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Frustrated quantum magnets are a central theme in condensed matter physics due to the richness of their
phase diagrams. They support a panoply of phases including various ordered states and topological phases.
Yet, this problem has defied a solution for a long time due to the lack of controlled approximations which
make it difficult to distinguish between competing phases. Here we report the discovery of a special
quantum macroscopically degenerate point in the XXZ model on the spin-1/2 kagome quantum
antiferromagnet for the ratio of Ising to antiferromagnetic transverse coupling Jz/J ¼ −1/2. This point
is proximate to many competing phases explaining the source of the complexity of the phase diagram. We
identify five phases near this point including both spin-liquid and broken-symmetry phases and give
evidence that the kagome Heisenberg antiferromagnet is close to a transition between two phases.
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The history of quantum frustrated magnetism began in
1973 with Anderson’s suggestion that the ground state of
the nearest-neighbor (NN) Heisenberg model on the tri-
angular lattice was a quantum spin liquid [1]. While we
now know that this particular model does not support a spin
liquid, both experimental and theoretical evidence has been
building for quantum spin liquids in various lattices built
of triangular motifs. Materials such as herbertsmithite
(a kagome lattice of Cu2þ ions) [2] and Na4Ir3O8 (a hyper-
kagome lattice of Ir4þ ions) [3] fail to order down to low
temperatures suggesting a possible spin-liquid ground
state. This is supported by theoretical calculations which
show that a panoply of spin liquids (or exotic ordered
phases) occur in a variety of Hamiltonians [4–17]. This
Letter presents an explanation of multiple energetically
competitive phases in these models.
We first report the existence of a new macroscopic

quantum degenerate point on kagome and hyperkagome
lattices in the spin-1/2 XXZ Hamiltonian [18–23],

HXXZ½Jz� ¼
X
hi;ji

Sxi S
x
j þ Syi S

y
j þ Jz

X
hi;ji

SziS
z
j ð1Þ

at HXXZ½−1/2� (notated as HXXZ0 [24]). Si are spin-1/2
operators on site i, hi; ji refer to nearest-neighbor pairs, and
Jz is the Ising coupling. The degeneracy exists in all Sz
sectors and all finite system sizes. For the kagome, we
explicitly demonstrate this in Fig. 1 where we perform an
exact diagonalization (ED) on the N ¼ 30 site kagome
cluster in different Sz sectors. As we approach Jz ¼ −1/2,
many eigenstates collapse to the same ground state
eigenvalue.

We solve analytically for much of the exponential
manifold, and our solutions apply to any lattice of triangu-
lar motifs with the Hamiltonian of the form

H ¼
X
Δ
HXXZ0ðΔÞ; ð2Þ

FIG. 1. Energy spectra [showing the eight lowest energies in
every momentum sector with respect to the lowest energy state
in K ¼ ð0; 0Þ] versus Jz for a 30-site kagome cluster with
periodic boundary conditions. The panels correspond to various
Sz sectors, (top left) Sz ¼ 0, (top right) Sz ¼ 5, (bottom left)
Sz ¼ 10, (bottom right) Sz ¼ 14. A quantum degeneracy is seen
at Jz ¼ −1/2. The case of Sz ¼ 14 corresponds to one spin-down
in a sea of up spins and maps to the noninteracting solution;
hence, the spectrum does not change with Jz.
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where HXXZ0ðΔÞ is the XXZ0 Hamiltonian on a triangle Δ,
as long as its vertices can be colored by three colors with no
two connected vertices being assigned the same color.
Some three-colorable lattices with representative three
colorings are shown in Fig. 2. Our general result overlaps
the XXZ0 point on the triangular lattice of Ref. [25] and a
different analytically solvable Hamiltonian on the zigzag
ladder of Ref. [26].
Finally, we show how the XXZ0 point on the kagome

lattice is embedded in the wider phase diagram demon-
strating its relation to the previously discovered spin liquid
at the Heisenberg point [7,8,10] as well as nearby mag-
netically ordered phases; our results suggest an additional
intermediate phase transition in the middle of the spin-
liquid region.
Exact ground states at Jz ¼ −1/2.—Any Hamiltonian of

the form of Eq. (2) has ground states of the form

jCi≡ PSz

�Y
valid

⊗ jγsi
�
; ð3Þ

where fjγsi ¼ jai; jbi or jcig denoted as “colors” on
site s are defined as jai≡ ð1/ ffiffiffi

