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ABSTRACT: We present a rigorous evaluation of the
potential for the multilayer Molecules-in-Molecules (MIM)
fragmentation method to be applied to large biomolecules.
Density functional total energies of a test set of 8 peptides,
sizes ranging from 107 to 721 atoms, were evaluated with
MIM and compared to unfragmented energies to help develop
a protocol for the treatment of large proteins. Fragmentation
schemes involving subsystems of 4 to 5 covalently bonded
fragments (tetramer or pentamer schemes) were tested with a single level of theory (MIM1) and produced errors on the order of
100 kcal/mol due to the relatively small size of the subsystems and the neglect of nonbonded interactions. Supplementing the
two schemes with nonbonded dimer subsystems, formed from fragments within a specified cutoff distance (3.0 Å), nearly cut the
MIM1 errors in half, leading us to employ these new schemes as starting points in multilayer calculations. When employing a
DFT low level with a substantially smaller basis set (MIM2), the dimer-supplemented schemes produce errors below our target
accuracy of 2 kcal/mol in the majority of cases. However, for the larger test systems, such as the 45 residue slice of a human
protein kinase with over 10,000 basis functions in the high level, the low level calculation over the full molecule becomes the
bottleneck for MIM2 calculations. To overcome any associated limitations, we explored, for the first time, 3-layer MIM methods
(MIM3) with a distance-based medium level of fragmentation and dispersion-corrected semiempirical methods (e.g., PM6-D3)
as the low level. A modestly sized cutoff distance in the medium level (3.0−3.5 Å), leading to subsystems of 30−50 atoms treated
at the medium and low levels of theory, was able to match the low errors of the MIM2 calculations. These results allow us to
develop a general prescription for 3-layer calculations wherein a much cheaper low level can be used, while fragment sizes in the
high layer stay modest, allowing the MIM method to be applied to very large proteins in the future.

1. INTRODUCTION

Ab initio quantum mechanical (QM) calculations are being
increasingly used to compute the structures and energies of
large biomolecular systems, such as DNA or proteins. QM
calculations on these species provide a much more accurate
description of their physicochemical properties compared to
the more routinely used force-field-based molecular mechanics
(MM) methods.1−8 In particular, many nontraditional inter-
actions such as C−H···O hydrogen bonds or halogen-π
interactions, while once thought to be weak, have been
shown to be essential components in determining the
structures of large biomolecules and require an accurate
quantum mechanical treatment.6−17 Unfortunately, the compu-
tational scaling of traditional quantum mechanical methods
(ranging from N4 to N7 for the most widely used methods
where N is a representation of system size) limits their
applicability.18 Even the most basic and computationally
inexpensive methods such as Hartree−Fock (HF) and density
functional theory (DFT) become impractical for large bio-
logical systems with thousands of atoms. Moreover, highly
accurate, post-Hartree−Fock methods such as coupled−cluster
(CC) methods are only applicable to molecules containing a
few tens of atoms.19−22

The fragmentation approach is an efficient and attractive
technique for lowering the steep scaling of conventional
electronic structure methods to a linear (or near linear)
scaling.20−22 A range of fragmentation-based QM or QM/MM
methods for large systems has been proposed and implemented
over the past two decades by different research groups.23−80

While all methods use a fragmentation-based determination of
the energy, some apply a fragmentation scheme for the wave
function also.77−79 Relevant to the discussion at hand, Hua et
al. have applied the generalized energy-based fragmentation
(GEBF) to four proteins and a DNA decamer, containing 130
to 638 atoms, and achieved a mean absolute error (MAE) of 3.9
kcal/mol at the HF/6-31G* level of theory. However, the
largest subsystem in this work had to reach 189 atoms to obtain
viable results with the DNA decamer.46 He and co-workers
calculated the total energy of a benchmark set of 18 protein
structures containing 242−1142 atoms using electrostatic
embedded generalized molecular fractionation with conjugate
caps (EE-GMFCC). For this 18 protein test set, a MAE of 2.4
kcal/mol was obtained for HF/6-31G* with a distance
threshold of 4.0 Å and a maximum fragment size of 70
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atoms. At the B3LYP/6-31G* level of theory, the MAE was
calculated to be 5.4 kcal/mol with a maximum error of 7.6 kcal/
mol for six proteins with between 218 and 608 atoms.44

Recently, Liu and Herbert applied their pair−pair approx-
imation to the generalized many-body expansion (GMBE)
method to a similar set of 18 protein molecules as used by He
and co-workers. The calculated MAE was 2.7 kcal/mol with a
maximum deviation of 7.6 kcal/mol at the ωB97X-D/6-31G*
level when using NPA embedding charges and subsystem sizes
of ≤60 atoms, while the HF/6-31* MAE was even smaller.80

For a comprehensive description of the current developments
in fragmentation techniques, their advantages, and their
application, we refer the reader to some recent reviews.20−22

