   We  p r o v e
t h at  u n d e r  a p p r o p ri at e  c o n diti o n s,  t h e  p r o p os e d  i niti ali z ati o n  is
cl os e  t o  t h e  u n d e rl yi n g  si g n al.   We  t h e n  a n al y z e  t h e  g e o m et r y
of  t h e  e m pi ri c al  ris k  l oss  f u n cti o n  a n d  s h o w  n u m e ri c all y  t h at
b ot h  g r a di e nt  al g o rit h ms  c o n v e r g e  t o  t h e  u n d e rl yi n g  si g n al
e v e n   wit h  s m all  r e d u n d a n c y  i n  t h e   m e as u r e m e nt s.  I n  a d diti o n,
t h e  al g o rit h ms  a r e  r o b u st  t o  n ois e.

I n d e x   Ter ms —  P h as e  r et ri e v al,  s h o rt-ti m e   F o u ri e r  t r a nsf o r m,
n o n- c o n v e x  o pti mi z ati o n,  s p e ct r al  i niti ali z ati o n,  l e ast- s q u a r es,
pt y c h o g r a p h y,  ult r a-s h o rt l as e r  p uls e  c h a r a ct e ri z ati o n,  o pti mi z a-
ti o n  o n   m a nif ol d s.

I.  I N T R O D U C T I O N

T H E  pr o bl e m  of  r e c o v eri n g  a  si g n al  fr o m  its  F o uri er
tr a n sf or m   m a g nit u d e aris e s i n   m a n y  ar e as i n  e n gi n e eri n g

a n d  s ci e n c e,  s u c h  a s  o pti c s,   X-r a y  cr y st all o gr a p h y,  s p e e c h
r e c o g niti o n,  bli n d  c h a n n el  esti m ati o n,  ali g n m e nt  a n d  a str o n-
o m y  [ 5],  [ 9],  [ 2 7],  [ 3 3],  [ 4 1],  [ 4 6],  [ 6 6],  [ 7 2].   T his  pr o bl e m
is  c all e d F o u ri er  p h a s e  r etri e v al a n d  c a n  b e  vi e w e d  a s  a
s p e ci al c a s e  of a  q u a dr ati c s y st e m  of e q u ati o n s.   T h e l att er ar e a
r e c ei v e d  c o nsi d er a bl e  att e nti o n  r e c e ntl y,  p arti all y  d u e  t o  its
str o n g  c o n n e cti o n s   wit h t h e  fi el d s  of  c o m pr e ss e d  s e n si n g  a n d

M a n us cri pt  r e c ei v e d  J ul y  2 7,  2 0 1 6;  r e vis e d   M a y  1 4,  2 0 1 7;  a c c e pt e d
J ul y  5,  2 0 1 7.   D at e  of  p u bli c ati o n   A u g ust  2 9,  2 0 1 7;  d at e  of  c urr e nt
v ersi o n   D e c e m b er  2 0,  2 0 1 7.   T his   w or k   w as  s u p p ort e d  i n  p art  b y  t h e
E ur o p e a n   U ni o n’s   H ori z o n  2 0 2 0   R es e ar c h  a n d  I n n o v ati o n  Pr o gr a m  u n d er
Gr a nt  6 4 6 8 0 4- E R C C O G- B N Y Q,  i n  p art  b y  t h e  Isr a el  S ci e n c e  F o u n d ati o n
u n d er   Gr a nt  3 3 5/ 1 4,  a n d  i n  p art  b y  t h e   R es e ar c h   Gr a nt  fr o m  t h e   Oll e n d orf
F u n d.   T.   B e n d or y   w as  s u p p ort e d  i n  p art  b y   A n dr e w  a n d   Er n a  Fi n ci   Vit er bi
F ell o ws hi p.   N.   B o u m al   w as  s u p p or t e d  b y   N S F  u n d er   Gr a nt   D M S- 1 7 1 9 5 5 8.

T.   B e n d or y  a n d   Y.   C.   El d ar  ar e   wit h t h e   D e p art m e nt  of   El e ctri c al   E n gi n e er-
i n g,   Te c h ni o n  Isr a el  I nstit ut e  of   Te c h n ol o g y,   H aif a  3 2 0 0 0 0 3,  Isr a el  ( e- m ail:
t a mir. b e n d or y @ g m ail. c o m).

N.   B o u m al  is   wit h  t h e   D e p art m e nt  of   M at h e m ati cs,  Pri n c et o n   U ni v ersit y,
Pri n c et o n,   NJ  0 8 5 4 4   U S A.

C o m m u ni c at e d  b y   H.   R a u h ut,   Ass o ci at e   E dit or  f or  Si g n al  Pr o c essi n g.
C ol or  v ersi o ns  of  o n e  or   m or e  of  t h e  fi g ur es  i n  t his  p a p er  ar e  a v ail a bl e

o nli n e  at  htt p://i e e e x pl or e.i e e e. or g.
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m atri x  c o m pl eti o n;  s e e  f or  i n st a n c e  [ 1 5] –[ 1 7],  [ 1 9],  [ 2 5],
[ 6 0],  [ 6 4],  [ 6 5].   C o nt e m p or ar y  s ur v e y s  of  t h e  p h a s e  r etri e v al
pr o bl e m fr o m  a  si g n al  pr o c e ssi n g  p oi nt  of  vi e w  c a n  b e f o u n d
i n [ 8], [ 3 7], a n d [ 5 9].  P h a s e r etri e v al f or  o n e- di m e n si o n al ( 1 D)
si g n als  is  a n  ill- p o s e d  pr o bl e m  u nl ess  t h e  si g n al  h as  t h e
mi ni m u m  p h a s e  pr o p ert y  [ 3 4],  [ 5 6].  I n  t his  s p e ci al  c a s e,
t h e  si g n al  c a n  b e  r e c o v er e d  b y  s e v er al  tr a ct a bl e  al g orit h ms
( s e e f or i n st a n c e  of [ 2 1,  S e c.  2. 6]).  P arti c ul arl y, i n [ 3 4] it   w as
s h o w n t h at  a  s e mi d e fi nit e  pr o gr a m ( S D P)  r el a x ati o n  a c hi e v es
t h e  o pti m al  s ol uti o n  i n  t h e  l e ast- s q u ar es  ( L S)  s e n s e.  F or
g e n er al  si g n als, t w o   m ai n  a p pr o a c h e s  ar e t y pi c all y  s u g g e st e d.
T h e  fir st  b uil d s  u p o n  pri or  k n o wl e d g e  o n t h e si g n al’s s u p p ort,
s u c h  a s  s p ar sit y  or  a  p orti o n  of  t h e  u n d erl yi n g  si g n al  [ 2 8],
[ 3 9],  [ 5 3],  [ 5 8],  [ 6 0],  [ 6 8].   A n  alt er n ati v e  str at e g y   m a k e s
u s e  of  a d diti o n al   m e a s ur e m e nt s.  S u c h   m e a s ur e m e nt s  c a n  b e
o bt ai n e d b y str u ct ur e d ill u mi n ati o n s a n d   m as k s [ 1 5], [ 1 7], [ 3 2]
or  b y   m e a s uri n g  t h e   m a g nit u d e  of  t h e  s h ort-ti m e  F o uri er
tr a n sf or m ( S T F T) [ 2 6], [ 3 8]. I n [ 2 6], it   w a s  d e m o n str at e d t h at
f or  t h e  s a m e  n u m b er  of   m e a s ur e m e nts, t h e  S T F T   m a g nit u d e
l e a ds  t o  b ett er  p erf or m a n c e  t ha n  a n  o v er- s a m pl e d  dis cr et e
F o uri er tr a n sf or m ( D F T).

T his  p a p er  d e als   wit h  t h e  pr o bl e m  of  r e c o v eri n g  a  1 D
si g n al  fr o m  its  S T F T   m a g nit u d e.   T h e  S T F T  of  a  1 D  si g n al
x ∈ C N c a n  b e  i nt er pr et e d  as  t h e  F o uri er  tr a n sf or m  of  t h e
si g n al   m ulti pli e d  b y  a  r e al  sli di n g   wi n d o w g ∈ R N wit h
s u p p ort  si z e W a n d is  d e fi n e d  as

X [m , k ] : =

N − 1

n = 0

x [n ]g [m L − n ]e − 2 π j k n/ N , (I. 1)

w h er e k = 0 , . . . , N − 1, m = 0 , . . . , N
L − 1 a n d L d et er-

mi n e s  t h e  s e p ar ati o n  i n  ti m e  b et w e e n  a dj a c e nt  s e cti o n s.   T h e
p s e u d o-i n v er s e  of t h e  S T F T is  gi v e n  b y

x [n ] =

N
L − 1

m = 0 x̃ [m , n ]g [m L − n ]
N
L − 1

m = 0 |g [m L − n ]|2

, (I. 2)

w h er e x̃ [m , n ] is t h e i n v er s e   D F T  of X [m , k ] f or  fi x e d m wit h
r e s p e ct t o  t h e  s e c o n d  v ari a bl e  [ 2 6].  I n  t h e  s e q u el,  all  i n di c e s
s h o ul d  b e  c o n si d er e d  a s   m o d ul o  t h e  si g n al’s  l e n gt h N .
We  ass u m e  t h at x a n d g ar e  p eri o di c all y  e xt e n d e d  o v er  t h e
b o u n d ari e s i n  (I. 1).

T h e  pr o bl e m  of  r e c o v eri n g  a  si g n al  fr o m  its  S T F T   m a g-
nit u d e |X [m , k ]|2 ,  fr e q u e ntl y  c all e d  s p e ctr o gr a m,  aris es  i n
s e v er al a p pli c ati o n s i n  o pti c s a n d s p e e c h  pr o c e ssi n g [ 3 1], [ 4 7].
P arti c ul arl y,  it  s er v es  as  t h e   m o d el  f or  a  p o p ul ar  v ari-
a nt  of  a n  ultr a- s h ort  l a s er  p ul s e  c h ar a ct eri z ati o n  t e c h ni q u e
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c all e d  Fr e q u e n c y- R es ol v e d   O pti c al   G ati n g  (r ef err e d  t o  as
X- F R O G)  [ 6],  [ 1 0],  [ 6 3].   A n ot h er  i m p ort a nt  a p pli c ati o n  is
pt y c h o gr a p h y  i n   w hi c h  a   m o vi n g  pr o b e  is  u s e d  t o  s e n s e
m ulti pl e  diffr a cti o n   m e as ur e m e nts [ 4 4], [ 4 5],  [ 5 4], [ 7 0].

S e v er al  al g orit h m s   w er e  s u g g e st e d  t o  r e c o v er  a  si g n al
fr o m  t h e   m a g nit u d e  of  its  S T F T.   T h e  cl a ssi c al   m et h o d,
pr o p o s e d  b y   Grif fi n  a n d   Li m  [ 3 1],  is  a   m o di fi c ati o n  of
t h e  alt er n ati n g  pr oj e cti o n  ( or  r e d u cti o n  err or)  al g orit h m s  of
G er c h b er g a n d  S a xt o n [ 2 9] a n d  Fi e n u p [ 2 8].   T h e  pr o p erti es  of
t his   m et h o d ar e n ot   w ell u n d er st o o d (f or a n al y sis of alt er n ati n g
pr oj e cti o n  al g orit h m s i n  p h a s e  r etri e v al,  s e e  [ 4 5],  [ 5 0],  [ 6 5]).
I n  [ 3 8], t h e  a ut h or s  pr o v e t h at  a  n o n- v a nis hi n g  si g n al  c a n  b e
r e c o v er e d  b y  a n  S D P   wit h   m a xi m al  o v erl a p  b et w e e n  a dj a c e nt
wi n d o ws ( L = 1).   T h e y  als o  d e m o n str at e  e m piri c all y t h at t h e
al g orit h m   w or k s   w ell   wit h l ess r e stri cti v e r e q uir e m e nts  o n t h e
wi n d o w a n d is r o b u st t o n ois e.   D e s pit e t h e a p p e ali n g n u m eri c al
p erf or m a n c e,  s ol vi n g  a n  S D P  r e q uir e s  hi g h  c o m p ut ati o n al
r e s o ur c e s.   R e c e ntl y, a n i nt er e sti n g r e c o v er y a p pr o a c h   w as  pr o-
p o s e d i n [ 5 2].   T hi s p a p er s u g g e sts a   m ulti- st a g e   m et h o d, b a s e d
o n  s p e ctr al  cl u st eri n g  a n d  p h a s e  s y n c hr o ni z ati o n. It is  s h o w n
t h at  t h e  al g orit h m  a c hi e v es  st a bl e  esti m ati o n  ( a n d  e x a ct  i n
t h e  n ois e-fr e e  s etti n g)   wit h  o nl y O ( N l o g N ) p h as el ess  S T F T
m e a s ur e m e nts.   H o w e v er,  t his  t e c h ni q u e  r e q uir e s  a  r a n d o m
wi n d o w  of  l e n gt h W = N ,   w hil e  i n   m o st  a p pli c ati o n s  it
is  c o m m o n  t o   w or k   wit h  s h ort er   wi n d o ws.   A n ot h er  li n e  of
w or k s  [ 3 5],  [ 3 6]  s u g g e st  a p pl yi n g  a  p h a s e  s y n c hr o ni z ati o n
fr a m e w or k  [ 3],  [ 4],  [ 1 4],  [ 2 1],  [ 5 1],  [ 6 1].  It   w a s  s h o w n  t h at
e v e n  f or  s h ort   wi n d o ws,  t h e  s o u g ht  si g n al  c a n  b e  r e c o v er e d
e x a ctl y  a n d  ef fi ci e ntl y  b y  s p e ctr al  a n d  gr e e d y  t e c h ni q u e s.
T h es e   m et h o ds ar e  a c c o m p a ni e d b y st a bilit y  g u ar a nt e es.   T h eir
m ai n  dr a w b a c k  is  t h at  t h e y  r el y  o n  r eli a bl e  esti m at es  of  t h e
t e m p or al   m a g nit u d e,   w hi c h  d o  n ot  al w a y s  e xist.

H er e,   w e  t a k e  a  diff er e nt  a p pr o a c h  a n d  pr o p o s e  a  d at a-
dri v e n  i niti ali z ati o n  t e c h ni q u e,  f oll o w e d  b y  n o n- c o n v e x  gr a-
di e nt  al g orit h m s.   We  b e gi n  b y  t a ki n g  t h e  1 D   D F T  of  t h e
a c q uir e d  d at a   wit h  r es p e ct  t o  t h e  fr e q u e n c y  v ari a bl e  (t h e
s e c o n d  v ari a bl e  of  t h e  S T F T).   T his  tr a n sf or m ati o n  r e v e als
t h e  u n d erl yi n g str u ct ur e  of t h e  d at a  a n d  gr e atl y  si m pli fi e s t h e
a n al y si s.   As  a  dir e ct  c o n s e q u e n c e,   w e  s h o w  t h at  f or L = 1
a n d  s uf fi ci e ntl y  l o n g   wi n d o ws W ≥ N + 1

2 ( a n d  s o m e   mil d
a d diti o n al c o n diti o n s), o n e c a n r e c o v er t h e si g n al b y e xtr a cti n g
t h e  pri n ci p al  ei g e n v e ct or  of  a  d e si g n e d   m atri x,  c o n str u ct e d  as
t h e  s ol uti o n  of  a  si m pl e  li n e ar   L S  pr o bl e m.   We  r ef er  t o  t his
m atri x  as t h e a p p r o xi m ati o n   m atri x si n c e it  a p pr o xi m at es t h e
c orr el ati o n   m atri x X : = x x ∗ .

W h e n t h e c o n diti o n s f or a cl o s e d-f or m s ol uti o n ar e  n ot   m et,
w e  pr o p o s e  u si n g t h e  pri n ci p al  ei g e n v e ct or  of t h e  a p pr o xi m a-
ti o n   m atri x  t o  i niti ali z e  t w o  n o n- c o n v e x  al g orit h ms.   T h e  first
is  b as e d  o n   mi ni mi zi n g  a  st a n d ar d  q u a dr ati c  l o ss  f u n cti o n,
fr e q u e ntl y  c all e d  t h e  e m piri c al  ris k  ( E R).  I n s pir e d  b y  t h e
p h a s e c ut   m et h o d  [ 3 0],  [ 6 4],   w e  als o  pr o p o s e  a  n e w  p h a s e
r etri e v al  al g orit h m,  c all e d   N o n- C o n v e x  P h as e C ut  ( N C P C),
t h at   m a xi mi z e s  a  q u a dr ati c  f u n cti o n  o v er  t h e  s et  of  p h a s es.
E a c h  st e p  of  t h e  al g orit h m  f oll o ws  t h e  c o m p o n e nt  of  t h e
gr a di e nt   w hi c h  a gr e e s   wit h  t h e  p h a s e  c o n str ai nts.   As   will  b e
s h o w n,  t h e   E R  t e c h ni q u e  is   m or e  st a bl e  i n  t h e  l o w  si g n al –
t o – n ois e  r ati o  ( S N R)  r e gi m e s,   w hil e   N C P C  is  s u p eri or  i n
hi g h  S N R  e n vir o n m e nts a n d f or s h ort   wi n d o ws.   O ur  a p pr o a c h

d e vi at e s  i n  t w o  i m p ort a nt  a s p e cts  fr o m  t h e  r e c e nt  li n e  of
w or k i n  n o n- c o n v e x p h a s e r etri e v al [ 1 8], [ 2 2], [ 4 8], [ 5 7], [ 6 5],
[ 6 7],  [ 7 1].  Fir st,  all  t h es e  p a p er s  f o c u s  t h eir  att e nti o n  o n  t h e
s et u p  of  p h a s e r etri e v al   wit h r a n d o m  s e n si n g  v e ct or s  a n d r el y
h e a vil y  o n  pr o b a bilisti c  c o n si d er ati o n s.  I n  t his  c as e,  ef fi ci e nt
al g orit h m s   w er e  d e si g n e d  t o  esti m at e  t h e  si g n al  fr o m O ( N )
m e a s ur e m e nt s. I n  c o ntr a st,   w e  c o n si d er  a  d et er mi ni sti c fr a m e-
w or k.  S e c o n d,   w e  c o n str u ct  o ur  a p pr o xi m ati o n   m atri x  b y t h e
s ol uti o n  of  a   L S  pr o bl e m,   w h er e a s t h e  af or e m e nti o n e d  p a p er s
t a k e  a  s u p er p o siti o n  of t h e   m e as ur e m e nts t o  a p pr o xi m at e X .

