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Non-Convex Phase Retrieval From
STFT Measurements

Tamir Bendory. Yonina C. Eldar, Fellow, IEEE. and Nicolas Boumal

Abstract— The problem of recovering a one-dimensional signal
from its Fourier transform magnitude, called Fourier phase
retrieval, is ill-posed in most cases. We consider the closely-related
problem of recovering a signal from its phaseless short-time
Fourier transform (STFT) measurements. This problem arises
naturally in several applications, such as ultra-short laser pulse
characterization and ptychography. The redundancy offered
by the STFT enables unique recovery under mild conditions.
We show that in some cases the unique solution can be obtained
by the principal eigenvector of a matrix, constructed as the
solution of a simple least-squares problem. When these conditions
are not met, we suggest using the principal eigenvector of this
matrix to initialize non-convex local optimization algorithms and
propose two such methods. The first is based on minimizing
the empirical risk loss function, while the second maximizes
a quadratic function on the manifold of phases. We prove
that under appropriate conditions, the proposed initialization is
close to the underlying signal. We then analyze the geometry
of the empirical risk loss function and show numerically that
both gradient algorithms converge to the underlying signal
even with small redundancy in the measurements. In addition,
the algorithms are robust to noise.

Index Terms—Phase retrieval, short-time Fourier transform,
non-convex optimization, spectral initialization, least-squares,
ptychography, ultra-short laser pulse characterization, optimiza-
tion on manifolds.

I. INTRODUCTION

HE problem of recovering a signal from its Fourier

transform magnitude arises in many areas in engineering
and science, such as optics, X-ray crystallography, speech
recognition, blind channel estimation, alignment and astron-
omy [5]. [9]. [27]. [33]. [41]. [46]. [66]. [72]. This problem
is called Fourier phase retrieval and can be viewed as a
special case of a quadratic system of equations. The latter area
received considerable attention recently, partially due to its
strong connections with the fields of compressed sensing and
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matrix completion; see for instance [15]-[17], [19], [25],
[60], [64], [65]. Contemporary surveys of the phase retrieval
problem from a signal processing point of view can be found
in [8], [37]. and [59]. Phase retrieval for one-dimensional (1D)
signals is an ill-posed problem unless the signal has the
minimum phase property [34], [56]. In this special case,
the signal can be recovered by several tractable algorithms
(see for instance of [21, Sec. 2.6]). Particularly, in [34] it was
shown that a semidefinite program (SDP) relaxation achieves
the optimal solution in the least-squares (LS) sense. For
general signals, two main approaches are typically suggested.
The first builds upon prior knowledge on the signal’s support,
such as sparsity or a portion of the underlying signal [28].
[39]. [53]. [58]. [60]. [68]. An alternative strategy makes
use of additional measurements. Such measurements can be
obtained by structured illuminations and masks [15]. [17], [32]
or by measuring the magnitude of the short-time Fourier
transform (STFT) [26], [38]. In [26], it was demonstrated that
for the same number of measurements, the STFT magnitude
leads to better performance than an over-sampled discrete
Fourier transform (DFT).

This paper deals with the problem of recovering a 1D
signal from its STFT magnitude. The STFT of a 1D signal
x € CV can be interpreted as the Fourier transform of the
signal multiplied by a real sliding window g € RV with
support size W and is defined as

N-1
X[m, k] := Z x[nlglmL — nle=2xikn/N
n=0
where k =0,...,N—1,m=0,...,[¥] — 1 and L deter-
mines the separation in time between adjacent sections. The
pseudo-inverse of the STFT is given by

ZH]_

m=0

(L.1)

; X[m, nlglmL — n]

x[n] = (12)

Zm_' iglmL — n]|?

m=0
where X[m, n] is the inverse DFT of X|[m, k] for fixed m with
respect to the second variable [26]. In the sequel. all indices
should be considered as modulo the signal’s length N.
We assume that x and g are periodically extended over the
boundaries in (L.1).

The problem of recovering a signal from its STFT mag-
nitude |X[m, k]|%, frequently called spectrogram, arises in
several applications in optics and speech processing [31], [47].
Particularly, it serves as the model for a popular vari-
ant of an ultra-short laser pulse characterization technique

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.htm] for more information.



468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO, 1, JANUARY 2018

called Frequency-Resolved Optical Gating (referred to as
X-FROG) [6], [10], [63]. Another important application is
ptychography in which a moving probe is used to sense
multiple diffraction measurements [44], [45]. [54], [70].

Several algorithms were suggested to recover a signal
from the magnitude of its STFI. The classical method,
proposed by Griffin and Lim [31], is a modification of
the alternating projection (or reduction error) algorithms of
Gerchberg and Saxton [29] and Fienup [28]. The properties of
this method are not well understood (for analysis of alternating
projection algorithms in phase retrieval, see [45], [50], [65]).
In [38], the authors prove that a non-vanishing signal can be
recovered by an SDP with maximal overlap between adjacent
windows (L = 1). They also demonstrate empirically that the
algorithm works well with less restrictive requirements on the
window and is robust to noise. Despite the appealing numerical
performance, solving an SDP requires high computational
resources. Recently, an interesting recovery approach was pro-
posed in [52]. This paper suggests a multi-stage method. based
on spectral clustering and phase synchronization. It is shown
that the algorithm achieves stable estimation (and exact in
the noise-free setting) with only O(N log N) phaseless STFT
measurements. However, this technique requires a random
window of length W = N, while in most applications it
is common to work with shorter windows. Another line of
works [35], [36] suggest applying a phase synchronization
framework [3], [4], [14], [21], [51], [61]. It was shown that
even for short windows, the sought signal can be recovered
exactly and efficiently by spectral and greedy techniques.
These methods are accompanied by stability guarantees. Their
main drawback is that they rely on reliable estimates of the
temporal magnitude, which do not always exist.

Here, we take a different approach and propose a data-
driven initialization technique, followed by non-convex gra-
dient algorithms. We begin by taking the 1D DFT of the
acquired data with respect to the frequency variable (the
second variable of the STFT). This transformation reveals
the underlying structure of the data and greatly simplifies the
analysis. As a direct consequence, we show that for L = 1
and sufficiently long windows W = [&‘2'—1] (and some mild
additional conditions), one can recover the signal by extracting
the principal eigenvector of a designed matrix, constructed as
the solution of a simple linear LS problem. We refer to this
matrix as the approximation matrix since it approximates the
correlation matrix X := xx*,

‘When the conditions for a closed-form solution are not met,
we propose using the principal eigenvector of the approxima-
tion matrix to initialize two non-convex algorithms. The first
is based on minimizing a standard quadratic loss function,
frequently called the empirical risk (ER). Inspired by the
phasecut method [30], [64]. we also propose a new phase
retrieval algorithm, called Non-Convex PhaseCut (NCPC),
that maximizes a quadratic function over the set of phases.
Each step of the algorithm follows the component of the
gradient which agrees with the phase constraints. As will be
shown, the ER technique is more stable in the low signal-
to—noise ratio (SNR) regimes, while NCPC is superior in
high SNR environments and for short windows. Our approach

deviates in two important aspects from the recent line of
work in non-convex phase retrieval [18], [22], [48]. [57], [65].
[67], [71]. First, all these papers focus their attention on the
setup of phase retrieval with random sensing vectors and rely
heavily on probabilistic considerations. In this case, efficient
algorithms were designed to estimate the signal from O(N)
measurements. In contrast, we consider a deterministic frame-
work. Second, we construct our approximation matrix by the
solution of a LS problem, whereas the aforementioned papers
take a superposition of the measurements to approximate X.

The properties of non-convex algorithms depend heavily
on the initialization method and the geometry of the loss
functions. For L = 1, we estimate the distance between the
proposed initialization and the target signal, which decays
to zero as W tends to % If the signal has unit modulus
entries, then a slight modification of our initialization recovers
the signal exactly for W > 2. In the later case, we also
prove the existence of a basin of attraction around the global
minimum of the ER loss function and estimate its size. In the
basin of attraction, the algorithm is guaranteed to converge
to a global minimum at a geometric rate. We note that while
the theoretical guarantees of the algorithms are limited, their
experimental performance is significantly better. Particularly,
the algorithms perform well with small redundancy in the
measurements and are robust in the presence of noise.