Although the terminologies and descriptions of the fragmenta-
tion-based methods may vary, they all share the same basic
principle of dividing a large molecule or cluster into smaller
nonoverlapping fragments (sometimes called “monomers”),
assembling them into overlapping subsystems, evaluating them
independently while taking care of any overcounting, and
assembling properties for the full system, such as the electronic
energy and its derivatives, from the subsystems.
The fragmentation approach is based on the assumption that

most chemical properties are local in nature and only slightly
influenced by groups far from the region of interest.44,81,82

Hence, fragmentation methods employ some cutoff parameters
(e.g., number of monomers, spatial distance) to obtain the
subsystems that directly include only a limited number of
interactions between the fragments, neglecting the longer range
effects. Although the individual contributions from long-range,
noncovalent interactions are expected to be rather small, their
collective contributions can be substantial. This is particularly
true for large and globular biomolecules, such as DNA and
proteins, whose secondary structures are rich with nonbonded
interactions. The deficiencies due to the neglect of long-range
interactions within single layer fragmentation methods have
long been recognized and addressed to some extent via
systematically increasing the subsystem size or using multiple
levels (layers) of theory.61−73 Most fragmentation-based
methods such as molecular fractionation with conjugate caps
(MFCC), the fragment molecular orbital method (FMO), and
the generalized many-body expansion (GMBE) routinely use a
cutoff distance of ≥3.5 Å or 3−4 body expansion terms for
truncation resulting in more than 50 atoms per subsystem to
achieve a reasonable accuracy. However, in general, such an
increase in the subsystem size (>50 atoms per fragment)
significantly increases the associated computational cost.
Additionally, many methods still inherit some systematic errors
that are expected to increase with the size of the molecular
systems; hence, they can be reliably used only for evaluating
relative energies or properties. Considering these factors
motivates us to investigate three layer models, wherein we
keep the high level fragments as small as possible while
relegating the larger fragments to the lower, and computation-
ally less expensive levels of theory. This will be demonstrated
by a convergence of the three layer results to the two layer
results when the high level fragments are left at the same size,
but the lowest level of theory is decreased to a semiempirical
method.
In the present study, we have used our multilayer Molecules-

in-Molecules (MIM) approach on a carefully selected test set of
biomolecules specifically chosen to be challenging systems for
fragmentation methods. The selected molecules represent the
most common peptide secondary structures with many

nonlocal interactions that must be accounted for at the high
level of theory. The purpose of this study is to establish a
standard protocol for the application of the MIM method to
the study of various chemical properties of natural-sized
biomolecules. A major goal of our study is to develop our
protocol without having undue restrictions on the size of the
molecules that can be handled. Specifically, we have
purposefully kept the size of the region to be calculated with
the high level of theory to be sufficiently small for our protocol
to be applicable with a range of sophisticated theoretical
methods. Additional layers are used with progressively more
efficient computational methods applied to increasingly larger
regions of the molecule. The use of multiple layers allows more
interactions to be evaluated at a reasonable level of theory,
contributing to the overall accuracy.
The accuracy of the multilayer MIM approach has been

assessed by comparing the calculated MIM total energy to that
of a full (unfragmented) calculation at the high level of theory.
Our goal is to achieve a target of “chemical accuracy” (1−2
kcal/mol) in the total energy for the molecules in the test set.
Common DFT methods such as B3LYP, B3LYP-D3BJ, and
ωB97X-D with different basis sets, as well as dispersion-
corrected semiempirical methods, are evaluated for their ability
to perform as high, medium, or low levels of theory. A careful
and systematic assessment of the critical factors and effects
influencing the accuracy of the results has been performed to
obtain the optimum protocol for obtaining the total energy.
Though the current study is restricted to the calculation of the
total energy of the system, other molecular properties (e.g.,
binding energies, NMR, pKas, etc.) can be investigated using a
similar approach. However, for molecules undergoing signifi-
cant change in geometry (such as in tautomerization reactions
or during molecular dynamics), care has to be exercised in the
fragmentation schemes to avoid or to minimize the effects of
discontinuities in the resulting potential energy surfaces,
particularly if the makeup of the subsystems changes
significantly. Work in these directions, including the use of
appropriate smoothing functions, is currently ongoing in our
group.