2
p Þðj ↑i þ j↓iÞ, jbi≡

ð1/ ffiffiffi
2

p Þðj ↑i þ ωj↓iÞ, jci≡ ð1/ ffiffiffi
2

p Þðj ↑i þ ω2j↓iÞ, where
ω ¼ ei2π/3. Taking the quantization axis to be the z axis,
the colors correspond to spin directions in the XY plane that
are at 120° relative to one another. Valid colorings satisfy
the three-coloring condition. PSz projects into a particular
total Sz sector.
For Jz ¼ −1/2 and a single triangle, six states—the fully

polarized state j ↑↑↑i and the chiral states j ↑ ↓↓i þ ωj↓ ↑
↓i þ ω2j↓↓ ↑i and j ↑ ↓↓i þ ω2j↓ ↑ ↓i þ ωj↓↓ ↑i and
all their Kramers pairs—are exactly degenerate. Thus,
Eq. (2) is recast as

H ¼
X
Δ
HΔ ¼ 3

2

X
Δ
PΔ −

3

8
NΔ; ð4Þ

where NΔ is the number of triangles, and PΔ is a projector
on the triangle PΔ ≡ jþihþj þ j−ih−j, and jþi and j−i are
Kramers pairs of nonchiral one-magnon states on the
triangle jþi≡ ð1/ ffiffiffi

3
p Þðj ↑↑ ↓i þ j ↑ ↓ ↑i þ j↓ ↑↑iÞ and

j−i≡ ð1/ ffiffiffi
3

p Þðj↓↓ ↑i þ j↓ ↑ ↓i þ j ↑ ↓↓iÞ. This rewriting
can be carried out on any lattice of triangles; if a bond is
used by multiple triangles, this constrains the coupling
constant between these bonds.
The XXZ0 Hamiltonian is, thus, a sum of positive

semidefinite noncommuting projectors. Any wave function
that simultaneously zeroes out each projector consistently
is guaranteed to be a ground state. Such “frustration-free”
Hamiltonians include Majumdar-Ghosh [28] (generalized
by Klein [29]) and Affleck-Kennedy-Lieb-Tasaki [30–33]
Hamiltonians. Zeroing out a projector requires that only
components exactly orthogonal to states jþi and j−i enter
the full many-body wave function; this is indeed achieved
by the product state jψi≡Q

valid ⊗ jγsi. We also note that
such “three-coloring states” have a long history and have
been explored in several contexts [24,34–40].
The product state jψi does not conserve total Sz but the

XXZ Hamiltonian does conserve it. Therefore, projecting
each three-coloring solution to each Sz sector is also a
ground state leading to Eq. (3). Note that three colorings
which differ simply by relabeling colors are identical up to
a global phase (see the Supplemental Material [41]).
Macroscopic degeneracy and additional ground

states.—While there are only two ways of three coloring
the triangular lattice, there are an exponential number of
ways of doing so on the kagome (scaling as 1.208N [42])
and hyperkagome lattices. The precise number of ground
states varies from sector to sector because of the loss of
linear independence of the unprojected solutions under
projection. For typical Sz of interest, particularly Sz ¼ 0,
there are still an exponential number of linearly indepen-
dent solutions. This counting is made precise by forming
the overlap matrix SC;C0 ≡ hCjC0i and evaluating its rank
≡RðSÞ numerically; our results have been shown in Table I
and the Supplemental Material [41]. The case of one down
spin in a sea of up spins, which maps to the noninteracting
problem with a flatband with a quadratic band touching
[43], is also correctly captured.
On several representative clusters with open boundary

conditions (but always with completed triangles), we never
find solutions outside the coloring manifold, which sug-
gests (but does not prove) the possibility that coloring
solutions describe all degeneracies on open lattices.
However, for the kagome on tori we find, for low fillings,
degenerate solutions not spanned by colorings.
Connection to the wider kagome phase diagram.—We

now show how the XXZ0 point is embedded in the larger
kagome phase diagram. We focus on Sz ¼ 0 and the fully

(d) (e) (f)

(a) (b) (c)

FIG. 2. Representative three-coloring solutions on various
lattices with triangular motifs: (a) sawtooth, (b) kagome,
(c) triangular, (d) Shastry-Sutherland [27] (with J2 ¼ 2J1; note,
the bold diagonal lines are associated with two triangles, whereas
other edges are part of only one triangle), (e) icosidodecahedron,
(f) hyperkagome lattice.
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symmetric sector of the K ¼ ð0; 0Þ sector (see the
Supplemental Material [41]) and study an extended
Hamiltonian involving NN and next-nearest-neighbor
(NNN) terms,

H½Jz; J2� ¼ HNN
XXZ½Jz� þ J2HNNN

XXZ ½Jz�; ð5Þ

where HNNN
XXZ ½Jz� ¼ ðP⟪i;j⟫S

x
i S

x
j þ Syi S

y
j þ JzS

z
i S

z
jÞ with

⟪i; j⟫ referring to NNN pairs. We use a combination of
analytical arguments and ED on the 36d cluster [44,45] on
a grid of points in the ðJz; J2Þ space. As Fig. 3 shows, we
find five phases near XXZ0: a ferromagnetic phase, a q ¼ 0

phase, a
ffiffiffi
3

p
×

ffiffiffi
3

p
phase, and (potentially) two spin liquids.

