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Abstract

The metabolism of individual organisms and biological communities can be viewed as a network of metabolites connected to each
other through chemical reactions. In metabolic networks, chemical reactions transform reactants into products, thereby transferring
elements between these metabolites. Knowledge of how elements are transferred through reactant/product pairs allows for the
identification of primary compound connections through a metabolic network. However, such information is not readily available and
is often challenging to obtain for large reaction databases or genome-scale metabolic models. In this study, a new algorithm was
developed for automatically predicting the element-transferring reactant/product pairs using the limited information available in the
standard representation of metabolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and
provided accurate predictions when benchmarked with manually curated data. Applying the algorithm to the visualization of
metabolic networks highlighted pathways of primary reactant/product connections and provided an organized view of element-
transferring biochemical transformations. The algorithm was implemented as a new function in the open source software package
PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).
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Introduction

Metabolism forms the basis for understanding cellular processes in all living organisms. It comprises transformations of metabolites
through biochemical reactions and can be viewed as a network graph, where metabolites are represented as individual vertices and
reactions are represented as edges connecting the vertices. The reconstruction of metabolic networks can be applied to targeted
pathways, species specific genome-scale models (GEMs) [1,2], or to represent an ensemble of metabolic potentials from all
organisms [3]. In any case, metabolic reconstructions can quickly result in complex network topologies even for representing
individual pathways in the central metabolism. This is due to the presence of multiple reactants and products in typical metabolic
reactions, and the existence of hub metabolites (e.g. ATP/ADP, NAD/NADH, quinones, efc.) that are involved in a large number of
metabolic processes. Deriving biological meaning from these networks, either through visual inspection or by analysis with
algorithms, becomes difficult due to these complexities.

To facilitate the identification of biologically meaningful pathways, algorithms have been developed for reducing the complexity of
metabolic network topology [4—9]. For example, the MetDraw algorithm [4] uses a heuristic approach where hub metabolites are
identified as vertices having a vertex degree above a user-specified threshold. These hub metabolites usually represent common
metabolites, such as energy currency compounds (e.g. ATP/ADP), cofactors, coenzymes, and small molecules (e.g. HoO), and they
contribute to network complexity by creating links between different metabolic processes. In the MetDraw graph representation, the
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identified hub metabolites are shown as replicated vertices that associate with different reactions, hence eliminating the cross
connections between different metabolic processes. This approach can be useful for providing an approximation of the traditional
pathway diagrams, where the primary reactant/product pairs are used for tracing out individual metabolic processes. However, the
MetDraw algorithm relies on the arbitrary determination of a degree threshold and is not feasible for visualizing the biosynthesis
pathways of hub metabolites. A different approach is taken by other software that visualizes the reactant/product transformations as
diagrams based on manual or semi-manual curations (e.g. Escher [10]; Arcadia [11]; Cytoscape [12]; CySBML [13]; ReconMap
[14]; OptFlux visualization plugin [15]). These approaches are useful for making customized annotation of reactant/product pairs,
but the requirement of extensive manual curations suggests that fully automated approaches are better suited for large-scale
networks.

Examples of extensive manual curations of metabolic pathways are found in the KEGG [3] and the MetaCyc [16] databases, where
the pathway diagrams present a simplified view of the pathways by leaving out some of the complexity of the network. The KEGG
pathway maps are composed of static images manually constructed by expert curators according to the biochemical
understandings of metabolite transformations. These diagrams often highlight the main chemical conversions that are relevant to
the conventional understanding of biochemical pathways. However, they overlook the importance of additional metabolites (e.g. the
above-mentioned currency compounds) in mediating the flux and directionality of metabolic reactions. In contrast, the pathway
diagrams in MetaCyc provide a more detailed view of metabolic reactions that illustrate all participating metabolites. However, these
pathway diagrams contain a focused view of individual processes and their global connections to the overall metabolism is
frequently missing.

Identification of element-transferring reactant/product pairs for individual reactions remains as one of the fundamental challenges in
detecting biologically meaningful network connections. A number of approaches have been developed for the mapping of
reactant/product pairs based on the chemical structures of the metabolites [17-20]. The KEGG RPAIR database identifies element-
transferring reactant/product pairs based on the automatic recognition of common metabolite structures and the expert-guided
curation of chemical transformation patterns in individual reactions [18,21]. It provides extensive annotations of the reactions in the
KEGG database and is by far one of the most extensive reference data set available. The MetaCyc database contains atom-
mapping data for many reactions based on analyses of metabolite chemical structures [16,17]. This provides another extensive
reference set of element-transferring reactant/product pairs. However, both the KEGG RPAIR and the MetaCyc atom-mapping
annotations are restricted to metabolic reactions within their corresponding reaction databases. The application of these existing
annotations to new metabolic reconstructions could be challenging as it requires the mapping of new reactions and metabolites,
e.g. from expert curated GEMs or from other metabolic databases like ModelSEED [22], to the KEGG and MetaCyc databases,
respectively. Such mappings are not always available and are often time consuming to construct.