2. COMPUTATIONAL METHODS

The working principles behind the Molecules-in-Molecules
(MIM) fragment-based method have been explained in
previous publications by Raghavachari and co-workers.73,74

The multilayer component of the method shares the same
underlying philosophy as the ONIOM methodology developed
by Morokuma and co-workers.83−85 The fundamentals of MIM
can be described in four steps: (1) initial fragmentation of the
large molecule into nonoverlapping, small fragments, (2)
formation of overlapping primary subsystems from the local
interactions between fragments, (3) formation of the derivative
subsystem to account for the overcounting from the over-
lapping regions via the inclusion-exclusion principle, and (4)
evaluation of the large molecules’ energy by summation of the
independent energies of the individual subsystems, taking into
account the signs for the energies of the derivative subsystems.
The initial fragmentation step follows a general method of
breaking only single bonds between non-hydrogen atoms. As
previous work by Saha and Raghavachari74 suggested that
keeping the peptide C−N linkage together results in a smaller
error in the calculated total energy, all peptide linkages are left
unbroken and intact in this study.
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Each primitive, nonoverlapping fragment (“monomer”)
initiates a primary subsystem. The various fragmentation
schemes used in this study are illustrated in Figure 1. The

formation of the primary subsystems has been carried out in
three different ways: (a) number-based (η) fragmentation,
where η denotes the number of covalently bonded monomers
combined to form a primary subsystem, (b) distance-based
fragmentation with a cutoff distance (r) where all monomers
within r Å are collected together, and (c) number-based
fragmentation augmented with nonbonded dimers based on a
cutoff distance. The first two subsystem formation schemes
have been explained and used in detail in previous studies from
our group.73−76 As most of the protein molecules contain a
large number of nonbonded interactions (attractive and/or
repulsive), a purely number-based fragmentation based on the
connectivity could have larger errors (vide inf ra). To
incorporate some of the important nonbonded interactions,
we have introduced the new scheme (c). The goal of this third
scheme is to supplement the number-based subsystems with
key, nonbonded interactions by defining a new cutoff distance,
d Å. Whereas the traditional number-based scheme (a) only
forms subsystems from covalently bonded fragments, scheme
(c) also allows dimer subsystems to be formed from the
nonbonded interactions between fragments within d Å and can
be thought of as a hybrid number- and distance-based method.

All truncated bonds in the primary and derivative subsystems
are capped with link hydrogen atoms. Once the primary
subsystems are formed, derivative subsystems are generated
from the overlaps between primary subsystems. Finally, the
independently calculated energies are summed according to the
inclusion−exclusion principle to obtain the final total energy
and other desired molecular properties:
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In this study, we have performed MIM calculations with 1, 2,
and 3 layers (notations: MIM1, MIM2, and MIM3,
respectively), each layer treated with a different level of theory.
In MIM1, the primary subsystems are generated using a single
parameter, and calculations are performed with a single level of
theory. The energy expression for MIM1 is

=E E rMIM1
high (2)

where “r” is an arbitrary parameter defining the size of the
subsystem. It can be, for example, the number of monomers
combined (in number−based fragmentation) or a distance
cutoff (in distance-based fragmentation).
The two-layer MIM calculation (MIM2) uses two

fragmentation parameters (r ≪ R) and two levels of theory.
The subsystems formed with the smaller parameter (r) are
calculated with both the high and low levels of theory, and the
low level is used on the subsystems generated using the larger
parameter (R). R can be (and in this study, is always) the full
molecule (R = ∞). The general MIM2 energy expression can
be written in the same manner as the standard ONIOM
extrapolation:83

= − −E E E E( )r r RMIM2
high low low (3)

MIM3 involves three fragmentation parameters (r < r′ ≪ R)
with three different levels of theory. The subsystems generated
with the smallest parameter (r) are calculated with the high and
medium levels of theory, subsystems generated with the
intermediate parameter (r′) are treated with the medium and
low levels of theory, and finally, the energy of the fragments
with the largest parameter (R) is calculated with the lowest
level of theory. The size of subsystems in the middle layer
should be larger than those in the high layer to allow some of
the missing long-range interactions at the high level to be
picked up by the medium level of theory, without necessarily
increasing the overall computational cost. Energy calculation of
the full molecule (when R = ∞) can be performed by using
some computationally efficient level of theory such as
semiempirical methods (e.g., PM3, PM6, etc.). The general
energy expression for MIM3 can be written as

= − − − −′ ′E E E E E E( ) ( )r r r r RMIM3
high med med low low (4)

In a similar way, more layers can be added to the MIM
calculation (MIM4, MIM5, etc.) to extrapolate the total energy.
It is important to note that the use of multiple layers with
different levels of theory makes MIM a very efficient
extrapolation method compared to other similar methods
employing only a single layer of fragmentation, as including a
low level calculation allows overall subsystem sizes to be

