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Abstract

The form factor program for the regularized space—time S-matrix in planar maximally supersymmetric
gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube exci-
tations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function
of ’t Hooft coupling. Both MHV and non-MHYV amplitudes are described in a uniform, systematic fashion
within this framework, with the difference between the two encoded in coupling-dependent helicity form
factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is
coupling independent and is known for any number of charged excitations from solutions of a system of
Watson and Mirror equations. This description allows one to resum the infinite series of form factors and
recover the space—time S-matrix exactly in kinematical variables at a given order of perturbation series.
Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg
tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grass-
mann component of the heptagon with an infinite number of small fermion—antifermion pairs accounted for
in NMHYV two-channel conformal blocks.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The duality between the space—time scattering matrix and supersymmetric Wilson loop on a
null polygonal contour [1-6] in planar N = 4 superYang—Mills theory was instrumental in for-
mulating of a non-perturbative framework for the former in terms of two-dimensional physics
taking central stage in the latter. The dynamics of excitations propagating on the corresponding
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background is exactly solvable and allows one to determine their dispersion relations and scatter-
ing matrices at any value of 't Hooft coupling. This current approach [7] to scattering amplitudes
emerged from the study of the near-collinear expansion of Wilson loop expectation value [8,9]
when two adjacent links merging at a cusp tend to straighten up. Deviation from the straight line
admits a systematic expansion in a series of operator insertions into the gauge link. These oper-
ators create the aforementioned excitations of the flux-tube stretched between the Wilson loop
contour. They propagate on the two-dimensional world-sheet and get absorbed via a mechanism
analogous to their creation. At any order in the power of the deviation parameter there is a finite
number of contributing particles, which however have to be summed over in order to get the
exact representation of the Wilson loop and correspondingly space—time scattering amplitudes in
generic kinematics.
The series representation of the n-gon superWilson loop [7]

W, = I (OIPy—alpn (")) ... (P (@) P2lpy (@) (Pn (@) P1]0) (1.1)
N,N',...,N"

is given in terms of the creation/annihilation/transition form factors (py:(u’)|P|py (#)) of pen-

tagon operators P between the states of the flux-tube with rapidities u = (uy,...,uy) and
u' = (u),...,u,), which are integrated over
N du;
l Na—TEp. (ui)+iopy. (uj)+ihy. ¢
— — Uy, (u;)e” " P P P 1.2
f /HZHMP,(» (12)
N i=1

with measures w,, and propagation phases determined by their energy Ep;, momentum pp, and
helicity A, accompanied by the reciprocal variables of time 7, space o and rotation angle ¢. In
the above formula, each N of the intermediate state cumulatively denotes the number of parti-
cles, their helicities and SU(4) quantum numbers in the completeness condition. The form factor
decompose

(P (@) Plpy ) = * (uu ) [Ty v (u|u) P (ulu'), (1.3)

as a product of the coupling-constant dependent dynamical P(u|u’) and helicity form factors
7R (ulu’), with the latter depending on the SU(4) charge R of the pentagon inducing a given
transition, and the coupling-independent tensor [IT®]yy’(u|u’) carrying representation indices
of the flux-tube excitations. While, the helicity form factors are simply given by the product of
individual single-particle form factors, which in turn are powers of the Zhukowski variables, the
expression for the dynamical part P(u|u’), while factorizable, takes on a more complicated form.
It reads

TS TS Pl

Pulu') = ; ,
[T PCuilu) TRy Pt lu))

(1.4)

in terms of one-to-one particle transition form factors, where for brevity, we do not display flavors
of the excitations involved. All of the ingredients on the right-hand side of Eq. (1.3) are known
from a series of papers [7,10-18].
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The resummation of the entire form factor series is by no means obvious. Recently, it was suc-
cessfully accomplished for the simplest case of the hexagon' at tree [19] and one loop [20] level
making use of the available integral representation for the traced SU(4) tensor structures [21].
This was based on the notion of an effective particle. The latter is built from a fundamental flux-
tube scalar ¢, large (anti)fermion (1})1//, (anti)gluon (g)g excitations and bound states thereof
(84)8&a, carrying the intrinsic quantum numbers, and a cloud of small fermions or antifermions.
In fact, this picture is alike the traditional constituent quark model, where the constituent exci-
tation carries the quantum numbers of the current quark surrounded by an un-obscuring cloud
of glue and quark—antiquark pairs, which merely renormalizes its mass. The observation that the
number of effective excitations grow slowly with each order of perturbation theory, allows one
to operate in terms of a very small number of this constituent particles at lowest loop orders. In
addition, one can add an arbitrary number of small fermion—antifermion pairs on top of each of
the effective particle. These are descendant states which need to be resummed to accommodate
the exact kinematics of scattering amplitudes.

In this paper, we extend the program to reconstruction of the NMHV heptagon in full kine-
matics from the form factor expansion making extensive use of the SU(4) tensor part following
Ref. [18]. This will be done to leading order in "t Hooft coupling, i.e., tree level. The subsequent
presentation is organized as follows. In the next section, we will recall the parent excitations
with various SU(4) quantum numbers that will contribute to the Grassmann components of the
heptagon. Then, in Sect. 3, after briefly reminding the structure of the NMHV heptagon, we pro-
vide results for its fifteen independent components in terms of the effective excitations. Next,
we turn to the resummation of small fermion—antifermion pairs, which determines as a result the
NMHY conformal blocks. Finally, we conclude. A few appendices contain calculational details
on polygon kinematics and reconstruction of charged SU(4) tensors from singlet ones.

2. Parent excitations

The fundamental flux-tube excitations consist of the SU(4) singlet gluon and antigluon, i.e.,
opposite helicity +1 states, fermion and antifermion in the fundamental representation of di-
mension 4 and its conjugate 4, respectively, and antisymmetric 6 scalars. The (anti)gluons form
bound states of helicity || > 1. This is not the only way to form a parent excitation which is
the lowest weight for a tower of descendants to build an effective one. One can encode the same
quantum numbers by forming strings in rapidities with (anti)fermions. This comes about from
the following unique feature of the flux-tube (anti)fermion, its natural rapidity is the Zhukowski
variable x rather than the “bare” rapidity u = x + g%/x. As a consequence two copies of the
u-plane are needed to cover the entire x-plane. The two complex planes are glued across the
cut [—2g, 2g]. The fermions with |x| > g, live on the top sheet and have large rapidities x ~ u,
while for |x| < g, they possess small rapidities x ~ g2/u. They are called the large and small
fermion, respectively. The latter can reach zero momentum (or which is equivalent, infinite ra-
pidity) where it becomes a generator of the supersymmetric transformation. Thus, one can glue
as many (anti)fermions to a given fundamental excitation without any cost in 't Hooft coupling
as long as cumulative quantum numbers allow it.