The paper is organized as follows. We begin in Section II
by formulating mathematically the problem of phase retrieval
from STFT magnitude measurements. In Section Il we dis-
cuss the uniqueness of the solution and present conditions
under which it has a closed-form LS expression. Additionally,
we present a method that recovers signals with unit modulus
entries under mild conditions. Section I'V presents the two non-
convex algorithms with the proposed initialization. Section V
shows numerical results and Section VI presents our theoret-
ical findings regarding the proposed initialization and the ER
loss function. Proofs are provided in Section VII. Section VIII
concludes the paper, discusses its main implications and draws
potential future research directions.

Throughout the paper we use the following notation.
Boldface small and capital letters denote vectors and matri-
ces, respectively. We use Z" and Z* for the transpose
and Hermitian of a matrix Z; similar notation is used for
vectors. We further use Z' and tr(Z) for the Moore—Penrose
pseudo-inverse and the trace of the matrix Z, respectively.
The fth circular diagonal of a matrix Z is denoted by
diag (Z, £). Namely, diag (Z, £) is a column vector with entries
Zli,i+f)mod N] fori = 0,...,N — 1. We define the
sign of a complex number a as phase (a) := ﬁ[ fora £ 0
and zero otherwise. We also use '®’, ‘o’ and '« for the
Hadamard (point-wise) product, composition of functions and
convolution, respectively. The set of all complex (real) signals
of length N whose entries have modulus @ > 0 are denoted
by C¥ (RY). Namely, z € CV means that |z[n]| = a for all n.

I1. PROBLEM FORMULATION
We aim at recovering an underlying signal x € CV from
the magnitude of its STFT, i.e., from measurements

Zlm, k] = |XIm. k1]>. (IL.1)
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Note that the signals x and xe/? yield the same measurements
for any global phase ¢ € R and therefore the phase ¢ cannot
be recovered by any method. This global phase ambiguity
leads naturally to the following definition:

Definition I1: The distance between
defined as

two vectors is

min

d -
e $el0,2x)

"z i xef¢“ .
2
If d(z,x) = 0 then we say that x and z are equal up fo
global phase. The phase ¢ € [0, 2x) attaining the minimum
is denoted by ¢(z), i.e..
Nz — xe”" !
2

In the sequel, we make use of the notion of non-vanishing
signals, defined as follows:

Definition 2: A vector z € CV is called non-vanishing if
Zlnl £#0 foralln =0,...,N — 1.

Instead of treating the measurements (I1.1) directly, we often
consider the acquired data in a transformed domain by taking
its 1D DFT with respect to the frequency variable (normalized
by 1/N). Then, our measurement model reads

(z) =arg min
() g¢€[0,2x)

N-1
1 e
Yim, €= & > Zim, ke 2mik/N
k=0

N-1
= > xInlx[n + €lgimL — nigimL —n — 2.
n=0
(11.2)

When W < £ < N—W, we have Y[m, €] = 0 for all m. In this
sense, Y[m, {] can be interpreted as a “W — bandlimited”
function. Observe that for fixed m, Y[m, £] is simply the auto-
correlation of X © g1, where g, = {glmL — n]}"N;[,].

We will make repetitive use of several representations of
the data. The first is based on a matrix formulation. Let
Dnr € RV*N bea diagonal matrix composed of the entries of
gni. Let Py be a matrix that shifts (circularly) the entries of
a vector by ¢ locations, namely, (P¢x) [n] = x[n + {]. Then,
the correlation matrix X := xx* is mapped linearly to Y[m, €]
as follows:

Y(m, €] = (Dnr—eDmiPex)* x

= X*Hm’fx
= tr (XHp,¢) , (11.3)
where
Hur i=P_Dui Dup -t (1L.4)

Observe that P{ =Psand Hye=0for W<E=<N-W.
Similarly, the STFT magnitude in (II.1) (before the 1D DFT)
can be written as
Zm, k] = x*Hp ¢, (IL5)
where
Hp o := DB ff D, (IL6)

and £ is the kth row of the DFT matrix.

An alternative useful representation of (I1.2) is as multiple
systems of linear equations. For fixed £ € {—(W —1),...,
W — 1} we have

ye = Gexe, (IL.7)

N_
where y¢ = (YIm,€]}E5, and x; := diag(X,£). The

( = [%“xb‘ ; .
m,n)th entry of the matrix Gy € R is given by
glmL —nlg[mL —n —{£]. For L = 1. Gy is a circulant matrix.
We recall that a circulant matrix is diagonalized by the DFT
matrix, namely, it can be factored as Gy = F-! 2¢F, where F
is the DFT matrix and X/ is a diagonal matrix, whose entries
are given by the DFT of the first column of Gy¢. In this case,
the first column is given by g ® (P_¢g). Therefore the matrix
Gy is invertible if and only if the DFT of g ©® (P_¢g) is non-
vanishing.

Our problem of recovering x from the measurements (I1.1)
can therefore be posed as a constrained LS problem:

w-1 2
) % "y,g — G diag (X, ¢) Iz

f=—(W—1)

_min
XeHWN
subject to X > 0, rank (i) =B (I1.8)
where H" is the set of all Hermitian matrices of size N x N.
In the spirit of [15], [30], [60], [64]. STFT phase retrieval
may then be relaxed to a tractable SDP by dropping the
rank constraint. In the noiseless case, this SDP relaxation is
equivalent to the one suggested in [38] since the conditions
on X to achieve zero objective function are the same, up to
a Fourier transformation. While the SDP relaxation technique
has shown good numerical performance for the recovery from
phaseless STFT measurements, it requires solving the problem
in a lifted domain with N? variables. We take a different route
to reduce the computational load. In the next section, we show
that (I1.8) admits a unique solution under moderate conditions.
We further show that it has a closed-form LS solution when
the window g is sufficiently long. If the conditions for the
LS solution are not met, then we suggest two non-convex
algorithms. To initialize the algorithms, we approximate (IL.8)
in two stages by first solving the LS objective function and
then extracting its principal eigenvector.

II1. UNIQUENESS AND BASIC ALGORITHMS

A fundamental question in phase retrieval problems is
whether the quadratic measurement operator of (I1.1), or equiv-
alently the non-convex problem (IL.8), determines the under-
lying signal x uniquely (up to global phase. see Definition 1).
In other words, one wants to know the conditions on the win-
dow g and the signal x such that the non-linear transformation
that maps x to Z is injective. Before treating this question, we
introduce some basic window definitions:

Definition 3: A window g is called a rectangular window
of length W if g[n] = 1 forall m = 0,...,W — 1 and
zero elsewhere. It is a non-vanishing window of length W
ifgln] #0foralln=0,..., W — 1 and zero elsewhere.

According to (I1.8), the injectivity of the measurement oper-
ator is related to the window’s length W and the invertibility of
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TABLE I

THE MEAN AND MINIMAL VALUES OF |Apjp| FOR WINDOWS OF LENGTH
W WITH I.1.D. NORMAL ENTRIES AS DEFINED IN (IIL. 1) OVER
100 EXPERIMENTS FOR DIFFERENT WINDOW
LENGTHS AND N = 25

Window’s length W=5‘W=10|W=15|W=20‘
|Amin|

Mean 0.0463 | 00367 | 0.0426 | 0.0549

Min 0.0008 | 00021 | 0.0019 | 0.0031

the matrices Gy for |£| < W. For that reason, we give special
attention to windows for which the associated matrices are
invertible.

Definition 4: A window g is called an admissible window
of length W if forall £ = —(W —1), ..., W—1 the following
two equivalent properties hold:

1) The DFT of the vector g ©® (P_¢g) is non-vanishing.

2) The associated circulant matrices G¢ as given in (IL.7)

are invertible.

An important example for an admissible window is a rec-
tangular window. Specifically, we have the following lemma:

Lemma 5: A rectangular window g of length2 < W < N/2
is an admissible window of length W if a and N are co-prime
numbers for all a =2, ..., W. This holds trivially when N is
a prime number.

Proof: Observe that g © (P_¢g) is a rectangular window
of length W — |£| for £ = —(W —1)..., W — 1. The DFT
of a rectangular window of size W — |£] is a Dirichlet kernel
which is non-vanishing if W — |£] and N are co-prime. N

The family of admissible windows contains more examples.
To demonstrate this, we consider a non-vanishing window of
length W whose entries are i.i.d. normal variables. We then
compute the minimal absolute value of the DFT of g ® (P_¢g)
forall £ = —(W —1),..., W — 1, namely,

| Amin| = k,fﬁiélw | (F (g © (P_¢g))) [ (IIL.1)

We repeated this process 100 times for several values of W.
As can be seen in Table I, |Amin| is bounded away from zero,
implying that the windows are indeed admissible.