So far only a limited number of studies have aimed at addressing the problem of mapping element-transferring reactant/product
pairs given only chemical formula information for large reaction sets. The MapMaker algorithm proposed by Tervo and Reed [23]
uses a mixed integer linear programming (MILP) approach to predict element transfers between reactants and products of
individual metabolic reactions. Unlike the KEGG RPAIR and the MetaCyc atom-mapping annotations, MapMaker does not rely on
information of metabolite structures but instead only requires the metabolite formulas. While the algorithm can potentially be applied
for identifying reactant/product pairs that transfer any elements, the authors mainly focus on the application of the algorithm for
predicting carbon-transferring pairs. The authors also created a manually curated set of carbon-transferring reactant/product pairs
in the Escherichia coli GEM, iJO1366 [1]. This data set serves as an additional reference for evaluating new approaches, with a
specific focus on predicting the carbon-transferring reactant/product connections. The MapMaker algorithm is applicable for
analyzing any metabolic network with the simple inputs of reaction equations and metabolite formulas. However, it is time
consuming to run for large-scale networks or reaction data sets, such as the reaction collection in the KEGG [3] and the MetaCyc
[16] databases.

To solve the problems with existing approaches, this study presents a new algorithm, named FindPrimaryPairs, for predicting
element-transferring reactant/product pairs with high efficiency and accuracy. This algorithm accounts for the identification of both
carbon-transferring and non-carbon transferring metabolite connections, and it was validated with the KEGG RPAIR database [21],
the MetaCyc atom-mapping database [16,17], and with manual annotations by Tervo and Reed [23]. For simplification, the term
“primary pairs” was used in this study to indicate reactant/product pairs that carry elements from the reactant to the product. The
algorithm was implemented as a new function in the open source software package PSAMM [24], which was applied to
demonstrate primary reactant/product connections in the visualization of central metabolic processes.

Materials and methods

FindPrimaryPairs: An algorithm for the prediction of primary pairs

The FindPrimaryPairs algorithm was designed to identify primary pairs from any given set of metabolic reactions (e.g. all reactions
in a GEM or in any metabolic pathway database). It involves an iterative process of two major steps: (1) the identification of primary
pairs for individual reactions based on a scoring function, and (2) the global refinement of a probability distribution estimate that
contributes to the formulation of the scoring function. A detailed description of the FindPrimaryPairs algorithm is provided below and
is illustrated with an example in Fig 1 (See the Results section for more details).
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Fig 1. Diagram showing an application of the FindPrimaryPairs algorithm to a metabolic model.

https://doi.org/10.1371/journal.pone.0192891.g001

Step 1: Identify primary pairs for individual reactions.

Given a reaction R}, a primary pair is a pair of interconverting compounds defined based on the procedure below:

1. Identify (I1, Ip, -+, Is) and (ry, ra,***, ry) as lists of compound instances occurring respectively as reactants and products of reaction R;. These instances were
expanded from sets of unique reactants and products based on the stoichiometric value. Let ¢(x) of instance x be the type of compound it was expanded
from. The variables s and t indicate the number of compound instances on the two sides of the reaction equation.

2. For every compound pair, (;, ) with i€ (1,2, -+, s)and j e (1, 2, -+, 1), calculate the weighted Jaccard similarity based on the compound formulas using Eq

()

celmin(l Ny
dyp = Leep(min ;) ) fori € (1,2,....s)and j € (1,2,...,0)#

¥ ece(max(ll?,r) - W)

(1)
where E is the set of all elements in /;and r;, x®)is the count of element e in compound instance x (x being either J; or rj), and W, is a weight assigned to
each element.

3. Perform a correction of the Jaccard similarity based on a value, - -, which is a point estimate of the distribution B,y that models the probability of a
compound pair (X, Y) being a primary pair in any reaction. The corrected score is defined in Eq (2), where X = c(l;) and Y = c(rj):

Sty =i, Oy, forie (1,2, s)andj € (1,2, -+ )%
@

4. Pick a pair (I, r+) with the highest ;. among all pairs, and assign (X, Y) as a primary pair where X = ¢(/+) and Y = ¢(r+). The transfer of elements between
X and Y is defined as the count of all elements that are shared between /- and r-.