Figure 1. Graphical illustration of the various fragmentation schemes
used in this study. Dashed lines across bonds in the full molecule
indicate bonds to be broken during the initial fragmentation. See the
Computational Methods section of the main text for more details.
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reduced. While the low level calculation on the full molecule is
typically the longest single calculation in a multilayer MIM job,
going to 3 or 4 levels of theory allows us to choose a low level
efficient enough that this calculation remains tractable while
avoiding a significant decrease in accuracy.
The single point energies (full and fragmented) of all test set

molecules were calculated with a range of density functionals:
B3LYP,86−88 dispersion-corrected B3LYP-D3BJ (using
Grimme’s D3 dispersion correction89 and Becke-Johnson
damping90), B97-D3BJ,91,92 and ωB97X-D93 with 6-311+
+G(d,p), 6-31+G(d), and 6-31+G basis sets.94−98 Additionally,
three semiempirical methods (PM6,99 PM6-D3, and PM6-
D3H4100) were investigated to explore their effectiveness in
evaluating long-range interactions inexpensively. All calcula-
tions were performed in the gas phase. The simplicity of the
MIM method allows us to use different computational packages
to evaluate the different component energies, as appropriate.
Most calculations were performed using the Gaussian (G16)
program suite.101 PM6-D3H4 calculations were performed
using the MOPAC semiempirical computational package.102

3. RESULTS AND DISCUSSION

Performance Assessment for DFT. The set of 8
biomolecules used in this study is shown in Figure 2. The
total number of atoms ranges from 107 to 721 across the test
set. The molecules listed in Figure 2 were selected such that
they are chemically interesting while still being of a reasonable
enough size that calculations could be performed on the
unfragmented molecule to obtain reference values. Structures
1a, 1b, and 1c were taken from the paper by Saha and
Raghavachari.74 In particular, 1a and 1c correspond to the β-
strand and α-helix conformations of an alanine polypeptide
(18-mer) chain and may be illustrative to assess the
performance of MIM for describing conformational preferences
of importance in processes such as protein folding. The other
molecules are protein kinases, taken from crystal structures
provided in the Protein Data Bank (PDB) (Figure 2 caption
provides additional detail about these structures). VMD
visualization software was used to select a region around a
chosen ligand (residues within 5−8 Å radius of the ligand) at
the active site of the protein molecule. Since the principal focus
of this study is to calibrate the ability of MIM to reproduce the

Figure 2. Molecules used in this study. Sections of molecules d−h shown in the red circle were used in this study. The different motifs shown above
are (a) β-Acetyl(ala)18-NH2 (189 atoms, structure label: β-strand), (b) PDB ID: 1YJP (107 atoms, structure label: 1YJP), (c) α-Acetyl(ala)18-NH2
(189 atoms, structure label: α-helix), (d) PDB ID: 3O17, structure shown in the red circle includes residues within 5 Å of the ligand SO4-801 (144
atoms, structure label: 3O17-a), (e) PDB ID: 3O17, structure shown in the red circle includes residues within 5.0 Å of the ligand SO4-802 (190
atoms, structure label: 3O17-b), (f) PDB ID: 1UKI, structure shown in the red circle includes residues within 7.0 Å of the ligand 537 (384 atoms,
structure label: 1UKI), (g) PDB ID: 2VTA, structure shown in the red circle includes residues within 8 Å of the ligand LZ1 (565 atoms, structure
label: 2VTA), and (g) PDB ID: 4QD6, structure shown in the red circle includes residues within 8.0 A of the ligand 30T (721 atoms, structure label:
4QD6).
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energies of complex protein structures, the ligand molecule
itself along with the solvent molecules was removed from the
active site, and hydrogen atoms were added to satisfy the
valence properties of the atoms. The charged residues: aspartic
acid (ASP), glutamic acid (GLU), lysine (LYS), histidine
(HIS), and arginine (ARG) were neutralized. While MIM
calculations can be performed in solvent with an implicit
solvation model or by including explicit solvent molecules, we
chose to limit the number of variables in this study by
considering only the neutral, gas phase proteins, while still
being sufficiently complex with a range of sizes and secondary
interactions.76 Any unphysical contacts among the added
hydrogen atoms were removed by optimizing the hydrogen
atoms using a semiempirical method, PM6-D3, while keeping
the coordinates of heavy atoms fixed.
We have used four combinations of the number-based

fragmentation schemes for generating primary subsystems in
the high layer:
a) four monomers combined (η = 4) (N4, henceforth),
b) five monomers combined (η = 5) (N5, henceforth),
c) four monomers combined (η = 4) plus distance-based

nonbonded dimers (N4D, henceforth),
d) five monomers combined (η = 5) plus distance-based

nonbonded dimers (N5D, henceforth).
The subsystems generated by combining 4 and 5 monomers