Namely, for a given dimension-R representation of SU(4), we decompose parent excitations
into positive and negative helicities

1 Previous attempts include weak coupling analyses of a double scaling limit relevant for multi-Regge regime [22] and
resummations at strong coupling [23-25] which yield TBA expectations and beyond [26-28].
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o = (2% . 0% ). 2.1
For the gluon, R=1,

DL o0 =28a> (2.2)
CDI_,_Z = 1/[1/_[81 q>1_’_1 :d)l/_fs\/_fs, q>1_’0 :\Z’\Z’sl/_fsl/_fs, d)l_’a>0 :gal/_/sl/_fs&sl/_f&
2.3)
For the fermion, R =4,
d>+ 0=V, P 0=8aVs. (2.4)
_,_1 =Py, q>4_’0 =Y, <D4_ a>0= gaWSWSl//s (2.5)
For the scalar, R =6,
+ 0= =Y, Cbi’u>0 = gaVsVs, (2.6)
O =9, O =y, O (=28 VsVs. 2.7

The antigluon, R = 1 and antifermion R = 4 are obtained from the ones introduced above by
dressing all particle symbols on the right of their definitions with the bars and interchanging the
subscripts designating helicities of corresponding parent excitations on the left, i.e., & < d_.
Notice that zero-helicity excitations were included along in a vector of negative helicity ones.
As we will see later on, the latter have a smooth limit to the former and so they are naturally
combined together.

3. Independent heptagon components

To start our analysis of the heptagon, we choose, by now conventional, parametrization of
the momentum twistors Z; (i = 1,...,7), which is recalled in Appendix B with the particular
tessellation exhibited in Fig. 1. Each superpentagon operator P develops a finite-term expan-
sion in Grassmann variable « assigned to each pentagon (along with bosonic variables 7, o
and @),

Ay AB | 1 ABC | 1 ABCD
P=P+ksP ,KAKBP + zkakpkcP + gkakpkckpP , 3.D

with its top/bottom components corresponding to the singlet 1/1 transitions, the subleading ones
from top and bottom to 4 and 4 of SU(4), respectively, and finally the middle one to the antisym-
metric 6 dimensional representation. Then, for the heptagon, which contains three overlapping
pentagons (see Fig. 1), the NMHV component of the superWilson loop will have the Grassmann
expansion

WI;TMHVz i KflKé’zK;’% W7[”1»”2J’3] , (32)
1,73 =0
r+r+ry3=4
where, for brevity, we do not display SU(4) indices but rather only show their powers. Not all
of the components W7[r1’r2’r3] are independent. Many of them are related by mean of supersym-
metric Ward identities [29]. For the case at hand, there are just fifteen [29,16]. Their map to
Grassmann components of the superloop expanded in terms of the fermionic variables x l.A of the
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1

T T2 T3
K1 Ko” K3
Fig. 1. Pentagon decomposition of the NMHV heptagon.

momentum supertwistors Z; = (Z;, X,-A) was established in Ref. [16] and reads for the case at
hand
W7[””2”3] = 97! [(2361)0,, + (2367)dy, " i) W7‘ . (3.3)
Xi=
where (ijkl) = eryx1Z] 2] ZK 7}

The rules to construct the flux-tube integrand were worked out in a series of papers alluded
to in the Introduction. With the matrix part made available through a constructive technique of
Ref. [18], one can find any Grassmann component of the superloop. Postponing details of the
algebra involved to subsequent sections, we merely restrict ourselves with presenting explicit

results for the contribution of parent excitations to the independent W7[r"r2’r3] ’s,

W[rl,rz,r3] — Z eft‘,l rlftazrzﬂhal(pwihaz(pg du dveZiolu+2iazv 1R1|R2 (051, u|, a, v) )
’ (2m)?

o],02

3.4)

Here 1,,’s are the twists and R; is the SU(4) charge of the parent excitations exchanged in the
transitions. For generic values of r;’s, there is no symmetry between positive h, > 0 and neg-
ative (including zero) h, < 0 helicity states. They are in fact different and are separated into
independent terms below. Without further ado, we list the fifteen integrands of the indepen-

dent components of the NMHYV heptagon at leading order in coupling casting them in the form
R1IRy

signlhq, JIsignlha, 1*
e [4,0,0]10— CI>‘1x] (u) — @éz(v) — 0:

I (@1 ul e, v) =i(=)*1H! (3.5)
T+ % +inl(% +iv)[(E52 —iu — iv)[(UF2 +ju + iv)
X
(+ i) aDT (@)1 + 452 +iu+iv)

’
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P4+ % +inl(% + il + 952 — ju —iv)
(u+i%)w+i)r@+a)l ()

4L (o, ul e, v) = (—1)+e

’

(3.6)
I (@1, ul, @a,v) = (~ D@t (3.7)
FA+% +inl(1+% +ivld+ 232 —ju —iv)
X b
F(al)F(4+az)
I e ul @, v) =i (=)t (3.8)
F@A+% +iwl(1+ % +inl(U52 —iu—iv)[(4 + 9F2 4 ju+iv)
X .
(u+iHT@E +aDl@E +a) (1 + 4572 +iu+iv)
e [3,0,110— CIJ“(X1 (u) — @;2(1)) — 0:
I @1, ul g, v) =i (=)™ (3.9)
T+ %+l + % +iv)D(U52 —iu—iv)[ (1 + 252 +iu+iv)
X 9
W4T+ o)l + a0 (1 + 152 +iu +iv)
I (@1, ul g, v) = (1Mt (3.10)
PG+ 3+l + % +iv)l(1+ “‘+°‘2 —iu—iv)
X
(u+z )(v+l )F(3+a1)F(1 + o))
I3 (@1 ul, 0, ) = (~1@tert!
r(1 + % +inl(1+ % +iv)l(1+ 252 —ju —iv)
r(1 +a1)F(3+a2) ’
4'4 (a1, ul, o0, v) =i(=1H)* (3.11)
PG+ % +iw)(1+ %2 +iv)[(U52 —ju — iv)['3 + UE2 +ju +iv)
X .
(u+iHFB@+aPlG+a)l(1 + 9522 +iu+iv)
¢ [2,0,2]10— ®f, (u) — ®f,(v) — 0:
120 (@1, ul, a2, v) =i (=)™ (3.12)

T+ % +iwFQ+ 2 +iv)[(U52 —ju —iv)['(2 + UE2 4 ju + iv)
* W+1%)T@ +anT @+ )T + “52 + iu + iv)
FQ+% +inFQ+% +iv)I(1+ 252 —ju —iv)
(u+l°‘2')(v+l°‘22)1"(2+a1)1“(2+a2)

3

1% (@1, ul, o0, v) = (1M1t

(3.13)

120 (@1, ul, @z, v) = (1 tert!