5. Update the count of elements in formulas of /« and r~ by removing the transferred elements as defined in step 4 from each formula. Repeat steps 2 to 5 with
the updated formulas until the transfer of all elements between two sides of the reaction R; has been accounted for in the list of assigned primary pairs.

The result of the above procedure is a list of predicted primary pairs for the reaction R;. In addition, each primary pair is associated
with a formula indicating the predicted counts of elements transferred between the pair. The predicted primary pairs are used to
obtain # -, which is a point estimate of 6x.y, as defined in the next section.

Step 2: Iterative refinement of éx_r..
Given two compounds, X and Y, from the two sides of a metabolic reaction, R;, define:
; 1. if X, ¥ is a primary pair in reaction R,
My = { R "4

(), otherwise
(3)

(R

Therefore, A"} is an incidence of My y observed in the reaction, R;.
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Next, define

Oy y = Pogy,=1)#
(4)

Hence, 6x,y is the probability of X and Y being primary pairs in any reactions. A beta distribution is used to model 6 y:

Oy y ~ Betaloxy, By y)
(5)

where @y is estimated with the mode of the beta distribution:

(6)

Given a prior distribution, Hll{.’.'}'.""], and a prediction of primary pairs, #iy y, in a set of reactions:

H_I“'I_’.r}r_'i’:' ~ Beta(s/77), grion)
iy = (M € Ney), ME € (0,1}

In the above representation, Nx y is the set of reaction indices that reference reactions with compound X on one side and Y on the
other. Let nx y be the total number of reactions in Nx v, and let yx y be the number of instances where ,*la‘_{f;.’ =1,i € Nyy. The value

of yx y can be represented by Eq (7):

yry = Z.i_:.\f\- ,-"W_:if'r}#
(Y]

The posterior distribution of 8x y is estimated using the H_l{.’_';.""3' and #, ; based on a binomial distribution model for yx y:
H.:{'_?-{;i_ﬂ'f'-’r-'\"l — Bt’f{.‘[l‘l"u”.m.:l +_1.-_\-_]-.J|‘f';""’""""'| +aypy — _L'.i'.TJ

Then, a point estimate &, y is obtained using the mode of g following Eq (6), which corresponds to the maximum a posteriori
(MAP) estimation.

The FindPrimaryPairs algorithm was applied to reaction sets by iteratively identifying primary pairs in individual reactions followed
by a global refinement of the @, ; parameter according to primary pair predictions on all reactions (Fig 1). In each iteration, t, a

MAP estimate of ¢\, was obtained as described above, an updated assignment of ;,_'-,".f',. was then identified using H{} following

the analysis of individual reactions, and a new estimate, é_:\{f:r.] !, was obtained based on ﬁ',", and 6.',".?}.. This iterative procedure

continued until the point estimate, 8+ -, was stabilized for all compound pairs, as indicated in the following:

By — 55| < e#
(8)

where 8, and 8! were point estimates of the posterior distributions from two successive iterations, and € was a number close
to zero (e.g. € = 10_5). For the first iteration, the value of é_’\‘.‘_;. was set to 1. An example of applying the FindPrimaryPairs algorithm
is illustrated in Fig 1 and described in the Results section.

Parameter optimization

Optimized parameters of the FindPrimaryPairs procedure, including the weights of individual elements (Wg) and the prior
parameters of the beta distribution (a?") and B were identified based on analyzing the reactions in the KEGG database
(Release 70.1). The RPAIR annotation for each reaction of the KEGG database was used to evaluate the prediction of both carbon-
transferring and non-carbon transferring primary pairs. A confusion matrix was established for evaluating the predictions. The
Matthews Correlation Coefficient (MCC) was used to measure the accuracy of predictions and was calculated as shown in Eq (9),
where the number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) pairs were obtained from the
confusion matrix.

o TP-TN —FP-FN ,
MCC = #
/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

9)
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The weights of individual elements (W) were assigned with the consideration that carbon elements form the backbone of organic
molecules and hence a similar number of carbon elements would indicate that two molecules are likely to be structurally similar.
The hydrogen elements, in contrast, are peripheral to the molecule structure and are therefore less likely to predict structural
similarity. Given this rationale, each carbon element was assigned a weight of 1, each hydrogen element was assigned a weight of
0, and all other elements (such as nitrogen, oxygen, phosphorus, etc.) were assigned a weight (Wo¢er) between these two
extremes. A grid search was performed using the RPAIR annotations of the KEGG database as a reference dataset to identify the
optimal values of parameters aP), gP119N) "and W .. The range of Wome, was assigned to decimal numbers between 0 and 1,
with 51 steps of constant increments of 0.02, and the ranges of a®®™") and P were assigned to integers between 1 and 50. For
each grid point, a confusion matrix was mapped based on the reference dataset and the parameters that resulted in the maximum
MCC value were selected.