T h e  pr o p erti es  of  n o n- c o n v e x  al g orit h m s  d e p e n d  h e a vil y
o n  t h e  i niti ali z ati o n   m et h o d  a n d  t h e  g e o m etr y  of  t h e  l o ss
f u n cti o n s.  F or L = 1,   w e  esti m at e  t h e  dist a n c e  b et w e e n  t h e
pr o p os e d  i niti ali z ati o n  a n d  t h e  t ar g et  si g n al,   w hi c h  d e c a ys
t o  z er o  as W t e n d s  t o N + 1

2 .  If  t h e  si g n al  h a s  u nit   m o d ul u s
e ntri es, t h e n  a sli g ht   m o di fi c ati o n  of  o ur i niti ali z ati o n r e c o v er s
t h e  si g n al  e x a ctl y  f or W ≥ 2.  I n  t h e  l at er  c as e,   w e  als o
pr o v e t h e  e xist e n c e  of  a b a si n  of  attr a cti o n ar o u n d t h e  gl o b al
mi ni m u m  of t h e   E R l o ss f u n cti o n  a n d  esti m at e its  si z e. I n t h e
b a si n  of  attr a cti o n,  t h e  al g orit h m  is  g u ar a nt e e d  t o  c o n v er g e
t o  a  gl o b al   mi ni m u m  at  a  g e o m etri c  r at e.   We  n ot e t h at   w hil e
t h e  t h e or eti c al  g u ar a nt e es  of  t h e  al g orit h m s  ar e  li mit e d,  t h eir
e x p eri m e nt al  p erf or m a n c e is  si g ni fi c a ntl y  b ett er.  P arti c ul arl y,
t h e  al g orit h m s  p erf or m   w ell   wit h  s m all  r e d u n d a n c y  i n  t h e
m e a s ur e m e nt s  a n d  ar e  r o b u st i n t h e  pr e s e n c e  of  n oi s e.

T h e  p a p er  is  or g a ni z e d  as  f oll o ws.   We  b e gi n  i n  S e cti o n  II
b y f or m ul ati n g   m at h e m ati c all y t h e  pr o bl e m  of  p h a s e r etri e v al
fr o m  S T F T   m a g nit u d e   m e a s ur e m e nt s.  I n  S e cti o n  III   w e  di s-
c u ss  t h e  u ni q u e n e ss  of  t h e  s ol uti o n  a n d  pr e s e nt  c o n diti o n s
u n d er   w hi c h it  h a s  a  cl o s e d-f or m L S  e x pr e ssi o n.   A d diti o n all y,
w e  pr e s e nt  a   m et h o d t h at  r e c o v er s  si g n als   wit h  u nit   m o d ul u s
e ntri e s u n d er   mil d c o n diti o n s. S e cti o n I V pr e s e nt s t h e t w o n o n-
c o n v e x  al g orit h ms   wit h t h e  pr o p os e d i niti ali z ati o n.  S e cti o n   V
s h o ws  n u m eri c al  r es ults  a n d  S e cti o n   VI  pr es e nts  o ur t h e or et-
i c al  fi n di n g s r e g ar di n g t h e  pro p os e d i niti ali z ati o n  a n d t h e   E R
l o ss f u n cti o n.  Pr o of s ar e  pr o vi d e d i n  S e cti o n   VII.  S e cti o n   VIII
c o n cl u d e s t h e  p a p er, dis c u ss es its   m ai n i m pli c ati o n s a n d  dr a ws
p ot e nti al f ut ur e  r e s e ar c h  dir e cti o n s.

T hr o u g h o ut  t h e  p a p er   w e  u s e  t h e  f oll o wi n g  n ot ati o n.
B ol df a c e  s m all  a n d  c a pit al  l ett ers  d e n ot e  v e ct ors  a n d   m atri-
c es,  r es p e cti v el y.   We  us e Z T a n d Z ∗ f or  t h e  tr a n s p o s e
a n d   H er miti a n  of  a   m atri x Z ;  si mil ar  n ot ati o n  is  u s e d  f or
v e ct or s.   We  f urt h er  u s e Z † a n d  tr (Z ) f or  t h e   M o or e – P e nr o s e
p s e u d o-i n v er s e  a n d  t h e  tr a c e  of  t h e   m atri x Z ,  r es p e cti v el y.
T h e t h  cir c ul ar  di a g o n al  of  a   m atri x Z is  d e n ot e d  b y
di a g (Z , ).   N a m el y, di a g (Z , ) is a c ol u m n v e ct or   wit h e ntri es
Z [i, (i + ) m o d N ] f or i = 0 , . . . , N − 1.   We  d e fi n e  t h e
si g n  of  a  c o m pl e x  n u m b er a a s  p h a s e (a ) : = a

|a | f or a = 0

a n d  z er o  ot h er wis e.   We  als o  u s e , ◦ a n d ∗ f or  t h e
H a d a m ar d ( p oi nt- wi s e)  pr o d u c t,  c o m p o siti o n  of f u n cti o n s  a n d
c o n v ol uti o n, r e s p e cti v el y.   T h e s et  of  all  c o m pl e x (r e al) si g n als
of  l e n gt h N w h o s e  e ntri e s  h a v e   m o d ul u s a > 0  ar e  d e n ot e d
b y C N

a (R N
a ).   N a m el y, z ∈ C N

a m e a n s t h at |z [n ]| = a f or all n .

II.   P R O B L E M F O R M U L A T I O N

We  ai m  at  r e c o v eri n g  a n  u n d erl yi n g  si g n al x ∈ C N fr o m
t h e   m a g nit u d e  of its  S T F T, i. e.,  fr o m   m e a s ur e m e nts

Z [m , k ] = |X [m , k ]|2 . (II. 1)
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N ot e t h at t h e si g n als x a n d x e j φ yi el d t h e s a m e   m e a s ur e m e nt s
f or  a n y gl o b al  p h a s e φ ∈ R a n d t h er ef or e t h e  p h a s e φ c a n n ot
b e  r e c o v er e d  b y  a n y   m et h o d.   T his gl o b al  p h a s e  a m bi g uit y
l e a d s  n at ur all y t o t h e  f oll o wi n g  d e fi niti o n:

D e fi niti o n  1: T h e  dist a n c e  b et w e e n  t w o  v e ct ors  is
d e fi n e d  as

d (z , x ) = mi n
φ ∈[ 0 ,2 π )

z − x e j φ

2
.

If d (z , x ) = 0  t h e n   w e  s a y  t h at x a n d z ar e  e q u al u p  t o
gl o b al  p h a s e .   T h e  p h a s e φ ∈ [ 0 , 2 π ) att ai ni n g  t h e   mi ni m u m
is  d e n ot e d  b y φ ( z ), i. e.,

φ ( z ) = ar g   mi n
φ ∈[ 0 ,2 π )

z − x e j φ

2
.

I n t h e  s e q u el,   w e   m a k e  u s e  of t h e  n oti o n  of n o n- v a nis hi n g
si g n als,  d e fi n e d  as  f oll o ws:

D e fi niti o n  2: A  v e ct or z ∈ C N is  c all e d  n o n- v a nis hi n g  if
z [n ]  = 0 f or all n = 0 , . . . , N − 1.

I n st e a d of tr e ati n g t h e   m e a s ur e m e nts (II. 1) dir e ctl y,   w e oft e n
c o n si d er t h e  a c q uir e d  d at a i n  a tr a n sf or m e d  d o m ai n  b y t a ki n g
its  1 D   D F T   wit h r es p e ct t o t h e fr e q u e n c y v ari a bl e ( n or m ali z e d
b y  1 / N ).   T h e n,  o ur   m e a s ur e m e nt   m o d el r e a d s

Y [m , ] =
1

N

N − 1

k = 0

Z [m , k ]e − 2 π j k / N

=

N − 1

n = 0

x [n ]x [n + ]g [m L − n ]g [m L − n − ].

(II. 2)

W h e n W ≤ ≤ N − W , w e h a v e Y [m , ] = 0 f or all m . I n t his
s e n s e, Y [m , ] c a n  b e  i nt er pr et e d  as  a  “ W –  b a n dli mit e d ”
f u n cti o n.   O b s er v e t h at f or  fi x e d m , Y [m , ] is si m pl y t h e a ut o-
c orr el ati o n  of x g m L , w h er e g m L : = {g [m L − n ]} N − 1

n = 0 .
We   will   m a k e  r e p etiti v e  u s e  of  s e v er al  r e pr es e nt ati o n s  of

t h e  d at a.   T h e  fir st  is  b a s e d  o n  a   m atri x  f or m ul ati o n.   L et
D m L ∈ R N × N b e a  di a g o n al   m atri x c o m p o s e d of t h e e ntri e s  of
g m L . L et P b e  a   m atri x  t h at  s hifts  ( cir c ul arl y) t h e  e ntri es  of
a  v e ct or  b y l o c ati o ns,  n a m el y, (P x ) [n ] = x [n + ].   T h e n,
t h e  c orr el ati o n   m atri x X : = x x ∗ is   m a p p e d li n e arl y t o Y [m , ]
as  f oll o ws:

Y [m , ] = (D m L − D m L P x )∗ x

= x ∗ H m , x

= tr X H m , , (II. 3)

w h er e

H m , : = P − D m L D m L − . (II. 4)

O b s er v e t h at P T = P − a n d H m , = 0 f or W ≤ ≤ N − W .
Si mil arl y, t h e  S T F T   m a g nit u d e i n  (II. 1) ( b ef or e t h e  1 D   D F T)
c a n  b e   writt e n  as

Z [m , k ] = x ∗ H m ,k x , (II. 5)

w h er e

H m ,k : = D m L fk f ∗
k D m L , (II. 6)

a n d f ∗
k is t h e k t h  r o w  of t h e   D F T   m atri x.

A n  alt er n ati v e  u s ef ul  r e pr es e nt ati o n  of  (II. 2) is  as   m ulti pl e
s y st e m s  of  li n e ar  e q u ati o n s.  F or  fi x e d ∈ { − ( W − 1 ), . . . ,
W − 1 } w e  h a v e

y = G x , (II. 7)

w h er e y : = {Y [m , ]}
N
L − 1

m = 0 a n d x : = di a g (X , ). T h e

(m , n )t h  e ntr y  of  t h e   m atri x G ∈ R
N
L × N

is  gi v e n  b y
g [m L − n ]g [m L − n − ]. F or L = 1, G is  a  cir c ul a nt   m atri x.
We  r e c all  t h at  a  cir c ul a nt   m at ri x  is  di a g o n ali z e d  b y  t h e   D F T
m atri x,  n a m el y, it  c a n  b e f a ct or e d  as G = F − 1 F , w h er e F
is t h e   D F T   m atri x  a n d is  a  di a g o n al   m atri x,   w h o s e  e ntri e s
ar e  gi v e n  b y t h e   D F T  of t h e  fir st  c ol u m n  of G .  I n t his  c as e,
t h e  fir st  c ol u m n is  gi v e n  b y g (P − g ).   T h er ef or e t h e   m atri x
G is i n v erti bl e if  a n d  o nl y if t h e   D F T  of g (P − g ) is  n o n-
v a nis hi n g.

O ur  pr o bl e m  of r e c o v eri n g x fr o m t h e   m e a s ur e m e nts (II. 1)
c a n t h er ef or e  b e  p o s e d  a s  a  c o n str ai n e d   L S  pr o bl e m:

mi n
X̃ ∈ H N

W − 1

= − ( W − 1 )

y − G di a g X̃ ,
2

2

s u bj e ct t o X̃ 0 , r a n k X̃ = 1 , (II. 8)

w h er e H N is t h e s et  of  all   H er miti a n   m atri c es  of  si z e N × N .
I n  t h e  s pirit  of  [ 1 5],  [ 3 0],  [ 6 0],  [ 6 4],  S T F T  p h a s e  r etri e v al
m a y  t h e n  b e  r el a x e d  t o  a  tr a ct a bl e  S D P  b y  dr o p pi n g  t h e
r a n k  c o nstr ai nt.  I n  t h e  n ois el ess  c as e,  t his  S D P  r el a x ati o n  is
e q ui v al e nt  t o  t h e  o n e  s u g g e st e d  i n  [ 3 8]  si n c e  t h e  c o n diti o n s
o n X̃ t o  a c hi e v e  z er o  o bj e cti v e  f u n cti o n  ar e  t h e  s a m e,  u p  t o
a  F o uri er tr a n sf or m ati o n.   W hil e t h e  S D P r el a x ati o n t e c h ni q u e
h a s s h o w n  g o o d  n u m eri c al  p erf or m a n c e f or t h e r e c o v er y fr o m
p h a s el ess  S T F T   m e a s ur e m e nts, it r e q uir e s s ol vi n g t h e  pr o bl e m
i n  a lift e d  d o m ai n   wit h N 2 v ari a bl es.   We t a k e a  diff er e nt r o ut e
t o r e d u c e t h e c o m p ut ati o n al l o a d. I n t h e  n e xt s e cti o n,   w e s h o w
t h at (II. 8) a d mit s a  u ni q u e s ol uti o n  u n d er   m o d er at e c o n diti o n s.
We  f urt h er  s h o w  t h at  it  h a s  a  cl o s e d-f or m   L S  s ol uti o n   w h e n
t h e   wi n d o w g i s  s uf fi ci e ntl y  l o n g.  If  t h e  c o n diti o n s  f or  t h e
L S  s ol uti o n  ar e  n ot   m et,  t h e n   w e  s u g g e st  t w o  n o n- c o n v e x
al g orit h m s.   T o i niti ali z e t h e  al g orit h m s,   w e  a p pr o xi m at e (II. 8)
i n  t w o  st a g e s  b y  fir st  s ol vi n g  t h e   L S  o bj e cti v e  f u n cti o n  a n d
t h e n  e xtr a cti n g its  pri n ci p al  ei g e n v e ct or.

III.   U N I Q U E N E S S   A N D B A S I C A L G O RI T H M S

A  f u n d a m e nt al  q u e sti o n  i n  p h a s e  r etri e v al  pr o bl e m s  is
w h et h er t h e q u a dr ati c   m e a s ur e m e nt o p er at or of (II. 1), or e q ui v-
al e ntl y  t h e  n o n- c o n v e x  pr o bl e m  (II. 8),  d et er mi n e s  t h e  u n d er-
l yi n g  si g n al x u ni q u el y ( u p t o  gl o b al  p h as e, s e e   D e fi niti o n  1).
I n  ot h er   w or d s,  o n e   w a nts t o  k n o w t h e  c o n diti o n s  o n t h e   wi n-
d o w g a n d t h e si g n al x s u c h t h at t h e  n o n-li n e ar tr a n sf or m ati o n
t h at   m a p s x t o Z is i nj e cti v e.   B ef or e tr e ati n g t his  q u esti o n,   w e
i ntr o d u c e  s o m e  b a si c   wi n d o w  d e fi niti o n s:

D e fi niti o n  3: A   wi n d o w g is  c all e d  a r e ct a n g ul a r   wi n d o w
of  l e n gt h   W if g [n ] = 1 f or all n = 0 , . . . , W − 1 a n d
z er o  els e w h er e.  It  is  a n o n- v a nis hi n g   wi n d o w  of  l e n gt h   W
if g [n ]  = 0 f or all n = 0 , . . . , W − 1  a n d  z er o  els e w h er e.

A c c or di n g t o (II. 8), t h e i nj e cti vit y  of t h e   m e a s ur e m e nt o p er-
at or is r el at e d t o t h e   wi n d o w’s l e n gt h W a n d t h e i n v erti bilit y of
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T A B L E  I

T H E M E A N   A N D M I N I M A L V A L U E S   O F |λ mi n | F O R W I N D O W S   O F L E N G T H

W W I T H I .I .D . NO R M A L E N T R I E S   A S D E FI N E D I N (III. 1)   OV E R

1 0 0   E X P E R I M E N T S   F O R D I F F E R E N T W I N D O W

L E N G T H S   A N D N = 2 5

t h e   m atri c es G f or | | < W .  F or t h at r e a s o n,   w e  gi v e  s p e ci al
att e nti o n  t o   wi n d o ws  f or   w hi c h t h e  ass o ci at e d   m atri c es  ar e
i n v erti bl e.

D e fi niti o n  4: A   wi n d o w g is  c all e d  a n a d missi bl e   wi n d o w
of l e n gt h   W if f or  all = − ( W − 1 ), . . . , W − 1 t h e f oll o wi n g
t w o  e q ui v al e nt  pr o p erti es  h ol d:

1)   T h e   D F T  of t h e  v e ct or g (P − g ) is  n o n- v a nis hi n g.
2)   T h e  ass o ci at e d  cir c ul a nt   m atri c es G a s  gi v e n  i n  (II. 7)

ar e i n v erti bl e.

A n  i m p ort a nt  e x a m pl e  f or  a n  a d missi bl e   wi n d o w is  a  r e c-
t a n g ul ar   wi n d o w.  S p e ci fi c all y,   w e  h a v e t h e  f oll o wi n g l e m m a:

L e m m a  5:   A r e ct a n g ul a r   wi n d o w g of l e n gt h 2 ≤ W ≤ N / 2
is  a n  a d missi bl e   wi n d o w  of l e n gt h   W  if α a n d   N  a r e c o- p ri m e
n u m b e rs f o r  all α = 2 , . . . , W .  T his  h ol d s tri vi all y   w h e n   N  is
a  p ri m e  n u m b e r.

P r o of: O b s er v e t h at g (P − g ) is  a  r e ct a n g ul ar   wi n d o w
of  l e n gt h W − | | f or = − ( W − 1 ) . . . , W − 1.   T h e   D F T
of  a  r e ct a n g ul ar   wi n d o w  of  si z e W − | | is  a   Diri c hl et  k er n el
w hi c h is  n o n- v a nis hi n g if W − | | a n d N ar e  c o- pri m e.

T h e f a mil y  of a d missi bl e   wi n d o ws c o nt ai n s   m or e e x a m pl e s.
T o  d e m o n str at e t his,   w e  c o n si d er  a  n o n- v a nis hi n g   wi n d o w  of
l e n gt h W w h o s e  e ntri e s  ar e  i.i. d.  n or m al  v ari a bl e s.   We  t h e n
c o m p ut e t h e   mi ni m al a b s ol ut e  v al u e  of t h e   D F T  of g (P − g )
f or  all = − ( W − 1 ), . . . , W − 1,  n a m el y,

|λ mi n | = mi n
k ,| | ≤W

| (F (g (P − g ))) [k ]|. (III. 1)

We  r e p e at e d  t hi s  pr o c e ss  1 0 0  ti m e s  f or  s e v er al  v al u e s  of W .
As  c a n  b e  s e e n i n   Ta bl e I, |λ mi n | is  b o u n d e d  a w a y fr o m  z er o,
i m pl yi n g t h at t h e   wi n d o ws  ar e i n d e e d  a d missi bl e.