We now analyze the uniqueness of the measurement oper-
ator for the case L = 1. Uniqueness results for L > 1 are
discussed in [38], [47]. Our results are constructive in the
sense that their proofs provide an explicit scheme to recover
the signal.

Our first result concerns non-vanishing signals. In this case,
the magnitude of the STFT determines the underlying signal
uniquely under mild conditions. This conclusion was already
derived in [11] based on different considerations. Nevertheless,
the following proposition comes with an explicit recovery
scheme as presented in Appendix A.

Proposition 6: Let L = 1. Suppose that x is non-vanishing
and that the DFT of g ® (P_¢g) is non-vanishing for £ =0, 1.
Then, |X[m, k]|> determines x uniquely (up to global phase).

Proof: See Appendix A. |

A similar uniqueness result was derived in [26]. There, it is
required that the DFT of |g[.~'1]|2 is non-vanishing, N > 2W —1
and N and W — 1 are co-prime numbers.

In the special case in which the signal is known to have unit
modulus entries, the signal can be recovered as the principal
eigenvector of a matrix designed as follows:

Proposition 7: Let L = 1. Suppose that x € C‘;V JN and
that g is an admissible window of length W > 2. léix M e
{1,..., W — 1} and let Xy be a matrix defined by

G;lye, t=0,M,

o (IIL.2)

diag (Xo, £) = { :
, otherwise,
where G¢ and y¢ are defined in (IL.7). Then, x (up to global
phase) is a principal eigenvector of Xgp.
Proof: See Appendix B. [ ]
For general signals (not necessarily non-vanishing) and
L = 1, we next derive a LS algorithm that stably recovers
any complex signal if the window is sufficiently long. In the
absence of noise, the recovery is exact (up to global phase).
The method, summarized in Algorithm 1, is based on con-
structing a matrix Xo that approximates the correlation matrix
X := xx*. The ¢th diagonal of X is chosen as the solution
of the LS problem ming cn ||[ye — GeX|2 (see (IL.7)). If the
matrix Gy is invertible, then

diag (Xo, £) = G; 'y, = diag (X, €).

Therefore, when all matrices Gy are invertible, X = X.
In order to estimate x, the (unit-norm) principal eigenvector
of Xg is normalized by

a= [D° (Ggyo) [n],

neP

(IIL.3)

where P :={n : (GS)’{))[R] > 0}. If Gp is invertible then

N-1 N-1

> (G5'yo) inl = 3 (diag (X, 0)) [n = IxI3 = o,

n=0 n=>0

where A is the top eigenvalue of X. If G is not invertible or in
the presence of noise, some terms of the vector Ggyg might
be negative. In this case, we estimate ||x||2 by summing only
the positive terms (the set P in (III.3)). Note that all matrix
inversions can be performed efficiently using the FFT due to
the circulant structure of Gy.

The following proposition shows that Algorithm 1 recovers
the underlying signal for L = 1 if the window is sufficiently
long and satisfies some additional technical conditions. In [11],
an equivalent uniqueness result was derived but without pro-
viding an algorithm. Algorithm 1 is equivalent to the dis-
cretized version of Wigner deconvolution that was suggested
previously without theoretical analysis in [55] and [69].

Proposition 8: Let L = 1 and suppose that g is an admis-
sible window of length W > [ 231 (see Definition 4). Then,
Algorithm 1 recovers any complex signal uniquely up to global
phase.

Proof: See Appendix C. [ ]

In many cases, the window is shorter than [%F1] so
that (I1.8) may not admit a closed-form LS solution. In these
cases, we propose two non-convex recovery algorithms. The
first is a standard ER minimization that seems to work well in
low SNR regimes. The second maximizes a quadratic function
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Algorithm 1 Least-Squares Algorithm for L = 1
Input: The measurements Z[m, k] as given in (IL1).
Output: xg: estimation of x,
1) Compute Y [m, £]. the 1D DFT with respect to the sec-
ond variable of Z[m, k] as given in (IL.2).
2) Construct a matrix Xp such that

Glye E=—(W—1),.-,(W=1),
0 otherwise,

diag (Xo, {) = [

where Gy € RV*N are defined in (I1.7).
3) Let x, be the principal (unit-norm) eigenvector of Xg.
Then,

xo= [ (Givo) tnix,,

neP

where P := ln : (Gﬁyo) [n] > 0}.

over the manifold of phases. This approach shows superior
performance for short windows and high SNR. In order
to initialize these algorithms, we use the same LS-based
method of Algorithm 1. However, for short windows we
cannot estimate diag(X,¢) for £ = W,...,N — W as the
matrices Gy are simply zero. Nonetheless, we will show
by both theoretical results and numerical experiments that
under appropriate conditions, the principal eigenvector of the
approximation matrix Xo, with appropriate normalization, is a
good initial estimator of x.

IV. LocAL NON-CONVEX ALGORITHMS

In this section we present our main algorithmic approach to
recover a signal from its STFT magnitude (II.1). First, we pro-
pose two non-convex gradient algorithms to estimate the sig-
nal. As the problem is inherently non-convex, we then suggest
a systematic, data—driven, technique for initialization. This
non-convex approach for STFT phase retrieval is summarized
in Algorithm 2. The code for all algorithms is publicly avail-
able at http://webee.technion.ac.il/Sites/People/YoninaEldar.

Algorithm 2 Non-Convex Approach for STFT Phase Retrieval
Input: The measurements Z[m, k] as given in (IL.1).
Output: X: estimation of x.

1) Initialization: Apply Algorithm 1 (for L = 1) or Algo-
rithm 5 (for L > 1).

2) Refinement: Use the output of stage 1 to initial-
ize a gradient algorithm that minimizes the empir-
ical risk (Section IV-A) or the Non-Convex Phase-
Cut (NCPC) of Algorithm 3.

A. Empirical Risk Minimization

Recall that the STFT magnitude can be written as Z[m, k] =
x*H,, ¢x, where H is given in (IL6). Alternatively, by taking

0.04
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Fig. 1. The two-dimensional (first two variables) plane of the loss function
(TV.2) of the signal x = [0.2,0.2,0,0,0] (i.e, N =5) with L = | and a
rectangular window of length W = 2.

the 1D DFT with respect to the frequency variable, the mea-
surement model becomes Y[m, {] = x“H,,,‘(x, where Hy, ¢
is defined in (I1.4). It is therefore natural to minimize the
empirical risk (ER) loss function:

[N/LT-1 N—1

1 o
fy =2 3 3 |0 Zim, k? Iv.1)
m=0 k=0
1 [N/LT-1 W1
= lu*H,y ou — Y[m, £1]>. (IV.2)

m=0 f=—(W=1)

The equality between the two loss functions is proven in
Appendix D. In the sequel, we use both formulations.

Figure 1 presents the two-dimensional (first two vari-
ables) plane of the loss function (IV.1) for the signal x =
[0.2,0.2,0,0,0] (i.e, N = 5) with L = 1 and a rec-
tangular window of length W = 2. The function has no
sharp transitions and contains two saddle points and two
global minima (as a result of the global phase ambiguity).
Accordingly, in this specific case and bearing in mind that our
view is restricted to two of the five dimensions only, it seems
that a gradient descent algorithm will converge to a global
minimum from almost any initialization (see also [43]). While
this phenomenon does not occur for any arbitrary parameter
selection, this example motivates applying a gradient algorithm
directly on the non-convex loss function (for a similar demon-
stration of the loss function with random sensing vectors,
see [62]).

One way to minimize the ER loss function (IV.1) or (IV.2)
is by employing a gradient algorithm, where the kth iteration
takes on the form

Xp = Xp—| — uV [ (Xp—1),»
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for step size u. For real signals, direct computation of the
gradient in (IV.1) gives

[N/L1-1N-1
Viw= 2 D (h() —Zm, k) Vh(), (V.3)
m=0 k=0

where
h(u) := uTﬁmﬁku, Vh(u) = Zﬁmﬂku.

Similar computations can be performed for (IV.2). If the
signal is complex, then one can use the elegant formula-
tion of Wirtinger derivatives, see [18], [42], [62]. The loss
functions (IV.1) or (IV.2) may be minimized by many other
methods. For instance, in Section V we employ a trust-region
algorithm.

