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1. Introduction

Symmetries of a system allow one to significantly reduce the number of degrees of freedom that require dynamical considerations.
Conformal block decomposition of correlation functions (J] i Oj) of local operators O; = Oj(z;) is a way of implementing them in a
scale-invariant field theory (or CFT) via the operator product expansion (OPE). Under the assumption of convergence, a correlator can
be expanded in a complete set of primary operators ®,, of increasing scaling dimension and spin (cumulatively called A;) and their
conformal descendants built with the action of derivatives 8" ®,. It is the latter infinite tower which is conveniently packed together in
the conformal block, also known as the partial wave Fa (w), which is a function of A ={A,} and cross ratios w = {w,}, schematically,

TT1on =TTz | YaaFaw). 1)
j j<k A

with an overall multiplicative function of the coordinate differences with powers A j, being functions of the operator O; dimensions/spins

conveniently chosen to carry the scaling dimension of the left-hand side. The conformal blocks Fa are eigenfunctions of conformal

Casimir operators for successive channels in the operator product expansion and are subject to appropriate boundary conditions. While

the low-point correlators are well studied, there is little to no knowledge of multichannel conformal blocks.

Conformal blocks are ubiquitous in physics so they make their natural appearance in the analysis of scattering amplitudes within the
pentagon operator product expansion [1,2]. In the latter, one relies on a dual description of amplitudes in terms of excitations propagating
on a color flux-tube sourced by the contour of the Wilson loop living in the four-dimensional momentum space [3-8]. The vacuum
represented by the flux is in fact SL(2) invariant to lowest order in 't Hooft coupling [9,10]. This property was used in the construction of
conformal blocks for (N)MHV hexagons and heptagons [11-14].

The tree-level N-particle ratio function of the NMHV to MHV tree amplitudes

Ry= Y [1jj+1kk+2] (2)
1<j<k<N-2
is determined by the R-invariants [15,16]

8%4 (; (jkim) + cyclic)
(ijkl) (jkIm) (klmi) (Imij) (mijk)

[i,j,k,l,m]= (3)
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Fig. 1. A tessellation of a polygon (dodecagon on the left) and its OPE dual graph (on the right).

with the four-bracket defined by the determinant (jklm) = 8]KLMZJJZ,§Z['Z,’,‘§’ built from the momentum twistors ZJI and X]A being their

fermionic partners. Within the pentagon form factor program, each individual Grassmann component RI'72--"N-s] of Ry, with R-weights
r,...,rn—s of all parent excitations, corresponding to the SU(4) dimensions R of flux-tube excitations, r=0,1,2,3,4 for R=1,4,6,4,1,
can be represented in terms of flux-tube integrals

RU1-T250TN=5] Z @~ tog T = —tN=5Tay_5 Filay @1+ Hhay_soN-5 (4)

AN-5
N5 s '
x / 1_[ _]e2w1u1+...2mN_5uN_5 IR]I“'IRN_S (051 Uq | L |aN75, uN*S) ,
1127
j=1
where the 3(N — 5) conformal invariants of Eq. (2) were traded for N — 5 sets of triplets (7}, 0}, ¢;) with their reciprocal variables
interpreted as the energy (or twist), momentum and helicity, respectively, of the particles propagating on the flux and their SU(4) repre-
sentation R;.

There is an infinite number of (parent) flux-tube excitations ®% [12,14] of different spin/R-change and increasing energy (i.e., conformal
primary states, in the language of CFT) which determine the integrand I®~RN-5_ Their descendants arise by gluing small fermion-
antifermion pairs to ®%’s. A small fermion-antifermion pair Ws¥s is equivalent to the derivative since s at zero momentum becomes the
generator of Poincaré supersymmetry Q and since {Q, Q} ~ P, according to their algebra, (wS&S)"¢g ~ 9" @R by analogy with conformal
OPE alluded to above. In this note, we will construct multichannel conformal blocks for N-leg NMHV amplitudes by explicit resummation
of the entire tower of small fermion-antifermions pairs accompanying parent particles, this will yield the substitution in the integrand