We  n o w  a n al y z e t h e  u ni q u e n e ss  of  t h e   m e a s ur e m e nt  o p er-
at or  f or  t h e  c a s e L = 1.   U ni q u e n e ss  r e s ults  f or L > 1 ar e
dis c u ss e d  i n  [ 3 8],  [ 4 7].   O ur  r e s ults  ar e  c o n str u cti v e  i n  t h e
s e n s e  t h at  t h eir  pr o of s  pr o vi d e  a n  e x pli cit  s c h e m e t o  r e c o v er
t h e  si g n al.

O ur  fir st r e s ult  c o n c er n s  n o n- v a nis hi n g si g n als. I n t his  c a s e,
t h e   m a g nit u d e  of  t h e  S T F T  d et er mi n e s t h e  u n d erl yi n g  si g n al
u ni q u el y  u n d er   mil d  c o n diti o n s.   T hi s  c o n cl u si o n   w as  alr e a d y
d eri v e d i n [ 1 1] b a s e d o n diff er e nt c o n si d er ati o n s.   N e v ert h el e ss,
t h e  f oll o wi n g  pr o p o siti o n  c o m e s wit h  a n  e x pli cit  r e c o v er y
s c h e m e  a s  pr e s e nt e d i n   A p p e n di x   A.

P r o p o siti o n  6: L et L = 1.  S u p p o s e t h at x is  n o n- v a nis hi n g
a n d t h at t h e   D F T  of g (P − g ) is  n o n- v a nis hi n g f or = 0 , 1.
T h e n, |X [m , k ]|2 d et er mi n es x u ni q u el y ( u p t o  gl o b al  p h a s e).

P r o of: S e e   A p p e n di x   A.
A si mil ar  u ni q u e n e ss r e s ult   w as  d eri v e d i n [ 2 6].   T h er e, it is

r e q uir e d t h at t h e   D F T  of |g [n ]|2 is  n o n- v a nis hi n g, N ≥ 2 W − 1
a n d N a n d W − 1  ar e  c o- pri m e  n u m b er s.

I n t h e s p e ci al c a s e i n   w hi c h t h e si g n al is  k n o w n t o  h a v e  u nit
m o d ul u s  e ntri es, t h e  si g n al  c a n  b e  r e c o v er e d  as  t h e  pri n ci p al
ei g e n v e ct or  of  a   m atri x  d e si g n e d  as  f oll o ws:

P r o p o siti o n  7: L et L = 1.  S u p p o s e  t h at x ∈ C N
1 /

√
N

a n d

t h at g is  a n  a d missi bl e   wi n d o w  of  l e n gt h W ≥ 2.  Fi x M ∈
{1 , . . . , W − 1 } a n d l et X 0 b e  a   m atri x  d e fi n e d  b y

di a g (X 0 , ) =
G − 1 y , = 0 , M ,

0 , ot h er wis e ,
(III. 2)

w h er e G a n d y ar e  d e fi n e d i n  (II. 7).   T h e n, x ( u p  t o  gl o b al
p h a s e) is  a  pri n ci p al  ei g e n v e ct or  of X 0 .

P r o of: S e e   A p p e n di x   B.
F or  g e n er al  si g n als  ( n ot  n e c e ss aril y  n o n- v a nis hi n g)  a n d

L = 1,   w e  n e xt  d eri v e  a   L S  al g orit h m  t h at  st a bl y  r e c o v er s
a n y  c o m pl e x  si g n al if  t h e   wi n d o w is  s uf fi ci e ntl y  l o n g.  I n t h e
a b s e n c e  of  n ois e,  t h e  r e c o v er y  is  e x a ct  ( u p  t o  gl o b al  p h a s e).
T h e   m et h o d,  s u m m ari z e d  i n   Al g orit h m  1,  is  b a s e d  o n  c o n-
str u cti n g  a   m atri x X 0 t h at  a p pr o xi m at es t h e  c orr el ati o n   m atri x
X : = x x ∗ . T h e t h  di a g o n al  of X 0 is  c h o s e n  as  t h e  s ol uti o n
of  t h e   L S  pr o bl e m   mi n x̃ ∈ C N y − G x̃ 2 ( s e e  (II. 7)).  If  t h e
m atri x G is i n v erti bl e, t h e n

di a g (X 0 , ) = G − 1 y = di a g (X , ) .

T h er ef or e,   w h e n  all   m atri c es G ar e  i n v erti bl e, X 0 = X .
I n  or d er  t o  esti m at e x ,  t h e  ( u nit- n or m)  pri n ci p al  ei g e n v e ct or
of X 0 is  n or m ali z e d  b y

α =
n ∈ P

G †
0 y 0 [n ], (III. 3)

w h er e P : = {n : (G †
0 y 0 )[n ] > 0 }. If G 0 is i n v erti bl e t h e n

N − 1

n = 0

G − 1
0 y 0 [n ] =

N − 1

n = 0

(di a g (X , 0 )) [n ] = x 2
2 = λ 0 ,

w h er e λ 0 is t h e t o p ei g e n v al u e of X . If G 0 is n ot i n v erti bl e or i n
t h e  pr e s e n c e  of  n ois e,  s o m e  t er m s  of  t h e  v e ct or G †

0 y 0 mi g ht
b e  n e g ati v e. I n t his  c as e,   w e  esti m at e x 2 b y  s u m mi n g  o nl y
t h e  p o siti v e  t er m s  (t h e  s et P i n  (III. 3)).   N ot e  t h at  all   m atri x
i n v er si o n s  c a n  b e  p erf or m e d  ef fi ci e ntl y  u si n g t h e  F F T  d u e t o
t h e  cir c ul a nt  str u ct ur e  of G .

T h e f oll o wi n g  pr o p o siti o n s h o w s t h at   Al g orit h m  1 r e c o v er s
t h e  u n d erl yi n g  si g n al  f or L = 1  if  t h e   wi n d o w is  s uf fi ci e ntl y
l o n g a n d s atis fi es s o m e a d diti o n al t e c h ni c al c o n diti o n s. I n [ 1 1],
a n  e q ui v al e nt  u ni q u e n e ss  r e s ult   w as  d eri v e d  b ut   wit h o ut  pr o-
vi di n g  a n  al g orit h m.   Al g orit h m  1  is  e q ui v al e nt  t o  t h e  dis-
cr eti z e d  v er si o n  of   Wi g n er  d e c o n v ol uti o n t h at   w a s  s u g g e st e d
pr e vi o u sl y   wit h o ut t h e or eti c al  a n al y sis i n  [ 5 5]  a n d  [ 6 9].

P r o p o siti o n  8: L et L = 1  a n d  s u p p o s e t h at g is  a n  a d mis-
si bl e   wi n d o w  of l e n gt h W ≥ N + 1

2 ( s e e   D e fi niti o n  4).   T h e n,
Al g orit h m 1 r e c o v er s a n y c o m pl e x si g n al u ni q u el y u p t o gl o b al
p h a s e.

P r o of: S e e   A p p e n di x   C.
I n   m a n y  c a s e s,  t h e   wi n d o w  is  s h ort er  t h a n N + 1

2 s o
t h at  (II. 8)   m a y  n ot  a d mit  a  cl o s e d-f or m   L S  s ol uti o n. I n t h e s e
c a s e s,   w e  pr o p o s e  t w o  n o n- c o n v e x  r e c o v er y  al g orit h m s.   T h e
fir st is  a st a n d ar d   E R   mi ni mi z ati o n t h at s e e m s t o   w or k   w ell i n
l o w  S N R r e gi m e s.   T h e s e c o n d   m a xi mi z e s a  q u a dr ati c f u n cti o n
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Al g o rit h m  1 L e a st- S q u ar e s   Al g orit h m f or L = 1

I n p ut: T h e   m e a s ur e m e nt s Z [m , k ] a s  gi v e n i n  (II. 1).
O ut p ut:  x 0 :  esti m ati o n  of x .

1)   C o m p ut e Y [m , ], t h e  1 D   D F T   wit h  r es p e ct t o t h e  s e c-
o n d  v ari a bl e  of Z [m , k ] a s  gi v e n i n  (II. 2).

2)   C o n str u ct  a   m atri x X 0 s u c h t h at

di a g (X 0 , ) =
G † y = − (W − 1 ) , · · · , ( W − 1 ) ,

0 ot h er wis e,

w h er e G ∈ R N × N ar e  d e fi n e d i n  (II. 7).
3)   L et x p b e  t h e  pri n ci p al  ( u nit- n or m)  ei g e n v e ct or  of X 0 .

T h e n,

x 0 =
n ∈ P

G †
0 y 0 [n ]x p ,

w h er e P : = n : G †
0 y 0 [n ] > 0 .

o v er  t h e   m a nif ol d  of  p h a s es.   T his  a p pr o a c h  s h o ws  s u p eri or
p erf or m a n c e  f or  s h ort   wi n d o w s  a n d  hi g h  S N R.  I n  or d er
t o  i niti ali z e  t h es e  al g orit h m s,   w e  u s e  t h e  s a m e   L S- b as e d
m et h o d  of   Al g orit h m  1.   H o w e v er,  f or  s h ort   wi n d o ws   w e
c a n n ot  e sti m at e  di a g (X , ) f or = W , . . . , N − W as  t h e
m atri c es G ar e  si m pl y  z er o.   N o n et h el ess,   w e   will  s h o w
b y  b ot h  t h e or eti c al  r e s ults  a n d  n u m eri c al  e x p eri m e nts  t h at
u n d er  a p pr o pri at e  c o n diti o n s, t h e  pri n ci p al  ei g e n v e ct or  of t h e
a p pr o xi m ati o n   m atri x X 0 ,   wit h  a p pr o pri at e  n or m ali z ati o n, is  a
g o o d i niti al  esti m at or  of x .

I V.   L O C A L N O N - C O N V E X A L G O RI T H M S

I n t his s e cti o n   w e  pr es e nt  o ur   m ai n  al g orit h mi c a p pr o a c h t o
r e c o v er a si g n al fr o m its  S T F T   m a g nit u d e (II. 1).  Fir st,   w e  pr o-
p o s e t w o  n o n- c o n v e x  gr a di e nt  al g orit h m s t o  e sti m at e t h e  si g-
n al.   As t h e  pr o bl e m is i n h er e ntl y  n o n- c o n v e x,   w e t h e n s u g g e st
a  s y st e m ati c,  d at a – dri v e n,  t e c h ni q u e  f or  i niti ali z ati o n.   T his
n o n- c o n v e x a p pr o a c h f or  S T F T  p h a s e r etri e v al is  s u m m ari z e d
i n   Al g orit h m  2.   T h e  c o d e f or  all  al g orit h m s is  p u bli cl y  a v ail-
a bl e  at  htt p:// w e b e e.t e c h ni o n. a c.il/ Sit es/ P e o pl e/ Y o ni n a El d ar.

Al g o rit h m 2 N o n- C o n v e x   A p pr o a c h f or  S T F T  P h a s e   R etri e v al

I n p ut: T h e   m e a s ur e m e nt s Z [m , k ] a s  gi v e n i n  (II. 1).
O ut p ut: x̂ :  esti m ati o n  of x .

1) I niti ali z ati o n :   A p pl y   Al g orit h m  1 (f or L = 1)  or   Al g o-
rit h m  5  (f or L > 1 ).

2) R e fi n e m e nt :   Us e  t h e  o ut p ut  of  st a g e  1  t o  i niti al-
i z e  a  gr a di e nt  al g orit h m  t h at   mi ni mi z es  t h e  e m pir-
i c al  ris k  ( S e cti o n  I V- A)  or  t h e   N o n- C o n v e x  P h as e-
C ut  ( N C P C)  of   Al g orit h m  3.

A.   E m piri c al   Ris k   Mi ni miz ati o n

R e c all t h at t h e  S T F T   m a g nit u d e c a n b e   writt e n as Z [m , k ] =
x ∗ H m ,k x , w h er e H is  gi v e n i n  (II. 6).   Alt er n ati v el y,  b y  t a ki n g

Fi g.  1.   T h e t w o- di m e nsi o n al  ( first t w o  v ari a bl es)  pl a n e  of t h e l oss  f u n cti o n
(I V. 2)  of  t h e  si g n al x = [ 0 .2 , 0 .2 , 0 , 0 , 0 ] (i. e., N = 5)   wit h L = 1 a n d a
r e ct a n g ul ar   wi n d o w  of l e n gt h W = 2.

t h e  1 D   D F T   wit h  r es p e ct t o  t h e  fr e q u e n c y  v ari a bl e, t h e   m e a-
s ur e m e nt   m o d el  b e c o m e s Y [m , ] = x ∗ H m , x , w h er e H m ,

is  d e fi n e d  i n  (II. 4).  It  is  t h er ef or e  n at ur al  t o   mi ni mi z e  t h e
e m piri c al ris k  ( E R) l o ss  f u n cti o n:

f (u ) =
1

2

N / L − 1

m = 0

N − 1

k = 0

u ∗ H m ,k u − Z [m , k ]
2

(I V. 1)

=
1

2

N / L − 1

m = 0

W − 1

= − ( W − 1 )

u ∗ H m , u − Y [m , ]
2

. (I V. 2)

T h e  e q u alit y  b et w e e n  t h e  t w o  l o ss  f u n cti o n s  is  pr o v e n  i n
A p p e n di x   D.  I n t h e  s e q u el,   w e  u s e  b ot h  f or m ul ati o n s.

Fi g ur e  1  pr es e nts  t h e  t w o- di m e n si o n al  ( fir st  t w o  v ari-
a bl es)  pl a n e  of  t h e  l o ss  f u n cti o n  (I V. 1)  f or  t h e  si g n al x =
[0 .2 , 0 .2 , 0 , 0 , 0 ] (i. e., N = 5)   wit h L = 1  a n d  a  r e c-
t a n g ul ar   wi n d o w  of  l e n gt h W = 2.   T h e  f u n cti o n  h a s  n o
s h ar p  tr a n siti o n s  a n d  c o nt ai n s  t w o  s a d dl e  p oi nts  a n d  t w o
gl o b al   mi ni m a  ( a s  a  r e s ult  of  t h e  gl o b al  p h a s e  a m bi g uit y).
A c c or di n gl y, i n t his s p e ci fi c  c as e  a n d  b e ari n g i n   mi n d t h at  o ur
vi e w is r e stri ct e d t o t w o  of t h e  fi v e  di m e n si o n s  o nl y, it  s e e m s
t h at  a  gr a di e nt  d es c e nt  al g orit h m   will  c o n v er g e  t o  a  gl o b al
mi ni m u m fr o m al m o st a n y i niti ali z ati o n ( s e e  als o [ 4 3]).   W hil e
t his  p h e n o m e n o n  d o e s  n ot  o c c ur  f or  a n y  ar bitr ar y  p ar a m et er
s el e cti o n, t his e x a m pl e   m oti v at e s a p pl yi n g a gr a di e nt al g orit h m
dir e ctl y  o n t h e  n o n- c o n v e x l o ss f u n cti o n (f or a si mil ar  d e m o n-
str ati o n  of  t h e  l o ss  f u n cti o n   wit h  r a n d o m  s e n si n g  v e ct or s,
s e e  [ 6 2]).

O n e   w a y t o   mi ni mi z e t h e   E R l o ss f u n cti o n (I V. 1)  or  (I V. 2)
is  b y  e m pl o yi n g  a  gr a di e nt  al g orit h m,   w h er e t h e k t h it er ati o n
t a k es  o n t h e  f or m

x k = x k − 1 − μ ∇ f (x k − 1 ) ,
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f or  st e p  si z e μ .  F or  r e al  si g n als,  dir e ct  c o m p ut ati o n  of  t h e
gr a di e nt i n  (I V. 1)  gi v e s

∇ f (u ) =

N / L − 1

m = 0

N − 1

k = 0

(h (u ) − Z [m , k ]) ∇ h (u ), (I V. 3)

w h er e

h (u ) : = u T H m ,k u , ∇ h (u ) = 2 H m ,k u .

Si mil ar  c o m p ut ati o n s  c a n  b e  p erf or m e d  f or  (I V. 2).  If  t h e
si g n al  is  c o m pl e x,  t h e n  o n e  c a n  u s e  t h e  el e g a nt  f or m ul a-
ti o n  of   Wirti n g er  d eri v ati v e s,  s e e  [ 1 8],  [ 4 2],  [ 6 2].   T h e  l o ss
f u n cti o n s  (I V. 1)  or  (I V. 2)   m a y  b e   mi ni mi z e d  b y   m a n y  ot h er
m et h o d s.  F or i n st a n c e, i n  S e cti o n   V   w e  e m pl o y  a tr u st-r e gi o n
al g orit h m.

B.   N o n- C o n v e x   P h a s e C ut ( N C P C)

1)  T h e   Al g o rit h m: W h e n   mi ni mi zi n g  t h e  e m piri c al
ris k  (I V. 1)  or  (I V. 2),  t h e  u n k n o w n  si g n al  its elf  is  t h e  o pti-
mi z ati o n v ari a bl e.   Alt er n ati v el y,   w e   m a y t a k e t h e p oi nt of vi e w
t h at t h e  u n k n o w n s  ar e t h e  p h a s es  of t h e  S T F T   m e a s ur e m e nts.
I n d e e d,  if  t h e s e  p h a s es   w er e  k n o w n,  t h e n  o n e  c o ul d  r e c o v er
t h e  si g n al  b y  a p pl yi n g  (I. 2).   We   m a y  t h er ef or e  r e w or k  t h e
pr o bl e m i nt o  o n e   w h er e  o nl y t h e  p h a s es  ar e  v ari a bl es [ 6 4].

T h u s,   w e  ai m t o  esti m at e U ∈ C
N
L × N

wit h  u nit- m o d ul u s
e ntri es s u c h t h at X ≈ Z 1 / 2 U , t h at is,   w e   wis h t o r e c o v er t h e
missi n g  p h a s es.   O n e   m a y  pr o p o s e  t o  esti m at e  t h e s e  a n d  t h e
si g n al x si m ult a n e o u sl y b y   mi ni mi zi n g Z 1 / 2 U − S T F T (x ) 2

F
o v er  b ot h x a n d U ,   w h er e  S T F T(x ) m a p s x t o  its  S T F T
f oll o wi n g  (I. 1).   Ass u mi n g U is  fi x e d,  t h e  s ol uti o n  f or x is
x = S T F T † (Z 1 / 2 U ),   w h er e  t h e  o p er at or  S T F T† is  gi v e n
b y  (I. 2).   B y  s u b stit uti o n,   w e  o bt ai n  a n  o pti mi z ati o n  pr o bl e m
i n t er m s  of U o nl y:

mi n

U ∈ C
N
L

× N

(I − S T F T ◦ S T F T † )(Z 1 / 2 U ) 2
F

s u bj e ct t o |U [m , k ]|   = 1 , ∀ m , k .