The primary pair prediction was applied to analyze metabolic reactions in the MetaCyc database and in a complete GEM, iJO1366,
of the organism E. coli. The prediction was evaluated through the calculation of MCC values as defined in Eq (9), where the
confusion matrix was constructed by comparing the primary pair predictions to the reference reactant/product pairs in the reference
datasets [16,23]. Synthetic reactions like the biomass reactions were not considered in the evaluation because they represent
artificial formulations of cellular processes. Since the iJO1366 reference data set included only pairs that transfer carbon, only
primary pairs that were predicted to transfer at least one carbon element were compared to this dataset. In contrast, the
comparison to the MetaCyc atom-mapping data considered all primary pairs.

Software implementation

The FindPrimaryPairs algorithm was implemented as a function in the open source PSAMM software [24] and can be applied for
analyzing GEMs or any given set of biochemical reactions. This function can be accessed with the “primarypairs” procedure of the
“psamm-model” command by specifying the option “—method = fpp”. The new “primarypairs” procedure were made available from
release v0.30 of PSAMM at https://zhanglab.github.io/psamm/.

As a comparison, an implementation of the MapMaker algorithm [23] was also included in the “primarypairs” procedure and can be
accessed using the option “—method = mapmaker”. The MapMaker method relies on solving an MILP problem implemented on the
linear programming solver framework of PSAMM. Multiple solvers, including the IBM ILOG CPLEX Optimizer, the Gurobi Optimizer,
and the GNU Linear Programming Kit (GLPK), are compatible with this procedure. Specifically, in this study the MapMaker
operations were performed using the CPLEX solver version 12.6.3.

Visualization of a subnetwork of a genome-scale model

Metabolic networks analyzed in this study were visualized using a representation of bipartite graphs, where two sets of vertices
were used to represent the compounds and reactions, respectively, and directed edges between the compound vertices and the
reaction vertices were used to indicate the interconversion of compounds through reactions. Only carbon-containing compounds
were included in the network visualization, and two different strategies were applied in the formulation of the network graphs. In a
first strategy, each reaction vertex was represented only once in the graph and was associated with all carbon-containing reactants
and products of the reaction. In a second strategy, reaction vertices were replicated to represent the connections within subsets of
carbon-transferring reactant/product pairs identified based on the primary pair predictions. The visualization of pathway graphs was
created in Cytoscape version 3.4.0 [12]. The compounds and reactions in conventional representation of the TCA cycle were laid
out in a circular view and were presented with the same positioning of compound vertices. The remaining vertices in the graph were
laid out using the spring-embedded approach in Cytoscape [12].

Results

Application of the FindPrimaryPairs algorithm

Fig 1 illustrates the application of the FindPrimaryPairs algorithm to the E. coli GEM, iJO1366 [1]. The algorithm follows an iterative
process with the correction coefficient 8!, updated in every iteration until convergence (Materials and Methods). The two main
steps of the iterative procedure are represented in the two gray boxes in Fig 1. The upper box demonstrates the identification of
primary pairs from individual reactions, showing an example of the glucose kinase reaction, HEX1. The bottom box demonstrates
the estimation of 4*!' from 4\, and the formulation of a beta distribution, using an example of the reactant/product pair, ATP and
ADP, and their primary pair assignments among all reactions of iJO1366.

The initial coefficient, #”.., was set to a fixed value of 1 in the implementation of the FindPrimaryPairs algorithm. This value was

X, }- ’
used for predicting the initial primary pair assignments, +; m\ \+» in all reactions, and the ,”'\"5 in turn determined the estimate, 8!/, ,
for the next iteration (Materials and Methods). Values in the upper gray box of Fig 1 show an example of the calculations made with

\ \+, for identifying primary pairs in the reaction, HEX1, and the lower gray box shows an example of obtaining an updated

estimate, Hm, ,pp» Dased on the ATP—ADP pairing in all reactions of the iJO1366 model. Primary pairs in the reaction HEX1 were

identified based on a five-step procedure described in Materials and Methods, which resulted in the assignment of four primary
pairs that accounted for all element transfers from reactants to productions of the reaction (Fig 1, blue boxes). The same procedure
was applied to each individual reaction in the iJO1366 model, and then the collection of all primary pairs from all reactions was

used for determining H ‘“' for every compound pair that was present in the model (Fig 1, purple box). The iterative procedure
continued until the value #\71! converged for every compound pair in the model (Materials and Methods).