F(l + % +inl(1+ % +iv)l1+ 252 —ju —iv)
F(2+a1)r(2+a2)

)
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1°0 (@1, ul,en, v) =i ()" ! (3.14)

FQ+% +iw)l(1+ % +iv)[(452 —iu— iv)[2 + 22 +iu +iv)
X .
w+iHrQ+ o)l + a1 + 832 iy +iv)
2 2

¢ [2,2,010 — & (u) — @, (v) — 0

12 @, ul en, ) =i (=)™ (3.15)
1"(1+‘”l +iu)[(F +iv)[(F572 iu—iv)l"(2+°”—J2ra2+iu+iv)
W+iTFQ+anl (el + %52 +iu +iv) '

FQ+% +inl(% +iv)l(1+ 232 — iy —jv)
(u+z°‘21)(v+z°‘22)r(2+a1)r(az)

’

(3.16)

18 (@1 ul, ap, v) = (1)1t

Ij'll_(al,m, ap, v) = (=Dt Qg et gy gy 34 9k 4y i) (3.17)

F(l + %+ 4+ % +iv)l(1+ 952 — iy —iv)
F(2+a1)F(4+a2)

18 ar ul, 0, v) =i (=)™ ! (3.18)

)

FQ+% +iw)l(1+ 2 + i (D52 —iu—iv)[(4 + 932 4 ju +iv)
X .
U +i4HPQ2+a)T @ + a1 + 452 + ju + iv)

o [2,1,110— @Y (u) — @4 (v) — O:

1% (@11l 00, v) =i (= 1) (3.19)

P+ %+ i1+ %2 +i)(U52 — iy —iv)[(2+ 9E2 4y +iv)
X
W+ Q2+ )T +a)T (1 + D52 + ju +iv)

3

1% (o, ul, 0, v) = (D)ot (3.20)

FQ+% +inl(1+% +iv)ld+ 232 —ju —iv)
X
(u+l“21)(v+l“§)l“(2+a1)l“(l +az)

)

12 (@1, ul, @z, v) = (et 3.21)
X (2 ke +iu+iv)r(1 + % +inl1+ % +iv)l(1+ 232 — iy —iv)
2 FQ2+a)lG+a) ’
1*% (@1, ul,en,v) =i ()" H! (3.22)

FQ+% +inl(1+% +iv)[(L52 —iu —iv)[ G+ LF2 +iu+iv)
X .
u+iHTrQR+a)l G+ o)1+ U522 iy +iv)
2 2
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e [3,1,0]10— CIJ“Ol1 (u) — <I>(112(v) — 0:

L@ uleg, vy =i(=)*1H! (3.23)
LU+ 9+l +ivl(H5* —iu—iv)[(1+ 22 4y + iv)
W+iTI + o))+ X592 +ju + iv) ’

PG+ % +in)[(% +iv)[(1+ 452 — iy —iv)
(u+l°l21)(v+l‘)122)r(3+0€1)r((¥2)

@1, ul e, v) = (—1ytert]

)

(3.24)
I3 (@1l o, v) = (—Dyatet] (3.25)

FA+% +inl(1+ % +iv)l(1+ 232 —jy —jv)
Fd+apl’'4 +a2)
@, ul g, ) =i(=1)™ (3.26)

x (2+9E2 4 jy +jv)

’

PG+ % +in)(1+ % +iv)[(U592 —ju— iv)[(4+ 9E2 4y 4 jv)
X .
W +i%)TG+anT@ +a)l(1+ 452 +iu +iv)

e [0,4,0]10 - L (u) > @, (v) > 0

+|+(a1 ul, oz, v) =i(—=1)**! (3.27)

1“(1+°‘1 +iu)[(F 4 iv)[(H52 iu—iv)F(4+"lT”’2+iu+iv)
W+ i@+ aple)T( + 952 +iu +iv) '
F(% +inT(% +iv)ld + 232 —ju —iv)

i o) to
17 (o, ul, ap,v) = (=1)*17T2 . (3.28)
I+ | w+iH)w+i% )F(al)F(otz)
I (@, ul ) = (=D Q4 DD ) (3 2 i)
X (44 9E0 4y 4 i) (54 22 4 iu+iv)
F(l + % +inl(1+ % +iv)l(1+ 252 —ju —iv) 329
r‘(4-|-Ot1)1ﬂ(4+062) ' ’
11 (@1 ul 0z, v) =i (=D (330)
F( +in) L1+ F +iv)[(F52 —iu —iv)['(4 + “’+a2 +iu —l—lv)
(u +z°‘1)1"(a1)l"(4+052)1"(1 + 9522 +iu +lv)
¢ [0,3,110— @} (u) > ¥, (v) — 0
I (1wl o, v) = i (=)™ 3.31)
+|+ 13 ) 27 _— .

M1+ % +i)l(1+ % +iv)[ (452 —iu— iv)T (@ + 252 +iu +iv)
X
W+iT@E+ a1+ o)l + 4952 +iu+iv)

3
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LS +in)L(1+ % +iv)l(1+ a‘+a2 —iu—iv)
(u+l"‘2‘)(v+l“22)F(oz1)F(1 +a2)

1_||1(0l1,u|, a2, V) = (_1)0¢1+a2+1
(3.32)
Ii'l“_(ozl,ul,oez, b) = (D)t 4 B |y ) (34 9y 4 )

FA+% +inT1+% +iv)ld+ 232 — iy —iv)

x(4+%+iu+iv)

F4+a)lG+a2) ’

(3.33)

" =i(—H! 334
|_(alvu|aa2av)_l( ) ( M )

F( +in)T(1+ F +in)[(F52 —iu —iv)[' (3 + % +iu+iv)
(u+z“71)r(a1)1“(3+a2)1“(1+“15“2 +iu+iv) ’
o [1,2,110 > @} (u) > @ (v) — 0

+|+(a1 ul,az,v) =i(=H% (3.35)

FA+% +i)l(1+ % +ivN(U52 —iu—iv)[ G+ 242 +iu +iv)
X
W+iBTG+anpl(l+ o)l + 252 4 iu +iv)
D1+ % +iw) (1 + % +iv)[(1+ 932 — iy —iv)
u+i)+iFPrd+a)l’( +a)

3

)

1 (@ ul, 0. v) = (1Mt

(3.36)
1% (@1 ul, 02, v) = (1) Q4 SR Ly ) (34 S5 4 ju i)
r(1 + 4 +inTA+ % +iv)l(1+ 252 —ju —iv) ’ (337)
INE +a1)r(3 + o)
M (a1, ul oz, v) =i (=)™ (3.38)