B. Non-Convex PhaseCut (NCPC)

1) The Algorithm: When minimizing the empirical
risk (IV.1) or (IV.2), the unknown signal itself is the opti-
mization variable. Alternatively, we may take the point of view
that the unknowns are the phases of the STFT measurements.
Indeed, if these phases were known, then one could recover
the signal by applying (1.2). We may therefore rework the
problem into one where only the phases are variables [64].

Thus, we aim to estimate U CW]XN with unit-modulus
entries such that X ~ Z1/ 2@U, that is, we wish to recover the
missing phases. One may propose to estimate these and the
signal X simultaneously by minimizing ||Z”2®U—STFI‘(X)||]2:
over both x and U, where STFT(x) maps x to its STFT
following (I.1). Assuming U is fixed, the solution for x is
x = STFTT(Z'/2 @ U), where the operator STFT' is given
by (1.2). By substitution, we obtain an optimization problem
in terms of U only:

min
vecl T 1
subject to |U[m, k]| =1, Vm, k.

I(I — STFT o STFT')(Z!/2 © U) |12

Since I—STFT o STFT" is an orthogonal projector, this further
simplifies into the following non-convex optimization problem
over complex phases:

min
UEC[T]XN
subject to |U[m, k]| =1, Vm, k,

(2:”2 ©U, (I— STFToSTFT)(Z'2 © U))

where we use the Frobenius inner product

(A, B) = 9 {Trace (A*B)}. (IV.4)

The term involving the identity operator I is constant under the
constraints, so that the problem is equivalent to the following
maximization problem:

max
UEC{%]XN
subject to |U[m, k]| =1,

(Z‘ﬂ © U, STFToSTFT! (212 0 U))

vm, k. (IV.5)

Notice that STFT o STFTT is the orthogonal projector onto
the subspace of matrices which are the STFT of some signal.

As a result, applying STFT o STFT' to the matrix Z'/2 © U
produces the matrix which, in the LS sense, is closest to being
the STFT of a signal. Thus, the cost function in (IV.5) favors
phases U such that Z!/2 © U is as close as possible to an
STFT. We recall that this projection operator can be computed
efficiently by applying (I.1) and (I.2) using FFT.

Problem (IV.5) resembles the phase synchronization prob-
lem [3], [14], [61]. In [64], the authors pursue a convex relax-
ation of (IV.5) named phasecut. Here, following [14], we use
the Manopt toolbox to run local optimization of (IV.5) over
the manifold of phases [13]. In its simplest form, the algorithm
follows the gradient’s component which is consistent with the
feasible set of solutions (see details below). To initialize the
local optimization algorithm, we set Uy to be the phases of
STFT (xp), where xg is the initialization used by Algorithm 2.
This approach is summarized in Algorithm 3.

Algorithm 3 Non-Convex PhaseCut (NCPC)

Input: The measurements Z = | STFT(x)|? as given in (IL1).
Output: X: estimation of x.
1) Compute the initialization xo with Algorithm 2 to obtain
Ug = phase(STFT(xp)).
2) Using Up as initialization, use a local optimization
algorithm to try to compute a solution U to

max
UEC[T]XN
subject to |U[m, k]| =1,

(Z‘ﬂ © U, STFToSTFT! (212 0 U))

Ym, k.

See Algorithm 4 for a simple Riemannian gradient
method; see [1], [13] for RiAemannian trust regions.
3) Return X = STFTT(Z/2 @ V).

For completeness, we provide a brief overview of step 2 of
Algorithm 3, that is, optimization of the phases. We restrict
attention to a simple Riemannian optimization algorithm,
namely, the gradient ascent algorithm. See [1] for details about
the more sophisticated Riemannian trust-region method (RTR),
which we use in practice.

The variable U lives on a smooth manifold, namely, the set
of phases

N
M={Ue C(T]XN :|U[m, k]| = 1 for all m, k},

which is a Cartesian product of unit circles in the complex
plane (a torus). This smooth nonlinear space can be linearized
about every point U by differentiating the constraints. This
yields a linear subspace known as the tangent space to M
at U:

TyM ={U e C[ﬂx” MU U} =0}

Each tangent space of M can be endowed with the inner
product (IV.4) (simply by restricting it to each particular
subspace), which turns M into a Riemannian submanifold

N
of C[I]XN. This makes it particularly easy to compute the
gradient of the objective function f: M — R,

f(U) =(Z'2 0 U,STFToSTFTT (Z!/20U)). (1V.6)
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Indeed, following [2, eq. (3.37)], the gradient of f at
U restricted fo M-—known as the Riemannian gradient
grad f(U)—is the orthogonal projection of the classical
(unconstrained) gradient of f, denoted by V f(U), to the
tangent space Ty M:

Vi) =22"20 (STFTo sTFT! (220 U)) ,
grad £ (U) = Proj,(V £ (U)). av)

“ ’ [N ] xN
The orthogonal projector Proj;: C!'T
given by

— TyM is

Proju(V) =V -R{UoV]eU.

That is, it subtracts from each entry V[m, k] its component
aligned with U[m, k]. Explicitly, the Riemannian gradient is
then given by

grad f(U) =Vf(U) - RU VFU)oU.

Now that we are equipped with a notion of gradient on
the manifold, the only missing ingredient to implement a
gradient ascent optimization algorithm is a means of moving
away from a point (a current iterate) along a chosen tangent
direction (here, the gradient vector), while remaining on the
manifold M. The standard tool to achieve this is known as a
retraction [2. Sec.4.1]. An obvious retraction for M is

Retry(U) = phase(U + U).

Indeed, for U € M and U € Ty M, the result of this operation
is always on M and locally (that is, for small U) the change
is along the prescribed tangent direction U.

The gradient ascent algorithm takes the form

Up41 = Retry, (mx grad f(Uyg)),

where n. > 0 is an appropriately chosen step size (typically
using a form of line-search [2, Sec. 4]) and Up € M is a given
initial guess. Owing to M being a compact submanifold of

(TV.8)

C(ﬂXN and to f being smooth, both Riemannian gradient
ascent (with appropriate line-search) and RTR are guaran-
teed to converge to points which satisfy first-order necessary
optimality conditions, that is, || grad f(U)|| = O (and even
second-order conditions for RTR) regardless of initializa-
tion, with known worst-case bounds on iteration counts [12].
Explicitly, at a critical point U the algorithm satisfies:

U = phase (STFI‘ o STFT' (220 L')) . (IV9)

As will be shown next, this is also the stagnation
point of Fienup’s algorithm. This approach is summarized
in Algorithm 4.

We stress that this approach is different from a projected
gradient method. Indeed, in a projected gradient method,
one would alternate between following the classical gradient
V f(U) and projecting to M with the phase operator. That is,
each iteration resembles (IV.8) with V f instead of grad f.
In contrast, the Riemannian gradient method follows the
tangent part of the gradient, grad f (IV.7) and then projects
onto M. One advantage is that, close to convergence, the
Riemannian gradient has small norm (as expected). whereas
the classical gradient may still be large.

Algorithm 4 Riemannian Gradient Method for NCPC

Input: The measurements Z =~ | STFT(x)|? as given in (IL1),
initial guess Up € M and tolerance £ >0.
Output: U € M satisfying || grad f(U)||r < &.
Fork=0,1,...
a) Compute:

grad f(Ug) = V f(Up) — R{U; © Vf(Up)} © Uy,
where

V(U =222 (STFToSTFT! (' 0 Uy).

b) If || grad f (Ul < &, return U = Uj.

¢) Compute a step size ;. with a classical line-search
algorithm, e.g., [2, Sec.4].

d) Set Ugyy = phase(Uy + i grad f(Uyp)).

2) Relation to Fienup’s Algorithm: Our method can be
compared with the classical Fienup algorithm for the STFT
case, also called Griffin—Lim algorithm [31], as follows. One
approach to optimize (IV.5), instead of the Riemannian gradi-
ent iterations that we describe in Algorithm 4, is an iterative
technique called projected power method (PPM), or gener-
alized power method [14], [40]. This algorithm iterates as
the power method, with the difference that, at each iteration,
it keeps only the phases of the current iterate. Specifically,
the kth iteration is of the form

Ui = phase (STFI‘o STFT! (U;C_l ° z‘ﬁ)) . (IV.10)

Similarly to NCPC, the algorithm stops when (IV.9) is
satisfied. On the other hand, each iteration of Fienup’s algo-
rithm takes on the form

x; = STFT' (phase (STFT(x¢_1)) © z‘ﬂ) . (IV.11)

Applying the operator phaseoSTFT on the iterations
of (IV.11) shows that it is equivalent to PPM through the
mapping U = phaseo STFT(x;). In this sense, one can
understand Fienup’s algorithm as a particular iterative method
to solve the optimization problem (IV.5).