We give numerical evidence that all these phases, other than
the ferromagnet, connect from near (or touching) XXZ0 to
the Heisenberg point.
At Jz ¼ −1/2 and J2 > 0 (notated as the AF line) all

triangles in the Hamiltonian are of the XXZ0 form and
remain consistently three colorable. Three coloring both
NN and NNN triangles constrains the allowed colorings,
leaving only two colorings in the well-known q ¼ 0
pattern. This phase survives for Jz > −1/2 at small J2
and is primarily identified by peaks at the M point (see
Fig. S2 of the Supplemental Material [41]) in the spin-
structure factor Sðq⃗Þ≡ ð1/NÞPi;jhSi · Sjieiq⃗·ðr⃗i−r⃗jÞ, where
r⃗i refers to the real space coordinates of the ith lattice site,
N is the total number of sites, and hSi · Sji is the spin-spin
correlation function. On the other hand, it can be rigorously
shown the minimum energy state upon perturbing the AF
line to Jz < −1/2 is the fully polarized ferromagnetic state.
At Jz ¼ −1/2 and J2 < 0, we find evidence for theffiffiffi
3

p
×

ffiffiffi
3

p
phase. While we cannot solve for the exact

ground state, the state which colors NNN triangles with the
same color (i.e., the

ffiffiffi
3

p
×

ffiffiffi
3

p
phase) minimizes the NNN

energy within the three-coloring manifold. We numerically
verify this phase by looking at SðKÞ, finding it survives for
Jz near and on both sides of −1/2.

By tracing paths through parameter space with large
values of Sðq⃗Þ at the K andM points, we find that both the
q ¼ 0 phase and

ffiffiffi
3

p
×

ffiffiffi
3

p
phases near the XXZ0 point

extend to the Heisenberg point at nonzero J2. To locate the
boundaries of these phases, we perform sweeps through J2

TABLE I. Number of ground states in different Sz sectors (mapped to hard-core boson number nb) on several lattices (of size N) with
triangular motifs at Jz ¼ −1/2, J2 ¼ 0. RðSÞ is the rank of the overlap matrix indicating the number of linearly independent three-
coloring modes, and ED refers to the exact number of ground states. The kagome cluster with open boundary conditions (OBC) has
completed triangles resembling the periodic counterpart (PBC) in appearance.

Lattice Method nb ¼ 1 nb ¼ 2 nb ¼ 3 nb ¼ 4 nb ¼ 5 nb ¼ 6 nb ¼ bN/2c Number of three colorings

Sawtooth OBC ED 6 16 26 31 32 32 32 32
Five triangles RðSÞ 6 16 26 31 32 32 32

3 × 3 kagome OBC ED 15 102 414 1117 3808
(33 sites) RðSÞ 15 102 414 1117 2136 3078 3808

3 × 3 kagome PBC ED 10 38 60 41 40 40 40 40
RðSÞ 10 34 40 40 40 40 40

4 × 3 kagome PBC ED 13 68 169 172 137 136 136
RðSÞ 13 68 134 136 136 136 136

FIG. 3. The phase diagram in the Jz − J2 plane on the 36d
lattice showing five phases: the ferromagnet (FM), the magneti-
cally ordered phases (q ¼ 0 and

ffiffiffi
3

p
×

ffiffiffi
3

p
), and the spin liquids

(SL-A and SL-B). Circles correspond to the energy difference
EðSz ¼ 0ÞN¼36 − ETDLðSz ¼ N/2Þ between the Sz ¼ 0 sector and
fully polarized state ranging from deep blue (negative) to deep red
(positive). The diamonds are colored based on the structure factor
at the M point [SðMÞ] and squares are colored based on the
structure factor at the K point [SðKÞ]. The darkest color
corresponds to the largest structure factor on the graph. Star
symbols correspond to the location of fidelity dips, and the error
bars indicate the uncertainty in the location of the phase
boundaries (when scanned in the J2 direction) and correspond
to the grid spacing used for the computation of the fidelity. The
black hexagon (at Jz ≈ 0.5, J2 ≈ 0.10) is a kink in the second
derivative of the fidelity; beyond the corresponding Jz, the
fidelity dip is not noticeable, and the phase boundary is just
an extrapolation. Phase boundaries are marked with dotted lines,
which are guides to the eye. The solid line is where the
semiclassical energy difference between the FM and the un-
projected

ffiffiffi
3

p
×

ffiffiffi
3

p
state goes to zero.