P+ % 4+ i1+ 2 +inl(D52 —iu—iv)IG+ 22 +iu+iv)
X .
U +i4H0(1 +a)TG+a) (1 + 452 + fu + iv)

The remaining 6 can be found from these by interchanging the top and bottom excitations.
Namely,

e [0,0,4]0— CID(ixl(u) — CIDLZ(U) — 0:

11 e ul oo, v) = 1 (@2, vl e, (3.39)
1M (ar ul oo, v) = 1YY (@2, vl e, (3.40)
11 e ul oo, v) = 1 (@2, vl e u), (3.41)
1|1

(al Ml aZav)— H,(a23v|aa1’u)~ (342)
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e [1,0,3]10 > @& (u) > @3 (v) > 0

A4

I @i ul en,v) = 14 @2, 0] 00 (3.43)
1 @y, ul, az,u)_LH(az,m ai,u), (3.44)
“"‘ e ulaa,v) = 13 (@, 0] 00,00, (3.45)
“"‘ Y (anulaz,v) = I (@ ) a0 (3.46)

e [0,2,210— bem (u) — @, (v) — 0

116 (a1, ul oz, v) = 191 (@2, vl ), (3.47)
11 @i ulaz ) = 1° “+<a2,v| o), (3.48)
”6 (a1, ul o, v) = 1§ (0. 0] 0rr, ), (3.49)
1_|_(a1,ul,ozz,v)=1+‘+(a2,v|,a1,u). (3.50)

o [1,1,2]10 > @4 (u) > @, (v) — 0:

136 @l o, v) = 19 (@2, vl 1 ). (3.51)
4'6 Lo, ulap,v) =1" ‘H(az,vl ay, u), (3.52)
13 (@1 ul, 02, 0) = 1% (@2, v e, 1), (3.53)
1 (@, ul, a2, v) = 1% (@2, 0], @1, 0). (3.54)

¢ [0,1,3]10—> @} (u) > &} (v) - 0

1M (a1 ul oz, v) = 14 (@2, v e, (3.55)
1" @l oo, v) = 11 (@2, vl )., (3.56)
1™ @ ul, a2, v) = 18 (@2 0], @1 0), (3.57)
1" (@1 ul 02, 0) = 1Y (@2, v e u). (3.58)

e [1,3,010 > @4 (u) > @, (v) > 0

+|+(0t1 ul, az,v)—l ! (2, vl a0, (3.59)
I_|+(al’u|7a27v)zli“i(a27v|aa]au)a (3.60)
I, 4 (al,ul,az,v)=1f‘l_(az,v|,a1,u), (3.61)
4|1

(C{],Ml ()52,”)— H,(a27v|aalau)' (3'62)
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Using the map (3.3), it is straightforward to cross-check the correctness of the above expressions
against explicit heptagon data [30].

Having found the integrands for parent excitations, we are in a position to construct these for
effective particles by dressing the former with infinite cloud of small fermion—antifermions pairs.

4. Warm-up: resummation of pairs for hexagon

To start with the resummation of small fermion—antifermion pairs, let us recall the structure
of the result for the NMHV hexagon studied in Ref. [19]. It will be sufficient to demonstrate it
for a specific component, which we choose to be W(EM]—in the notation analogous to the one
adopted for the heptagon—

T—0 —0—T

e
— + s
2T+ 1 2e°Tcosgp+e20 42T 4]

2,21 _ €
W™ =

4.1)

and, in fact, for just one Fourier component in the angle ¢,

4

1

201, _ 2,2

<W6[ ])0=4_n /d</’ Ws[ ]
0

T—0 —0—T

e e

__62‘L'+1 + \/(1+620 +672r)2_4620721 ’

Its leading term in the collinear expansion as T — oo corresponds to the contributions due to the
exchange of helicity zero ¢-excitation with the flux-tube integrand

4.2)

1%u,00v,0) =T(=1 —in)T 3 +iu). 4.3)

To account for the entire infinite series of subleading terms in e~ @n+DT one has to calculate
integrands of 0 — ¢ (¥s¥s)" — O transitions for any n. Though an integral representation for
the traced tensor part of pentagon transitions, dubbed as the matrix part, is know for the hexagon
in term of an integral representation [21], practically, they can be evaluated for large but finite
number of excitations only. Particular patterns of string formation involving small (anti)fermions
with a parent excitation were established in Ref. [19] and used to conjecture a generic functional
dependence on n,

0 —27\n 1 . 2.3 .
2.2] e (2T fdu g, T(—5 — i (5 +n+iu)
W = E A . s
e lo=e = mh? e T(3/2+iu) (4.4)

The summation of the series yields the result

d .
=™ [ 5115, 0,012

%—i—iu,%—i—iu
2

1

- eZt) , (4.5)

where the flux-tube 0 — ¢ — 0 integrand /® is accompanied by the single-channel s1(2) con-
formal block expressed in terms of the hypergeometric function , F, as was observed earlier in
[9,19]. We review its construction in Appendix A. Below, when we will turn to the heptagon and
adopt a partially reversed ideology and use explicit expression of conformal blocks as a guiding
principle for infinite series resummation.
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3 72 (03) 5, (v2) b5, (v1)

"2 (us)p" (u2)g(ur)

V' (ug);, (u2)g(uq)

Fig. 2. Deconstruction of the 0 — g(u1)(¥¥)*! — ¥ (up)(¥¥)"2 — 0 heptagon in terms of pentagon transitions with
increasing number of flux-tube excitations with (n1, n2) being (0, 0), (1, 0) and (1, 1) in the left, central and right panels,
respectively.

5. Resummation of pairs for heptagon: an example

Since the matrix part is available only via a constructive procedure, which has to be performed
for every new set of excitations, analyses were done for a relatively small number of excitations.
They provided the first few terms in the infinite series expansion, whose dependence on the orders
in the expansion had to be guessed. To have a proper guidance in this endeavor and unravel the
general pattern, the unbroken sl(2) algebra of the leading-order flux-tube dynamics was used as
a guiding principle to fix the form of the conformal blocks. In Appendix B we do this for the
case without helicity weights of NMHYV amplitudes, whose sole effect is to shift some numerical
indices by constants in the fifteen independent NMHV components.