According to [14, Lemma 15]. all fixed points of (IV.10)—
and hence of (IV.11)}-map to critical points of the opti-
mization problem (IV.5), that is, they map to points U
where the Riemannian gradient is zero. These are only the
first-order necessary optimality conditions. Numerical exper-
iments (not displayed here) show that some of the stable
fixed points of (IV.11) map to critical points which do not
satisfy the second-order necessary optimality conditions (their
Riemannian Hessian admits a positive eigenvalue) and are
therefore suboptimal. In contrast, such points would be unsta-
ble fixed points for any reasonable Riemannian optimization
algorithm as confirmed in the same experiments. This distinc-
tion at least partially explains why the empirical performance
of the NCPC algorithm is superior to that of Fienup’s algo-
rithm, as demonstrated in Section V.
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C. Initialization

1) Initialization for L = 1: Since the phase retrieval
problem is inherently non-convex, it is not clear whether
the proposed refinement algorithms will converge to a global
minimum from an arbitrary initialization. When L = 1,
we propose initializing the iterations by using Algorithm 1.
As explained in Section III, for W > [%1 the algorithm

returns x exactly. However, when W < [%ﬂ] Gy = 0 for

t =W,...,N — W so that the output is not necessarily x.
Nevertheless, in Section VI we provide theoretical guarantees
establishing that under appropriate conditions, this initializa-
tion results in a good approximation.

In practical applications, a variety of approaches are used
to initialize the refinement techniques. While the specific ini-
tialization method is application-dependent, these approaches
can be broadly classified into two categories. The first is
based on the structure of the expected signal. For instance,
in some applications it is common to use a Gaussian pulse with
random phases as an initial point [23]. This, however, may
lead to a phenomenon called model bias in which the estimate
tends to capture characteristics of the model rather than the
true signal. An alternative strategy, also used by commercial
software, is based on random initialization. This is very
different from our initialization which exploits the acquired
data.

2) Initialization for L > 1: Until now we focused on
maximal overlap between adjacent windows, namely, L = 1.
When L > 1, (IL7) results in an underdetermined system of

equations since y; € RH—‘, Gs € ]RW—IXN and x; € RV.
In this case, the LS solution G;y{ is the vector with minimal £>
norm among the set of feasible solutions. This approximation
is quite poor in general.

We notice that the measurements y; are a downsampled
version by a factor L of the case of maximal overlap (L = 1).
Therefore, we suggest upsampling y; to approximate the
maximal overlap setting based on the averaging nature of
the window g. In order to motivate our approach, we start
by considering an ideal situation. Suppose that for some £,
the DFT of the first column of G¢, denoted by g, is an ideal
low-pass with integer bandwidth N/Lpgw. Namely,

1, k=0,...N/Lpw — 1,

oo
glk] Io, otherwise.

The following lemma states that in this case, no information
is lost by choosing L = Lpw compared to taking maximal
overlap L = 1. Moreover, it suggests to upsample the
measurement vector by expansion and low-pass interpolation.
Our technique resembles standard upsampling arguments in
digital signal processing (DSP) (see for instance Section 4.6
of [49]).

Lemma 9: Let g := {g[(—n) mod N]l,,N;o]' Suppose that
& € RY is an ideal low-pass with integer bandwidth N/L
and y = g % x for some x € CN (or equivalently, y = Gx,
where G is a circualnt matrix whose first column is g). Let
VL € CT be its L-downsampled version, i.e.,

yvelnl =ylnl]l, n=0,...,N/L — 1.

Then, y = (F:,Fp) ¥1, where

yrlm], n=mL,

. (IV.12)
0, otherwise,

yiln]l = [
and F, is a partial Fourier matrix consisting of the first N/L
rows of the DFT matrix F.
Proof: See Appendix E. it]
While Lemma 9 shows that no information is lost using an
ideal low-pass window with integer bandwidth N/L, in prac-
tice we do not use these windows. Instead. we approximate the
low-pass interpolation of F;FP as suggested in Lemma 9 by
a simple smooth interpolation. This leads to better numerical
results and reduces the computational complexity. In Section V
we show simulations with both linear and cubic interpolations.
Following the upsampling stage, the algorithm proceeds as
for L = 1 by extracting the principal eigenvector (with the
appropriate normalization) of an approximation matrix. This
initialization is summarized in Algorithm 5.

Algorithm 5 Least-Squares Initialization for L > 1

Input: The measurements Z[m, k] as given in (IL.1) and a
smooth interpolation filter h; € R that approximates a low-
pass filter with bandwidth [N /L7.
Output: xq: Estimation of x.

1) Compute Y [m, £], the 1D DFT with respect to the sec-

ond variable of Z[m, k] as given in (I1L.2).

2) Upsampling: For each £ € [-(W —1),.... (W —-1)]:

[E]-

a) Let yelm] := {Y [m, €]}
b) Expansion:

yelml, n=mL,

yelnl == I

0, otherwise.
¢) Interpolation:
ye=V¥exhg.
3) Construct a matrix Xy such that

Glje, E=—(W —1),.. ,(W—1),
0, otherwise,

diag (Xo, {) = [

where G¢ € RV*N are defined as in (IL7) for L = 1.
4) Let x, be the principal (unit-norm) eigenvector of Xp.
Then,

= > (GEyo) (nlxp,

neP

where P := [n ' (Gf]yo) [n] > 0}.

V. NUMERICAL RESULTS

This section is devoted to numerical experiments examin-
ing the proposed non-convex algorithms. In all experiments,
the underlying signal was drawn from x ~ A (0, I), where
I is the identity matrix. The measurements Z (II.1) were
contaminated with either i.i.d. additive Gaussian noise or
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Average error (over 50 experiments) ug the initialization of Algorithm 5 as a function of W and L. The experiments were conducted on a signal of

length N = 101 with a Gaussian window e 202 and linear or cubic interpolation. The window length was set to be W = 3. (a) Initialization with linear

interpolation. (b) Initialization with cubic interpolation.

lIxllz
where X is the estimated signal and the distance function
d(-,-) is defined in Definition 1. We optimize both the
empirical risk loss function (IV.1) and the non-convex phase-
cut (NCPC) objective function by a trust-region algorithm
using the Manopt toolbox [13].

The first experiment examines the estimation quality of
the initialization method described in Algorithm 5. Figure 2
presents the initialization error as a function of the window’s
length. We considered a Gaussian window defined by g[n] =

n?
€27 and cubic and linear interpolations. For n > 3¢, we set
the entries of the window to be zero so that W = 3o.
The results demonstrate the effectiveness of the smooth inter-
polation technique. For low values of L, it seems that the
two interpolations achieve similar performance. For larger L,
namely, fewer measurements, cubic interpolation outperforms
linear interpolation. In the following experiments we use cubic
interpolation.

The next experiment aims to estimate the basin of attraction
of the loss function (IV.1) or (IV.2). That is to say, the area in
which a local optimization method will converge to a global
minimum. To do that, we set the initialization vector to be
Xo = X + Z, where x ~ A (0, I) is the underlying signal. The
perturbation vector z takes on the values +¢ (with random
signs) for some ¢ > 0 so that d(xg,x) < V/No. Then,
we applied the trust-region algorithm and checked whether
the algorithm converges to x. As can be seen in Figure 3, the
algorithm converges to the global minimum as long as ¢ < 0.3
for L = 1,2 (the case of L =1 is not presented in the figure)
and ¢ < 0.25 for L = 4. These experimental results indicate
that the actual basin of attraction is larger than our theoretical
estimation in Section VI and Theorem 11.

Figure 4 shows a representative example of the performance
of Algorithm 2 where we minimized the empirical risk loss
function (IV.1) or (IV.2). The experiment was conducted on

Poisson noise. The recovery error is computed by

0.25

0.2

B o.15
[
0.1

0.05

Fig. 3. Average recovery error (over 100 experiments) of minimizing the ER
loss function (IV.1) or (IV.2) for signals of length N = 43 and a rectangular
window of length W = 11. The initialization was set as Xxp = x + z, where
x is the underlying signal and the perturbation vector z takes the values of
+o for some o > 0 where the sign is drawn randomly.

a signal of length N = 23 with a rectangular window in a
noisy environment of SNR= 20 dB.