PHYSICAL REVIEW LETTERS 120, 117202 (2018)

117202-3



at fixed Jz and identify dips in the wave function fidelity
defined to be

fðJz; J2Þ≡ jhψðJz; J2 − ΔJ2/2ÞjψðJz; J2 þ ΔJ2/2Þij; ð6Þ

where ψðJz; J2Þ is the ground state wave function, and ΔJ2
is the step size in the J2 direction. For both magnetically
ordered phases, the location of these dips form lines
emanating from (or close to) the XXZ0 point that extrapo-
late to the Heisenberg point (Jz ¼ 1) to values J2 ≈ 0.16 for
q ¼ 0 and J2 ≈ −0.06 for

ffiffiffi
3

p
×

ffiffiffi
3

p
. These values are

within the bounds previously found by a density matrix
renormalization group study [46] but disagree with a
variational study by Ref. [47], which finds instead a valence
bond crystal. In the intermediate phase(s), we see a
decrease in the magnitude of the structure factor peaks
consistent with a change in phase to a spin liquid.
Near XXZ0, we do not detect fidelity dips and see larger

structure factors that extend much closer to the line J2 ¼ 0.
This leaves two plausible scenarios: (1) the spin liquid(s)
terminate at Jz > −1/2 for all J2, or (2) the phase
boundaries extend to XXZ0 but finite size effects near it
become large making it difficult to resolve the transition.
We find an additional fidelity dip at J2 ≈ 0 and

Jz > −1/2 in the region where other studies [46] identify

a single spin-liquid phase. This interesting finding indicates
the existence of an additional transition in this region. Our
analysis in this work is largely ambivalent about the nature
of these two phases, but earlier evidence for a spin-liquid
phase at Jz ¼ 1 and both J2 > 0, J2 < 0 [14,46] suggests a
possible transition between two spin liquids. Interestingly,
a recent IPEPS study [48] found nearly degenerate varia-
tional degenerate energies for the Q1 ¼ Q2 and Q1 ¼ −Q2

[38] Z2-spin liquids which they interpret as evidence for a
parent Uð1Þ Dirac spin liquid; given our results, another
reasonable interpretation is that there is a transition between
these two states.
To further understand the nature of the fidelity dips, we

consider the ground state and excited state in the same
quantum-number sector as a function of J2 at Jz ¼ 0.1
(Fig. 4, top right); the true first excited state is in another
sector. We see a (formally avoided) “level crossing”
indicated by a shrinking gap between these states around
J2 ≈ 0. This crossing causes the fidelity dip and leads to the
overlap of the wave function on both sides of J2 ≈ 0 being
small with respect to a reference point on the other side (see
Fig. 4, top left). In addition, the structure factors of the two
ground states at positive and negative J2, despite not having
large peaks, are qualitatively distinct (see Fig. 4, bottom).
Conclusion.—In summary, we have shown that

(1) HXXZ0 is macroscopically quantum degenerate on the
kagome and hyperkagome lattices, (2) all projected three-
coloring states are exact ground states of HXXZ0 on any
three-colorable lattice of triangular motifs explaining this
macroscopic degeneracy, (3) multiple phases in the J2 − Jz
phase diagram, including spin liquid(s) in the Heisenberg
regime, are proximate to the XXZ0 point, and (4) we have
given evidence for a transition between two phases at J2 ¼
0 for −0.5 < Jz < 1. Our findings suggest that the XXZ0
point controls the physics of the Heisenberg and XY points
[15,49] on the kagome, and the existence of a transition
near the Heisenberg point might help resolve conflicting
numerical evidence for gapless and gapped states, respec-
tively. While our focus here has been on the uniform
kagome lattice, the exponential degeneracy also applies in
the case where the coupling constant in each triangle is
disordered (or staggered) as well as to finite clusters of
triangles such as the icosidodecahedron; in fact, the latter
explains the nearly degenerate manifold on this cluster in
the XY regime [50].

The central coloring ideas extend to other frustrated
lattices with four (or higher) site motifs [51–53]. For
example, define a Hamiltonian which annihilates four-
coloring states made of one a≡ j↑iþj↓i, b≡ j ↑i þ ij↓i,
c≡ j ↑i − j↓i, and d≡ j ↑i − ij↓i on each square
of a square lattice or tetrahedron of the pyrochlore
lattice. Up to a constant, this is H ¼ 2HXXZ½−1/4� þP

i<j;k<l;diffS
þ
i S

þ
j S

−
k S

−
l − 2Sz1S

z
2S

z
3S

z
4 where “diff” indicates

i, j, k, l are distinct (see the Supplemental Material for the
derivation that used the DiracQ package [54]). Notice that