Si n c e I − S T F T ◦ S T F T † is a n  ort h o g o n al pr oj e ct or, t his f urt h er
si m pli fi e s i nt o t h e f oll o wi n g n o n- c o n v e x o pti mi z ati o n pr o bl e m
o v er  c o m pl e x  p h a s es:

mi n

U ∈ C
N
L × N

Z 1 / 2 U , (I − S T F T ◦ S T F T † )(Z 1 / 2 U )

s u bj e ct t o |U [m , k ]|   = 1 , ∀ m , k ,

w h er e   w e  u s e t h e  Fr o b e ni u s i n n er  pr o d u ct

A , B = Tr a c e A ∗ B . (I V. 4)

T h e t er m i n v ol vi n g t h e i d e ntit y o p er at or I is c o n st a nt u n d er t h e
c o n str ai nts,  s o t h at t h e  pr o bl e m is  e q ui v al e nt t o t h e f oll o wi n g
m a xi mi z ati o n  pr o bl e m:

m a x

U ∈ C
N
L

× N

Z 1 / 2 U , S T F T ◦ S T F T † (Z 1 / 2 U )

s u bj e ct t o |U [m , k ]|   = 1 , ∀ m , k . (I V. 5)

N oti c e t h at  S T F T ◦ S T F T † is t h e  ort h o g o n al  pr oj e ct or  o nt o
t h e  s u b s p a c e  of   m atri c es   w hi c h  ar e t h e  S T F T  of  s o m e  si g n al.

As  a  r e s ult,  a p pl yi n g  S T F T ◦ S T F T † t o  t h e   m atri x Z 1 / 2 U
pr o d u c e s t h e   m atri x   w hi c h, i n t h e   L S s e n s e, i s cl o s e st t o  b ei n g
t h e  S T F T  of  a  si g n al.   T h u s, t h e  c o st f u n cti o n i n  (I V. 5) f a v or s
p h a s es U s u c h  t h at Z 1 / 2 U is  a s  cl o s e  as  p o ssi bl e  t o  a n
S T F T.   We r e c all t h at t his  pr oj e cti o n  o p er at or c a n  b e c o m p ut e d
ef fi ci e ntl y  b y  a p pl yi n g (I. 1)  a n d  (I. 2)  u si n g  F F T.

Pr o bl e m  (I V. 5)  r e s e m bl e s  t h e  p h a s e  s y n c hr o ni z ati o n  pr o b-
l e m [ 3], [ 1 4], [ 6 1]. I n [ 6 4], t h e  a ut h or s  p ur s u e a  c o n v e x r el a x-
ati o n  of  (I V. 5)  n a m e d p h a s e c ut .   H er e, f oll o wi n g [ 1 4],   w e  u s e
t h e   M a n o pt  t o ol b o x  t o  r u n  l o c al  o pti mi z ati o n  of  (I V. 5)  o v er
t h e   m a nif ol d of p h a s es [ 1 3]. I n its si m pl est f or m, t h e al g orit h m
f oll o ws t h e  gr a di e nt’s  c o m p o n e nt   w hi c h is  c o n sist e nt   wit h t h e
f e asi bl e  s et  of  s ol uti o n s  ( s e e  d et ails  b el o w).   T o  i niti ali z e  t h e
l o c al  o pti mi z ati o n  al g orit h m,   w e  s et U 0 t o  b e  t h e  p h a s es  of
S T F T (x 0 ), w h er e x 0 is t h e i niti ali z ati o n  u s e d  b y   Al g orit h m  2.
T his  a p pr o a c h is  s u m m ari z e d i n   Al g orit h m  3.

Al g o rit h m  3 N o n- C o n v e x  P h as e C ut  ( N C P C)

I n p ut: T h e   m e a s ur e m e nt s Z ≈ | S T F T (x )|2 a s  gi v e n i n (II. 1).
O ut p ut: x̂ :  esti m ati o n  of x .

1)   C o m p ut e t h e i niti ali z ati o n x 0 wit h   Al g orit h m 2 t o  o bt ai n
U 0 = p h a s e (S T F T (x 0 )).

2)   Usi n g U 0 as  i niti ali z ati o n,  u s e  a  l o c al  o pti mi z ati o n
al g orit h m t o tr y t o  c o m p ut e  a  s ol uti o n Û t o

m a x

U ∈ C
N
L

× N

Z 1 / 2 U , S T F T ◦ S T F T † (Z 1 / 2 U )

s u bj e ct t o |U [m , k ]|   = 1 , ∀ m , k .

S e e   Al g orit h m  4  f or  a  si m pl e   Ri e m a n ni a n  gr a di e nt
m et h o d;  s e e  [ 1],  [ 1 3] f or   Ri e m a n ni a n tr u st  r e gi o n s.

3)   R et ur n x̂ = S T F T † (Z 1 / 2 Û ).

F or  c o m pl et e n e ss,   w e  pr o vi d e  a  bri ef  o v er vi e w  of  st e p  2  of
Al g orit h m  3,  t h at  is,  o pti mi z ati o n  of  t h e  p h a s es.   We  r e stri ct
att e nti o n  t o  a  si m pl e   Ri e m a n ni a n  o pti mi z ati o n  al g orit h m,
n a m el y, t h e  gr a di e nt a s c e nt al g orit h m.  S e e [ 1] f or d et ails a b o ut
t h e   m or e s o p histi c at e d   Ri e m a n ni a n tr u st-r e gi o n   m et h o d ( R T R),
w hi c h   w e  u s e i n  pr a cti c e.

T h e  v ari a bl e U li v es  o n  a  s m o ot h   m a nif ol d,  n a m el y, t h e  s et
of  p h a s es

M = { U ∈ C
N
L × N

: |U [m , k ]|   = 1 f or all m , k },

w hi c h  is  a   C art e si a n  pr o d u ct  of  u nit  cir cl e s  i n  t h e  c o m pl e x
pl a n e ( a t or u s).   T hi s s m o ot h  n o nli n e ar s p a c e  c a n  b e li n e ari z e d
a b o ut  e v er y  p oi nt U b y  diff er e nti ati n g  t h e  c o n str ai nts.   T his
yi el d s  a  li n e ar  s u b s p a c e  k n o w n  a s  t h e  t a n g e nt  s p a c e  t o M
at U :

T U M = { U̇ ∈ C
N
L × N

: {U U̇ } = 0 }.

E a c h  t a n g e nt  s p a c e  of M c a n  b e  e n d o w e d   wit h  t h e  i n n er
pr o d u ct  (I V. 4)  ( si m pl y  b y  r e stri cti n g  it  t o  e a c h  p arti c ul ar
s u b s p a c e),   w hi c h  t ur n s M i nt o  a   Ri e m a n ni a n  s u b m a nif ol d

of C
N
L × N

.   T his   m a k e s  it  p arti c ul arl y  e a s y  t o  c o m p ut e  t h e
gr a di e nt  of t h e  o bj e cti v e f u n cti o n f : M → R ,

f (U ) = Z 1 / 2 U , S T F T ◦ S T F T † (Z 1 / 2 U ) . (I V. 6)
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I n d e e d,  f oll o wi n g  [ 2,  e q.  ( 3. 3 7)],  t h e  gr a di e nt  of f at
U r estri ct e d  t o M — k n o w n  a s  t h e   Ri e m a n ni a n  gr a di e nt
gr a d f (U )—is  t h e  ort h o g o n al  pr oj e cti o n  of  t h e  cl a ssi c al
( u n c o n str ai n e d)  gr a di e nt  of f ,  d e n ot e d  b y ∇ f (U ), t o t h e
t a n g e nt  s p a c e   TU M :

∇ f (U ) = 2 Z 1 / 2 S T F T ◦ S T F T † (Z 1 / 2 U ) ,

gr a d f (U ) = Pr oj U (∇ f (U )). (I V. 7)

T h e  ort h o g o n al  pr oj e ct or  Pr oj U : C
N
L × N

→ T U M is
gi v e n  b y

Pr oj U (V ) = V − {U V } U .

T h at  is,  it  s u btr a cts  fr o m  e a c h  e ntr y V [m , k ] its  c o m p o n e nt
ali g n e d   wit h U [m , k ].   E x pli citl y,  t h e   Ri e m a n ni a n  gr a di e nt  is
t h e n  gi v e n  b y

gr a d f (U ) = ∇ f (U ) − {U ∇ f (U )} U .

N o w  t h at   w e  ar e  e q ui p p e d   wit h  a  n oti o n  of  gr a di e nt  o n
t h e   m a nif ol d,  t h e  o nl y   missi n g  i n gr e di e nt  t o  i m pl e m e nt  a
gr a di e nt  as c e nt  o pti mi z ati o n  al g orit h m is  a   m e a n s  of   m o vi n g
a w a y  fr o m  a  p oi nt  ( a  c urr e nt it er at e)  al o n g  a  c h o s e n  t a n g e nt
dir e cti o n  ( h er e,  t h e  gr a di e nt  v e ct or),   w hil e  r e m ai ni n g  o n  t h e
m a nif ol d M .   T h e  st a n d ar d t o ol t o  a c hi e v e t his is  k n o w n  as  a
r etr a cti o n [ 2,  S e c. 4. 1].   A n  o b vi o u s r etr a cti o n  f or M is

R etr U ( U̇ ) = p h a s e (U + U̇ ).

I n d e e d, f or U ∈ M a n d U̇ ∈ T U M , t h e r es ult  of t his  o p er ati o n
is  al w a y s  o n M a n d l o c all y  (t h at is,  f or  s m all U̇ ) t h e  c h a n g e
is  al o n g t h e  pr e s cri b e d t a n g e nt  dir e cti o n U̇ .

T h e  gr a di e nt  as c e nt  al g orit h m t a k e s t h e  f or m

U k + 1 = R etr U k ( η k gr a d f (U k )), (I V. 8)

w h er e η k > 0  is  a n  a p pr o pri at el y  c h o s e n  st e p  si z e  (t y pi c all y
u si n g a f or m  of li n e- s e ar c h [ 2,  S e c.  4]) a n d U 0 ∈ M is a  gi v e n
i niti al  g u ess.   O wi n g  t o M b ei n g  a  c o m p a ct  s u b m a nif ol d  of

C
N
L × N

a n d  t o f b ei n g  s m o ot h,  b ot h   Ri e m a n ni a n  gr a di e nt
a s c e nt  ( wit h  a p pr o pri at e  li n e- s e ar c h)  a n d   R T R  ar e  g u ar a n-
t e e d  t o  c o n v er g e t o  p oi nts   w hi c h  s atisf y  first- or d er  n e c ess ar y
o pti m alit y  c o n diti o ns,  t h at  is, gr a d f (U ) = 0 ( a n d e v e n
s e c o n d- or d er  c o n diti o n s  f or   R T R)  r e g ar dl e ss  of  i niti ali z a-
ti o n,   wit h  k n o w n   w or st- c a s e  b o u n d s  o n it er ati o n  c o u nts  [ 1 2].
E x pli citl y,  at  a  criti c al  p oi nt U t h e  al g orit h m  s atis fi es:

U = p h a s e S T F T ◦ S T F T † (Z 1 / 2 U ) . (I V. 9)

As   will  b e  s h o w n  n e xt,  t his  is  als o  t h e  st a g n ati o n
p oi nt  of  Fi e n u p’s  al g orit h m.   T his  a p pr o a c h  is  s u m m ari z e d
i n   Al g orit h m  4.

We  str ess  t h at  t his  a p pr o a c h i s  diff er e nt  fr o m  a  pr oj e ct e d
gr a di e nt   m et h o d.  I n d e e d,  i n  a  pr oj e ct e d  gr a di e nt   m et h o d,
o n e   w o ul d  alt er n at e  b et w e e n  f oll o wi n g  t h e  cl assi c al  gr a di e nt
∇ f (U ) a n d  pr oj e cti n g t o M wit h t h e  p h as e  o p er at or.   T h at is,
e a c h  it er ati o n  r es e m bl es  (I V. 8)   wit h ∇ f i n st e a d  of  gr a d f .
I n  c o ntr a st,  t h e   Ri e m a n ni a n  gr a di e nt   m et h o d  f oll o ws  t h e
t a n g e nt  p art  of  t h e  gr a di e nt,  gr a d f (I V. 7)  a n d  t h e n  pr oj e cts
o nt o M .   O n e  a d v a nt a g e  is  t h at,  cl o s e  t o  c o n v er g e n c e,  t h e
Ri e m a n ni a n  gr a di e nt  h a s  s m all  n or m  ( a s  e x p e ct e d),   w h er e a s
t h e  cl assi c al  gr a di e nt   m a y  still  b e l ar g e.

Al g o rit h m  4 Ri e m a n ni a n   Gr a di e nt   M et h o d  f or   N C P C

I n p ut: T h e   m e a s ur e m e nt s Z ≈ | S T F T (x )|2 a s  gi v e n i n (II. 1),
i niti al  g u ess U 0 ∈ M a n d t ol er a n c e ε > 0.
O ut p ut: Û ∈ M s atisf yi n g gr a d f ( Û ) F ≤ ε .

F or k = 0 , 1 , . . .

a)   C o m p ut e:

gr a d f (U k ) = ∇ f (U k ) − {U k ∇ f (U k )} U k ,

w h er e

∇ f (U k ) = 2 Z 1 / 2 S T F T ◦ S T F T † (Z 1 / 2 U k ) .

b)  If gr a d f (U k ) F ≤ ε , r et ur n Û = U k .
c)   C o m p ut e a st e p si z e η k wit h  a  cl assi c al li n e-s e ar c h

al g orit h m,  e. g., [ 2,  S e c. 4].
d)  S et U k + 1 = p h a s e (U k + η k gr a d f (U k )).

2)   R el ati o n  t o   Fi e n u p’s   Al g o rit h m: O ur   m et h o d  c a n  b e
c o m p ar e d   wit h  t h e  cl assi c al  Fi e n u p  al g orit h m  f or  t h e  S T F T
c a s e,  als o  c all e d   Grif fi n – Li m  al g orit h m [ 3 1],  as  f oll o ws.   O n e
a p pr o a c h t o  o pti mi z e (I V. 5), i n st e a d  of t h e   Ri e m a n ni a n  gr a di-
e nt it er ati o n s t h at   w e  d es cri b e i n   Al g orit h m  4,  is  a n  it er ati v e
t e c h ni q u e  c all e d  pr oj e ct e d  p o w er   m et h o d  ( P P M),  or  g e n er-
ali z e d  p o w er   m et h o d  [ 1 4],  [ 4 0].   T his  al g orit h m  it er at es  as
t h e  p o w er   m et h o d,   wit h  t h e  diff er e n c e t h at,  at  e a c h it er ati o n,
it  k e e p s  o nl y  t h e  p h a s es  of  t h e  c urr e nt  it er at e.  S p e ci fi c all y,
t h e k t h it er ati o n is  of t h e  f or m

U k = p h a s e S T F T ◦ S T F T † U k − 1 Z 1 / 2 . (I V. 1 0)

Si mil arl y  t o   N C P C,  t h e  al g orit h m  st o p s   w h e n  (I V. 9)  is
s ati s fi e d.   O n  t h e  ot h er  h a n d,  e a c h  it er ati o n  of  Fi e n u p’s  al g o-
rit h m t a k es  o n t h e  f or m

x k = S T F T † p h a s e (S T F T (x k − 1 )) Z 1 / 2 . (I V. 1 1)

A p pl yi n g  t h e  o p er at or  p h a s e ◦ S T F T  o n  t h e  it er ati o n s
of  (I V. 1 1)  s h o ws  t h at  it  is  e q ui v al e nt  t o  P P M  t hr o u g h  t h e
m a p pi n g U k = p h a s e ◦ S T F T (x k ).  I n  t his  s e n s e,  o n e  c a n
u n d er st a n d  Fi e n u p’s  al g orit h m  as  a  p arti c ul ar it er ati v e   m et h o d
t o  s ol v e t h e  o pti mi z ati o n  pr o bl e m  (I V. 5).

A c c or di n g t o  [ 1 4,   L e m m a  1 5],  all  fi x e d  p oi nts  of  (I V. 1 0) –
a n d  h e n c e  of  (I V. 1 1) – m a p  t o  criti c al  p oi nts  of  t h e  o pti-
mi z ati o n  pr o bl e m  (I V. 5),  t h at  is,  t h e y   m a p  t o  p oi nts U k

w h er e  t h e   Ri e m a n ni a n  gr a di e nt  is  z er o.   T h e s e  ar e  o nl y  t h e
first- or d er  n e c ess ar y  o pti m alit y c o n diti o n s.   N u m eri c al  e x p er-
i m e nts  ( n ot  dis pl a y e d  h er e)  s h o w  t h at  s o m e  of  t h e  st a bl e
fi x e d  p oi nts  of  (I V. 1 1)   m a p  t o  criti c al  p oi nts   w hi c h  d o  n ot
s ati sf y t h e s e c o n d- or d er  n e c e ss ar y  o pti m alit y  c o n diti o n s (t h eir
Ri e m a n ni a n   H essi a n  a d mits  a  p ositi v e  ei g e n v al u e)  a n d  ar e
t h er ef or e s u b o pti m al. I n  c o ntr a st, s u c h  p oi nts   w o ul d  b e  u n st a-
bl e  fi x e d  p oi nts  f or  a n y  r e a s o n a bl e   Ri e m a n ni a n  o pti mi z ati o n
al g orit h m  as  c o n fir m e d i n t h e  s a m e  e x p eri m e nts.   T his  disti n c-
ti o n  at l e a st  p arti all y  e x pl ai n s   w h y t h e  e m piri c al  p erf or m a n c e
of  t h e   N C P C  al g orit h m  is  s u p eri or  t o  t h at  of  Fi e n u p’s  al g o-
rit h m,  as  d e m o n str at e d i n  S e cti o n   V.
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C.  I niti aliz ati o n

1)  I niti aliz ati o n  f o r  L = 1: Si n c e  t h e  p h a s e  r etri e v al
pr o bl e m  is  i n h er e ntl y  n o n- c o n v e x,  it  is  n ot  cl e ar   w h et h er
t h e  pr o p o s e d  r e fi n e m e nt  al g orit h m s   will  c o n v er g e t o  a  gl o b al
mi ni m u m  fr o m  a n  ar bitr ar y  i niti ali z ati o n.   W h e n L = 1,
w e  pr o p o s e  i niti ali zi n g  t h e  it er ati o n s  b y  u si n g   Al g orit h m  1.