(N4 and N5) follow the connectivity along the chain. Distance-
based, nonbonded dimers were included by using a cutoff
distance (d Å). Test calculations showed that a cutoff distance
of 3.0 Å is an ideal value for including some of the important
local, nonbonded interactions. In particular, both strong and
weak hydrogen bonding interactions will be included using this
cutoff distance in the high layer, contributing to the higher
overall accuracy of MIM for these systems. Thus, for schemes
N4D and N5D, nonbonded dimers within 3.0 Å were included.
For two-layer MIM (MIM2) studies, all the low layer
calculations were performed on the full molecule (R = ∞).
For three-layer MIM (MIM3) studies, a distance-based scheme
(cutoff radius of 2.5, 3.0, and 3.5 Å) was used to obtain the
subsystems for the middle layer. Since the size of the
subsystems with 3.5 Å distance is already quite large
(containing about 40−50 atoms), distance parameters larger
than 3.5 Å were not explored. Nevertheless, ring stacking
interactions, if present, will be included at this cutoff distance,
though they were not prevalent in our test systems. Illustrations

of the fragmentation schemes used in this study are shown in
Figure 1.
Table 1 presents the errors in the calculated total energies for

the individual molecules at the MIM1 level. Four different DFT
functionals (B3LYP, B3LYP-D3BJ, B97-D3BJ, and ωB97X-D)
in conjunction with the 6-311++G(d,p) basis set were used in
the MIM1 calculations. The errors in the calculated total
energies are quite significant for the purely number-based
fragmentation schemes (N4 and N5). A closer inspection of the
energy deviations reveals that the error is smaller for less
crowded molecules such as β-strand and 1YJP and grows
rapidly as the molecules become larger and bulkier, being as
large as 408 kcal/mol for 4QD6 with ωB97X-D. When the
nonbonded interactions were included via the distance-based
dimers (fragmentation schemes N4D and N5D) with a cutoff
distance of 3.0 Å, the error is reduced substantially (by as much
as 200 kcal/mol in the case of 4QD6). Interestingly, the
deviation in MIM1 total energy is larger for the functionals
including dispersion corrections (B3LYP-D3BJ, B97-D3BJ, and
ωB97X-D) compared to the one without (B3LYP). This
suggests that part of the large deviation observed in the MIM1
total energy for the bulkier molecules could be due to the
failure of MIM1 to completely capture the interfragment,
nonbonded interactions. In this context, it is important to
remember that the error in MIM1 could be significantly
reduced by increasing the subsystem size as has been done by
many other fragment-based methods, but that would also
increase the computational cost substantially. Instead, as
mentioned earlier, we purposefully use a relatively small
subsystem size to explore the effects of multilayer calculations,
while still keeping the high layer calculations computationally
tractable even for correlated levels of theory.
Tables 2 and 3 summarize the deviations in the total energies

calculated using two-layer MIM (MIM2) fragmentation. As in
MIM1, the four DFT functionals (B3LYP, B3LYP-D3BJ, B97-
D3BJ, and ωB97X-D) with the 6-311++G(d,p) basis set were
used as the high levels of theory, and the same DFT functionals
with 6-31+G and 6-31+G(d) basis sets were employed as the
low levels of theory. The low layer for all MIM2 calculations
was the full molecule (R = ∞). The benefit of including the
long-range interactions missing in the first layer via the second
layer can immediately be seen across all methods. The mean
absolute error has been reduced by a significant amount (on
average by about 60 kcal/mol) compared to MIM1. The error
is especially small (less than 3 kcal/mol, close to our target

Table 1. Deviation in MIM1 Total Energy at DFT/6-311++G(d,p)a

B3LYP B3LYP-D3BJ B97-D3BJ ωB97X-D

structure
label N4 N5 N4D N5D N4 N5 N4D N5D N4 N5 N4D N5D N4 N5 N4D N5D

β-strand 4.5 7.3 4.5 7.3 8.2 7.8 8.2 7.8 10.0 8.1 10.0 8.1 6.9 7.7 6.9 7.7

1YJP 119.9 117.0 27.6 30.4 178.5 159.8 42.0 43.0 161.2 141.9 36.2 37.9 181.7 162.6 48.6 48.2

α-helix 11.2 13.9 0.6 3.2 25.7 26.0 6.1 6.4 24.6 24.3 6.3 6.0 25.3 26.0 5.6 6.3

3O17-a −27.6 −18.7 19.9 15.3 9.2 16.3 31.5 27.6 8.8 16.3 33.0 28.7 10.3 18.0 30.8 27.6

3O17-b −1.2 −0.8 15.0 9.3 50.9 48.6 32.5 26.8 48.5 46.4 32.8 26.6 53.3 51.6 33.6 28.8

1UKI −17.1 −21.5 43.3 37.8 109.9 97.0 97.9 86.0 102.9 88.9 98.8 85.8 113.6 102.8 99.7 90.2

2VTA 38.4 36.7 42.7 34.2 249.1 230.7 122.3 108.9 240.1 220.1 119.5 104.5 261.3 244.4 126.8 116.3

4QD6 90.3 80.8 56.6 51.3 396.6 363.3 178.6 163.6 376.1 342.1 173.9 156.7 408.6 377.5 185.8 173.8

mean
absolute
error

38.8 37.1 26.3 23.6 128.5 118.7 64.9 58.8 121.5 111.0 63.8 56.8 132.6 123.8 67.2 62.4