FIG. 4. All data are at Jz ¼ 0.1 for the 36d lattice. Top left:
Overlap of the ground state at J2 with respect to reference ground
state wave functions at J2 ¼ −0.02 (blue) and J2 ¼ 0.02 (red).
Dashed lines represent transitions as measured by fidelity. Top
right: Energy of the two lowest states in the symmetric repre-
sentation of the K ¼ ð0; 0Þ sector. There are additional state(s)
between these two states in other quantum-number sectors.
Bottom: The static spin-structure factor Sðq⃗Þ of the ground state
for J2 ¼ −0.02 (left) and J2 ¼ 0.02 (right). The solid and the
dotted lines show the first and the extended Brillouin zones,
respectively. The high symmetry points of the latter correspond to
K (corners of the hexagon) and M (midpoints of edges) points.
On going from J2 < 0 to J2 > 0, the intensity is transferred from
K to M points.
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on the square, this forces the NNN J2 coupling to be half
the NN J1 coupling; interestingly, J2/J1 ¼ 1/2 has been
proposed to be a SL state on the square for Heisenberg and
XY models [55]. We believe that the macroscopic degen-
eracy of this Hamiltonian on the square and pyrochlore
lattices will be a source of multiple phases on these
lattices [56,57].
Finally, we note that three-coloring states can be used to

construct accurate many-body wave functions [12,58–60].
Typically, Jastrow factors have been introduced only on top
of a single coloring; our present investigation suggests that
a linear combination of colorings may provide accurate
results in the vicinity of the XXZ0 point.
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I. EFFICIENT OVERLAP AND HAMILTONIAN MATRIX ELEMENTS IN THE 3-COLORING

BASIS

In the main text, we mentioned the efficient evaluation of the number of linearly independent

colorings when projected to definite total Sz (whose value we denote as Sz
∗). This number was ob-

tained by diagonalizing the overlap matrix and determining its rank. Here we present expressions

for the overlap and Hamiltonian matrices in the Sz (or number, in the hard-core boson language)

projected-coloring basis which correspond to SCC′ ≡ 〈C|C ′〉 and HCC′ ≡ 〈C|H|C ′〉 respectively.

A projected coloring |C〉 is given by the expression,

|C〉 ≡ PSz

(∏
i

⊗|ci〉
)

(1)

where |ci〉 is the color on site i and can be |a〉, |b〉 or |c〉, as defined in the main text.

Matrix elements involving projected-colorings are calculated by introducing a complete set of

orthonormal states, which for the present purpose is chosen to be the Ising basis, compactly written

as,

I ≡ {s1, s2, s3, ....sN} (2)

where si are Ising variables with value ±1
2

on site i, and N is the total number of sites. Introducing

the identity operator we have,

〈C|C ′〉 =
∑

Iin sector

〈C|I〉〈I|C ′〉 (3)
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Naively, this summation may be evaluated only by enumerating all Ising configurations in a given

spin sector (S∗
z ) and will thus take an exponentially increasing amount of time to evaluate. How-

ever, the Ising sum can be converted to one over unconstrained variables s1, s2, ...sN and the

summation becomes very easy to compute as it factorizes into a product of sums. This is achieved

by introducing a delta function and then Fourier transforming the expression as follows,

〈C|C ′〉 =
∑

I unconstrained

〈C|I〉〈I|C ′〉δ(Sz − S∗
z ) (4a)

=
1

N + 1

∑
p

∑
I

〈C|I〉〈I|C ′〉eip(Sz−S∗
z ) (4b)

=
1

N + 1

∑
p

∏
j

∑
sj

eipsj〈cj|sj〉〈sj|c′j〉e−ipS∗
z (4c)

where the sum over p ranges from p = 0 to p = 2πN/N + 1 in multiples of 2π/N + 1. This

is because Sz varies from a minimum of −N/2 to a maximum of N/2. Note that we have used

Sz = s1 + s2 + s3...+ sN to factorize the product into a product of sums.

Associating integers 0,1,2, with the colors a, b, c respectively, it follows that,

〈sj|cj〉 = 1√
2
ω

(
cj/2−cjsj

)
(5a)

〈cj|sj〉 = 1√
2
ω

(
cj−2cjsj

)
(5b)

where ω ≡ ei2π/3. In order to simplify the expression of the overlap, we define the variables,

λj ≡ (2cj + c′j)(mod 3) = (c′j − cj)(mod 3) (6)

and the function,

f 0(p, λj) ≡ 1

2
(eip/2 + ei2πλj/3e−ip/2) (7)

Thus the overlap matrix element reads,

〈C|C ′〉 = 1

N + 1

∑
p

F 0(p) (8)

where we have defined,

F 0(p) ≡
∏
j

f 0(p, λj)e
−ipS∗

z (9)

This equation is correct only up to a normalization factor, because the definition of C and C ′ does

not guarantee an overall normalization automatically. This normalization is just the combined
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weight on all configurations in the full (unprojected) Hilbert space divided by the combined weight

on the configurations in the correct Sz sector. Including all prefactors into one term we define,

N =
1

N + 1
× 2N

Total Ising configurations in correct sector
(10)

which makes the expression for the overlap,

〈C|C ′〉 = N
∑
p

F 0(p) (11)

A similar delta function trick can be used in the evaluation of the Hamiltonian matrix elements.