Figure 5 presents the success rate of the algorithms as
a function of the window’s length in a noise-free environ-
ment. As can be seen, NCPC achieves the highest success
rate, implying that it requires less redundancy in the data.
Figure 6 presents the recovery error for different noise mod-
els. Figure 6a shows the error when the measurements are
contaminated with normal noise as a function of the SNR
level. The proposed algorithms are compared with Fienup’s
method [31] that iterates according to (IV.11). In the low SNR
regime, minimizing the ER loss function seems to be better.
Figure 6b shows the error with Poisson noise as a function
of W. For short windows, NCPC works best. The perfor-
mance for longer windows is comparable for all algorithms.
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Fig. 4. Recovery of a signal of length N = 23 with a rectangular window in a noisy environment of SNR= 20 dB. We used a trust-region algorithm to
minimize the ER loss function (IV.1). The experiments were conducted with W =7 and L = 1 and W = 11 and L = 3 in the left and the right columns,
respectively. (a) Initialization with W = 7 and L = 1. (b) Initialization with W = 11 and L = 3. (c) Recovery with W = 7 and L = 1. (d) Recovery with
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Fig. 5. Success rate as a function of W over 100 experiments conducted with
N =31, L = 2 and a rectangular window. We compared three algorithms:
minimizing the ER loss function (IV.1), NCPC and Fienup. A success was
declared for recovery error less than 1073,

Figure 7 presents the same experiments with low-pass data.
This reflects a phenomenon that typically occurs in optical
applications in which the fine details of the data are blurred

by the measurement process. Estimating a signal from its
low-resolution measurements, when the phases are available,
has been investigated thoroughly in the last years, see for
instance [7], [20]. Accordingly, we assume that we can acquire
the data Z[m, k] for all m but only for k = —Kpnax, ... » Kmax
for some cut-off frequency Knay. Particularly, in Figure 7 we
consider N = 53 and K,,x = 18 (i.e., 70% of the spectral
content) for the two proposed algorithms. In this case, if the
SNR is not too bad, then NCPC works significantly better
than ER in both cases. As in Figure 6a, in the low SNR
regime, minimizing the ER loss function achieves superior
performance for Gaussian noise.

VI. THEORY

This section presents the theoretical contribution of this
work, focusing on the case of maximum overlap between
adjacent windows (L = 1). As explained and demonstrated
numerically. the non-convex approaches also tend to work
well for L > 1 and when the high-frequencies of the data
are suppressed.

In our first theoretical result, Theorem 10, we analyze
the initialization algorithm presented in Algorithm 1 and
estimate the distance between the initialization vector and
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error (over 100 experiments with signals of length N = 53, a rectangular window and L = 2) of minimizing the ER loss
function (IV.1) and NCPC with low-passed data. Particularly, we used the measured data Z[m, k] for all m and k = —Kpay. ..
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(a) Recovery error with Gaussian i.i.d. noise as a function of the SNR with W = 15. (b) Recovery error with Poisson noise as a function of the window’s

length W.

the ground truth. Next, we study the geometry of the loss
function (IV.2), which controls the behavior of our ER min-
imization algorithm. To this end. suppose we minimize the
ER loss function (IV.2) using gradient descent followed by a
thresholding step that can be used if the signal is bounded.
This scheme is presented in Algorithm 6. In Theorem 11
we establish the existence of a basin of aftraction of size
&/le—uﬂ around the global minimum for signals with unit

modulus entries. In the basin of attraction, a gradient algo-
rithm is guaranteed to converge to a global minimum at a
geometric rate. This result is true for any gradient scheme
with a thresholding step as in Algorithm 6. We stress that the
theoretical contribution of this result is limited. As presented
in Corollary 12, the estimated basin of attraction is small so
that theoretically Algorithm 6 converges in the same area in

which the problem has a closed linear LS solution. To the
best of our knowledge, this is the first result quantifying the
size of the basin of attraction of a gradient algorithm in a
deterministic phase retrieval setup. This is in contrast to the
basin of attraction of random phase retrieval setups which is
quite well-understood.

A crucial condition for the success of gradient algorithms
is that its initialization is sufficiently close to the global
minimum. The following result quantifies the estimation error
of the proposed initialization presented in Algorithm 1 for
bounded signals and L = 1. The error reduces to zero as
W approaches EJ{—' The case of L > 1 is discussed briefly
in Section IV. The result is stated for a normalized signal.
The norm of the signal can be estimated easily from the main
diagonal of xx* as explained in Section III.
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Algorithm 6 Gradient Descent Algorithm to Minimize the ER
Loss Functions (IV.1) or (IV.2)
Input: The measurements Z[m,k] as given
and (optional) thresholding parameter B > 0.
Output: Estimation of x.

1) Initialization by Algorithm 1 (for L = 1) or Algorithm 5

(for L > 1).
2) Apply the update rule until convergence:

a) Gradient step:

in (IL1)

Xt =Xp—1 — uV [ (Xk—1),

for step size p and V [ given in (IV.3).
b) Optional thresholding:

Xi[n] if |[X¢[n]| < B,
Xiln] = { i i
B - phase (Xg[n]) if |Xk[n]| > B.

Theorem 10: Suppose that L = 1, x|z = 1, g is an

admissible window of length W > 2 and that [xllas < /%

forsome 0 < B < ﬁﬂ— Then under the measurement
model of (IL.1), the initialization vector given in Algorithm 1
satisfies

N_2W 1
dz(xo,x}52(l —‘/1 —23%),

Proof: See Section VII-A. |
The properties of the gradient algorithm minimizing the
ER rely on the geometry of the loss function (IV.2) near the
global minimum. The following result quantifies the size of
the basin of attraction of the loss function (IV.2), namely,
the area in which a gradient algorithm is guaranteed to
converge to a global minimum at a geometric rate. As demon-
strated in Figure 3, in practice the basin of attraction is quite
large for a broad family of signals. The proof relies on
a geometric analysis of the loss function as presented in
Lemmas 15 and 16.
Theorem 11: Let L = 1 and suppose that x € Rf ~ and
g is a rectangular window of length W. Additionally, suppose
that d (xp.x) < m, where xp obeys |[xpll = TINE
Then, under the measurement model (I1.1), Algorithm 6 with
thresholding parameter B = # and step size 0 < p < 2/p
achieves the following geometric convergence:

k
d* (x¢, %) < (1 - 2{) d* (x0.X),

where @ > 3 and f > 256N>W?>,
Proof: See Section VII-B. [ |
Combining Theorems 10 and 11 leads to the following
corollary:
Corollary 12: Suppose that L = 1, XERJ;V N N is a
prime number and g is a rectangular window of length W
that satisfies:

ZW =1+

>N,

128W4 —

Then, under the measurement model of (IL.1), Algorithm 6,
initialized by Algorithm 1, with thresholding parameter B =
ﬁ and step size 0 < u < 2/p achieves the following

geometric convergence:
4
2
d® (xi,x) < (1 - —‘“) d* (xp,X),
a

where a > 2¥ and § > 256 N2W3,
Proof: See Section VII-C. ]
We mention that the result of Corollary 12 is good merely
for long windows. However, in practice we observe that the
algorithm works well also for short windows. As we discuss
in Section VIII, bridging this theoretical gap is an important
direction for future research.

VII. PROOFS
A. Proof of Theorem 10
The initialization is based on extracting the principal eigen-
vector of the matrix Xy defined in Algorithm 1. By assump-
tion, G¢ are invertible matrices for £ = —(W —1),..., W —1
for some W > 2 and hence we can compute (see (I1.7))

diag (Xo, £) = G; 'y, = diag (X, ¢) .