Let us demonstrate this technology for a specific transition, say, with a charged middle pen-

tagon W7[0’3’ Y. The first few terms in the pentagon operator product expansion read
103,11 _ _—igi+igs/2[ 71— [0,3,1]
W) — e lp1tign/ [e -1 W7(0_)g_)¢_)0) .1
3 —nyl03.11 =311 -3nyI[0.3,1] B
te W7(0_>5_’(‘/’s¢s)—>‘/f—>0) te W7(0_>§(¢s‘/’s)_”/f(‘/fs‘/fs)_’0) tee ] ’

where we exhibited the explicit transitions as labels and their deconstruction in terms of pentagon
form factors is shown in Fig. 2 for each term, respectively.
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The leading term 0 — g — 1 — 0, shown in the leftmost panel of Fig. 2, does not involve
any complicated tensor structures and reads

Whod sy = / dTig ) d Ty (DY x T urx~[uzlx[v1]Pgy (—uy o) (5.2)

duy dv 2 +2i 1 . . 3 . .
Z/W HAGITANIRT(— 5 +iu) v (5 —iug —ivy),

where here and below we use the convention
diip(u) = —e“’PP‘“m (. (5.3)

with pp(u) =2u + 0(g?) for (anti)gluon, scalar and large anti(fermion) flux-tube excitations.
The next case in complexity is the 0 — g(¥s¥s) — ¥ — 0 transition in the middle panel of
Fig. 2.

[0,3.1] o~ N % =
W7(0ﬁg(¢slzs)ﬁ¢%0) —/dMg(ul)de//(M2)dM1//(M3)dM1//(U1) 5.4

X v/ x T [uy]x~[ug]x[vr] { }Héwj 1//’2(()'”2’”3)[1_[1& g, 12 (—u3, —usz|vy)

X [Hl//“ Io]jz(_vl |O)
X Pojgyg Olur, uz, u3) Py z (—u3, —uz, —ur|v) Pyjo(—v1]0).

The two-to-one transition tensor involved in the decomposition is given in Eq. (C.7), while
[l'[4 1, (=v1]0) = 8?21 Making use of the factorization property (1.4) of the multiparticle pen-

i1l
tagons, we find, passing to the small fermion sheet in variables u, and u3,
0,3,1 ~ ~ =
W7[(0—>51(w512rs)—>1/f—>0) = /dug(ul)duw(vl)x[vl] xH[uy]x~[u]Pgy (—u1lvy) (3.5)
dupdusz (uzluz)—n —4(uz| —v1)—1 u3
(2m)? (u2|uz)a(uz|uz)—2 (urluz)ijp(uyluz)—1y2’

where the integration contour C_ runs clockwise over a half-moon contour in the lower half
plane of the complex plane of the corresponding small-(anti)fermion rapidities. Evaluating these
integrals by residues, we get

[0,3,1]
W7(0—>§(l/fs1/_fs)—>1//—>0) (5:6)

~ [ R dRy @tV Tl Py o [ = D+ - 3]

which differs from the one-to-one transition (5.2) by a second order polynomial in rapidities u
and vy. B B
Finally, let us turn to 0 — g(¥ ) — ¥ (¥ ) — 0, which is shown in the right panel of Fig. 2.

[0,3,1] o~ - ~ - ~ -
W7(0_)g(wsv;s)_)w(w/;s)_>o) —/dug(ul)duw(uz)duw(u3)d,ux//(vl)duw(vz)d,uw(w)

N e T T i e

x[uz] x[v3]
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1 4 i _
X Moy, yin Ol )G iy g, 1 (Fuss —uzlvs, v, vn)
4
X [ijl 1//./21;]3\0]1'3 (—v1, —v2, —v3|0)
X Pogy g Olur, w2, u3) Py gy (—us, —ua, —uifvs, vz, v1)
X Py gi0(—v1, —v2, —v3]0). 5.7)

The dynamical part reads at leading order in coupling

Pogye, Olut, uz, u3) Py o150 (—u3, —u2, —ui|v3, v2,v1) Py g 0(—v1, —v2, —v3/0)

_ u3v; (1] — v3)—1/2 Pgjy (—ui|vy)

" upvz (3] — uz)o (2l — u2)oslu) 2 uslur) 12

(5.8)

after passing with (anti)fermions to the small sheet and making use of the leading order expres-
sions for the pentagons. Evaluating the residues over the small fermions rapidities in the order
vy — v] — w1 — wy of string formation, we find

—v)_yplll 4 pmd
uzv2(uy| —v3)_1,2 O\wf,w’z[ wizw,lw,wh%] [ v w!zw,3\o]’3
res res res res
v3=v)—2i vy=v| —i ug=u| —5i /2 u3=u; —i/2 (v3| —u3)o(va| — u2)o(uslur)1y2(uslur)-1,2
. ] 5 2
= (u1 — 5)(uz — i) +up — 5) w1 +uz— 5). (5.9)

Anticipating the emergence of the Appell function as a conformal block for amplitudes that
effectively resums the infinite series in fermion—antifermion pairs, we can immediately fix the
indices of the former to the first few terms found above. We deduce

4
/ dgrdgy e'#171¢2/2 1031 (5.10)

1
wloaty
(W5 M,-1/2 an)?

0
dudv ,; ;
=e 1™ / — ettt p L 4 i Piv)ING —iu —iv)

(2n)?
_ 6—211 _6—212)

P (%—i—iu—i—iv, D iu 1 +iv
1,1
where we set u = u1 and v = v1. Making use of the double series representation (B.23) for F>,
we can prove that the agreement continues at higher order terms in the expansion as well, where
each term in the double series corresponds to the ¢ (s1rs)" — ¢ (Ysis)™ transitions. We can
also confirm correctness of above predictions against explicit data of Ref. [30], with the first two
terms being

e~ TI—T2 o01

(14 €201)(1 + e202) (e201 4 ¢202 4 g201+202)

x [e291 4 202 4 D201 +202] (5.11)
ef3r17r2 ol

+ (11 €201)3(1 + 6292)2(e291 + 202 } @201+272)3

« [6801 + 26802 + 36601 + 36602

4 36eﬁo’| +607 + 39640'1 +40o + 9e4a'] +202 + 186601 +20> 4 5680’] +20o

03,1
(W7[ ])1,—1/22




A.V. Belitsky / Nuclear Physics B 929 (2018) 113-136 127

+ 96261+462 + 4266014—40'2 + 10680'1-‘1-40'2 + 2462014—60'2 + 516401+602
+ 3666(71 +6072 4 6egcf|+6(72 + 12620‘1 +802 + 186401+8(72 + 8e6(71+8(72]
+ ...,

and the rest was straightforwardly checked numerically.
6. Two-channel NMHYV conformal blocks

Analyses along the lines spelled out in the previous section were performed for more than
2000 examples, implying that for each of the 25 different transitions in a given independent
component of the heptagon, we constructed matrix part for up to three additional Vi pairs ac-
companying a given parent flux-tube excitations within the framework of Ref. [18]. This yielded
the following generic expression for the NMHV conformal blocks