For example, the diagonal element in the Sz basis is Sz
mS

z
n and can be evaluated as,

〈C|Sz
mS

z
n|C ′〉 = N

∑
p

(f z(p, λm)f
z(p, λn)

f 0(p, λm)f 0(p, λn)

)
F 0(p) (12)

where

f z(p, λj) ≡ 1

4
(eip/2 − ei2πλj/3e−ip/2) (13)

The off diagonal element is also straightforward and is found to be,

〈C|S+
mS

−
n |C ′〉 = N

∑
p

(f+(p, c′m)f
−(p, cn)

f 0(p, λm)f 0(p, λn)

)
F 0(p) (14)

where

f+(p, cj) ≡ 1

2
ei2πcj/3eip/2 (15a)

f−(p, cj) ≡ 1

2
ei4πcj/3e−ip/2 (15b)

These last two expressions do not depend on λj but rather the value of the color in the ket or bra.

II. COUNTING THE NUMBER OF THREE-COLORINGS

In Table I of the main paper, we showed the number of valid 3-colorings (i.e. colorings which

satisfied the constraint of one distinct color per triangular motif) for several lattices. The counting

was automated employing a simple divide and conquer algorithm. The lattice was divided into P

pieces, and for each piece the number of valid 3-colorings was checked by brute force enumeration

of configurations. Then the 3-coloring consistency condition between pieces was checked and the

combinations were retained or eliminated accordingly. In practice, for the small lattices considered
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here, P = 1 to P = 6 sufficed, but for larger lattices larger P is possibly needed for efficient

counting.

In order to not over-count colorings, it is important to fix the color of one (reference) site

to a in all valid colorings. This is because the coloring C ′, obtained by exchanging the colors

(consistently for all sites) of a coloring C, is not linearly independent of it. This can be seen by

redefining,

| ↓〉′ ≡ ω| ↓〉 (16)

which is equivalent to the transformation (from old to new variables)

a → c (17a)

b → a (17b)

c → b (17c)

Under this transformation each spin configuration (and hence the overall wavefunction) is simply

rescaled by a constant factor of ωN↓ where N↓ is the number of down spins. (A similar transfor-

mation holds for | ↓〉′ ≡ ω2| ↓〉 which leads to a → b, b → c, c → a). Thus, these colorings are

not linearly independent and should not be (double or triple) counted.

In Table S1, we show several finite clusters (including those shown in the main text) where the

number of 3-colorings were computed and show their correspondence with the number of ground

states found from exact diagonalization (ED). The number of linearly independent colorings is the

rank (R(S)) of the overlap matrix (SCC′), whose efficient evaluation was discussed in the previous

section.

III. 36D CLUSTER

Our results for the kagome phase diagram were based on extensive ED calculations on finite

lattices. Since ED is severely limited by size restrictions, it is important to base our conclusions on

simulations of a finite cluster which best represents the thermodynamic limit (TDL). The smallest

unit cell that can accommodate energetically competitive phases, such as the q = 0 and
√
3×√

3

phases, is known to be the 36d cluster, which has been studied by several authors [1, 2] focused

on exploring the Heisenberg point of the XXZ model i.e. Jz = 1. This cluster has D6 as its point

group symmetry, which includes reflections and 60 degree rotations. For completeness, in Fig. S1,

we show the real space picture of the 36d cluster, along with its reciprocal space.
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Lattice Method nb = 1 nb = 2 nb = 3 nb = 4 nb = 5 nb = 6 # 3-colorings

Finite clusters

sawtooth obc ED 6 16 26 31 32 32 32

length 5 R(S) 6 16 26 31 32 32

Husimi cactus ED 5 11 15 16 16 15 16

generation= 1 R(S) 5 11 15 16 16 15

21 site kagome ED 10 44 112 187 231 243 244

R(S) 10 44 112 187 231 243

3× 2 kagome obc ED 11 54 156 299 418 474 488

(23 sites) R(S) 11 54 156 299 418 474

3× 3 kagome obc ED 15 102 414 1117 3808

(33 sites) R(S) 15 102 414 1117 2136 3078

Kagome on tori

2× 2 ED 5 8 8 8 8 8 8

R(S) 5 8 8 8 8 8

3× 2 ED 7 17 17 16 16 16 16

R(S) 7 15 16 16 16 16

4× 2 ED 9 30 42 33 32 32 32

R(S) 9 26 31 32 32 32

5× 2 ED 11 47 92 83 65 64 64

R(S) 11 42 58 63 64 64

3× 3 ED 10 38 60 41 40 40 40

R(S) 10 34 40 40 40 40

4× 3 ED 13 68 169 172 137 136 136

R(S) 13 68 134 136 136 136

4× 4 ED 17 122 459 875 793 - 720

R(S) 17 122 447 683 719 720

Table S1. Number of ground states on lattices with triangular motifs calculated from the rank of the overlap