A s  e x pl ai n e d  i n  S e cti o n  III,  f or W ≥ N + 1
2 t h e  al g orit h m

r et ur n s x e x a ctl y.   H o w e v er,   w h e n W < N + 1
2 , G = 0 f or

= W , . . . , N − W s o  t h at  t h e  o ut p ut  is  n ot  n e c e ss aril y x .
N e v ert h el ess, i n  S e cti o n   VI   w e  pr o vi d e t h e or eti c al  g u ar a nt e es
est a blis hi n g  t h at  u n d er  a p pr o pri at e  c o n diti o ns,  t his  i niti ali z a-
ti o n  r e s ults i n  a  g o o d  a p pr o xi m ati o n.

I n  pr a cti c al  a p pli c ati o ns,  a  v ari et y  of  a p pr o a c h e s  ar e  u s e d
t o i niti ali z e t h e  r e fi n e m e nt t e c h ni q u es.   W hil e t h e  s p e ci fi c i ni-
ti ali z ati o n   m et h o d is  a p pli c ati o n- d e p e n d e nt, t h e s e  a p pr o a c h e s
c a n  b e  br o a dl y  cl assi fi e d  i nt o  t w o  c at e g ori es.   T h e  fir st  is
b a s e d  o n  t h e  str u ct ur e  of  t h e  e x p e ct e d  si g n al.  F or  i n st a n c e,
i n s o m e a p pli c ati o n s it is c o m m o n t o u s e a   G a u ssi a n p uls e   wit h
r a n d o m  p h a s es  as  a n  i niti al  p oi nt  [ 2 3].   T hi s,  h o w e v er,   m a y
l e a d t o  a  p h e n o m e n o n c all e d m o d el  bi a s i n   w hi c h t h e esti m at e
t e n d s  t o  c a pt ur e  c h ar a ct eri sti c s  of  t h e   m o d el  r at h er  t h a n  t h e
tr u e  si g n al.   A n  alt er n ati v e  str at e g y,  als o  us e d  b y  c o m m er ci al
s oft w ar e,  is  b as e d  o n  r a n d o m  i niti ali z ati o n.   T his  is  v er y
diff er e nt  fr o m  o ur  i niti ali z ati o n   w hi c h  e x pl oits  t h e  a c q uir e d
d at a.

2)  I niti aliz ati o n  f o r  L > 1: U ntil  n o w   w e  f o c u s e d  o n
m a xi m al  o v erl a p  b et w e e n  a d j a c e nt   wi n d o ws,  n a m el y, L = 1.
W h e n L > 1,  (II. 7)  r e s ults  i n  a n  u n d er d et er mi n e d  s y st e m  of

e q u ati o n s  si n c e y ∈ R
N
L , G ∈ R

N
L × N

a n d x ∈ R N .
I n t his c as e, t h e   L S s ol uti o n G † y is t h e v e ct or   wit h   mi ni m al 2

n or m  a m o n g t h e  s et  of f e a si bl e  s ol uti o n s.   T his  a p pr o xi m ati o n
is  q uit e  p o or i n  g e n er al.

We  n oti c e  t h at  t h e   m e a s ur e m e nts y ar e  a  d o w n s a m pl e d
v er si o n  b y  a f a ct or L of t h e  c a s e  of   m a xi m al  o v erl a p ( L = 1 ).
T h er ef or e,   w e  s u g g e st  u p s a m pli n g y t o  a p pr o xi m at e  t h e
m a xi m al  o v erl a p  s etti n g  b as e d  o n  t h e  a v er a gi n g  n at ur e  of
t h e   wi n d o w g .  I n  or d er  t o   m oti v at e  o ur  a p pr o a c h,   w e  st art
b y  c o n si d eri n g  a n  i d e al  sit u ati o n.  S u p p o s e  t h at  f or  s o m e ,
t h e   D F T  of t h e  fir st  c ol u m n  of G ,  d e n ot e d  b y ĝ , is  a n i d e al
l o w- p ass   wit h i nt e g er  b a n d wi dt h N / L B W .   N a m el y,

ĝ [k ] =
1 , k = 0 , . . . N / L B W − 1 ,

0 , ot h er wis e .

T h e  f oll o wi n g l e m m a  st at es  t h at  i n  t his  c as e,  n o  i nf or m ati o n
is  l o st  b y  c h o o si n g L = L B W c o m p ar e d  t o  t a ki n g   m a xi m al
o v erl a p L = 1.   M or e o v er,  it  s u g g e sts  t o  u p s a m pl e  t h e
m e a s ur e m e nt  v e ct or  b y  e x p a n si o n  a n d l o w- p a ss i nt er p ol ati o n.
O ur  t e c h ni q u e  r e s e m bl es  st a n d ar d  u p s a m pli n g  ar g u m e nts  i n
di git al  si g n al  pr o c e ssi n g  ( D S P)  ( s e e  f or  i n st a n c e  S e cti o n  4. 6
of  [ 4 9]).

L e m m a  9:  L et g̃ : = {g [(− n ) m o d N ]} N − 1
n = 0 .  S u p p o s e  t h at

g̃ ∈ R N is  a n  i d e al  l o w- p a ss   wit h  i nt e g er  b a n d wi dt h   N / L
a n d y = g ∗ x f o r  s o m e x ∈ C N ( o r  e q ui v al e ntl y, y = G x ,
w h er e G is  a  cir c u al nt   m atri x   w h o s e  fi rst  c ol u m n  is g̃ ).  L et

y L ∈ C
N
L b e its  L - d o w n s a m pl e d  v e rsi o n, i. e.,

y L [n ] = y [n L ], n = 0 , . . . , N / L − 1 .

T h e n, y = F ∗
p F p ỹ L , w h er e

ỹ L [n ] =
y L [m ], n = m L ,

0 , ot h e r wis e,
(I V. 1 2)

a n d F p is  a  p a rti al   F o u ri er   m atri x  c o n sisti n g  of t h e  fi rst   N / L
r o ws  of t h e   D F T   m atri x F .

P r o of: S e e   A p p e n di x   E.
W hil e   L e m m a  9  s h o ws t h at  n o i nf or m ati o n is l o st  u si n g  a n

i d e al l o w- p ass   wi n d o w   wit h i nt e g er  b a n d wi dt h N / L ,  i n  pr a c-
ti c e   w e  d o n ot u s e t h e s e   wi n d o ws. I n st e a d,   w e a p pr o xi m at e t h e
l o w- p ass i nt er p ol ati o n  of F ∗

p F p a s  s u g g e st e d i n   L e m m a  9  b y
a  si m pl e  s m o ot h i nt er p ol ati o n.   T his l e a d s t o  b ett er  n u m eri c al
r e s ults a n d r e d u c e s t h e c o m p ut ati o n al c o m pl e xit y. I n  S e cti o n   V
w e s h o w si m ul ati o n s   wit h  b ot h li n e ar a n d c u bi c i nt er p ol ati o n s.

F oll o wi n g t h e  u ps a m pli n g  st a g e, t h e  al g orit h m  pr o c e e d s  as
f or L = 1  b y  e xtr a cti n g  t h e  pri n ci p al  ei g e n v e ct or  ( wit h  t h e
a p pr o pri at e  n or m ali z ati o n)  of  a n  a p pr o xi m ati o n   m atri x.   T his
i niti ali z ati o n is  s u m m ari z e d i n   Al g orit h m  5.

Al g o rit h m  5 L e ast- S q u ar es I niti ali z ati o n f or L > 1

I n p ut: T h e   m e a s ur e m e nt s Z [m , k ] a s  gi v e n  i n  (II. 1)  a n d  a
s m o ot h i nt er p ol ati o n  filt er h L ∈ R N t h at  a p pr o xi m at es  a l o w-
p ass  filt er   wit h  b a n d wi dt h N / L .
O ut p ut:  x 0 :   E sti m ati o n  of x .

1)   C o m p ut e Y [m , ], t h e  1 D   D F T   wit h r es p e ct t o t h e  s e c-
o n d  v ari a bl e  of Z [m , k ] a s  gi v e n i n  (II. 2).

2)   U p s a m pli n g:  F or  e a c h ∈ [ − ( W − 1 ), . . . , ( W − 1 )]:

a)   L et y [m ] : = {Y [m , ]}
N
L − 1

m = 0 .
b)   E x p a n si o n:

ỹ [n ] : =
y [m ], n = m L ,

0 , ot h er wis e .

c)  I nt er p ol ati o n:

ȳ = ˜y ∗ h L .

3)   C o n str u ct  a   m atri x X 0 s u c h t h at

di a g (X 0 , ) =
G † ȳ , = − (W − 1 ) , · · · , ( W − 1 ) ,

0 , ot h er wis e,

w h er e G ∈ R N × N ar e  d e fi n e d  as i n  (II. 7) f or L = 1.
4)   L et x p b e  t h e  pri n ci p al  ( u nit- n or m)  ei g e n v e ct or  of X 0 .

T h e n,

x 0 =
n ∈ P

G †
0 y 0 [n ]x p ,

w h er e P : = n : G †
0 y 0 [n ] > 0 .

V.   N U M E RI C A L R E S U L T S

T his  s e cti o n  is  d e v ot e d  t o  n u m eri c al  e x p eri m e nts  e x a mi n-
i n g  t h e  pr o p o s e d  n o n- c o n v e x  al g orit h m s.  I n  all  e x p eri m e nts,
t h e  u n d erl yi n g  si g n al   w a s  dr a w n  fr o m x ∼ N (0 , I ), w h er e
I is  t h e  i d e ntit y   m atri x.   T h e   m e as ur e m e nts Z (II. 1)   w er e
c o nt a mi n at e d   wit h  eit h er  i.i. d.  a d diti v e   G a u ssi a n  n ois e  or
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Fi g.  2.   A v er a g e  err or  ( o v er  5 0  e x p eri m e nts)  of t h e  i niti ali z ati o n  of   Al g orit h m  5  as  a  f u n cti o n  of W a n d L .   T h e  e x p eri m e nts   w er e  c o n d u ct e d  o n  a  si g n al  of

l e n gt h N = 1 0 1   wit h  a   G a ussi a n   wi n d o w e
− n 2

2 σ 2 a n d  li n e ar  or  c u bi c  i nt er p ol ati o n.   T h e   wi n d o w  l e n gt h   w as  s et  t o  b e W = 3 σ .  ( a)  I niti ali z ati o n   wit h  li n e ar
i nt er p ol ati o n.  ( b)  I niti ali z ati o n   wit h  c u bi c  i nt er p ol ati o n.

P oiss o n  n ois e.   T h e  r e c o v er y  err or  is  c o m p ut e d  b y
d ( x , ̂x )

x 2
,

w h er e x̂ is  t h e  esti m at e d  si g n al  a n d  t h e  dist a n c e  f u n cti o n
d (·, ·) is  d e fi n e d  i n   D e fi niti o n  1.   We  o pti mi z e  b ot h  t h e
e m piri c al ris k l o ss  f u n cti o n (I V. 1)  a n d t h e  n o n- c o n v e x  p h a s e-
c ut  ( N C P C)  o bj e cti v e  f u n cti o n  b y  a  tr u st-r e gi o n  al g orit h m
u si n g t h e   M a n o pt t o ol b o x [ 1 3].

T h e  fir st  e x p eri m e nt  e x a mi n es  t h e  esti m ati o n  q u alit y  of
t h e  i niti ali z ati o n   m et h o d  d es cri b e d  i n   Al g orit h m  5.  Fi g ur e  2
pr es e nts t h e i niti ali z ati o n  err or  as  a  f u n cti o n  of t h e   wi n d o w’s
l e n gt h.   We  c o n si d er e d  a   G a u ssi a n   wi n d o w  d e fi n e d  b y g [n ] =

e
− n 2

2 σ 2 a n d  c u bi c  a n d li n e ar i nt er p ol ati o n s.  F or n > 3 σ , w e s et
t h e  e ntri e s  of  t h e   wi n d o w  t o  b e  z er o  s o  t h at W = 3 σ .
T h e r e s ults  d e m o n str at e t h e  eff e cti v e n e ss  of t h e  s m o ot h i nt er-
p ol ati o n  t e c h ni q u e.  F or  l o w  v al u e s  of L , it s e e m s t h at t h e
t w o i nt er p ol ati o ns  a c hi e v e  si mil ar  p erf or m a n c e.  F or l ar g er L ,
n a m el y, f e w er   m e a s ur e m e nts,  c u bi c i nt er p ol ati o n  o ut p erf or m s
li n e ar i nt er p ol ati o n. I n t h e f oll o wi n g e x p eri m e nts   w e  u s e c u bi c
i nt er p ol ati o n.

T h e  n e xt e x p eri m e nt ai m s t o e sti m at e t h e b a si n  of attr a cti o n
of t h e l o ss f u n cti o n (I V. 1)  or  (I V. 2).   T h at is t o s a y, t h e  ar e a i n
w hi c h  a  l o c al  o pti mi z ati o n   m et h o d   will  c o n v er g e t o  a  gl o b al
mi ni m u m.   T o  d o  t h at,   w e  s et  t h e  i niti ali z ati o n  v e ct or  t o  b e
x 0 = x + z , w h er e x ∼ N (0 , I ) is t h e  u n d erl yi n g  si g n al.   T h e
p ert ur b ati o n  v e ct or z t a k es  o n  t h e  v al u es ± σ ( wit h  r a n d o m
si g n s)  f or  s o m e σ > 0 s o t h at d (x 0 , x ) ≤

√
N σ .   T h e n,

w e  a p pli e d  t h e  tr u st-r e gi o n  al g orit h m  a n d  c h e c k e d   w h et h er
t h e  al g orit h m  c o n v er g es t o x .   As  c a n  b e  s e e n i n  Fi g ur e  3, t h e
al g orit h m c o n v er g es t o t h e gl o b al   mi ni m u m as l o n g as σ ≤ 0 .3
f or L = 1 , 2 (t h e  c as e  of L = 1 is  n ot  pr e s e nt e d i n t h e  fi g ur e)
a n d σ ≤ 0 .2 5  f or L = 4.   T h e s e  e x p eri m e nt al r e s ults i n di c at e
t h at t h e  a ct u al  b asi n  of  attr a cti o n is l ar g er t h a n  o ur t h e or eti c al
esti m ati o n i n  S e cti o n   VI  a n d   T h e or e m  1 1.

Fi g ur e  4 s h o ws a r e pr e s e nt ati v e e x a m pl e of t h e  p erf or m a n c e
of   Al g orit h m  2   w h er e   w e   mi ni mi z e d  t h e  e m piri c al  ris k  l o ss
f u n cti o n  (I V. 1)  or  (I V. 2).   T h e  e x p eri m e nt   w as  c o n d u ct e d  o n

Fi g.  3.   A v er a g e r e c o v er y  err or ( o v er  1 0 0 e x p eri m e nts)  of   mi ni mi zi n g t h e   E R
l oss  f u n cti o n  (I V. 1)  or  (I V. 2)  f or  si g n als  of l e n gt h N = 4 3  a n d  a  r e ct a n g ul ar
wi n d o w  of  l e n gt h W = 1 1.   T h e  i niti ali z ati o n   w as  s et  as x 0 = x + z , w h er e
x is  t h e  u n d erl yi n g  si g n al  a n d  t h e  p ert ur b ati o n  v e ct or z t a k es  t h e  v al u es  of
± σ f or  s o m e σ > 0   w h er e t h e  si g n is  dr a w n  r a n d o ml y.

a  si g n al  of  l e n gt h N = 2 3   wit h  a  r e ct a n g ul ar   wi n d o w  i n  a
n ois y  e n vir o n m e nt  of  S N R = 2 0  d B.

Fi g ur e  5  pr e s e nt s  t h e  s u c c e ss  r at e  of  t h e  al g orit h m s  a s
a  f u n cti o n  of  t h e   wi n d o w’s  l e n gt h  i n  a  n ois e-fr e e  e n vir o n-
m e nt.   As  c a n  b e  s e e n,   N C P C  a c hi e v es  t h e  hi g h e st  s u c c e ss
r at e,  i m pl yi n g  t h at  it  r e q uir e s  l e ss  r e d u n d a n c y  i n  t h e  d at a.
Fi g ur e  6  pr e s e nts t h e  r e c o v er y  err or  f or  diff er e nt  n ois e   m o d-
els.  Fi g ur e  6 a  s h o ws  t h e  err or   w h e n  t h e   m e a s ur e m e nts  ar e
c o nt a mi n at e d   wit h  n or m al  n ois e  a s  a  f u n cti o n  of  t h e  S N R
l e v el.   T h e  pr o p o s e d  al g orit h m s  ar e  c o m p ar e d   wit h  Fi e n u p’s
m et h o d [ 3 1] t h at it er at e s a c c or di n g t o (I V. 1 1). I n t h e l o w  S N R
r e gi m e,   mi ni mi zi n g  t h e   E R  l o ss  f u n cti o n  s e e m s  t o  b e  b ett er.
Fi g ur e  6 b  s h o ws  t h e  err or   wit h  P oiss o n  n ois e  a s  a  f u n cti o n
of W .  F or  s h ort   wi n d o ws,   N C P C   w or k s  b e st.   T h e  p erf or-
m a n c e  f or  l o n g er   wi n d o ws  is  c o m p ar a bl e  f or  all  al g orit h m s.
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Fi g.  4.   R e c o v er y  of  a  si g n al  of  l e n gt h N = 2 3   wit h  a  r e ct a n g ul ar   wi n d o w  i n  a  n ois y  e n vir o n m e nt  of  S N R = 2 0  d B.   We  us e d  a  tr ust-r e gi o n  al g orit h m  t o
mi ni mi z e  t h e   E R  l oss  f u n cti o n  (I V. 1).   T h e  e x p eri m e nts   w er e  c o n d u ct e d   wit h W = 7 a n d L = 1 a n d W = 1 1  a n d L = 3  i n  t h e  l eft  a n d  t h e  ri g ht  c ol u m ns,
r es p e cti v el y.  ( a)  I niti ali z ati o n   wit h W = 7 a n d L = 1.  ( b)  I niti ali z ati o n   wit h W = 1 1  a n d L = 3.  ( c)   R e c o v er y   wit h W = 7 a n d L = 1.  ( d)   R e c o v er y   wit h
W = 1 1  a n d L = 3.