[RI--IRN=5 (v | Joen—s, UN—5) (5)

]_—[rl ..... IN-s5]

Ry|...[RN—
— RS (o g a5, UN-—s) hay Loy - ey tory._s

(ug, t1l...lun-5, TN-5)

where F are the conformal blocks in question. This formalism is equivalent to the projection technique for computation of conventional
conformal blocks in a CFT, which we briefly review by applying it to a four-point correlator in Appendix A to draw a parallel with the
flux-tube physics.

2. Kinematics

Before turning to dynamics, let us introduce some kinematics first. The starting point is a tessellation of a polygon determined by the
reference momentum twistors Z; in terms of a sequence of squares formed by the polygon edges and internal light-like lines encoded
in the momentum twistors Z; (see the left panel in Fig. 1 for the case of the dodecagon). A choice of a square automatically defines a
conformal frame and thus a channel for propagation of parent flux excitations and their descendants. This is equivalent to a choice of
an OPE channel for correlation functions (see the right panel in Fig. 1). To make the discussion more explicit, let us provide a choice of
reference twistors for the dodecagon as a case of study (shown in Fig. 1)

Z1=(6,4,12,5), Z;=(1,2,41), Z3=(0,1,1,0), Z24=(0,1,0,0),
ZS = (0327_]7 1)7 ZG = (_1765 _4s 6)3 Z7 :(_43 67_57 12)7 28 :(_2$ 17_174)7 (6)
Z9=(-1,0,0,1), Z10=(1,0,0,0), Z11=(2,0,1,1), Z12=1(6,1,6,4),
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while the twistors connecting the cusps X; with opposite sites of the polygon are

Z)=4,1,53), Zy=(1,1,3,1),
5=(0,0,0,1), Zg=(0,1,-1,1),

1,0,1,1), Z,=(0,0,1,0),

[
=01 / ™)
Z,=(-1,1,-1,3), Z{=(-1,4,-3,5).

Every intermediate square enjoys a residual three-parameter conformal symmetry which leaves it invariant. These three parameters
corresponds to the triplet (tj, 0}, ¢;) introduced above. The invariance matrices for the squares can be determined successively starting
with the middle one, i.e., fourth square in Fig. 1, which reads

Ma(t,0,¢) = diag (eafnp/z ’ e—0—i¢/2 ’ eTH®/2 ’ eff+i¢/2) ’ (8)

and its matrix elements fixed in a particular conformal frame as recalled in Appendix B. The symmetry transformations for the rest can
be obtained by finding rotation matrices of the corresponding twistors defining adjacent squares' and then using them for construction
of the M-matrices, namely,

M7(t7,07,¢7) = Ry ' Mg(t7, 07, ¢7)Rs,
Mg(t6, 06, ¢6) = R5 ' M5(T6, 06, ¢6)Rs ,
Ms(t5, 05, ¢5) = Ry ' Ma(Ts, 05, ¢5)Ra,
Ms3(t3, 03, ¢3) = R3 ' Ma(13, 03, $3)R3,
M3(T2, 02, ¢2) = Ry 'M3(12, 02, ¢2)R2,

-1
M1(t1, 01, ¢1) = Ry "Ma(11,01, 91)R1, (9)
where
0 2 11 7 0110 0110
-4 4 4 -2 1000 1000
R1= 5 -2 0 3 s Ra=|707 1] Rs=171011])"
—23 -2 -21 -16 0010 0010
(10)
01 0 0 0 1 -1 2 16 —16 14 —40
1 0 0 —1 0 -2 1 -1 2 0 2 -6
Re=1o 0 0 1 ) Rs=12 5 1 4 v Re=1 14 21 19 —aa
0 -1 1 -1 -1 1 -1 3 10 —13 11 -28

In order to generate all inequivalent polygons, we act with these transformations on the twistors located either above or below it. For the
case at hand, we have

Z]—>Z1M1M2M3, Zz—)ZzMzM?,, Z3—>Z3, Z4—>Z4, (]1)
Zs— ZsMs "M, Zg — ZgM; Mg 'M3 M, Z7 — Z:M7 MG Mg M, T,
Zs—)ZgMglM;lMZ], Zg—)ZgMZl, Z10— Z10, Z11— Z11M3, Ziyp—> ZipM{MyMs.