Grid search and selection of optimal parameters

http://journals.plos.org/plosone/article?id=10.1371/journal .pone.0192891 5/11
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A grid search was performed for assigning the three parameters used in the FindPrimaryPairs procedure, including the weight of
non-carbon, non-hydrogen elements (Woge), and the values of prior parameters, a?) and P (Materials and Methods). Fig 2
provides snapshots of the grid search results, where each panel presents grids of two parameters at the optimal setup of a third
parameter. The MCC values were used in grid search for identifying optimal parameters, and the KEGG RPAIR database [18,21]
was used as a reference for evaluating the primary pair predictions (Materials and Methods).
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Fig 2. Heatmaps demonstrating pairwise relationships of the parameters, Wygner, aP?, and g7, from a grid search of optimal values based
on the RPAIR annotations of the KEGG database.

The MCC values are shown with color coding at each step of the varying parameters (see the color legend on the upper right
panel). The maximum MCC is marked with a black outline in each heatmap panel and labeled with its numeric value. In each
heatmap, a selected parameter was fixed at its optimum (indicated in the title of each panel) and the remaining two
parameters were varied within a given range of the grid search (x-axis and y-axis).
https://doi.org/10.1371/journal.pone.0192891.g002

The reference annotations used in the grid search analysis included 7569 biochemical reactions and 21174 reactant/product pairs
that account for the chemical transformation of metabolites in the reactions. This reference dataset was created from the KEGG
reaction database by eliminating unspecified reaction entries: First, 1380 reactions were skipped from the parsing of compound
formulas because they involve compounds (549 out of 7827 compounds in the KEGG database) that could not be processed due to
the lack of formula annotation, a variable number of elements in the formula, or a dot notation in the formula indicating complex
chemical compositions. Second, 479 reactions were not considered because they have unbalanced non-hydrogen elements on the
two sides of the reaction equations. Finally, 242 reactions were removed either because they are missing from the RPAIR
annotation (55 reactions) or they involve at least one carbon-containing compound for which a pair is not identified in the RPAIR
annotations (187 reactions).

According to the grid search, the MCC values were close to or higher than 0.9 within the tested range of all parameters (Materials
and Methods). This indicated consistency of the FindPrimaryPairs procedure in predicting primary pairs even with varying
parameter values. In other words, the choice of parameter values within the range had no significant influence on the final
predictions. In searching for the optimal parameters, the MCC values appeared to decline slightly when the weight of non-carbon,
non-hydrogen elements (Wother) Was above 0.88 or below 0.18, suggesting that an intermediate weight was favored for these
elements. The optimal MCC was reached when aP™" approached 1. However, when both aP™" and g were set to 1 so that
the beta distribution model of 8x y became a uniform distribution, the MCC value was lowest regardless of the setting of Wyher (Fig
2, lower right panel). As a result, the grid search identified an optimal MCC value of 0.929 when the parameters a""), B(p”"s, and
Wotner, respectively, approached 1, 43, and 0.82 (Table 1). These optimal parameters were applied in the implementation of the
FindPrimaryPairs procedure and were used as the default parameters for our studies in the following sections.

Table 1. Parameter values applied in the default implementation of FindPrimaryPairs.

The weight assignments of carbon (W) and hydrogen (W) elements were determined based on the design of the algorithm.
The weight assignment of other elements Wogher, and the prior parameters aP™" and ") were determined based on a
grid search of optimal parameters using the KEGG RPAIR annotations as reference data.
https://doi.org/10.1371/journal.pone.0192891.t001

Comparing FindPrimaryPairs with MapMaker algorithms

The FindPrimaryPairs algorithm was further evaluated through a comparison with the MapMaker algorithm [23]. To achieve this, an
implementation of both algorithms was constructed and applied to three reference datasets for evaluating the accuracy and
efficiency of primary pair predictions (Materials and Methods). The first dataset included manually curated carbon-transferring

http://journals.plos.org/plosone/article?id=10.1371/journal .pone.0192891
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reactant/product pairs of 2150 reactions in a complete GEM, iJO1366 [23]. The second dataset included both carbon-transferring
and non-carbon transferring reactant/product pairs of the 7569 KEGG reactions annotated in the KEGG RPAIR database [18,21].
The third data set contained both carbon-transferring and non-carbon transferring reactant/product pairs of the 8452 MetaCyc
reactions that had available atom mappings [16,17].