aErrors in kcal/mol compared to full calculation at DFT/6-311++G(d,p). Fragmentation schemes N4, N5, N4D, and N5D are as described in the
Computational Methods section.
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accuracy of 2 kcal/mol) for the polypeptides with less compact
structures such as β-strand and α-helix. However, the error is
quite large (more than 30 kcal/mol) for other dense molecules
when 6-31+G is the lower level basis set (Table 2). This implies
the fragment−fragment long-range interactions are not fully
recovered even when the 6-31+G basis set is used on the entire
molecule. When the slightly larger basis set 6-31+G(d) was
used as the lower level theory (Table 3), the mean absolute
error in MIM2 energy is dramatically reduced to less than 3
kcal/mol and is consistent for all of the DFT methods used.
This further corroborates that the 6-31+G basis set is not
sufficient enough to capture all of the long-range interactions
that are missing in the high layer. When we inspected the
deviation in the MIM2 total energy with the 6-31+G(d) basis
set, we noticed an interesting pattern. The deviations in MIM2
energy for N4D and N5D are higher compared to the purely
number-based fragmentations schemes N4 and N5 by up to 4
kcal/mol. Surprisingly, it is found to be true for almost all of the
methods used. To understand this seemingly inconsistent
behavior, we performed a few test calculations using a larger
basis set, 6-31+G(d,p), as the low level of theory, adding
polarization functions on hydrogen atoms. With the 6-
31+G(d,p) basis set, the order of performance of the
fragmentation schemes N4, N5, N4D, and N5D is again
consistent as in the case of MIM1 (errors: N4 > N5 > N4D >
N5D). This strongly suggests the unsystematic trend seen in
the deviation of the MIM2 energy is due to the slight imbalance
in the treatment of nonbonded interactions, specifically
hydrogen bonds, by the two basis sets 6-311++G(d,p) and 6-
31+G(d) used. Nevertheless, it can be concluded that the use
of the second layer is very important to include the interactions
missing in the first layer, in agreement with the previous study
by Saha and Raghavachari.74

Though calculations on the unfragmented molecule at a
lower level of theory in the second layer of MIM2 significantly
increase the accuracy, such full calculations for molecules with
more than 1000 atoms can be prohibitively expensive, even for
DFT with modest basis sets. Most chemically interesting
biomolecules contain several hundred to several thousand
atoms. To make quantum chemical calculations practical for
studying such large biomolecules, we have performed a careful
benchmark study of the performance of the three-layer MIM3
model for our test systems. In MIM3, we maintained the levels
of theory and the subsystem generation schemes in the high
layer to be the same as in MIM1 and MIM2 (i.e., DFT with 6-
311++G(d,p) and four different types of subsystems). As
mentioned earlier, a distance-based scheme (cutoff radius of
2.5, 3.0, and 3.5 A) was used to obtain the subsystems for the
middle layer. The middle layer calculations were performed at
the DFT level with two basis sets (6-31+G and 6-31+G(d)),
same as the ones used in the lower layer of MIM2. The same
DFT functional was used in high and middle layer calculations
to ensure the calculated error is not due to the difference in
density functionals. In the low layer, full calculations were
performed using three semiempirical methods (PM6, PM6-D3,
and PM6-D3H4). Since there are 4 variations (4 different
subsystems) in the high layer, 6 variations (3 different
subsystems with 2 different basis sets) in the middle layer,
and 3 variations (3 different semiempirical methods) in the low
layer, in total, 72 combinations are possible for each of the four
DFT methods.
A summary of the mean absolute error (MAE) and

maximum error calculated for various methods with MIM3 isT
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given in Table 4, with more information available in the
Supporting Information in Tables S1 and S2. As in the case of
MIM2, the mean absolute errors for MIM3 with DFT/6-31+G
as a middle layer are quite significant, ranging from 3 to 70
kcal/mol (SI Table S1). Results are better for N4D and N5D
fragmentation schemes compared to N4 and N5. However, no
systematic improvement in the calculated total energy was
observed despite several combinations of the fragmentation
parameters and semiempirical methods used. Overall, the 6-
31+G basis set is found to be insufficient to achieve a target
accuracy of better than 2 kcal/mol when coupled with a high
level basis set containing polarization functions as 6-311+
+G(d,p) does.
When the 6-31+G(d) basis set is used as the intermediate

level of theory (Tables 4 and S2), some interesting observations
can be made. As in MIM1 and MIM2, N4 and N5
fragmentation schemes in the high layer of MIM3 resulted in
larger errors compared to N4D and N5D. This suggests that
some of the local, nonbonded interactions need to be treated at
the high level of theory. As expected, increasing the size of the
middle layer (via increasing cutoff distance) increases the
accuracy of the MIM3 energy. The MAE is reduced by more
than 10 kcal/mol when the cutoff distance is increased from 2.5
to 3.0 Å in the middle layer. When the cutoff distance is
increased from 3.0 to 3.5 Å, there is only a modest change in