3. Dynamics: an example

Now we are in a position to turn to the flux-tube dynamics. Let us exemplify the inner workings of the formalism on the X12X72
component of the NMHV dodecagon, corresponding at lowest twist to the creation of the scalar ¢ at the bottom, its propagation through
all intermediate squares and eventual absorption at the top. The integrand of Eq. (4) reads in this case

[1SI6IBI6I8I6 (1 g ... | —1,u7) = fe (1) Py (—U1[U2) Ly (U2) Pyip (—Ui2|U3) . .. Py (—Us|u7)mg (U7) (12)

where «j = —1 in the nomenclature scheme of Ref. [14] according to which ¢, = ¢ with zero helicity and unit twist as reminded below.
Here gy and Py are the scalar measure and its pentagon transition at lowest order in 't Hooft coupling [17]. Fourier transform with
respect to the rapidities provides the leading OPE contribution to the amplitude

[2,2,2,2,2,2,2] _ ,—T1—...—T7[ a01+02+03+4+04+05+06+07 —01+073—03+4+04—054+06—07
R =e S +e

7 7 7
+ Z em+Uz+03+04+05+05+a7725j + Z Z em+<72Jr(73+<74+<75+¢76+(777251-723,<
j=1 j=1k=j+2
7 7 7
+ Z Z Z o1 +O‘2+O‘3+O‘4+65+0’6+J77251'725)(725[]71 , (13)
j=1k=j+21=k+2

1 For instance, the twistors for the 5-th square Zs = (Z§, Z4, Z§, Zg) can be determined from the 4-th one Z4 = (Z);, Z4, Zi;, Z10) via the transformation Zs = RsZj.
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which agrees with the corresponding component of the ratio function (2) after the use of the twistors (10) as can immediately be verified
with the package accompanying Ref. [18].

The next step is the inclusion of descendants, i.e., adding an arbitrary number of sy pairs to the parent scalar. This has to be done
in every intermediate square. Let us begin with just one extra pair at the very bottom, i.e., the process 0 — ¢¥sihs — ¢ — --- — ¢ — 0.
Then, the integrand (12) has to be multiplied by the factor

e_zflfdwdvz Mops (V1) Mg (V2) Py (— V1 |U2) Py (— V2 U2) [X[Vﬂ]]/z
272 [Py W1V Py (11v2) 2Py 5 (V1Iv2) 2 [X[V2]

Cs

1

X E[ngi]fzwl Vi Tkyk, Olun, v, VZ)[H:l,jzlﬁh@]izlq}klkz](_VZ» —Vi, —u1luz),

where the integrations run over the small fermion contours Cs. The first factor in the above integrand is the factorized form of multiparti-
cle pentagons along with the small fermion measures in conventions adopted from Ref. [19]. The second factor is the NMHV helicity form
factor (on the small sheet) expressed via the Zhukowski variable x[v]~ v + 0(g?). Last but not least, is the SU(4) tensor part. The latter
is quite lengthy but their explicit form can be found in appendices to Refs. [14] and [20] in the order they appear. Substituting the lowest
order expressions in 't Hooft coupling in the first line (where we already used the fact that the small fermion momentum is of order g2)
and evaluating the contour integrals via the Cauchy theorem with the poles arising from the matrix part, one finds a very simple result

for the factor in question

—e_zﬁ(% +iup)(1 +iug +iuy).