While both algorithms produced highly accurate predictions, FindPrimaryPairs achieved higher MCC values than the MapMaker
algorithm when predicting primary pairs in all three reference datasets (Table 2). Of the 3688 carbon-transferring reactant/product
pairs annotated in iJO1366, over 98% (3626 pairs) were successfully identified by the FindPrimaryPairs algorithm, while a slightly
smaller fraction (3591 pairs; 97%) were correctly identified by the MapMaker algorithm. Of the 21174 reactant/product pairs in the
KEGG RPAIR annotation, over 97% (20591 pairs) were correctly predicted by FindPrimaryPairs, while less than 95% (20113 pairs)
were correctly predicted by MapMaker. Of the 23345 reactant/product pairs in the MetaCyc dataset, around 96% (22400 pairs)
were correctly predicted by FindPrimaryPairs, while approximately 94% (21977 pairs) were correctly predicted by MapMaker. The
numbers of false positive and false negative predictions generated by FindPrimaryPairs were also reduced as compared to the
predictions generated by the MapMaker algorithm (Table 2). Hence, a combination of higher true positives and lower false
predictions contributed to the improved accuracy of the FindPrimaryPairs algorithm.

..... S |

Table 2. Comparing the accuracy and efficiency of FindPrimaryPairs and MapMaker algorithms using annotations in the iJO1366, the KEGG
RPAIR database, and the MetaCyc atom-mapping data.

The MCC values were calculated according to descriptions in Materials and Methods, and the running time (seconds) was
calculated based on the average time cost in seven independent runs of each algorithm on each reference set. TP—true
positive; FP—false positive; FN—false negative; TN—true negative.

https://doi.org/10.1371/journal.pone.0192891.t002

The FindPrimaryPairs approach also demonstrated significant improvement of running efficiency (Table 2), with an average running
time of 13.9 seconds for processing the 2150 reactions in the iJO1366 GEM, 52.4 seconds for processing the 7569 reactions in the
KEGG database, and 76.1 seconds for processing the 8452 reactions in the MetaCyc database. In contrast, it took the MapMaker
approach at least four times longer to process the reactions in all three datasets.

Using FindPrimaryPairs predictions for visualizing metabolic subnetworks

The FindPrimaryPairs algorithm was applied to reduce the complexity of network graphs. In Fig 3, a prediction of carbon-
transferring compound pairs was applied for visualizing a subnetwork that represents the citric acid cycle (TCA cycle) and its
metabolic contexts in a GEM, iJO1366 [1]. The subnetwork was constructed by first selecting nine main compounds that participate
in the conventional representation of the TCA cycle (S1 Table) and then including additional reactions (S2 Table) and compounds
(S1 Table) that are directly associated with these initial compounds. Visualization of the subnetwork was achieved with bipartite
graph representations using two different strategies (Materials and Methods), which was demonstrated with an example of a single
reaction (Fig 3A and 3B) as well as the entire subnetwork (Fig 3C and 3D).

Fig 3.

Bipartite graph representation of AKGDH (panels a and b) and a subnetwork (panels c and d) of the GEM, iJO1366. The
panels a) and c) were represented using a conventional bipartite graph, where each reaction was shown as a single vertex
connected with all compounds involved in the reaction. The panels b) and d) were similarly represented as bipartite graphs
but converted reaction nodes to multiple vertices to highlight different primary pairs that carried out independent element
transfers, e.g. as indicated with green dotted lines in panel b, where labels represent the predicted (no parentheses) or the
annotated (in parentheses) element transfers. Unless specified, in all panels reaction nodes were shown as blue rectangles,
compound nodes were shown as orange ovals, and the edge directions were assigned based on the annotation of reaction
directions in the model. The edges with higher width indicated connections in the conventional representation of the TCA
cycle, and the edges in red (panel c) represented independent primary pairs that would be isolated from the main element
flow in the primary pair graph. The bordered compound nodes in red (panel d) highlighted network features visible in the
primary pairs graph. Reaction abbreviations: AKGDH-2-Oxogluterate dehydrogenase; PPCK—Phosphoenolpyruvate
carboxykinase; SUCOAS-Succinyl-CoA synthetase; FE3DCITabcpp—Iron transport from ferric-dicitrate via ABC system; ICL—
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Isocitrate lyase; MALS—Malate synthase. Compound abbreviations: akg—2-oxoglutarate; coa—coenzyme A; succoa—Succinyl-
CoA; co2—-Carbon dioxide; nad—Nicotinamide adenine dinucleotide; nadh—Reduced nicotinamide adenine dinucleotide; adp—
Adenosine 5'-diphosphate; atp—Adenosine 5'-triphosphate; icit-Isocitrate; gix—Glyoxylate; mal-L—-L-Malate; succ—Succinate;
accoa—Acetyl-CoA. The suffix [c] indicated compounds located in the cytosol, and the suffix [p] indicated compounds located
in the periplasm.