Fi g.  5.  S u c c ess r at e  as a f u n cti o n  of W o v er  1 0 0 e x p eri m e nts  c o n d u ct e d   wit h
N = 3 1, L = 2  a n d  a  r e ct a n g ul ar   wi n d o w.   We  c o m p ar e d  t hr e e  al g orit h m s:
mi ni mi zi n g  t h e   E R  l oss  f u n cti o n  (I V. 1),   N C P C  a n d  Fi e n u p.   A  s u c c ess   w as
d e cl ar e d  f or  r e c o v er y  err or  l ess  t h a n  1 0 − 3 .

Fi g ur e  7  pr e s e nts  t h e  s a m e  e x p eri m e nts   wit h  l o w- p a ss  d at a.
T his  r e fl e cts  a  p h e n o m e n o n  t h at  t y pi c all y  o c c ur s  i n  o pti c al
a p pli c ati o n s  i n   w hi c h  t h e  fi n e  d et ails  of  t h e  d at a  ar e  bl urr e d

b y  t h e   m e as ur e m e nt  pr o c ess.   Esti m ati n g  a  si g n al  fr o m  its
l o w-r es ol uti o n   m e as ur e m e nts,   w h e n  t h e  p h as es  ar e  a v ail a bl e,
h a s  b e e n  i n v esti g at e d  t h or o u g hl y  i n  t h e  l ast  y e ar s,  s e e  f or
i n st a n c e [ 7], [ 2 0].   A c c or di n gl y,   w e a ss u m e t h at   w e c a n a c q uir e
t h e  d at a Z [m , k ] f or  all m b ut  o nl y f or k = − K m a x , . . . , K m a x

f or s o m e  c ut- off fr e q u e n c y K m a x .  P arti c ul arl y, i n  Fi g ur e  7   w e
c o n si d er N = 5 3  a n d K m a x = 1 8  (i. e.,  7 0 %  of  t h e  s p e ctr al
c o nt e nt)  f or  t h e  t w o  pr o p o s e d  al g orit h m s.  I n  t his  c a s e, if  t h e
S N R  is  n ot  t o o  b a d,  t h e n   N C P C   w or k s  si g ni fi c a ntl y  b ett er
t h a n   E R  i n  b ot h  c as es.   As  i n  Fi g ur e  6 a,  i n  t h e  l o w  S N R
r e gi m e,   mi ni mi zi n g  t h e   E R  l o ss  f u n cti o n  a c hi e v es  s u p eri or
p erf or m a n c e f or   G a u ssi a n  n oi s e.

VI.   T H E O R Y

T his  s e cti o n  pr es e nts  t h e  t h e or eti c al  c o ntri b uti o n  of  t his
w or k,  f o c u si n g  o n  t h e  c a s e  of   m a xi m u m  o v erl a p  b et w e e n
a dj a c e nt   wi n d o w s ( L = 1 ).   As  e x pl ai n e d  a n d  d e m o n str at e d
n u m eri c all y,  t h e  n o n- c o n v e x  a p pr o a c h e s  als o  t e n d  t o   w or k
w ell  f or L > 1  a n d   w h e n  t h e  hi g h-fr e q u e n ci es  of  t h e  d at a
ar e  s u p pr e ss e d.

I n  o ur  fir st  t h e or eti c al  r e s ult,   T h e or e m  1 0,   w e  a n al y z e
t h e  i niti ali z ati o n  al g orit h m  pr es e nt e d  i n   Al g orit h m  1  a n d
esti m at e  t h e  dist a n c e  b et w e e n  t h e  i niti ali z ati o n  v e ct or  a n d
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Fi g.  6.   C o m p aris o n  of t h e  a v er a g e r e c o v er y  err or ( o v er  1 0 0  e x p eri m e nts)  of t hr e e  al g orit h m s:   mi ni mi zi n g t h e   E R l oss f u n cti o n (I V. 1),   N C P C  a n d  Fi e n u p [ 3 1].
T h e  e x p eri m e nts   w er e  c o n d u c t e d  o n  si g n als  of  l e n gt h N = 5 3   wit h  a  r e ct a n g ul ar   wi n d o w  a n d L = 2.  ( a)   R e c o v er y  err or   wit h   G a ussi a n  i.i. d.  n ois e  as  a
f u n cti o n  of t h e  S N R   wit h W = 1 5.  ( b)   R e c o v er y  err or   wit h  P oiss o n  n oi s e  as  a  f u n cti o n  of t h e   wi n d o w’s  l e n gt h W .

Fi g.  7.   A v er a g e  r e c o v er y  err or  ( o v er 1 0 0  e x p eri m e nts   wit h  si g n als  of  l e n gt h N = 5 3,  a  r e ct a n g ul ar   wi n d o w  a n d L = 2)  of   mi ni mi zi n g  t h e   E R  l oss
f u n cti o n  (I V. 1)  a n d   N C P C   wit h  l o w- p ass e d  d ata.  P arti c ul arl y,   w e  us e d  t h e   m e as ur e d  d at a Z [m , k ] f or  all m a n d k = − K m a x , . . . , K m a x wit h K m a x = 1 8.
( a)   R e c o v er y  err or   wit h   G a ussi a n  i.i. d.  n ois e  as  a  f u n cti o n  of  t h e  S N R   wit h W = 1 5.  ( b)   R e c o v er y  err or   wit h  P oiss o n  n ois e  as  a  f u n cti o n  of  t h e   wi n d o w’s
l e n gt h W .

t h e  gr o u n d  tr ut h.   N e xt,   w e  st u d y  t h e  g e o m etr y  of  t h e  l o ss
f u n cti o n  (I V. 2),   w hi c h  c o ntr ols  t h e  b e h a vi or  of  o ur   E R   mi n-
i mi z ati o n  al g orit h m.   T o  t his  e n d,  s u p p o s e   w e   mi ni mi z e  t h e
E R l o ss  f u n cti o n  (I V. 2)  u si n g  gr a di e nt  d e s c e nt  f oll o w e d  b y  a
t hr e s h ol di n g  st e p  t h at  c a n  b e  u s e d  if  t h e  si g n al  is  b o u n d e d.
T his  s c h e m e  is  pr e s e nt e d  i n   Al g orit h m  6.  I n   T h e or e m  1 1
w e  est a blis h  t h e  e xist e n c e  of  a b a si n  of  attr a cti o n of  si z e

1
8
√

N W 2
ar o u n d  t h e  gl o b al   mi ni m u m  f or  si g n als   wit h  u nit

m o d ul u s  e ntri es.  I n  t h e  b a si n  of  attr a cti o n,  a  gr a di e nt  al g o-
rit h m  is  g u ar a nt e e d  t o  c o n v er g e  t o  a  gl o b al   mi ni m u m  at  a
g e o m etri c  r at e.   T his  r e s ult  is  tr u e  f or  a n y  gr a di e nt  s c h e m e
wit h  a t hr e s h ol di n g st e p  a s i n   Al g orit h m  6.   We  str e ss t h at t h e
t h e or eti c al  c o ntri b uti o n  of  t his  r es ult is li mit e d.   As  pr es e nt e d
i n   C or oll ar y  1 2,  t h e  esti m at e d  b asi n  of  attr a cti o n  is  s m all  s o
t h at  t h e or eti c all y   Al g orit h m  6 c o n v er g e s i n  t h e  s a m e  ar e a  i n

w hi c h  t h e  pr o bl e m  h a s  a  cl o s e d  li n e ar   L S  s ol uti o n.   T o  t h e
b e st  of  o ur  k n o wl e d g e, t his  is  t h e  fir st  r e s ult  q u a ntif yi n g t h e
si z e  of  t h e  b asi n  of  attr a cti o n  of  a  gr a di e nt  al g orit h m  i n  a
d et er mi nisti c  p h as e  r etri e v al  s et u p.   T his  is  i n  c o ntr ast  t o  t h e
b a si n  of  attr a cti o n  of  r a n d o m  p h a s e  r etri e v al  s et u p s   w hi c h  is
q uit e   w ell – u n d er st o o d.

A  cr u ci al  c o n diti o n  f or  t h e  s u c c ess  of  gr a di e nt  al g orit h ms
is  t h at  its  i niti ali z ati o n  is  s uf fi ci e ntl y  cl o s e  t o  t h e  gl o b al
mi ni m u m.   T h e f oll o wi n g r es ult  q u a nti fi es t h e  esti m ati o n  err or
of  t h e  pr o p os e d  i niti ali z ati o n  p r es e nt e d  i n   Al g orit h m  1  f or
b o u n d e d  si g n als  a n d L = 1.   T h e  err or  r e d u c e s  t o  z er o  as

W a p pr o a c h e s N + 1
2 .   T h e  c a s e  of L > 1 is dis c u ss e d bri e fl y

i n  S e cti o n  I V.   T h e  r es ult  is  st at e d  f or  a  n or m ali z e d  si g n al.
T h e  n or m  of t h e si g n al  c a n  b e  e sti m at e d  e a sil y fr o m t h e   m ai n
di a g o n al  of x x ∗ a s  e x pl ai n e d i n  S e cti o n  III.
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Al g o rit h m  6 Gr a di e nt   D es c e nt   Al g orit h m t o   Mi ni mi z e t h e   E R
L o ss  F u n cti o n s (I V. 1)  or  (I V. 2)

I n p ut: T h e   m e a s ur e m e nt s Z [m , k ] a s  gi v e n  i n  (II. 1)
a n d  ( o pti o n al) t hr e s h ol di n g  p ar a m et er B > 0.
O ut p ut: Esti m ati o n  of x .

1)  I niti ali z ati o n b y   Al g orit h m 1 (f or L = 1)  or   Al g orit h m 5
(f or L > 1 ).

2)   A p pl y t h e  u p d at e  r ul e  u ntil  c o n v er g e n c e:

a)   Gr a di e nt  st e p:

x̃ k = x k − 1 − μ ∇ f (x k − 1 ) ,

f or  st e p  si z e μ a n d ∇ f gi v e n i n  (I V. 3).
b)   O pti o n al t hr e s h ol di n g:

x k [n ] =
x̃ k [n ] if |x̃ k [n ]| ≤ B ,

B · p h a s e ( x̃ k [n ]) if |x̃ k [n ]| > B .

T h e o r e m  1 0: S u p p o s e  t h at L = 1, x 2 = 1, g is  a n

a d missi bl e   wi n d o w  of  l e n gt h W ≥ 2 a n d t h at x ∞ ≤ B
N

f or  s o m e  0 < B ≤ N
2 ( N − 2 W + 1 ) .   T h e n  u n d er t h e   m e a s ur e m e nt

m o d el  of  (II. 1), t h e i niti ali z ati o n  v e ct or  gi v e n i n   Al g orit h m  1
s atis fi es

d 2 (x 0 , x ) ≤ 2 1 − 1 − 2 B
N − 2 W + 1

N
.

P r o of: S e e  S e cti o n   VII- A.
T h e  pr o p erti es  of  t h e  gr a di e nt  al g orit h m   mi ni mi zi n g  t h e

E R  r el y  o n  t h e  g e o m etr y  of  t h e  l o ss  f u n cti o n  (I V. 2)  n e ar  t h e
gl o b al   mi ni m u m.   T h e  f oll o wi n g  r es ult  q u a nti fi es  t h e  si z e  of
t h e  b asi n  of  attr a cti o n  of  t h e  l o ss  f u n cti o n  (I V. 2),  n a m el y,
t h e  ar e a  i n   w hi c h  a  gr a di e nt  al g orit h m  is  g u ar a nt e e d  t o
c o n v er g e t o  a  gl o b al   mi ni m u m at  a  g e o m etri c r at e.   As  d e m o n-
str at e d i n  Fi g ur e  3, i n  pr a cti c e t h e  b asi n  of  attr a cti o n is  q uit e
l ar g e  f or  a  br o a d  f a mil y  of  si g n als.   T h e  pr o of  r eli es  o n
a  g e o m etri c  a n al y sis  of  t h e  l o ss  f u n cti o n  as  pr es e nt e d  i n
L e m m a s  1 5  a n d  1 6.

T h e o r e m  1 1: L et L = 1  a n d  s u p p o s e  t h at x ∈ R N
1 /

√
N

a n d

g is  a r e ct a n g ul ar   wi n d o w  of l e n gt h W .   A d diti o n all y, s u p p o s e
t h at d (x 0 , x ) ≤ 1

8
√

N W 2
, w h er e x 0 o b e y s x 0 ∞ ≤ 1√

N
.

T h e n,  u n d er t h e   m e a s ur e m e nt   m o d el (II. 1),   Al g orit h m  6   wit h
t hr e s h ol di n g  p ar a m et er B = 1√

N
a n d  st e p  si z e  0 < μ ≤ 2 / β

a c hi e v es t h e  f oll o wi n g  g e o m etri c  c o n v er g e n c e:

d 2 (x k , x ) ≤ 1 −
2 μ

α

k

d 2 (x 0 , x ) ,

w h er e α ≥ 4 N
W a n d β ≥ 2 5 6 N 2 W 3 .

P r o of: S e e  S e cti o n   VII- B.
C o m bi ni n g   T h e or e m s  1 0  a n d  1 1  l e a d s  t o  t h e  f oll o wi n g

c or oll ar y:
C o r oll a r y  1 2: S u p p o s e  t h at L = 1, x ∈ R N

1 /
√

N
, N is  a

pri m e  n u m b er  a n d g is  a  r e ct a n g ul ar   wi n d o w  of  l e n gt h W
t h at  s atis fi es:

2 W − 1 +
1

1 2 8 W 4
≥ N .

T h e n,  u n d er  t h e   m e a s ur e m e nt   m o d el  of  (II. 1),   Al g orit h m  6,
i niti ali z e d  b y   Al g orit h m  1,   wit h  t hr es h ol di n g  p ar a m et er B =

1√
N

a n d st e p si z e 0 < μ ≤ 2 / β a c hi e v es  t h e  f oll o wi n g

g e o m etri c  c o n v er g e n c e:

d 2 (x k , x ) ≤ 1 −
2 μ

α

k

d 2 (x 0 , x ) ,

w h er e α ≥ 4 N
W a n d β ≥ 2 5 6 N 2 W 3 .

P r o of: S e e  S e cti o n   VII- C.
We   m e nti o n t h at t h e  r e s ult  of   C or oll ar y  1 2 is  g o o d   m er el y

f or  l o n g   wi n d o ws.   H o w e v er,  i n  pr a cti c e   w e  o b s er v e  t h at  t h e
al g orit h m   w or k s   w ell  als o  f or  s h ort   wi n d o ws.   As   w e  dis c u ss
i n  S e cti o n   VIII,  bri d gi n g t his  t h e or eti c al  g a p  is  a n  i m p ort a nt
dir e cti o n f or  f ut ur e r e s e ar c h.

VII.   P R O O F S

A.   P r o of  of  T h e o r e m  1 0

T h e i niti ali z ati o n is  b as e d  o n  e xtr a cti n g t h e  pri n ci p al ei g e n-
v e ct or  of  t h e   m atri x X 0 d e fi n e d  i n   Al g orit h m  1.   B y  ass u m p-
ti o n, G ar e i n v erti bl e   m atri c es f or = − ( W − 1 ), . . . , W − 1
f or  s o m e W ≥ 2  a n d  h e n c e   w e  c a n  c o m p ut e ( s e e  (II. 7))

di a g (X 0 , ) = G − 1 y = di a g (X , ) .

F or = W , . . . , N − W w e  h a v e  di a g (X 0 , ) = 0.   L et  u s
t a k e  a l o o k  at t h e   m atri x E : = X − X 0 .   Cl e arl y, E is  n ot  z er o
at   m o st  o n N − 2 W + 1  di a g o n als.  I n  ot h er   w or ds,  i n  e a c h
r o w  a n d  c ol u m n,  t h er e  ar e  at   m o st N − 2 W + 1  n o n- z er o
v al u es.   L et i b e t h e  s et  of  n o n- z er o  v al u e s  of t h e it h r o w  of
E wit h  c ar di n alit y | i | ≤ N − 2 W + 1.   U si n g  t h e  f a ct  t h at

x ∞ = B
N w e  c a n  esti m at e

E ∞ : = m a x
i

j

|X [i, j] − X 0 [i, j]|

= m a x
i

j ∈ i

|X [i, j]|

= m a x
i

j ∈ i

|x [i] x [ j]|

≤
B ( N − 2 W + 1 )

N
.

T h e  s a m e  b o u n d  h ol d s  f or E 1 : = m a x j i |E [i, j]| a n d
t h er ef or e  b y   H öl d er’s i n e q u alit y   w e  g et

E 2 ≤ E ∞ E 1 =
B ( N − 2 W + 1 )

N
.

I n  or d er t o  c o m pl et e t h e  pr o of,   w e still  n e e d t o  s h o w t h at if
X − X 0 2 is s m all, t h e n d (x , x 0 ) is s m all as   w ell,   w h er e x 0 is

t h e pri n ci p al ei g e n v e ct or of X 0 wit h a p pr o pri at e n or m ali z ati o n.
T o  s h o w  t h at,   w e  f oll o w  t h e  o utli n e  of  i n  [ 1 8,  S e c.  7. 8].
O b s er v e  t h at  as G 0 is  i n v erti bl e  b y  ass u m pti o n,  t h e  n or m  of
x is  k n o w n  b y

x 2
2 =

N − 1

n = 0

(di a g (X , 0 ) n ] =

N − 1

n = 0

G − 1
0 y 0 [n ].

A c c or di n gl y,   w e  a ss u m e  h er ei n aft er   wit h o ut l o ss  of  g e n er alit y
t h at x a n d x 0 h a v e  u nit  n or m.   L et λ 0 b e t h e t o p  ei g e n v al u e
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of X 0 ,  ass o ci at e d   wit h x 0 .   We  o b s er v e t h at

λ 0 − x ∗
0 x

2
= x ∗

0 X 0 x 0 − x ∗
0 x x ∗ x 0

≤ X 0 − x x ∗
2

.

F urt h er m or e,  a s x 2 = 1 w e als o h a v e

λ 0 ≥ x ∗ X 0 x = x ∗ X 0 − x x ∗ x + 1

≥ 1 − X 0 − x x ∗
2

.

C o m bi ni n g t h e l ast t w o i n e q u aliti es   w e  g et

x ∗
0 x

2
≥ 1 − 2 X 0 − x x ∗

2

≥ 1 − 2 B
N − 2 W + 1

N
.

It t h e n  f oll o ws t h at   W

d 2 (x 0 , x ) ≤ 2 1 − 1 − 2 B
N − 2 W + 1

N
,

w h er e t h e t er m i n t h e  s q u ar e  r o ot is  p o siti v e  b y  a ss u m pti o n.