This rapidity polynomial can be recast as a differential operator acting on the Fourier exponent in the integrand of Eq. (4) and making
use of the preceding OPE result (13) successfully compared with subleading term in the near collinear expansion of (2). We have repeated
similar analyses with a sy pair in other intermediate squares, i.e., 0 —> ¢ — ... — ¢¥s¥s — ... — ¢ — 0 and every time found that the
integrand acquires a factor

—e 2N (1 +iujq +iu)(1+iuj+iujy1), for j=2,3,4,5,6,
—e7*7 (1 4 iug + iu7) (3 + iuz).

The procedure was then extended further to up to three pairs either in the same or different squares. We found a recursive pattern which
was summarized in the following proposal for seven-channel conformal block of the flux-tube scalar:

2,2,2,2,2,2.2
]:1[,1\...\1,1 ](u1,t1|...|u7,r7) (14)

—e 2 —e2’7) .

It is given by the generalization of the Lauricella Fi series, discussed by Saran in Ref. [21] for the case of three variables, to L variables

. 3 iug. iug it 1itig+itg, 3 +itg
= Fg
1,1,1,1,1,1,1

Fy ((X],ﬁ],...,ﬂL_],Olz Zl,...,ZL> _ i (Ol])n] (ﬂ])nﬁ—nz..-(ﬁL—l)nL71+nL((x2)nL qu,..ZZL . (15)
V1,0 VL =0 YDy - VD, nl...ng!

This conjecture was tested numerically to very high orders in the near-collinear expansion against data produced with the help of Ref. [18]
confirming its correctness.

4. N-sided NMHV polygons

Let us now present a generic form for the flux-tube integrands providing an exact representation for the tree level transitions

0> SR . . > o0, (16)

$1,01 $2,002 SL,OL

with the signature s; = &1. Depending on the channel, the parent excitations are
DL o=VY¥s, DL o= 8aVsVs, (17)
q)s_,_1 =¢, q>“_’0 = ‘/”/fs ’ q’i7a>0 = ga‘/fsWs ,

for the sextet of respective helicities

h+,0=2, h+,a=2+a, h_'_1=0, h_!()=—‘l, h_,_1=—1—a, (18)
they are
PLlo=v. P4 .0=28aVs, (19)

q’i,,] = (fNZS ) (b‘l_,o - 1/-“135\/_’5 B d>4_’0>0 = gal/_fs&s‘/_fs )
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for the quartet of fermionic particles with helicities

h+,0=%7 h+,a=%+a, h_y_lz—%, h_,():—%’ h_’_-lz_%_a’
and finally

@Y n0=28a:

(Dl_,_z = 1/“/_/5 ’ q’l,,l = ¢1/_fsl/_fs ’ qﬂ_,o = &&sl/_fslﬁs ’ q>1_,a>0 = galf_fsl/_fs\/_fsl/_fs >
for singlets with

th,a =a, h,ﬁz =0, h,7,1 =-1, h,,o =-2, h,’,1 =—-2—a.
The integrands admits the same structure

R|..|R
S1]--ISN—5

R|..|R

siljsy_s (@1, U] . JN—5, UN—5)

(a1, uql...Jon—s,un—s) =h
R R[R R

X sy oy WD P o i) o, (FUTIU) U, o, (U2) - ...

R|R

R
sn_e.otn_olsn_s.an_s (TUN—6IUN=5) sy o o  (UN—5).

R
X Ms;_1.ay_s (UN-6)P

The helicity NMHV form factors are

iu[fal/zq] (1-s1)/2 iu[—aL/z—u (1+sn-5)/2
WS-8 (o, ugl. . Jay—s, un—s5) = (1) T (17> <L> ,