[r1,r2,73]
‘FhlstlthstZ(u’ T]|U, T2) (6'1)
[hil+lhal | 2471473 ) sl o 2 s Lol L 24T
=F2< gl 2R iy, g 2R g TR 2R | _6_212>
I,

where h;’s and #;’s are the helicities and twists of the parent flux-tube excitations, while the
hatted SU(4) labels are

1=@—r0(h1 >0)+r10(h; <0), 73 =r30(hy > 0)+ (4 —r3)0(h2 <0). (6.2)

Then, to account for all small fermion—antifermion pairs in the independent heptagon compo-
nents introduced in Sect. 3, one has to dress all integrands of the parent transitions with the
above conformal blocks, i.e.,

ri,ra,
1™ ey, il @2, v) — M2 ul, 2, ) F 2 v ). (6.3)

Here the helicities and twists are linear functions of the «; labels as can be established from
explicit flux-tube content of the effective particles of Sect. 2. Equation (3.4), with the substitution
(6.3), provides the resummed NMHYV heptagon. The remaining double series in «; variables can
be performed by making use of an integral representation for the conformal block (6.1). The one
that suits our needs the best is in terms of a product of two confluent hypergeometric functions,
i.e., Eq. (27) in Ref. [32], which factorizes the top and bottom of the heptagon. Subsequent steps
are analogous to the construction of the resummed hexagon [19].

7. Conclusion

In the present paper, we built fifteen independent NMHYV heptagon integrands of the parent
flux-tube excitations of increasing helicity. To account for all twist corrections accompanying
these and thus to restore the exact kinematics of the tree seven-leg amplitude in conformal cross
ratios, we summed over the series of small fermion—antifermion pairs. The latter procedure was
based on the knowledge of the matrix part stemming from contraction of pentagon SU(4) ten-
sors found by means of a recursive procedure advocated in Ref. [18] and a conjectured form of
the rapidity dependence of one of its tensor structures. The outcome of this consideration was
the construction of two-channel NMHV conformal blocks from the first several terms in their
collinear expansion.
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A generalization of this analysis to construction of multi-channel conformal blocks for oc-
tagon and higher polygons, either by small fermion—antifermion resummation or sl(2) arguments,
is begging for attention. A natural space of functions is to look for generalized hypergeometric
series of multiple arguments. While the exchange of a single parent flux-tube excitation was suf-
ficient at tree level, at higher loops one will have to take into account two of these simultaneously.
These and related questions will be addressed in future work.
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Appendix A. MHYV conformal block of the hexagon

The hexagon is encoded by the following reference twistors

Z;=(1,0,1,1), Z,=(1,0,0,0), Z3=(-1,0,0,1), (A.1)
Z4=(0,1,-1,1), Zs=(0,1,0,0), Z6=1(0,1,1,0). (A.2)
Notice that this construction provides a natural tessellation of null polygons: they are divided in
a series of pentagon transitions that overlap on intermediate null squares. To encode all inequiv-

alent polygons we apply conformal symmetries of these middle squares on all twistors above or
below them. All hexagons are then defined by the set

Z={Z-M(t,0,9), Z2, Z3, Z4, Zs, Zs- M(7,0,0)}. (A.3)
Where
ea—iw/Z
eftrfizp/Z
M(t,0.¢) = ortio)2 : (A4)
e—r+i¢/2

is the conformal transformation leaving the intermediate square invariant

Z1=(0,0,1,0), Z»=(1,0,0,0), Z3=(0,0,0,1),  Z4=(0,1,0,0).
(A.5)

The two twistors Z, and Z5 define a channel for conformal block decomposition and there is
a tower of states (primary and its descendants) that propagate on top with dimension (actually,
twist) J. Let us construct a representation of sl(2) generators acting on the space of conformal
Cross ratios

_ (239E56D) _ o a6
“T 453461 C Y o
(2345)(5612) 1
- _ 7 (A7)
(2356)(1245) 1+ e
_ (3456)(6123) ! (A.8)

YT (3461)(2356) 14629 + 2cospeo—T e 2t
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Obviously these are invariant under an SL(4) transformation V, Z — Z' =Z -V, detV = 1.
In parallel to our discussion of correlation functions, we need to figure out the change of the
bottom/top twistors. The side twistors determining the channel are invariant under SL(4) trans-
formation with unit two-by-two matrix in the left top block. So, we are left with SL(2) right
bottom block,

1 0
Ua(ﬁ):( [20“] e /2> , (A.9)

parametrized by ¢ and o, being the triplet of conventional Pauli matrices. This matrix changes
the conformal frame of the bottom twistors

(Z6, Z1) = (Zg, ZDa = (Z6, Z1) - Uy, (A.10)
and defines changed cross ratios. E.g., under the o = 3 transformation, all cross ratios change as

(v, w) = @V, W) = "L (u, v, w), (A.11)
where

L0=15, . (A.12)

One can find the representation of the quadratic Casimir by expanding transformed cross ratios
to quadratic order in the transformation parameter ¢*. One finds

3
S v whe = (144 5o ) v, w), (A.13)

a=1
with
Co=3(LTL™+ L L)+ 1L%?
=172 (8, — 35)* + F2 + S0, . (A.14)
The eigenvalue equation for afore-derived Casimir operator,
Cre? 7" Fo(t,0) = 4 (& — De¥7" Fo(r,0) (A.15)

where £ is the helicity of the intermediate excitation, gives [9]

_ e—2r> (A.16)

_ e—2r) i

where we have to set ¢ = 0 to have a proper behavior as T — 0.

h . h .
E—i—lu,j—i—zu
h

Folu, vy =e "2 Fy (

1=t piu 1=t 4y
—Q—h)t 2 =3
+ce F

21( 2_h

Appendix B. MHYV conformal block of the heptagon

The heptagon is displayed in Fig. 1 with the corresponding reference twistors being

21:(1707131)7 222(1507070)5 Z3=(_150’07 1)5 Z4=(_151’_153)7
Zs=(0,2,-1,1), Zs=(0,1,0,0), Z7=(0,1,1,0). (B.1)
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The bottom middle square is invariant under the same transformation M as defined in Eq. (A.4),
the top middle square is conformally invariant with respect to the matrix multiplication with

e—a—igo/2 _e—o—itp/Z +er+i¢7/2
, ea—iw/Z
M (z,0,¢)= QOiQ/2 _ omTHQ/2  omTHQ/2  GTHi9/2 _ g—T+ip/2
er+i(p/2
(B.2)

Then all inequivalent heptagons are parametrized by the set of twistors
Z={Zi-M(t1,01.91), Zo., Z3. Zs-[M' (12,00, 9)]"",
Zs - IM' (2,00, 9217 Z6, Z7- M(z1, 01, 91)}. (B.3)