For £ = W,...,N — W we have diag (Xp,{) = 0. Let us
take a look at the matrix E := X — Xy. Clearly, E is not zero
at most on N — 2W + 1 diagonals. In other words, in each
row and column, there are at most N — 2W + 1 non-zero
values, Let €; be the set of non-zero values of the ith row of
E with cardinality [Q;| < N — 2W + 1. Using the fact that

Ixds = % we can estimate

IEloo = max > X[, j1 - Xoli, j1I
J
= max ) |X[i, j]I
' jety
= max > [x[i1x [/l
ek
_BWN-2W+1)
- N
The same bound holds for ||E|l; := max; > ; |[E[i, j]| and

therefore by Holder’s inequality we get

B(N-2W+1
IElz £ il IEl; = 2 —2W+1)

N
In order to complete the proof, we still need to show that if
IX — Xp|» is small, then 4 (x, Xp) is small as well, where xp is
the principal eigenvector of Xy with appropriate normalization.
To show that, we follow the outline of in [18, Sec. 7.8].
Observe that as Gy is invertible by assumption, the norm of
X is known by

N—-1 N-1
IxI3 = 3 (diag (X, 0)[n] = 3 (G5'yo) In.
n=0 n=0

Accordingly, we assume hereinafter without loss of generality
that x and xp have unit norm. Let Ag be the top eigenvalue
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of Xp, associated with xg. We observe that
2
|0 — [xtx | = [x5Xo%0 — xgxx*xo
< X0 - “*"2 .
Furthermore, as ||x||, = 1 we also have

Ao > x*Xox = x* (Xo —xx*)x + 1
1= [o-wls

Combining the last two inequalities we get

lxﬁxI > 1—2[|Xg —xx“‘ﬂ2
N —-2W+1
T el A4
N

It then follows that W

d? (xp,x) < 2(1 —\/1 —23%),

where the term in the square root is positive by assumption.

B. Proof of Theorem 11

For fixed x, let £ be the set of vectors in RV satisfying
1
AP .5 - SN We first need the
following definition:
Definition 13: We say that a function f satisfies the regu-
larity condition in £ if for all vectors z € £ we have

(V1 @.2—xe#0) > 26 @)+ 5 IV @I,
for some positive constants a, .

The following lemma states that if the regularity condition
is met, then the gradient step converges to a global minimum
at a geometric rate.

Lemma 14: Assume that f satisfies the regularity condition
for all z € £. Consider the following update rule

fB=n1=pNfE-i),
for 0 < u < 2/pB. Then,

2
d’ (z, x) < (1 - —"') @ @1,%).
a
Proof: See in [18, Sec. 7.4]. ]

In order to show that the regularity condition of
Definition 13 is met, we present two lemmas for signals
with unit modulus entries. The first result shows that the
gradient of the loss function (IV.2), given explicitly in (IV.3),
is bounded near its global minimum. This implies that the
loss function is smooth. We consider here only the case of
a rectangular window g of length W. The extension to non-
vanishing windows of length W is straightforward (see remark
in Appendix F):

Lemma 15: Suppose that x € }R?;,/ﬁ' lzlloe = ﬁ and
d(x,z) < 'N. Let g be a rectangular window of length W.
Then, V f(z) as given in (IV.3) satisfies

IV F @, < %wzmd(x,z).

Proof: See Appendix F. ]

The second lemma shows that the inner product between
the grad;cnt and the vector z — xe/#® is positive if d (x,z) <
i J_W2 This result implies that —V f(z) points approximately
towards x. As in Lemma 15, we consider for simplicity
rectangular windows of length W. Yet, the analysis can be
extended to non-vanishing windows of length W. In this case,
the bounds are dependent on the dynamic range of g (for
details, see remark in Appendix G).

Lemma 16: Suppose that L = 1 and g is a rectangular

window of Iength W. For any x € R] and |zl < ﬁ,
‘fd(x Z} < SJNw"” then IvN
2
(V£ (@), 2 —xei#) > w,

where V f(z) is given in (IV.3).
Proof: See Appendix G. ]
We notice that the thresholding stage of Algorithm 6 cannot
increase the error as the signal is assumed to be bounded. The
proof of Theorem 11 is then completed by directly leveraging
lemmas 15 and 16 and seeing that Definition 13 holds in our
case with constants a > %r— and B > 256N2W?3,

C. Proof of Corollary 12

As N is a prime number., g is an admissible window
of length W (see Lemma 5). According to Theorem 11,
we merely need to show that the initialization point is within
the basin of attraction, namely, d (X,xp) < W From
Lemma 10, we know that the initialization obeys

# 00 2(1-1-2T=27 1)

Using the fact that @ < Ja for al 0 < a < 1 and
some standard algebraic calculations, we conclude that the
initialization of Algorithm 1 is within the basin of attraction
as long as

2W—] >N,
T Tswr 128W% —

which completes the proof.

VIII. DisCcuUsSION

This paper explores practical. efficient, non-convex phase
retrieval algorithms with some deterministic theoretical guar-
antees. Particularly, we propose two local optimization meth-
ods based on minimizing the ER loss function and optimizing
on the manifold of phases. The latter is a new phase retrieval
algorithm that takes into account the special geometry of the
phase retrieval problem.

Since the optimization problems are non-convex, we also
propose an initialization method. The method is based on the
insight that, for sufficiently long windows, the signal can be
recovered as the solution of a linear LS problem. While this
may not be true for shorter windows, we use the LS solution
to construct a special matrix and initialize the local optimiza-
tion algorithms with the principal eigenvector of this matrix.
Similar initialization approaches were suggested recently for



480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO, 1, JANUARY 2018

phase retrieval problems. However, they are mainly focused
on random setups and based on probabilistic considerations.
For L = 1, we estimate the distance between the initialization
point and the ground truth. The case of L > 1 raises some
interesting questions. As a heuristic, we suggested to smoothly
interpolate the missing entries. This practice works quite well
since the window acts as an averaging operator. Clearly,
the interpolation method depends on the window shape.
A main challenge for future research is analyzing the setting
of L 1,

For signals with unit modulus entries, we prove in
Theorem 11 that the ER loss function has a basin of attraction.
We show numerically that the actual basin of attraction is
larger than the theoretical bound and exists for a broader
family of signals. The gap between the actual size of the
basin of attraction and the theoretical result is the bottleneck
that prevents a full theoretical understanding of the proposed
algorithms. Specifically, improving Lemma 16 will lead
directly to tighter estimation of the size of the basin of
attraction. Ideally, this would lead to the conclusion that the
proposed initial guess lies in the basin.

APPENDIX
A. Proof of Proposition 6
By assumption, the DFT of g ® (P_¢g) is non-vanishing for

¢ =0, 1, and the matrices G¢, £ =0, 1 as given in (IL7) are
invertible. Then, we can compute

X¢ ZGFny, £=0,1,

where X = xx*, x; = diag (X, £) and y := (Y [m, €1}Y2}
Because of the fundamental ambiguity of phase retrieval,
the first entry can be set arbitrarily to /xg [0] = |x[0]]. Then,
as we assume non-vanishing signals, the rest of the entries are

determined recursively forn=1...,N —1 by
Xi[n—1] x[n—1]x[n]
= =x[n].
xian—1] x[n—1]

This completes the proof.

B. Proof of Proposition 7

By assumption, G¢ is an invertible matrix for |£| < W — 1
for some W = 2 (see (IL.7)). Hence, we can compute
diag (X, ¢) = G;iyg for{ =0,M forany 1 < M < W — L.
The proof is a direct corollary of the following lemma:

Lemma: Let L = 1. Suppose that x ¢ C‘;\; N and let
X =xx* Fix M € {1,..., N — 1} and let Xg be a matrix
obeying

diag(X,?0), =0, M,
g P ) = | ) ;
0, otherwise.

Then, x is a principal eigenvectors of Xg (up to global
phase).

Proof: Based on the special structure of Xy, the following
calculation shows that x is an eigenvector of Xp with }%f as

the associated eigenvalue:

N
(Xox) i1 = D Xoli, jIx[j]

=1
= Xoli, {]x[1] + Xoli, i + M]x[i + M]
= X[i] X[/ + x[i] [xli + M]|?

-
= ﬁx[l]‘

We still need to show that x is a principal eigenvector of Xg.

Since each column and row of Xy is composed of two non-
zero values, it is evident that

2
IXollog = max > [Xoli, j1l = -
i

In the same manner
2
‘= max Xl il =—.
IXolly := m: Zi:t oli, jll =

Hence by Holder inequality we get

2
IXoll2 = vIXoll: IXollee =

E.
completing the proof. | |

C. Proof of Proposition 8

As the matrices Gy are invertible by assumption for all
£t =—(W-—-1),...,(W—1), we can compute

diag (Xo, £) = G; 'y, = diag (X, €).

The assumption W > [2+1] implies that X = X. Specifi-
cally, observe that it is sufficient to consider only W = [¥1]
since for any €] > [2%£1], the window g ® (P_¢,) is equal
to another window g ® (P_¢,) for some |£2] < [251].