B.   P r o of  of  T h e o r e m  1 1

F or  fi x e d x , l et E b e  t h e  s et  of  v e ct or s  i n R N s atisf yi n g
z ∞ ≤ 1√

N
a n d d (x , z ) ≤ 1

8
√

N W 2
.   We  fir st  n e e d  t h e

f oll o wi n g  d e fi niti o n:
D e fi niti o n  1 3: We  s a y  t h at  a  f u n cti o n f s atis fi es  t h e r e g u-

l a rit y  c o n diti o n i n E if  f or  all  v e ct or s z ∈ E w e  h a v e

∇ f (z ), z − x e j φ ( z ) ≥
1

α
d 2 (z , x ) +

1

β
∇ f (z ) 2

2 ,

f or  s o m e  p o siti v e  c o n st a nts α, β .
T h e  f oll o wi n g l e m m a  st at es t h at if t h e  r e g ul arit y  c o n diti o n

is   m et, t h e n t h e  gr a di e nt  st e p  c o n v er g es t o  a  gl o b al   mi ni m u m
at  a  g e o m etri c r at e.

L e m m a  1 4:   Ass u m e t h at  f  s atis fi es t h e r e g ul a rit y c o n diti o n
f o r  all z ∈ E .   C o n si d e r t h e f oll o wi n g  u p d at e  r ul e

z k = z k − 1 − μ ∇ f (z k − 1 ) ,

f o r 0 < μ ≤ 2 / β .  T h e n,

d 2 (z k , x ) ≤ 1 −
2 μ

α
d 2 (z k − 1 , x ) .

P r o of: S e e i n  [ 1 8,  S e c.  7. 4].
I n  or d er  t o  s h o w  t h at  t h e  r e g ul arit y  c o n diti o n  of

D e fi niti o n  1 3  is   m et,   w e  pr es e nt  t w o  l e m m as  f or  si g n als
wit h  u nit   m o d ul u s  e ntri es.   T h e  fir st  r e s ult  s h o ws  t h at  t h e
gr a di e nt  of t h e l o ss f u n cti o n (I V. 2),  gi v e n  e x pli citl y i n  (I V. 3),
is  b o u n d e d  n e ar  its  gl o b al   mi ni m u m.   T his  i m pli es  t h at  t h e
l o ss  f u n cti o n  is  s m o ot h.   We  c o n si d er  h er e  o nl y  t h e  c a s e  of
a  r e ct a n g ul ar   wi n d o w g of  l e n gt h W .   T h e  e xt e n si o n  t o  n o n-
v a nis hi n g   wi n d o ws of l e n gt h W is str ai g htf or w ar d ( s e e r e m ar k
i n   A p p e n di x  F):

L e m m a  1 5:  S u p p o s e  t h at x ∈ R N
1 /

√
N

, z ∞ ≤ 1√
N

a n d

d (x , z ) ≤ 1√
N

. L et g b e  a  r e ct a n g ul a r   wi n d o w  of  l e n gt h   W .

T h e n, ∇ f (z ) a s  gi v e n i n  (I V. 3)  s atis fi e s

∇ f (z ) 2 ≤
8

L
W 2

√
N d (x , z ).

P r o of: S e e   A p p e n di x  F.

T h e  s e c o n d  l e m m a  s h o ws  t h at  t h e  i n n er  pr o d u ct  b et w e e n
t h e  gr a di e nt  a n d t h e  v e ct or z − x e j φ ( z ) is  p o siti v e if d (x , z ) ≤

1
8
√

N W 2
.   T his r e s ult i m pli es t h at − ∇ f (z ) p oi nts a p pr o xi m at el y

t o w ar d s x .   As  i n   L e m m a  1 5,   w e  c o n si d er  f or  si m pli cit y
r e ct a n g ul ar   wi n d o ws  of  l e n gt h W .   Yet,  t h e  a n al y si s  c a n  b e
e xt e n d e d t o  n o n- v a nis hi n g   wi n d o ws  of l e n gt h W . I n t his  c as e,
t h e  b o u n d s  ar e  d e p e n d e nt  o n  t h e  d y n a mi c  r a n g e  of g (f or
d et ails,  s e e  r e m ar k i n   A p p e n di x   G).

L e m m a  1 6:  S u p p o s e  t h at  L = 1 a n d g is  a  r e ct a n g ul a r
wi n d o w  of  l e n gt h   W .   F o r  a n y x ∈ R N

1 /
√

N
a n d z ∞ ≤ 1√

N
,

if  d (x , z ) ≤ 1
8
√

N W 2
, t h e n

∇ f (z ), z − x e j φ ( z ) ≥
W d 2 (x , z )

2 N
,

w h er e ∇ f (z ) is  gi v e n i n  (I V. 3).
P r o of: S e e   A p p e n di x   G.

We  n oti c e t h at t h e t hr e s h ol di n g st a g e  of   Al g orit h m  6  c a n n ot
i n cr e a s e t h e  err or as t h e si g n al is  ass u m e d t o  b e  b o u n d e d.   T h e
pr o of  of   T h e or e m  1 1 is t h e n  c o m pl et e d  b y  dir e ctl y l e v er a gi n g
l e m m as  1 5  a n d  1 6  a n d  s e ei n g t h at   D e fi niti o n  1 3  h ol d s i n  o ur
c as e   wit h  c o n st a nts α ≥ 4 N

W a n d β ≥ 2 5 6 N 2 W 3 .

C.   P r o of  of   C o r oll a r y  1 2

As N is  a  pri m e  n u m b er, g is  a n  a d missi bl e   wi n d o w
of  l e n gt h W ( s e e   L e m m a  5).   A c c or di n g  t o   T h e or e m  1 1,
w e   m er el y  n e e d t o  s h o w t h at t h e i niti ali z ati o n  p oi nt is   wit hi n
t h e  b asi n  of  attr a cti o n,  n a m el y, d (x , x 0 ) ≤ 1

8
√

N W 2
. Fr o m

L e m m a  1 0,   w e  k n o w t h at t h e i niti ali z ati o n  o b e y s

d 2 (x 0 , x ) ≤ 2 1 − 1 − 2
N − 2 W + 1

N
.

Usi n g  t h e  f a ct  t h at a ≤
√

a f or  all  0 ≤ a ≤ 1 a n d
s o m e  st a n d ar d  al g e br ai c  c al c ul ati o n s,   w e  c o n cl u d e  t h at  t h e
i niti ali z ati o n  of   Al g orit h m  1  is   wit hi n  t h e  b asi n  of  attr a cti o n
a s l o n g  a s

2 W − 1 +
1

1 2 8 W 4
≥ N ,

w hi c h  c o m pl et e s t h e  pr o of.

VIII.   D I S C U S S I O N

T his  p a p er  e x pl or e s  pr a cti c al,  ef fi ci e nt,  n o n- c o n v e x  p h a s e
r etri e v al  al g orit h m s   wit h  s o m e  d et er mi nisti c t h e or eti c al  g u ar-
a nt e e s.  P arti c ul arl y,   w e  pr o p o s e t w o l o c al  o pti mi z ati o n   m et h-
o d s  b as e d  o n   mi ni mi zi n g t h e   E R l o ss f u n cti o n  a n d  o pti mi zi n g
o n t h e   m a nif ol d  of  p h a s es.   T h e l att er is  a  n e w  p h a s e r etri e v al
al g orit h m t h at t a k e s i nt o  a c c o u nt t h e  s p e ci al  g e o m etr y  of t h e
p h a s e  r etri e v al  pr o bl e m.

Si n c e  t h e  o pti mi z ati o n  pr o bl e m s  ar e  n o n- c o n v e x,   w e  als o
pr o p o s e  a n i niti ali z ati o n   m et h o d.   T h e   m et h o d i s  b a s e d  o n t h e
i n si g ht  t h at,  f or  s uf fi ci e ntl y  l o n g   wi n d o ws,  t h e  si g n al  c a n  b e
r e c o v er e d  as  t h e  s ol uti o n  of  a  li n e ar   L S  pr o bl e m.   W hil e  t his
m a y  n ot  b e tr u e f or  s h ort er   wi n d o ws,   w e  u s e t h e   L S  s ol uti o n
t o  c o n str u ct  a  s p e ci al   m atri x  a n d i niti ali z e t h e l o c al  o pti mi z a-
ti o n  al g orit h m s   wit h  t h e  pri n ci p al  ei g e n v e ct or  of  t his   m atri x.
Si mil ar  i niti ali z ati o n  a p pr o a c h e s   w er e  s u g g e st e d  r e c e ntl y  f or
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p h a s e  r etri e v al  pr o bl e m s.   H o w e v er,  t h e y  ar e   m ai nl y  f o c u s e d
o n  r a n d o m  s et u p s  a n d  b a s e d  o n  pr o b a bili sti c  c o n si d er ati o n s.
F or L = 1,   w e  esti m at e t h e  dist a n c e  b et w e e n t h e i niti ali z ati o n
p oi nt  a n d  t h e  gr o u n d  tr ut h.   T h e  c a s e  of L > 1 r ais es s o m e
i nt er e sti n g q u e sti o n s.   As a  h e uristi c,   w e s u g g e st e d t o s m o ot hl y
i nt er p ol at e t h e   missi n g  e ntri es.   T his  pr a cti c e   w or k s  q uit e   w ell
si n c e  t h e   wi n d o w  a cts  as  a n  a v er a gi n g  o p er at or.   Cl e arl y,
t h e  i nt er p ol ati o n   m et h o d  d e p e n d s  o n  t h e   wi n d o w  s h a p e.
A   m ai n  c h all e n g e  f or  f ut ur e  r es e ar c h is  a n al y zi n g t h e  s etti n g
of L > 1.

F or  si g n als   wit h  u nit   m o d ul u s  e ntri es,   w e  pr o v e  i n
T h e or e m  1 1 t h at t h e   E R l o ss f u n cti o n h as a  b asi n  of attr a cti o n.
We  s h o w  n u m eri c all y  t h at  t h e  a ct u al  b asi n  of  attr a cti o n  is
l ar g er  t h a n  t h e  t h e or eti c al  b o u n d  a n d  e xists  f or  a  br o a d er
f a mil y  of  si g n als.   T h e  g a p  b et w e e n  t h e  a ct u al  si z e  of  t h e
b asi n  of  attr a cti o n  a n d t h e  t h e or eti c al  r es ult is  t h e  b ottl e n e c k
t h at  pr e v e nts  a  f ull t h e or eti c al  u n d er st a n di n g  of t h e  pr o p o s e d
al g orit h m s.  S p e ci fi c all y,  i m pr o vi n g   L e m m a  1 6   will  l e a d
dir e ctl y  t o  ti g ht er  esti m ati o n  of  t h e  si z e  of  t h e  b asi n  of
attr a cti o n.  I d e all y,  t his   w o ul d  l e a d  t o  t h e  c o n cl u si o n  t h at  t h e
pr o p o s e d i niti al  g u e ss li e s i n t h e  b a si n.

A P P E N D I X

A.   P r o of  of   P r o p o siti o n  6

B y  a ss u m pti o n, t h e   D F T  of g (P − g ) is  n o n- v a nis hi n g f or
= 0 , 1 , a n d t h e   m atri c e s G , = 0 , 1  as  gi v e n i n  (II. 7)  ar e

i n v erti bl e.   T h e n,   w e  c a n  c o m p ut e

x = G − 1 y , = 0 , 1 ,

w h er e X = x x ∗ , x = di a g (X , ) a n d y : = {Y [m , ]} N − 1
m = 0 .

B e c a u s e  of  t h e  f u n d a m e nt al  a m bi g uit y  of  p h a s e  r etri e v al,
t h e  fir st  e ntr y  c a n  b e s et  ar bitr aril y t o

√
x 0 [ 0] = |x [ 0]|.   T h e n,

a s   w e  a ss u m e  n o n- v a nis hi n g si g n als, t h e r e st  of t h e  e ntri e s  ar e
d et er mi n e d r e c ur si v el y f or n = 1 . . . , N − 1 b y

x 1 [n − 1]

x [n − 1]
=

x [n − 1] x [n ]

x [n − 1]
= x [n ] .

T his  c o m pl et es t h e  pr o of.

B.   P r o of  of   P r o p o siti o n  7

B y  ass u m pti o n, G is  a n i n v erti bl e   m atri x  f or | | ≤ W − 1
f or  s o m e W ≥ 2  ( s e e  (II. 7)).   H e n c e,   w e  c a n  c o m p ut e
di a g (X , ) = G − 1 y f or = 0 , M f or  a n y  1 ≤ M ≤ W − 1.
T h e  pr o of is  a  dir e ct  c or oll ar y  of t h e  f oll o wi n g l e m m a:

L e m m a: L et L = 1.  S u p p o s e  t h at x ∈ C N
1 /

√
N

a n d  l et

X = x x ∗ . Fi x M ∈ { 1 , . . . , N − 1 } a n d  l et X 0 b e  a   m atri x
o b e yi n g

di a g (X 0 , ) =
di a g (X , ) , = 0 , M ,

0 , ot h er wis e .

T h e n, x is  a  pri n ci p al  ei g e n v e ct ors  of X 0 ( u p  t o  gl o b al
p h a s e).

P r o of: B as e d  o n t h e s p e ci al str u ct ur e  of X 0 , t h e f oll o wi n g
c al c ul ati o n  s h o ws  t h at x is  a n  ei g e n v e ct or  of X 0 wit h 2

N as

t h e  ass o ci at e d  ei g e n v al u e:

(X 0 x ) [i] =

N

j = 1

X 0 [i, j]x [ j]

= X 0 [i, i]x [i] + X 0 [i, i + M ]x [i + M ]

= x [i] |x [i]|2 + x [i] |x [i + M ]|2

=
2

N
x [i].

We still  n e e d t o s h o w t h at x is a  pri n ci p al ei g e n v e ct or of X 0 .
Si n c e  e a c h  c ol u m n  a n d  r o w  of X 0 is  c o m p o s e d  of  t w o  n o n-
z er o  v al u es, it is  e vi d e nt t h at

X 0 ∞ : = m a x
i

j

|X 0 [i, j]| =
2

N
.

I n t h e  s a m e   m a n n er

X 0 1 : = m a x
j

i

|X 0 [i, j]| =
2

N
.

H e n c e  b y   H öl d er i n e q u alit y   w e  g et

X 0 2 ≤ X 0 1 X 0 ∞ =
2

N
.

c o m pl eti n g t h e  pr o of.

C.   P r o of  of P r o p o siti o n  8

As  t h e   m atri c es G ar e  i n v erti bl e  b y  ass u m pti o n  f or  all
= − ( W − 1 ), . . . , ( W − 1 ),   w e  c a n  c o m p ut e

di a g (X 0 , ) = G − 1 y = di a g (X , ) .

T h e  ass u m pti o n W ≥ N + 1
2 i m pli es  t h at X 0 = X .  S p e ci fi-

c all y,  o bs er v e t h at it is s uf fi ci e nt t o c o nsi d er o nl y W = N + 1
2

si n c e  f or  a n y | 1 | >
N + 1

2 , t h e   wi n d o w g P − 1 is  e q u al

t o  a n ot h er   wi n d o w g P − 2 f or  s o m e | 2 | ≤ N + 1
2 .

L et x̃ : = x / x 2 .   T h e n, x̃ is t h e  pri n ci p al  ei g e n v e ct or  of X
a n d t h e  n or m ali z ati o n  st a g e  of   Al g orit h m  1  gi v es

N − 1

n = 0

G − 1
0 y 0 [n ] = x 2 .

D.   Pr o of  of t h e   E q u alit y   B et w e e n t h e  L o ss   F u n cti o n s
(I V. 2)  a n d  (I V. 1)

R e c all t h at

f (u ) =
1

2

N
L − 1

m = 0

N − 1

k = 0

u ∗ H̃ m ,k u − Z [m , k ]
2

=
1

2

N
L − 1

m = 0

H̃ m − Z m
2
2 ,

w h er e Z m : =  {Z [m , k ]} N − 1
k = 0 ∈ R N a n d H̃ m : =

{u ∗ H̃ m ,k u }
N − 1
k = 0 ∈ R N .
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L et U b e  a  u nit ar y   m atri x.  Si n c e  u nit ar y   m atri c es  d o  n ot
c h a n g e t h e l e n gt h  of  a  v e ct or,   w e  h a v e

f (u ) =
1

2

N
L − 1

m = 0

U H̃ m − Z m
2
2

=
1

2

N
L − 1

m = 0

U H̃ m − U Z m
2
2 .

B y  c h o o si n g U t o  b e  t h e   D F T   m atri x  a n d  n or m ali z e,   w e  g et
e x a ctl y t h e l o ss  f u n cti o n i n  (I V. 2).

E.   P r o of  of  L e m m a  9

We  i d e ntif y  t h e  c o n v ol uti o n g ∗ x b y  t h e   m atri x- v e ct or
pr o d u ct G x , w h er e G ∈ R N × N is a cir c ul a nt   m atri x   w h o s e  fir st
c ol u m n  is  gi v e n  b y g̃ : = {g [(− n ) m o d N ]} N − 1

n = 0 . F or L = 1,
w e  c a n t h e n   writ e

y = G x = F ∗ F x ,

w h er e F is  a   D F T   m atri x  a n d is  a  di a g o n al   m atri x   w h o s e
e ntri es  ar e  t h e   D F T  of g̃ .   B y  ass u m pti o n,  t h e  fir st N / L
e ntri es  of ar e  o n e s  a n d  t h e  r e st  ar e  z er o s.   H e n c e,   w e   m a y
writ e

y = F ∗
p F p x , ( E. 1)

w h er e F p ∈ C N / L × N c o n sists  of t h e  fir st N / L r o w s  of F .

L et G L ∈ R
N
L × N b e  a   m atri x  c o n sists  of  t h e

{ j L : j = 0 , . . . , N / L − 1 } r o w s  of G . F or L > 1,   w e  g et
t h e  d o w n s a m pl e d  s y st e m  of  e q u ati o n s

y L = G L x = F ∗
L F x ,

w h er e F L c o n sists of t h e { j L : j = 0 , . . . , N / L − 1 } c ol u m n s
of F ( n oti c e  t h e  diff er e n c e  b et w e e n F L a n d F p ).   We  ai m
at  s h o wi n g  t h at  e x p a n di n g  a n d  i nt er p ol ati n g y L a s  e x pl ai n e d
i n   L e m m a  9  r es ults  i n y .   Dir e ct  c o m p ut ati o n  s h o w s  t h at
t h e  e x p a n si o n  st a g e  a s  d e s cri b e d  i n  (I V. 1 2)  is  e q ui v al e nt  t o
m ulti pl yi n g  b ot h  si d es  b y F ∗ F L :

ỹ L = F ∗ F L y L = F ∗ F L F ∗
L F x .