The conformal cross ratios are defined in terms of these as
_ (6123)(5672) o

Uy =——-—— - =¢e, (B.4)
(5623)(6712)
by = (5671)(6723) _ eitriigr (B.5)
(5673)(6712)
wy = (1234)(6723) — eaﬁ-n +ig (B6)
(6234)(7123) '
for odd and
uy = (1234)(5673) e 2, (B.7)
(5734)(7623)
by (5623)(1234) _ s (B.8)
(5234)(6123)
(4567)(5723) o irtinn
_ B6N0723) , B.9
W2 = 4563)(5672) ©2

even invariants, respectively.
In order to discuss symmetries of both intermediate reference squares in a uniform fashion,
notice that (B.2) can be brought to the diagonal form (A.4) with a transformation matrix

0110
1 000
R=11 01 1 (B.10)
0010
such that
R'M'(r,0,¢)R=M(1,0,9). (B.11)

We have now two channels, defined by the pairs of twistors (Z», Zg) and (Z3, Zg). These are
invariant under SL(2) transformations

Uy (91), R™'U, ()R, (B.12)

respectively, with U, introduced earlier in Eq. (A.9). They act on the bottom/top, respectively,
twistors, i.e.,
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(Z7,Z1) = (23, Z)) = (Z7, Z1) - Ua (91) (B.13)
(Za, Zs) = (Z}, Z8§) = (Z4. Zs) - [R™ ' Ua92)R] . (B.14)
To find explicit forms of conformal Casimirs for bottom and top channels, let us substitute the
above twistors into generic conformal cross ratios of the heptagon. The latter are defined as
Wi = Uj41,i+3,i+4,i » i=1,...,7, (B.15)
with

o i+ L Dk k41,41 (B.16)
ST LR DG LT |

Then, under (B.13)/(B.14),

3
Z(w;)a=(1+...+2l,z912<c‘2”+...)w,~, (B.17)
a=1
3
Z(wl{)a=<1+...+%1922(C§2)+...>wi, (B.18)
a=1

we get the bottom/top conformal Casimir operators, namely,
(C(l) 1 _ZTb (atb - aﬂb) 4ar21 + %afb - }Te_hh (afb - aﬂb) (aft - a”r) > (B.19)

and Cg) obtained from the above via simple substitutions. The two-channel conformal block are
found as a solution to the eigenvalue equations for both Casimir operators simultaneously

YOO o (u, v, 1) = BB = e By, v, ), (B.20)
CP PR By, v v, ) = B (B = DX Fyu, i v, 7). (B:21)
It reads [31]
+ 2 Lju+iv, ‘ +iu, by 4 iy
Fru,tilv, v) =e M0 F, ( i h 2 —e M, e,
1,12

(B.22)

in terms of the Appell function F, determined by the infinite hypergeometric series in two vari-
ables [33]

a,by,b
F2< 1,0
Cl1,C2

21, Z2> _ Z Z (a)m—i—nz (bl)n| (b2)n2 anzgz (B23)

ni'nal(c)n, (€2)n,

n1=0ny=0
Appendix C. Matrix part

Let us spell out the rules of the game for construction of the matrix part. The minimal set
of pentagon tensor structures needed to recover matrix part for all transitions was addressed in
Ref. [18].
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B(vy) Y(vy) Y(vyg) P(ug) p(uy) (u¢) (v¢) ‘/)(Uu) 1!7( 7)
QO T

Q= ®

= R(ulv)x

2y I T (0,2
o) w() D)

Fig. 3. As one moves an excitation from the initial to final state, the dynamical pentagon transition acquires a rational
factor R(u|v) depending on the difference of particle rapidities between the in- and out-states.

e The rest can be easily recovered from these by moving excitations from the initial to final
state. This is demonstrated graphically in Fig. 3, where

R(u|v) = (uglvg)i(uglvg)a ... (ugplvy)ss ... (uglvg)zy ...
X (u¢|v¢)3/2...(u¢|v¢)1...(u¢|v¢)2...
X (u&|v¢)3/2...(uT/;|v1/,)2...(u¢|vv-,)1... s (C.l)

with (u|v)g =u — v +ic.

e The interchange of adjacent excitations in the in/out-states can be done making use of the
Watson equations.

e All charged (or nonsinglet) pentagon transitions are recovered by taking rapidities of certain
excitations to infinity.

Let us exemplify these for a few cases that are used in the body of the paper. We begin with
transitions involving only fermions and antifermions. In the earlier paper [18], we fixed the form
of all diagonal " — " tensors. The simplest fermion—antifermion production form factor, i.e.,
0 — ¥ can be then found in terms of n = 1 transition by adopting the first rule,

(u|v)

where we assumed unit normalization for the transition amplitude IT!

W ¥ Olu, v) = (C2)
il (u)v) :8;.

The tensor for the transition ¥4 — ¥, can be found from the one of the ¥y — ¥ via
the relation

L s, v) = (uiluz)—1(i|v2)—1(urlv2)o(ilui)o
Vi VT, ' (urlv)2@r|v2)o(2|vi)a(uz|va)2

. 1

X [Ry (ualvr = 20125 T, iy, @2 2w v =20, 02), (C.3)
where we moved all excitations from the in-state to the out-state making use of the first rule, in-
terchanged two middle particles by means of the Watson equation with the fermion—antifermion
R-matrix

lzjz 5282 i Jj2gia
[Ry g (urlu2) )iy = 685 + (u1|u2)_28i1 8- (C4)
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and then moving the two left-most pair back to the bottom. Using the result for Hfh b
(urva)o@alv | iy o
! i uzlvp, vp) = | 1+ —————— | 8787
1//i1'/fi2|1//“1//’2( 1> u2fvr, v2) |: (ualup)(vzlvy)y | 472
(u1lv)o(uz|v2)1 b (C.5)

(ualup)i(valv)—1 27
this gives us the explicit result
i @2lvDo@r|v2)1 gy s

g, vy) = 81 gtz — W20V iy i C6
(- arluz, v2) =0, (uilv)a(uzlva)y /172 (0

From this singlet transition, we can immediately derive the charged one—transforming in the
fundamental representation of SU(4),

1
H*ﬁj. Yit|yi2y,

(4

in T 1
oo vi,uilvy) = lim I1- vy, utlun, v
1//1'11#’1\11/;2] (vi, uilv2) .l (v1, uiluz, v2)

—00 'le willw[é&jz
_airgin  @1v2)1 gy gy 7
TR (uyfuy)y T :
4
A%
and move the antifermion from the final state into the initial one. The complex conjugate of this
yields

To produce a three-particle annihilation I1 which is used in Sect. 5, we can use Eq. (C.7)

Mo ol (01, v val0) = -5/
VY2107 (vilu2)1(valuz)y 273
(v2lu2)3 ji s (C.8)
(vilu2)1 (walv)2(valuz)z 2 73