https://doi.org/10.1371/journal.pone.0192891.g003

A case study of the 2-Oxogluterate dehydrogenase reaction, AKGDH, was used to demonstrate differences in conventional bipartite
graph representation (Fig 3A) as compared to the representation guided by primary pairs (Fig 3B). In the conventional bipartite
graph, all participating compounds of a reaction were connected to the reaction vertex with directed edges. In contrast, subsets of
compounds were identified in the primary pairs graph, and each subset was associated with an independent instance of the
reaction vertex. In the AKGDH reaction, four primary pairs were identified using the FindPrimaryPairs algorithm (indicated with
green dotted edges in Fig 3B), and each pair represented specific element transfers through the reaction (green labels in Fig 3B).
The formulation of primary pair graph for AKGDH identified that the connection within one primary pair, NAD-NADH, was
independent from other primary pairs, and hence it was associated with another instance of the reaction vertex. Therefore, the
primary pairs graph effectively separated the representation of currency compounds (NAD and NADH) from the representation of
element transfers among the substrates and products of a biochemical reaction.

The representation of a subnetwork associated with the TCA cycle was also constructed to demonstrate the application of primary
pairs in visualizing complex connections from the central metabolism to other metabolic processes. In the conventional bipartite
graph (Fig 3C), a large number of edges were directed across the center of the TCA cycle, reflecting the complex connections
among different components of the subnetwork. This complexity was significantly reduced in the primary pairs graph (Fig 3D),
where the connections between primary pathway compounds were isolated from the connections between currency compounds,
such as ATP and ADP (Fig 3D, inset). Several additional features emerge from the primary pairs graph. For example, the
compound 2-oxoglutarate (akg) was identified as an important hub to the downstream metabolic processes via connections to L-
Glutamate (glu-L), which is a precursor of many biosynthesis pathways. The glyoxylate shunt was also more visible in the primary
pair graph (Fig 3D). Hence, the visualization of primary pairs enhanced the biological interpretation of complex metabolic networks.

Discussion

The complexity of metabolic networks prevents the identification of biologically meaningful features in the graph representation of
metabolic transformations. Among various challenges the lack of accurate and efficient approach for detecting element-transferring
reactant/product pairs is hindering the simplification of complex network topology. In this research, the new algorithm
FindPrimaryPairs has been developed to perform automated prediction of primary pairs that carry out chemical transformation and
element transfers in biochemical reactions. An implementation of the algorithm has been evaluated with the curated classifications
of carbon-transferring pairs in a GEM, iJO1366 [1], and with the KEGG RPAIR and MetaCyc atom-mapping annotations that
provide a global mapping of all element-transferring reactant/product pairs in biochemical reactions [16—18,21] Results from the
evaluations have shown that FindPrimaryPairs achieved slightly better predictions than an existing algorithm, MapMaker, as
indicated by their MCC values in mapping to reference datasets (Table 2). It is worth mentioning that the higher mapping accuracy
is attributed not only to an increase in the number of true positive mappings but also to a reduction of false predictions by the
FindPrimaryPairs algorithm. On all three reference datasets, the running time of FindPrimaryPairs has been reduced by at least
four folds as compared to MapMaker. Additionally, the efficiency of the FindPrimaryPairs implementation could be further optimized
by allowing parallel processing of independent reaction entries within each iteration of the global optimization (Fig 1).

While FindPrimaryPairs demonstrated enhanced accuracy and efficiency, it has some limitations similar to the MapMaker algorithm.
First, both approaches rely on examining the similarity of metabolite formulas and would fail when reactant/product pairs of the
highest formula similarity do not correspond to the biochemical mechanism of a reaction. For example, the Transaldolase reaction
in iJO1366, TALA, transfers a dihydroxyacetone moiety from sedoheptulose 7-phosphate (s7p) to glyceraldehyde 3-phosphate
(g3p), forming the products erythrose 4-phosphate (e4p) and fructose 6-phosphate (f6p). From the comparison of metabolite
formulas, it appears that s7p should be paired with f6p and g3p be paired with e4p, but from analyzing the biochemical mechanism,
a correct mapping of the reactant/product pairs should couple s7p with e4p, and g3p with fép. Hence, the formula-based approach
fails when a chemical transfer occurs between two substrates of similar element compositions, e.g. in the case of TALA, both
substrates s7p and g3p are phosphorylated carbohydrates. However, these special case studies are not a major part of metabolic
reaction databases. Since metabolite formulas are more readily available in metabolic databases than the interpretation of
biochemical mechanisms, the formula-based approach represented by FindPrimaryPairs and MapMaker still provides significant
advantage in analyzing large-scale metabolic networks.