the MIM3 error, implying that we are close to convergence
with respect to the size of the middle layer. B3LYP without
dispersion corrections performs better with PM6 compared to
the other semiempirical methods with dispersion corrections
(PM6-D3 or PM6-D3H4). This is consistent with our
expectation that the basic components of each level should
be similar in multilayer calculations to yield the best-performing
combinations. For B3LYP, the error in the calculated total
energy is found to be smaller for less bulky molecules. The
dispersion-corrected DFT functionals, B3LYP-D3BJ, B97-D3BJ
and ωB97X-D, perform very well (MAE < 2 kcal/mol) with the
dispersion-corrected PM6-D3 and PM6-D3H4 semiempirical
methods. The best performance was obtained with B3LYP-
D3BJ and B97-D3BJ functionals. Using N4D or N5D
fragmentation schemes in the high layer, coupled with a
distance-based fragmentation (3.0 or 3.5 Å distance cutoff) in
the middle layer, the calculated mean absolute error is less than
1.5 kcal/mol.
Overall, several important conclusions can be drawn from

our investigations. In the MIM1 calculations, smaller errors are
found with the number-based fragments augmented with
distance-based dimers, i.e., N4D and N5D. However, the
errors are too large for MIM1 to be a useful method for
calculating the energies of large molecules. For MIM2
calculations, DFT/6-31+G(d) as the low level of theory is a

Table 3. Deviation in MIM2 Total Energy at DFT/6-311++G(d,p):DFT/6-31+G(d)a

B3LYP B3LYP-D3BJ B97-D3BJ ωB97X-D

structure label N4 N5 N4D N5D N4 N5 N4D N5D N4 N5 N4D N5D N4 N5 N4D N5D

β-strand 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.6 0.1 0.6 0.1
1YJP −1.3 −0.8 −1.4 −0.8 −1.3 −0.8 −1.4 −0.8 −0.3 −0.1 −1.5 −1.0 0.5 0.5 −3.5 −2.6
α-helix −0.2 −0.1 −0.3 −0.2 −0.2 −0.1 −0.3 −0.2 0.0 0.0 −0.3 −0.2 0.4 0.5 −0.5 −0.3
3O17-a −0.8 −0.5 −1.3 −1.0 −0.8 −0.5 −1.3 −1.0 −0.2 0.1 −1.3 −1.0 0.7 0.9 −1.1 −0.8
3O17-b −1.1 −1.3 −0.8 −0.8 −1.1 −1.3 −0.8 −0.8 −0.1 −0.3 −0.7 −0.8 1.3 1.1 −0.8 −0.9
1UKI 1.7 1.5 −1.7 −1.9 1.7 1.5 −1.7 −1.9 4.0 3.5 −1.8 −2.2 6.5 6.0 −1.9 −2.3
2VTA −0.4 −0.2 −3.4 −3.3 −0.3 −0.1 −3.4 −3.3 3.1 3.0 −3.6 −3.7 7.3 7.1 −4.8 −4.8
4QD6 −3.0 −3.0 −7.4 −7.0 −3.0 −3.1 −4.6 −4.5 1.8 1.2 −5.3 −4.4 7.1 6.5 −8.1 −7.5
mean absolute error 1.2 0.9 2.1 1.9 1.2 0.9 1.8 1.6 1.3 1.1 1.9 1.7 3.0 2.8 2.7 2.4
aErrors in kcal/mol compared to full calculation at DFT/6-311++G(d,p). Fragmentation schemes N4, N5, N4D, and N5D are as described in the
Computational Methods section.

Table 4. Mean Absolute Error and Maximum Deviations in MIM3 Total Energy at a DFT/6-311++G(d,p):DFT/6-
31+G(d):Semiempirical Level of Theorya

aThe horizontal axis represents the level of theory used, and the vertical axis represents the fragmentation scheme used in that particular layer.
Maximum errors are shown in parentheses; errors smaller than 2 kcal/mol are shown in blue and bolded. Errors in kcal/mol compared to full
calculation at DFT/6-311++G(d,p). Fragmentation schemes N4, N5, N4D, and N5D are as described in the Computational Methods section.
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straightforward choice, since the high level is also likely to
contain multiple sets of diffuse and polarization functions, an
important prescription for nonbonded interactions. For MIM3
calculations, the sizes of the middle layer fragments and basis
sets are the two most important parameters. It is obvious that
one would prefer to have a fragmentation scheme involving
subsystems that are not large enough to become the
computational bottleneck. Additionally, it is also important
not to have subsystems so small that the important long-range
interactions are not included at the high level. From the results
presented above, subsystems generated with a distance-based
parameter with a cutoff radius of 3.0 Å or higher appear to be
ideal for the middle layer. Since the number of atoms per
subsystem with 3.0 Å distance cutoff is in the range of 30−40,
DFT methods with slightly larger basis sets (double-ζ or triple-
ζ with polarization functions on both the hydrogen and heavy
atoms, for example) can still be affordable without placing
unreasonable demands on the computational cost. Further-
more, since the dispersion-corrected DFT methods resulted in
the smallest MAE with PM6-D3 and PM6-D3H4, the latter
methods can reliably be used to perform the full calculation in
the third layer. Figure 3 summarizes the improvement in the
total energy for some of the best-performing combinations of
the DFT functionals and fragmentation schemes.
The computational rate limiting steps in the different MIM