$1l-Isn-s5 [+a1/2] [+an—5/2]
uq UN_s
u[—a1/2—1]u[—a1/2—2] (1-s1)/2 1 (14sn-5)/2
4|...|]4 _ (_1\1+o 1 1
he s (@1 unl. . Jan—s, un—s) = (=1) ( eIV ) (iuHa”S/z])
1 N-5
h;‘l"'f.‘]sts(Ollq uql...l@n—5,UN_5)
a1/2-1] [—a1/2-2] [—a1/2—3]\ (1=s1)/2 , (1+5y_5)/2
( 1)1+a1 (w% a1/2 1Ju% ai/2 ZJu% a1/2 31) 1/ < ; ) N-5)/
- [+a1/2] [+an—s/2], [—oN_s5/2] ’
uy Un_5 Un_5

where we used the notation ul®! = u + i«, while the measure reads

FA+$+iulad+$ —iu
Fr2+@2-ns+a)

s o (W) =

s

and the effective particle pentagon transitions are

T(H5%2 +ijuy —iu) (2 + 2 —1)s + 952 —juy +iuy)
FA+ % +iupld + % +iup) (1 + 952 —juy +iup) |
(=120 (1 4+ 4392 4 juy — juy)

P(1+ G +iu)l(1+ G +iug) |

RIR _
P oyis.ap (U1lU2) =

R|R _
P oy—s.a, U1lU2) =

The resummation of the infinite number of small fermion-antifermion pairs in all intermediate transitions

0— ®F 4 (YsU)™ — DY, (Ys)® — ... —> DF , (Yss)™ — 0,
provides the conformal blocks which we sought for

[r1,r2,....,TN=5]
hy,t1lhg,t2|...lAN—5,EN—5

Iyl 2ry+7y o Ihyltlhgl Tyt o IhN_s5| | 2rN_5+7N_5-8 .
—F —5-+—7— i, ———=+—7g=Fiurtiu,..., —5 - +———F ——+iun-s —27 —2TN_5
=TryK —e yee., —€ s

(uq, T1luz, T2l ... [UN—5, TN-5)

t1,t2,...,tN—5
where
?}:(4—1‘1-)9(}1]' > 0)+r19(hj <0).

This is the main result of this note.
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5. Conclusion

Building up on our previous work dedicated to the heptagon [14], we found the multichannel conformal blocks (31) for a polygon with
any number of sides. The construction was based on resummation over descendants of parent flux-tube excitation propagating in a given
NMHV component of the polygon (see Refs. [23-28] for detailed discussion). The blocks are determined by the generalizationof Lauricella
hypergeometric series that was previously considered by Saran in the particular case of three variables. Multifold integral representation
for the latter is available and its extension to the generic case should also be looked for since it would be of use for analytical resummation
of infinite towers of flux-tube excitations of increasing helicities.

Acknowledgements
This research was supported by the U.S. National Science Foundation under the grant PHY-1713125.
Appendix A. 4-point correlator

For reader’s convenience, let us recall a method for computation of conformal blocks in CFT based on explicit resummation of descen-
dants, which is adopted in the main body of the paper to the case of scattering amplitudes. Here, it will suffice to discuss the holomorphic
sector only (or, which is the same, a single light ray) and consider the global sl(2) subalgebra of the Virasoro algebra. Invariance under the
sl(2) generators

Lt=2%0+42dz, L =9, L°=z3+d, (33)
of the four-point correlator of operators O of the same conformal dimension d,
4
Y L0 0(2)0(23)0(24)) =0, (34)

j=1

fixes its form

Fa(w) 212234
(O(21)O(z2)O(23)O(24)) = 2d2d =, (35)
713254 213224
up to a function of the conformal cross ratio w. Let us choose a conformal frame, by setting
z4=0, =1, Z1 = 00. (36)
The operator-state correspondence (in the radial quantization) allows us to write
lei_l)nooZ%d<0(z1)0(1)0(23)0(0)) = (d|O(1)O(z3)|d) . (37)

To compute conformal blocks let us assume that the intermediate state is a primary state |A), i.e., LT|A) =0, of dimension A and its
descendants are

[A k) = (L)¥A) k> 0. (38)

Obviously, (A, k| = (A|(LT)K. Here L0 are operators acting on the Hilbert space of states with the representation (33) on the primary
fields ® 5. We can project on these with