Another problem that FindPrimaryPairs and MapMaker have in common comes from the possibility of having multiple optimal
predictions of the primary pairs in a reaction. In the MapMaker algorithm, prediction of primary pairs is dependent on finding the
solution of an MILP problem, which can result in multiple optimal solutions that lead to different pairings of the reactants and
products. Only one solution can match the true mechanism of element transfer in a reaction, but the algorithmic design is not
guaranteed to provide the correct solution in the presence of multiple solutions. Similarly, in the FindPrimaryPairs algorithm,
multiple reactant/product pairs may have the same scores in comparing similarities of their formulas. Which pair is selected from
the tie of scores may ultimately determine which one of the distinct predictions is reported. By default, ties of the highest similarity
scores were broken in the PSAMM FindPrimaryPairs implementation by sorting the highest scoring pairs by metabolite names and
selecting the first pair in the sorted list. This provides a way to consistently arrive at the same result when the FindPrimaryPairs
algorithm is applied, but resolving the underlying issue of multiple equivalent solutions still requires manual curations.

To evaluate the extent by which FindPrimaryPairs and MapMaker are influenced by these uncertainties in their algorithmic design,
extensive sampling was performed on the implementation of both algorithms to count the number of reactions for which an arbitrary
decision could have been made (Fig 4). The results revealed both algorithms produce ambiguous primary pair predictions for a
small subset of reactions in all three reference databases, iJO1366 [1], KEGG [18,21] and MetaCyc [16,17], which contain 2150,
7569, and 8452 reactions, respectively. Compared to the MapMaker algorithm, FindPrimaryPairs demonstrated reduced level of
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ambiguity (Fig 4). This was largely due to the iterative refinement of reactant/product similarity scores based on the global
assignment of primary pairs. It is worth mentioning that the measurements of uncertainty in Fig 4 reflected an upper bound of
prediction ambiguity for the FindPrimaryPairs algorithm, because all reactions that had ties in top scores of metabolites similarly
were counted as ambiguous, while not all ties would result in different prediction of primary pairs. For example, if a reaction has two
reactants, A and B, and two products, C and D, a tie could occur in the top scores of two potential pairs: A—C and B-D. However,
because these pairs do not represent a different mapping of reactants and products, the tie has no influence on the primary pair
prediction. In contrast, in Fig 4 the number of ambiguous cases counted for the MapMaker algorithm reflected a true evaluation of
reactions that had different primary pair predictions in the sampling. Hence, the FindPrimaryPairs algorithm provides a more stable
approach that produces consistent predictions for a higher fraction of reactions in the reference databases than the MapMaker
algorithm.

Number of Ambiguous Reacticns

Fig 4. Bar chart showing the number of ambiguous reactions in the MetaCyc, KEGG, and iJO1366 reference datasets, where the two algorithms,
FindPrimaryPairs and MapMaker, would potentially make arbitrary predictions of primary pairs.

For FindPrimaryPairs, the reactions were counted for which the algorithm encountered ties on the top scoring
reactant/product pairs in the last iteration of the primary pair assignment. For MapMaker, the reactions were counted for
which the MILP solver would provide more than one optimal solutions that result in different primary pair predictions.
https://doi.org/10.1371/journal.pone.0192891.g004

The identification of primary pairs is useful for visualizing metabolic subnetworks of complete GEMs (Fig 3). Compared to a
conventional bipartite graph representation, the primary pairs graph has advantages in revealing primary substrate/product
connections and identifying biologically meaningful network features. While previous studies rely on either the arbitrary identification
of hub metabolites using compound vertices degrees [4] or the manual curation of individual metabolic pathways [10—15], The
FindPrimaryPairs approach is both fully automated and avoids the drawback of making arbitrary decisions on the cutoff of vertices
degrees in identifying hub metabolites. Further, it also permits the visualization of chemical transformations across different
metabolic processes in the global metabolism. The primary pairs graph can be used on its own or combined with other graph layout
algorithms, such as the grid layouts proposed by [25] and [26], to further reduce visual clutters in complex metabolic networks.
Since the predictions provided by FindPrimaryPairs also include transfers of elements other than carbon, it can be applied to
visually explore the flow of any other biologically important elements, such as nitrogen, phosphorus or sulfur, in the global metabolic
processes.

Supporting information

S1 Table. List of compounds included in the graph representation of a subnetwork in iJO1366.
The column "TCA_cycle" indicates the nine main compounds that participate in the conventional representation of the citric acid
cycle (labeled with "Yes").

https://doi.org/10.1371/journal.pone.0192891.s001
(PDF)

S2 Table. List of reactions included in the graph representation of a subnetwork in iJO1366.

https://doi.org/10.1371/journal.pone.0192891.s002
(PDF)
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