L et  u s  d e n ot e T : = F L F ∗
L ,   w hi c h  is  a   T o e plit z   m atri x   wit h

L o n  t h e j N
L di a g o n als  f or j = 0 , . . . , N / L − 1 a n d

z er o  ot h er wi s e.   B e c a u s e  of  t h e  str u ct ur e  of w e  c a n  t h e n
writ e

ỹ L = F ∗ T p F p x ,

w h er e T p ∈ R N × N
L c o n sists  of  t h e  fir st N / L c ol u m n s  of T .

Dir e ct  c al c ul ati o n  s h o ws  t h at F p F ∗ T p = I , w h er e I is  t h e
i d e ntit y   m atri x.   T h er ef or e   w e  c o n cl u d e t h at

F ∗
p F p ỹ L = F ∗

p F p x . ( E. 2)

C o m p ari n g ( E. 2)   wit h  ( E. 1)  c o m pl et e s t h e  pr o of.

F.   P r o of  of  L e m m a  1 5

R e c all t h at

∇ f (z ) =

N / L − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − Y [m , ]

· H m , + H T
m , z ,

w h er e

H m , : = P − D m L D m L − ,

D m L is  a  di a g o n al   m atri x   w h o s e  e ntri e s  ar e {g [m L − n ]} N − 1
n = 0

f or  fi x e d m a n d P is  a   m atri x  t h at  s hifts  ( cir c ul arl y)  t h e
e ntri es  of  a n  ar bitr ar y  v e ct or  b y e ntri es.   We  o b s er v e  t h at
f or  a  r e ct a n g ul ar   wi n d o w  of  l e n gt h W a n d z ∞ ≤ 1√

N
, w e

h a v e z 2 ≤ 1 a n d

H m , z
2

≤ H m , 2
z 2 ≤ 1 ,

s o t h at

∇ f (z ) 2 ≤ 2

N / L − 1

m = 0

W − 1

= − ( W − 1 )

Y [m , ] − z T H m , z .

( F. 1)

F or  c o n v e ni e n c e,  l et  u s  d e n ot e d (x , z ) = ε√
N

f or  s o m e

ε ≤ 1  a n d  t h er ef or e |z [n ]|   ≥ 1 − ε√
N

f or  all n .   A c c or di n gl y,  f or

a n y (n , k ),

(1 − ε ) 2

N
≤ | z [n ]z [n + k ]|   ≤

1

N
.

Si n c e x [n ] a n d z [n ]| h a v e t h e  s a m e  si g n  p att er n,   w e  h a v e

|x [n ]x [n + k ] − z [n ]z [n + k ]| ≤
1

N
1 − (1 − ε ) 2

≤
2 ε

N
,

a n d  f or  all m , ≥ 0,

Y [m , ] − z T H m , z

≤

m −

k = m − ( W − 1 )

|x [n ]x [n + k ] − z [n ]z [n + k ]|

≤

m −

k = m − ( W − 1 )

2 ε

N
≤

2 W ε

N
=

2 W d (x , z )
√

N
. ( F. 2)

T h e  s a m e  b o u n d  h ol d s  f or < 0.   C o m bi ni n g  ( F. 1)  a n d  ( F. 2)
w e  c o n cl u d e t h at

∇ f (z ) 2 ≤ 2

N / L − 1

m = 0

W − 1

= − ( W − 1 )

2 W d (x , z )
√

N

=
8

L
W 2

√
N d (x , z ).

R e m a r k: I n  c a s e  of  a  n o n- v a nis hi n g   wi n d o w  of  l e n gt h W ,
o n e  c a n  e a sil y  b o u n d  t h e  gr a di e nt  u si n g  t h e  s a m e  t e c h ni q u e,
w hil e t a ki n g i nt o  a c c o u nt   m a x n |g [n ]| i n t h e i n e q u aliti es.
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G.   P r o of  of  L e m m a  1 6

R e c all t h at  ( s e e  (I V. 3))

∇ f (z ), z − x e j φ ( z )

=

N / L − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x

· z − x e j φ ( z )
T

H m , + H T
m , z .

Si n c e x T H T
m , z = z T H m , x w e  h a v e  f or  fi x e d (m , ) a n d

φ ( z ) ∈ { 0 , π }:

z − x e j φ ( z )
T

H m , + H T
m , z

= z − x e j φ ( z )
T

H m , z − x e j φ ( z )

+ z T H m , z − x T H m , x .

T h er ef or e,

∇ f (z ), z − x e j φ ( z )

=

N − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x
2

+

N − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x

· z − x e j φ ( z )
T

H m , z − x e j φ ( z ) . ( G. 1)

Cl e arl y,  if z = x e j φ ( z ) t h e n ∇ f (z ), z − x e j φ ( z ) = 0.   Ot h er-
wis e, t h e  fir st t er m  of ( G. 1) is stri ctl y  p o siti v e.   H e n c e, i n  or d er
t o  a c hi e v e  a  l o w er  b o u n d  o n  ( G. 1),   w e  fir st  d eri v e  a n  u p p er
b o u n d  o n t h e  s e c o n d t er m  a n d t h e n  b o u n d t h e  fir st t er m fr o m
b el o w.

B y  ass u m pti o n d (x , z ) ≤ 1√
N

.   D e n ot e |x [n ]e j φ ( z ) −

z [n ]| : = ε n√
N

f or  s o m e ε n ≤ 1.   We  o b s er v e t h at n ( ε n√
N

) 2 =

d 2 (x , z ). F or fi x e d ≥ 0,   w e  c a n  u s e  t h e   C a u c h y- S c h w ar z
i n e q u alit y t o  o bt ai n:

N − 1

m = 0

z − x e j φ ( z )
T

H m , z − x e j φ ( z )

=

N − 1

m = 0

m −

n = m − ( W − 1 )

z [n ] − x [n ] e j φ ( z )

· z [n + ] − x [n + ] e j φ ( z )

≤ W

N − 1

m = 0

ε 2
m

N

N − 1

m = 0

ε 2
m +

N
= W d 2 (x , z ).

T h e  s a m e  b o u n d  h ol d s  f or < 0.   C o m bi ni n g  t h e  l ast  r es ult
wit h  ( F. 2)   w e  g et f or t h e  s e c o n d t er m i n  ( G. 1) t h at

N − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x

· z − x e j φ ( z )
T

H m , z − x e j φ ( z ) ≤
4

√
N

W 3 d 3 (x , z ).

( G. 2)

N e xt,   w e  ai m  t o  b o u n d t h e  fir st  t er m  of  ( G. 1)  fr o m  b el o w
as  f oll o ws:

N − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x
2

≥

N − 1

m = 0

z T H m ,0 z − x T H m ,0 x
2

=

N − 1

m = 0

⎛

⎝
m

n = m − ( W − 1 )

z 2 [n ] − x 2 [n ]

⎞

⎠

2

≥

N − 1

m = 0

m

n = m − ( W − 1 )

z 2 [n ] − x 2 [n ]
2

, ( G. 3)

w h er e  t h e  l ast  i n e q u alit y  is  tr u e  si n c e x 2 [n ] ≥ z 2 [n ]
a n d  f or  a n y  p o siti v e  ( or  n e g ati v e)  s e q u e n c e {a i } w e  h a v e

i a i
2

≥ i a 2
i .  F urt h er m or e,  si n c e |z [n ]|   = 1 − ε n√

N
w e

h a v e

N − 1

m = 0

m

n = m − ( W − 1 )

z 2 [n ] − x 2 [n ]
2

=
1

N 2

N − 1

m = 0

m

n = m − ( W − 1 )

1 − (1 − ε n ) 2
2

=
W

N 2

N − 1

n = 0

2 ε n − ε 2
n

2
.

T h er ef or e,  si n c e ε n ≤ 1 f or all n w e  c o n cl u d e t h at

N − 1

m = 0

W − 1

= − ( W − 1 )

z T H m , z − x T H m , x
2

≥
W

N 2

N − 1

n = 0

ε 2
n =

W d 2 (x , z )

N
. ( G. 4)

Pl u g gi n g ( G. 2)  a n d  ( G. 4) i nt o  ( G. 1)  yi el d s

∇ f (z ), z − x ≥
W d 2 (x , z )

N
1 − 4

√
N W 2 d (x , z )

≥
W d 2 (x , z )

2 N
,

w h er e t h e l ast i n e q u alit y  h ol d s f or d (x , z ) ≤ 1
8
√

N W 2
.

R e m a r k: O b s er v e  t h at  t h e  a n al y sis  f or  n o n- v a nis hi n g   wi n-
d o ws  of l e n gt h W r e q uir e s  o nl y  a  s m all   m o di fi c ati o n.  I n t his
c a s e,  o n e  s h o ul d  u s e  t h e   m a xi m al  a n d  t h e   mi ni m al  v al u e s
of  t h e   wi n d o w  i n  t h e  a b o v e  i n e q u aliti es.  F or  i n st a n c e,  o n e
w o ul d  n e e d t o t a k e  g mi n : = mi n n = 0 ,...,W − 1 |g [n ]| i nt o  a c c o u nt
i n  ( G. 3).
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T a mi r   B e n d o r y r e c ei v e d  his  P h D  d e gr e e  fr o m  t h e   El e ctri c al   E n gi n e eri n g
d e p art m e nt  at t h e   Te c h ni o n  - Isr a el  I nstit ut e  of   Te c h n ol o g y i n  2 0 1 5.   B et w e e n
S e pt e m b er  2 0 1 5  a n d  S e pt e m b er  2 0 1 6  h e   w as  a  p ost d o ct or al  r es e ar c h er   wit h
t h e  S A M P L  l a b  i n  t h e   El e ctri c al   E n gi n e eri n g  d e p art m e nt  at  t h e   Te c h ni o n  -
Isr a el I nstit ut e  of   Te c h n ol o g y.   C urr e ntl y,  h e is  a  p ost d o ct or al r es e ar c h er i n t h e
Pr o gr a m i n   A p pli e d  a n d   C o m p ut ati o n al   M at h e m ati cs  at  Pri n c et o n   U ni v ersit y.
His  r es e ar c h  f o c us es  o n  t h e  d esi g n  a n d  t h e   m at h e m ati c al  u n d erst a n di n g  of
ef fi ci e nt  al g orit h m s  f or  d at a  s ci e n c e  a n d  si g n al  pr o c essi n g  a p pli c ati o ns.

Y o ni n a   C.   El d a r ( S’ 9 8 – M’ 0 2 – S M’ 0 7 – F’ 1 2)  r e c ei v e d  t h e   B. S c.  d e gr e e  i n
P h ysi cs i n  1 9 9 5  a n d t h e   B. S c.  d e gr e e  i n   El e ctri c al   E n gi n e eri n g  i n  1 9 9 6  b ot h
fr o m   Tel- A vi v   U ni v ersit y  ( T A U),   Tel- A vi v,  Isr a el,  a n d  t h e  P h. D.  d e gr e e  i n
E l e ctri c al   E n gi n e eri n g  a n d   C o m p ut er S ci e n c e i n  2 0 0 2 fr o m t h e   M ass a c h us etts
I nstit ut e  of   Te c h n ol o g y  ( MI T),   C a m bri d g e.

S h e is  c urr e ntl y  a  Pr of ess or i n t h e   D e p a rt m e nt  of   El e ctri c al   E n gi n e eri n g  at
t h e   Te c h ni o n  -  Isr a el  I nstit ut e  of   Te c h n ol o g y,   H aif a,  Isr a el,   w h er e  s h e  h ol ds
t h e   E d w ar ds   C h air  i n   E n gi n e eri n g.  S h e  is  als o  a   R es e ar c h   Af fili at e   wit h  t h e
R es e ar c h   L a b or at or y  of   El e ctr o ni cs  at   MI T,  a n   A dj u n ct  Pr of ess or  at   D u k e
U ni v ersit y,  a n d   w as  a   Visiti n g  Pr of ess or  at  St a nf or d   U ni v ersit y,  St a nf or d,   C A.
S h e is  a   m e m b er  of t h e  Isr a el   A c a d e m y  of  S ci e n c es  a n d   H u m a niti es  ( el e ct e d
2 0 1 7),  a n  I E E E  F ell o w  a n d  a   E U R A SI P  F ell o w.

H er r es e ar c h i nt er ests  ar e i n t h e  br o a d  ar e as  of st atisti c al  si g n al  pr o c essi n g,
s a m pli n g  t h e or y  a n d  c o m pr ess e d  s e nsi n g,  o pti mi z ati o n   m et h o ds,  a n d  t h eir
a p pli c ati o ns  t o  bi ol o g y  a n d  o pti cs.

Dr.   El d ar  h as r e c ei v e d   m a n y a w ar ds f or e x c ell e n c e i n r es e ar c h a n d t e a c hi n g,
i n cl u di n g  t h e  I E E E  Si g n al  Pr o c essi n g  S o ci et y   Te c h ni c al   A c hi e v e m e nt   A w ar d
( 2 0 1 3), t h e  IE E E/ A E S S  Fr e d   N at h a ns o n   M e m ori al   R a d ar   A w ar d  ( 2 0 1 4),  a n d
t h e  I E E E   Ki y o   T o mi y as u   A w ar d  ( 2 0 1 6).  S h e   w as  a   H or e v  F ell o w  of  t h e
L e a d ers  i n  S ci e n c e  a n d   Te c h n ol o g y  pr o gr a m  at  t h e   Te c h ni o n  a n d  a n   Al o n
F ell o w.  S h e r e c ei v e d t h e   Mi c h a el   Br u n o   M e m ori al   A w ar d fr o m t h e   R ot hs c hil d
F o u n d ati o n,  t h e   Wei z m a n n  Pri z e  f or   E x a ct  S ci e n c es,  t h e   W olf  F o u n d ati o n
Krill  Pri z e  f or   E x c ell e n c e  i n  S ci e nti fi c   R es e ar c h,  t h e   H e nr y   Ta u b  Pri z e  f or
E x c ell e n c e  i n   R es e ar c h  (t wi c e),  t h e   H ers h el   Ri c h  I n n o v ati o n   A w ar d  (t hr e e
ti m es),  t h e   A w ar d  f or   W o m e n   wit h   Disti n g uis h e d   C o ntri b uti o ns,  t h e   A n dr e
a n d   B ell a   M e y er   L e ct ur es hi p, t h e   C ar e er   D e v el o p m e nt   C h air  at t h e   Te c h ni o n,
t h e   M uri el   &   D a vi d  J a c k n o w   A w ar d  f or   E x c ell e n c e  i n   Te a c hi n g,  a n d  t h e
Te c h ni o n’s   A w ar d  f or   E x c ell e n c e  i n   Te a c hi n g  (t w o  ti m es).  S h e  r e c ei v e d
s e v er al  b est  p a p er  a w ar ds  a n d  b est  d e m o  a w ar ds  t o g et h er   wit h  h er  r es e ar c h
st u d e nts  a n d  c oll e a g u es  i n cl u di n g  t h e  SI A M  o utst a n di n g  P a p er  Pri z e,  t h e
U F F C   O utst a n di n g  P a p er   A w ar d,  t h e  Si g n al  Pr o c essi n g  S o ci et y   B est  P a p er
A w ar d  a n d t h e  I E T   Cir c uits,   D e vi c es  a n d  S yst e m s  Pr e mi u m   A w ar d,  a n d   w as
s el e ct e d  as  o n e  of t h e  5 0   m ost i n fl u e nti al   w o m e n  i n  Isr a el.

S h e   w as a   m e m b er of t h e   Y o u n g Isr a el   A c a d e m y  of  S ci e n c e a n d   H u m a niti es
a n d  t h e  Isr a el   C o m mitt e e  f or   Hi g h er   E d u c ati o n.  S h e  is  t h e   E dit or  i n   C hi ef
of  F o u n d ati o ns  a n d   Tr e n ds  i n  Si g n al  Pr o c essi n g,  a   m e m b er  of  t h e  I E E E
S e ns or   Arr a y  a n d   M ulti c h a n n el   Te c h ni c al   C o m mitt e e  a n d  s er v es  o n  s e v er al
ot h er  I E E E  c o m mitt e es.  I n  t h e  p ast,  s h e   w as  a  Si g n al  Pr o c essi n g  S o ci et y
Disti n g uis h e d   L e ct ur er,   m e m b er  of  t h e  I E E E  Si g n al  Pr o c essi n g   T h e or y  a n d
M et h o ds  a n d   Bi o I m a gi n g  Si g n al  Pr o c essi n g t e c h ni c al  c o m mitt e es,  a n d s er v e d
as  a n  ass o ci at e  e dit or  f or  t h e  I E E E   Tr a ns a cti o ns  o n  Si g n al  Pr o c essi n g,  t h e
E U R A SI P J o ur n al  of  Si g n al   P r o c essi n g , t h e SI A M J o ur n al  o n   M atri x   A n al ysis
a n d   A p pli c ati o ns , a n d t h e SI A M  J o ur n al  o n  I m a gi n g  S ci e n c es . S h e w as
C o- C h air  a n d   Te c h ni c al   C o- C h air  of  s e v er al  i nt er n ati o n al  c o nf er e n c es  a n d
w or ks h o ps.

S h e  is  a ut h or  of  t h e  b o o k  " S a m pli n g   T h e or y:   B e y o n d   B a n dli mit e d  S ys-
t e m s "  a n d  c o- a ut h or  of t h e  b o o ks  " C o m pr ess e d  S e nsi n g "  a n d  " C o n v e x   O pti-
mi z ati o n   M et h o ds  i n  Si g n al  Pr o c essi n g  a n d   C o m m u ni c ati o ns ",  all  p u blis h e d
b y   C a m bri d g e   U ni v ersit y  Pr ess.

Ni c ol as   B o u m al is  a n  i nstr u ct or   wit h  t h e   m at h e m ati cs  d e p art m e nt  a n d  t h e
pr o gr a m  i n  c o m p ut ati o n al  a n d  a p pli e d   m at h e m ati cs  at  Pri n c et o n   U ni v ersit y
si n c e  F e br u ar y  2 0 1 6.   H e  o bt ai n e d  his P h D  i n  a p pli e d   m at h e m ati cs  fr o m  t h e
U ni v ersit é  c at h oli q u e  d e   L o u v ai n i n  2 0 1 4.  I n  b et w e e n,  h e   w as  a  p ost d o ct or al
r es e ar c h er   wit h  I nri a  i n  t h e  SI E R R A  t e a m  i n  P aris.   H e  is  i nt er est e d  i n
o pti mi z ati o n i n  g e n er al,  a n d  o pti mi z ati o n  o n   m a nif ol ds i n  p arti c ul ar, f or   w hi c h
h e  d e v el o ps   M a n o pt.