matrix of 3-colorings (R(S)) and from exact diagonalization (ED). For all studied clusters and number of

hard-core bosons (nb) with open boundary conditions (top half), no additional non-3 coloring ground states

were found. The kagome clusters had completed triangles, resembling their periodic counterparts. For

kagome clusters on tori (bottom half), additional ground states are found at some low fillings.
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Figure S1. (Color online): 36d simulation cluster (left) and its reciprocal lattice (right) used in the compu-

tation of the extended phase diagram. The solid and the dotted lines in reciprocal space show the first and

the extended Brillouin zones respectively. The high symmetry points, K and M , of the latter have been

indicated.

We work in a fully symmetrized basis which reduces the dimensionality of the Hilbert space

for a fully symmetric sector to 63044766 basis elements, which is approximately a factor of 144

smaller than the original Sz = 0 sector. Although the ground state can belong to any irreducible

representation and any momentum sector, by analyzing all of the sectors at points (Jz, J2) =

{(−0.3,±0.05), (0,±0.05), (0.1, 0), (0.5,±0.02)} we conclude that it resides in the symmetric

sector of K = (0, 0) in the range of interest and focus on investigation of this sector.

We extract several physical quantities from the ground state vectors, such as spin-spin corre-

lation, spin structure factors and ground state fidelity. As an example, the structure factors of the

magnetically ordered q = 0 and
√
3×√

3 are presented in Fig. S2.

IV. FIDELITY PROFILES FOR J2 SCANS

In Fig. 3 of the main text, we showed the phase diagram for the kagome antiferromagnet in the

parameter space of Jz and J2, for the model Hamiltonian,

H[Jz, J2] =
(∑

〈i,j〉
Sx
i S

x
j + Sy

i S
y
j + JzS

z
i S

z
j

)
+ J2

( ∑
〈〈i,j〉〉

Sx
i S

x
j + Sy

i S
y
j + JzS

z
i S

z
j

)

= Hnn
XXZ [Jz] + J2H

nnn
XXZ [Jz] (18)
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Figure S2. (Color online): Structure factors for magnetically ordered phases
√
3 × √

3 (left) and q = 0

(right) computed from Exact Diagonalization at Jz = 0.1 J2 = −0.1 and Jz = 0.1 J2 = 0.1 respectively.

For J2 < 0, the intensity is maximum at the K points of the extended Brillouin zone and for J2 > 0 it is

maximum at the M points.

where 〈i, j〉 and 〈〈i, j〉〉 denote the nearest neighbor (nn) and next-nearest-neighbor (nnn) sites

respectively.

Our estimates of the phase boundaries were based on the measuring fidelity of the ground state

wavefunction ψ(Jz, J2), by scanning in the J2 direction (keeping Jz fixed),

f(Jz, J2) ≡
∣∣∣〈ψ(Jz, J2 −ΔJ2/2)|ψ(Jz, J2 +ΔJ2/2)〉

∣∣∣ (19)

where ΔJ2 is the step size. Dips in the fidelity profile indicate the existence of phase transitions.

Our results for representative Jz, with ΔJ2 = 0.01 are shown in Fig. S3. We observe that there

are prominent dips for J2 < 0 and J2 ≈ 0 and only a marginal one for J2 > 0. The location of

of both the leftmost and rightmost dips increases in |J2| on increasing Jz, this corresponds to the

appearance of the wedge in the kagome phase diagram in Fig. 3. Prominently, the dip at J2 ≈ 0 is

present for all Jz shown.

V. FERROMAGNET AND BOUNDARIES SHARED WITH ADJOINING PHASES

In this section of the supplement, we discuss certain aspects of the ferromagnetic (FM) region

reported in Fig. 3 of the phase diagram and the phase boundaries it shares with its adjoining phases.
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Figure S3. (Color online) Fidelity scans along the J2 axis for different values of Jz . The fidelity is evaluated

for ground state wavefunctions at parameter values which differ by ΔJ2 = 0.01 (keeping Jz fixed). The

spreading location of the leftmost and rightmost dips (increase in |J2|), as Jz is increased, corresponds to

the wedge feature in the kagome phase diagram.