Let X := x/[|x||2. Then, X is the principal eigenvector of X
and the normalization stage of Algorithm 1 gives

N—-1

> (65"yo) tn1 = Ixl2.

n=0

D. Proof of the Equality Between the Loss Functions
(IV.2) and (IV.1)

Recall that
N 2
fw=3 ¥ Z( “Hy 0 — Zim, k1)
m=0 k=0
e
=5 2 IHn—Znl3,
m=0
where Z,, := [{Z[m, k]} € RY and H, :=

{u*H,, ku}f_ol cRY,
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Let U be a unitary matrix. Since unitary matrices do not
change the length of a vector, we have

[#]-1
=3 3 10 (A~ 2a) 13

m=>0

1]
=3 2 IUA, —UZy|3.
m=0

By choosing U to be the DFT matrix and normalize, we get
exactly the loss function in (IV.2).

E. Proof of Lemma 9

We identify the convolution g % x by the matrix-vector
product Gx, where G € R¥*¥ is a circulant matrix whose first
column is given by g := (g[(—n) mod N]}f;ol. Porl =1,
we can then write

y =Gx =F'EFx,

where F is a DFT matrix and X is a diagonal matrix whose
entries are the DFT of g By assumption, the first N/L
entries of £ are ones and the rest are zeros. Hence, we may
write
y = F,Fpx, (E.1)

where F, € CN/E*N consists of the first N/L rows of F.

et G € ]R'g *N be a matrix consists of the
{jL : j=0,...,N/L —1) rows of G. For L > 1, we get
the downsampled system of equations

yL = Grx = F} EFx,

where Fy consistsof the {jL : j=0,..., N/L — 1} columns
of F (notice the difference between F; and F,). We aim
at showing that expanding and interpolating y; as explained
in Lemma 9 results in y. Direct computation shows that
the expansion stage as described in (IV.12) is equivalent to
multiplying both sides by F*F;:

Ni= F‘FL)'L =F* (FLFE) 2Fx,

Let us deno;e Ti= FLF}'_, which is a Toeplitz matrix with
L on the % diagonals for j = 0,...,N/L — 1 and
zero otherwise. Because of the structure of £ we can then
write

¥r.= F*TprX,

where T, € RY T consists of the first N/L columns of T.
Direct calculation shows that F,F*T, = 1. where I is the
identity matrix. Therefore we conclude that

(F;Fp) ¥ = F3F,x. (E.2)

Comparing (E.2) with (E.1) completes the proof.

F. Proof of Lemma 15
Recall that
[N/L1-1

Vi@ = )

m=0 f(=—(W-1)

Ww—1
(2 ez — Y m, t”])

i (Hm.f ¥ H,};,() Z,
where
Hp ¢ :=P_¢DprDpip_g,

D,, 1, is a diagonal matrix whose entries are {g[mL —n}}f::}]
for fixed m and P; is a matrix that shifts (circularly) the
entries of an arbitrary vector by £ entries. We observe that
for a rectangular window of length W and |z||, < %\;, we

have ||z]; =1 and
[Hom,ez], < [Hme], Izl < 1,

so that
[N/L]-1

IVf@la<2 Y

m=0 £=—(W-1)

w-1
Y [m, €] — 2" Hp r2].

(F1)

—~£_ for some

JN

For convenience, let us denote d (x,2z) =

1—e

¢ = 1 and therefore |z[n]| = for all n. Accordingly, for

any (n, k), ol
ol
“TB) < |zlnlzln + k| < %
Since x[n] and z[n]| have the same sign pattern, we have
i
[x{nIx{n + K] — 2inleln + K1l < |1 = e)2|
2e
= T
= N

and forall m, £ = 0,

‘Y (m, €] — z’"H,,,,fz|

m—{

s X

k=m—(W—1)

[x[n]x[n + k] — z[n]z[n + k]|

m—{
& Z E 4 2We = ZWd(x,z).
k=m—(W—1) - o VN

The same bound holds for £ < 0. Combining (F.1) and (F.2)
we conclude that

(F2)

[NJL1-1 W-=1

Vi@l <2 >, D

m=0 f=—(W-1)

= %Wzs/ﬁd(x, zZ).

2Wd(x,z)
JN

Remark: In case of a non-vanishing window of length W,
one can easily bound the gradient using the same technique,
while taking into account max,, |g[n]| in the inequalities.
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G. Proof of Lemma 16
Recall that (see (IV.3))

{Vf(z), Z— xej‘i’{‘)>
[N/L1-1

= 2

m=0 f(=—(W-1)
: T
. (z - xe-’d'm) (HMJ’ - Hf,;,{) A

Since xTH! ,z = z"H,,¢x we have for fixed (m,{) and

() < (0, x};
(z — )u:"‘lé{z)):Ir (H,,,,f + H;f) z
= (z - xe”"(z)) 4 H,, ¢ (z — xejé('})

+ (zTHm.cz - XTHm.{X) ;

W1
(ZTHM,(Z s xTH,,..fx)

Therefore,

(Vf(z), = xe"‘“z))

N-1 W=l 2
:Z Z (zTHm‘(z—xTHm‘;x)

m=0 {=—(W—1)

N-1 W=l
—|—Z Z (ZTH"‘,{‘Z—XTHM,{X)

m=0 t=—(W—1)
. (z o xe;‘eﬁ(z))r H,, (Z v Xejétz)) .

Clearly, if z = xe/*® then (V f(z), z — xe/#) = 0. Other-
wise, the first term of (G.1) is strictly positive. Hence, in order
to achieve a lower bound on (G.1), we first derive an upper
bound on the second term and then bound the first term from
below.

By assumption d(x,z) <

(G.1)

. iglz) _
: TN Denote I)i[n]teE s
] for some £, < 1. We observe that Zn(ﬁ) —
d* (x,z). For fixed £ = 0, we can use the Cauchy-Schwarz
inequality to obtain:

N-1

% (z _ xemz))r P (z _ xemz})

m=>0
N-1 m—t .
-y ¥ (z [n] —x[n] e-"ﬂ")
m=0n=m—(W-1)
. (z [n+£€l—x[n+1{] ef'ﬂ’})

z[n]| :=

N-1 5 (N1 .2
=w |y = mi . wd(x,z).
N N
m=0 m=>0

The same bound holds for £ < 0. Combining the last result
with (F.2) we get for the second term in (G.1) that

N-1 W-1
Z Z (zTHm';z — xTHm,(x)
m=0f=—({W-1)

. (z ) xejé(z))f H, ¢ (Z _ xemz)) ..

< ﬁwf'd?'(x,z).

(G.2)

Next, we aim to bound the first term of (G.1) from below
as follows:

-1 W= ’
Z Z (ZTHm‘fZ—XTHM'{X)

m=0f=—(W-1)
N—1 5
- Z (ZTHM,(]Z — XTH,,,.[}X)
m=0

2
N-1 m

=2l 2

m=0 \n=m—(W-1)
N-1

8 i (zz{n]—len])z,

m=0n=m—(W-1)

2 [n] — X2 [n]

(G.3)

where the last inequality is true since xz[n] = zz[n]
and for any positive (or negative) sequence {a;} we have

: O * 5 .a?. Furthermore, since |z[n]| = -t e
(Zi ') — Zl i | [ \/ﬁ
have

N-1 m
2 2
m=0n=m—(W-1)

1N—1 m 2
==y > (1—(1—;:,,)2)

m=0n=m—(W-1)
N-1
W 22
== F Z (2(—.'" _3") .
n=0

Therefore, since g, < 1 for all n we conclude that

N-1 W=l 2
Z Z (ZTHM‘,{‘Z—KTHM,{X)
m=0f=—(W-1)

N—1

w , Wd*(x,2)
> g e =Tnd,
n=0

(12 [n] — x2 [ﬂr])2

N (G4)

Plugging (G.2) and (G.4) into (G.1) yields

2
Vi@, z—x) > w

2
2 Wd- (x, z)
— 2N ]

(1 _4/NW3d(x, z))

where the last inequality holds for d(x,z) < Wlw?'

Remark: Observe that the analysis for non-vanishing win-
dows of length W requires only a small modification. In this
case, one should use the maximal and the minimal values
of the window in the above inequalities. For instance, one
would need to take gin 1= min,—p,.. w— |gln]| into account
in (G.3).
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