1

4
Next, we find the [T1% A

AN AR
procedure introduced in Ref. [18] and reads

] tensor starting with the IT The latter is found via the

1
Hwil wizvji} “Z“ II;JZTWLB (ul , U2, I/l3|vl , V2, v3) (C'9)

_ si1gi2 i3 i1 giz ¢13
=386, 8 i (ur, uz, uzlvy, v2,v3) +8; 8787 Ta(ur, uz, uzlvy, v, v3)

i1 902 5i3 i1 512 ¢i3
+8,,68; 8, T3(ur, uz, uzlvy, va, v3) +8; 8,8, Ma(ur, uz, uzlvy, va, v3)

i1 si2 oi3 i1 si2 903
+8,.68; 8, Ms(ur, uz, uszlvy, v2,v3) +8;68; 8, Me(ur, ua, uslvi, va, v3),

with
(@1lv)o@zlv)o@ilva)o(uslva)1 (uz|vs)1(us|va)i

(uiluz)—1(uiluz)—1(u2luz)—1(vilv2) i (vilva) 1 (v2|v3);
(C.10)

Me(u1, uz, uzlvy, v2,v3) =

sy, uz, uzlvy, vz, v3) = Me(uy, uz, uzlvy, v2, v3)

(v1lv2)o
(vilv2) -1

Me(u1, uz, uzlvz, v1, v3),
(v1lv2)o
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;

g(uy, uz, uslvy, v2, v3) = ———TIe(uy, uz, uzlvy, v2, v3)
(v2]v3)o

(v2|v3) -1

Me(uy, uz, uzlvy, v3, v2),
(v2]v3)o

M3y, uz, uzlvy, v2,v3) = M5 (uy, uz, uzlvy, v2, v3)

l
(v2]v3)0
(v2]v3) -1
(v2]v3)o

l
(1, uz, uslvy, v2, v3) = ————Tl4(uy, uz, uzlvy, v, v3)
(vilv2)o

(v1lv2) -1
(v1]v2)o

l
Iy (uy, uz, uslvy, v2, v3) = ————TI3(uy, uz, uszlvi, v2, v3)
(v1]v2)o

(vi]v2) -1

(vilv2)o
Then making use the fact that the small fermion at infinite rapidity is a supersymmetry transfor-
mation, we find

5 (u1, uz, uzlvy, v3, v2),

M4(uy, uz, uzlva, v1, v3),

I3 (u1, uz, uzlva, vy, v3).

S
[1'1%,1 w’2|¢’31/fj2w_,~3] (v, uzluz, vz, v3)
= 1 1_ . . . - -
= ullgnoo 1_1%,1 LT (v, uz, urluz, v2,v3), (C.11)
where the tensor in the right-hand side is related via set of transformations to Eq. (C.9),

TG yayiyiag gy, (V1 12, 11113, 02, 13) (C.12)

_ (urfuz)—1(uifv2)—1 (uilva)oualuz) -1 (u2|va) -1 (u2|v3)o(wiluz)o(vilva)—1(vi|v3)—1
(uilv)2@1lv2)o(ui|v3)o(uz|vi)2(alv2)o(uz|v3)o(slvi)a(us|va)z(uz|vs)2
B B 10301 1 . Y
X [wa(MS V1 +2l)]k3j1n'//k“ﬁiZWlWlllﬁjz‘ﬁB (w3 +2i,up, ur|vy —2i,v2,v3) .
In this manner we deduce the explicit form

[H?/-/ 19 (u3, uz|vs, v, v1)

izwilll//j:“;jzl/_/j]
_ (v1]u2) i1 )3 i (u2]v2)0 iy g3 i3
(v2lvp)y 2270 (wluy)y S22
(uz|v1)1(uzlv2)1(v3lusz)o(vslvi)s sitgi g0
(ualu3z)2(v2lvy)1 (v3lvr)2(V3lv2)2 2 72 1
(v3luz)o [(vzluz)o _i(v3lu2) :|8i‘1 53803
3v2)1 2lvi)1 3|v1)2(v3|v2)2 !
(v3v2)1 [ (v2v1) (v3lv)a(valvp)2 ] 71122
(u2|v1)1(u2lv2)1 (v3|uz)o i 573 5i3 (u2lv1)1(v3lus)o i1 i3 573
(uzluz)2(vilv2)—1(v3lvy)z 2 7172 (ualvp(valuy)g 722
As a final demonstration, let us now add scalars to the mix. As a case of study, we will find

the Hgl vie charged creation form factor transforming in the 6 of SU(4). The starting point of
1

this consideration is the singlet IT* . ..~ _ _
g "//’14)1213"‘//” W;‘z%g

n (C.13)

transition [18]
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1 i o3 _ i3 olp
T g3, 91y, 1 02100 V2 v3) = 8 (826 = 87362 ) TGt wafvr, v, v3)

+ 81t (8287 — 8782 ) Matur, walv, w2, v3)
+

ip i3 ¢i3¢id
o) (87267 — 67367 ) Matur, walvr, w2, vs),

(C.14)
with
(1lvi)o(ilv2)o@m2]v3)3)2
M3y, uzlvy, v2,v3) = / (C.15)
(urluz)—3/2(vi|v2)1(vi|v3)1(V2|V3)1
i (v2]v3) -1
(w1, uzlvy, v2, v3) = ———TII3(uy, uz|vy, v2, v3) + ———II3(u1, uz|vy, v3, V2),
(v2]v3)o (v2]v3)o
i (vi]v2) 1
Iy (uy, uzlvy, v2, v3) = ———TIIa(uy, uz|vy, v2, v3) + ————TI (U1, uz|v2, vy, v3).
(v1]v2)o (v1]v2)o

The sextet pentagon can be found from this by sending the rapidities of the two antifermions
to infinity, i.e.,

[H ]]2]3(u1,u2|v1)_ 11m vt us|vy, zv, Zv), (C.16)

i gi2i3 |y, PSR AR
where z 4+ z = 1. Next, moving the scalar and the fermion to the final state, we find the tensor for
the production form factor

[n0|¢1213 1//11 I/f ]j2j3 (0|M2, ui, U])
1 6

= PR AT W1¢,,»2,»3|1,—,h]j2j3 (u1 +2i,uz +2ilvy), (C.17)
explicitly,
(u2|v1)7,2 i o
H [l j j 0 9 bl 8283_812813
[ 01¢23y 1, s Olutz, w1, 01) = (urluz)—3/2(ualv1)z 2 (urlvi)2 “( 70 = %5s%)
11 iy o3 iy i3 i1 s ol2 ol3 i ¢i3
(ualur)z2(ualvi)z [( (812811 811812)+8 (811613 813811)] (C.18)
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