[0.¢]
|A, k) (A, k|
My=Y =it (39)
: oo Nak

obeying I14 = I, with the normalization Nak = (A,Kk|A, k). Such that

1
Fa(z3) = (dOMTAO(z3)|d) = N (O LHKANAILTH*O(z3)|d) . (40)
k=0 ’

The calculation of the matrix elements involved is straightforward making use of the sl(2) algebra. The normalization prefactor reads
Nak = (AL LH41A) =kQA)K, (41)
which is a generalization of the elementary commutation relation
(AL (LT)%1A) =2Q2A + DALY, LTIIA) =212AQA + 1)(AA).
The matrix element in the numerator of the right-hand side of Eq. (40) reads

(AILDH*O(z3)Id) = (ALY, (LY, ... [LF, O@z3)].. . 11ld) = (LDK(AIO(z3) d) . (42)
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Since

(AlO(z3)|d) = 1/22974 (43)

is just the three-point function (fixed up to an overall normalization (set here to one) by conformal symmetry), we immediately find after
repetitive differentiation

(AL O(z3)|d) = (A)y /2202 7K, (44)

Putting everything together, we find for F4(z3)

0 2
_ A-2j A ka2 AA
Faz3) =25 ,ZH] KA. — 5 e ( 2A

5). (45)
which is a well-known result [29].
The same result can be obtained making use of the eigenvalue equation for the quadratic Casimir of the sl(2) algebra,
Cy =3 (LTL™ +L7LY) — (L9? (46)
in a given OPE channel. For instance, in the (34)-channel, which is the same as the (12)-channel,
+,0 +,0 +,0
Ly =Ly  +1Lg, (47)

the equation

C2,34)(0(21)0(22) O(23)O(24)) = A(1 — A){O(21)O(22) O(23)O(24)) , (48)
immediately implies that F4(w) obeys
wi(w — 1) F,(w) + [4dw(w -1 - wz] Fy(w) +[2d(1 +2d(w — 1)) + A(A — 1)] Fa(w) =0. (49)
It has two solutions
A, A Al 1-A1—-A
Fa(w) = w2, F, ( A ’w) +cw!™A72,F, < 5 oA ‘w) . (50)

However, the second one does not possess correct asymptotic behavior and thus have to be dropped, i.e., ¢ = 0. This way, we recover our
previous result for the conformal block.

Appendix B. Conformal frame for polygons

The choices made in the body for the elements of the symmetry matrices of middles squares in the tessellation of a generic polygon
correspond to the following conformal cross ratios [22]

(=i-1Lj+1,j4+2.j+3(j-2,-j-1.-j.j+2)

et = = . . . . — - , (51)
(=j=2,—-j—=1,j4+2,j4+3)(—=j—1,—j,j+1,j+2)
eR2j+1T02j11—id2j11 (j—2-j-1—j i+ Dj-1.-j.j+2,j+3) (52)
(=j=2.—j—1, = j+3)(=j—1,—j.—j+1,j+2)’
er2j+1+02j+1+i¢2j+1 — G+1.j+2,j+3,j+4Dji—-1.-j,j+2.j+3) , (53)
(—j—1,j+2,j+3,j+D(—j, j+1,j+2,j+3)
T2 — (= j+1,j+2,j+3)(—j—1,—j,—j+1,j+2) (54)
(—j=1,=4,j+2,j+3)(~j,—j+1,j+1,j+2)°
T2 +02j i) _ (=j—=1,-j,j+1,j+2)(J,j+1,j+2,j+3) (55)
(=i =1J+1,j+2,j4+3)(=j.j,i+1.i+2)’
oT2j+02j i) _ (—j=2,—j—1,—j,—j+D(=j—-1,—j,j+1,j+2) (56)

(=j=2.—j—1,—j.j4+2(=ji—-1,—j,—j+1.j+1’
Here the odd and even ratios have different form due to opposite orientation of overlapping sequential pentagons.
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