Moving along the direction of Jz < −0.5 lifts the exponential degeneracy to favor the fully

polarized sector. Therefore, in the Sz = 0 sector, the energy density (energy per site) is minimized

by the phase separated FM state which has half the system (N sites) maximally polarized up

(Sz = N/2) and the other half maximally polarized down (Sz = −N/2). This can be proven

analytically, since the fully polarized state simultaneously generates the minimal possible energy

for all four terms of the Hamiltonian (XXZ0 of the triangles made of nearest neighbor bonds,

J2XXZ0 of the triangles made of next nearest neighbor bonds, (Jz+1/2)
∑

〈i,j〉 S
z
i S

z
j and J2(Jz+

1/2)
∑

〈〈i,j〉〉 S
z
i S

z
j ) for J2 ≥ 0. Phase separation results in a domain wall which costs absolute

energy but, in the TDL, costs zero energy per site for short-ranged Hamiltonians such as ours.

While it is possible there are other states with the same energy density but lower absolute energy

for a finite system, we see no evidence of this. While a large enough simulation will exhibit

emergent phase separation, finite size effects dominate in a small ED calculation. Nonetheless, in
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Figure S4. (Color online): ZZ component of the real space spin-spin correlation function (with respect to a

reference site) in the Sz = 0 ground state at Jz = −0.7, J2 = 0. The cyan hexagon marks the lattice site

with respect to which the correlation function is computed. The color represents the correlation strength

(red - ferromagnetic, blue antiferromagnetic correlations).

most (but not all) of the region Jz < −0.5, J2 > 0 we see clear phase separation in the spin-spin

correlation function such as at Jz = −0.7, J2 = 0.0, see Fig. S4.

Let us now consider the lines separating the q = 0 and FM (the vertical line Jz = −1/2 for

J2 ≥ 0) and the
√
3×√

3 and FM regions, the latter calculated to be,

|Jz| =
(1
2
+ |J2|)

(1− |J2|) (20)

Both boundaries can be understood by comparing the semiclassical energy of the unprojected

magnetically ordered states with that of the FM. For example, the energy associated with four

nearest neighbor and four next nearest neighbor bonds emanating from a single site in the FM state

is −4|Jz| + 4|J2||Jz| in comparison to 4(−1/2) − 4|J2| for the unprojected coplanar
√
3 × √

3

state. The phase boundary of these two phases is shown by the solid line in Fig. 3 of the main text

and corresponds to Eq. (20). Similarly, the q = 0 energy is higher than the FM for Jz < −1/2

for any J2 > 0. We note that despite involving only semiclassical arguments, the agreement of
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these phase boundary estimates with those obtained from energy densities calculated from ED, is

excellent.

VI. HAMILTONIAN WITH FOUR COLORING EXACT GROUND STATES

We noted that the idea of coloring wavefunctions generally applies to beyond triangular motifs.

Here we explicitly write down the Hamiltonian for which the four coloring wavefunction is an

exact ground state on lattices with motifs involving four sites (such as the square, checkerboard

and pyrochlore lattices). We derive this Hamiltonian for the case of four sites; the extension to the

case of lattices with shared four colorable motifs is trivial.

First, define the four colors as,

|a〉 ≡ | ↑〉+ | ↓〉 (21a)

|b〉 ≡ | ↑〉+ i| ↓〉 (21b)

|c〉 ≡ | ↑〉 − | ↓〉 (21c)

|d〉 ≡ | ↑〉 − i| ↓〉 (21d)

Then define the states,

|1〉 ≡ | ↓↑↑↑〉+ | ↑↓↑↑〉+ | ↑↑↓↑〉+ | ↑↑↑↓〉 (22a)

|2〉 ≡ | ↑↑↓↓〉+ | ↑↓↑↓〉+ | ↑↓↓↑〉+ | ↓↑↑↓〉+ | ↓↑↓↑〉+ | ↓↓↑↑〉 (22b)

|3〉 ≡ | ↑↓↓↓〉+ | ↓↑↓↓〉+ | ↓↓↑↓〉+ | ↓↓↓↑〉 (22c)

Then, any Hamiltonian of the form

H = λ1|1〉〈1|+ λ2|2〉〈2|+ λ3|3〉〈3| (23)

with λ1, λ2, λ3 ≥ 0 will have the coloring wavefunction |C〉 = |a〉⊗|b〉.... as an exact ground state

with zero energy as long as one satisfies the constraint of one a, b, c, d each per four-site motif.

Here we present the result for λ1 = λ2 = λ3 = 1, where H is also time reversal invariant.

We used the DiracQ package [3] to simplify the spin algebra and up to an overall scale factor

found the Hamiltonian to be,

H =
7

8
+
(∑

i<j

S+
i S

−
j + S−

i S
+
j − 1

2
Sz
i S

z
j

)
+

∑
i<j,k<l,diff

S+
i S

+
j S

−
k S

−
l − 2 Sz

1S
z
2S

z
3S

z
4 (24)

where the notation "diff" is used to indicate that all the indices i, j, k, l are distinct.
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