models result from the energy evaluations involving the largest
components, viz. primary subsystems. In general, the number of
primary subsystems grows linearly with the size of the

molecule, while the size of the average subsystem in all the
models described in this paper is independent of the size of the
parent molecule. Thus, MIM1 scales asymptotically linearly
with the size of the large molecule. In MIM2, the high level
calculations scale as in MIM1, while the low level calculation on
the unfragmented molecule will become rate limiting for the
larger molecules. However, in MIM3, both high level and
medium level calculations are independent of the size of the parent
molecule. In addition, since we are using very inexpensive
methods such as PM6-D3 as the low level calculation on the
whole molecule (to evaluate the long-range effects), the overall
scaling in MIM3 is expected to be close to linear for the case of
large molecules. In addition, we have shown that MIM3 reaches
nearly the same accuracy attained by MIM2, making MIM3 the
method of choice for performing accurate calculations on very
large molecules.

4. CONCLUSIONS
In this study, we have explored the various fragmentation
schemes within our multilayer Molecules-in-Molecules (MIM)
fragmentation method with the goal of finding the best
fragmentation schemes to accurately predict the total energy
and other properties of large biomolecules containing several
hundreds of atoms. We have assessed the performance of the
fragmentation method using four DFT functionals with the 6-
311++G(d,p) basis set. As discussed in the previous
publications from our group, two-layer MIM (MIM2) performs
substantially better than MIM1 to predict the total energy of

Figure 3. Graphical representation of mean absolute error (MAE) in total energy over the full test set, calculated using MIM2 (blue) and MIM3
(orange) fragment methods compared to the full calculation at the DFT/6-311++G(d,p) basis set. The high level basis set is 6-311++G(d,p). DFT/
6-31+G(d) is used as the low level of theory in MIM2 and the intermediate level of theory in MIM3. In MIM3, PM6 is used as the low level of
theory for B3LYP and PM6-D3H4 is used for the dispersion-corrected functionals.
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the unfragmented molecule with high accuracy. An accuracy of
less than 2 kcal/mol in the MIM2 total energy was routinely
achieved for the calibration systems using DFT/6-31+G(d) as
the low layer, independent of the fragmentation scheme used in
the high layer. Since the MIM2 calculations could still be quite
expensive for biomolecules with several hundreds of atoms, we
have, for the first time, employed three-layer MIM calculations
(MIM3) where the full calculation on the unfragmented
molecule can be carried out at the semiempirical level. Rigorous
calibration of the various fragmentation schemes, different
combinations of basis sets, and semiempirical methods allowed
us to find the combinations of best performing fragmentation
schemes and computational methods. For compact, 3-dimen-
sional molecules with many nonbonded interactions, the 6-
31+G basis set (as the middle layer for MIM3 or the low layer
for MIM2) performed poorly. For MIM3, a cutoff distance of
2.5 Å used for the middle layer fragments gave larger errors
suggesting that some of the strong, nonbonded interactions
beyond the 2.5 Å radius are not properly accounted for by the
semiempirical methods. The fragments generated with the
cutoff distance of 3.0 and 3.5 Å in the middle layer of MIM3
resulted in the smallest errors, with only a small difference in
performance between the two distances when the levels of
theory are properly paired. The mean absolute errors for
B3LYP with any of the combinations of fragmentations
schemes and QM methods do not achieve the target accuracy
of <2 kcal/mol. Dispersion-corrected DFT (B3LYP-D3BJ, B97-
D3BJ, and ωB97X-D) methods pair nicely with semiempirical
methods, PM6-D3 and PM6-D3H4. For B3LYP-D3BJ and
B97-D3BJ with MIM3, the best results (MAE < 2 kcal/mol) are
obtained with number-based fragments augmented with
distance-based dimers (i.e., N4D and N5D) in the high layer,
distance-based subsystems with a cutoff radius of 3.0 and 3.5 Å
with 6-31+G(d) basis set in the middle layer, and semiempirical
methods (PM6-D3 and PM6-D3H4) as a low layer. These
results suggest that through increasing the number of layers in a
given calculation and paying close attention to the compatibility
between different levels of theory and fragmentation schemes,
the MIM fragmentation method can be used to study
biomolecules with several hundred (even several thousand)
atoms.
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