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By performing resummation of small fermion–antifermion pairs within the pentagon form factor program 
to scattering amplitudes in planar N = 4 superYang–Mills theory, we construct multichannel conformal 
blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to 
summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial 
waves are determined by multivariable hypergeometric series of Lauricella–Saran type.
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1. Introduction

Symmetries of a system allow one to significantly reduce the number of degrees of freedom that require dynamical considerations. 
Conformal block decomposition of correlation functions 〈

∏
j O j〉 of local operators O j ≡ O j(z j) is a way of implementing them in a 

scale-invariant field theory (or CFT) via the operator product expansion (OPE). Under the assumption of convergence, a correlator can 
be expanded in a complete set of primary operators ���

of increasing scaling dimension and spin (cumulatively called ��) and their 
conformal descendants built with the action of derivatives ∂n�� . It is the latter infinite tower which is conveniently packed together in 
the conformal block, also known as the partial wave F�(w), which is a function of � = {��} and cross ratios w = {w�}, schematically,

〈
∏

j

O j〉 =

⎛
⎝∏

j<k

z
� jk

jk

⎞
⎠∑

�

a�F�(w) , (1)

with an overall multiplicative function of the coordinate differences with powers � jk being functions of the operator O j dimensions/spins 
conveniently chosen to carry the scaling dimension of the left-hand side. The conformal blocks F� are eigenfunctions of conformal 
Casimir operators for successive channels in the operator product expansion and are subject to appropriate boundary conditions. While 
the low-point correlators are well studied, there is little to no knowledge of multichannel conformal blocks.

Conformal blocks are ubiquitous in physics so they make their natural appearance in the analysis of scattering amplitudes within the 
pentagon operator product expansion [1,2]. In the latter, one relies on a dual description of amplitudes in terms of excitations propagating 
on a color flux-tube sourced by the contour of the Wilson loop living in the four-dimensional momentum space [3–8]. The vacuum 
represented by the flux is in fact SL(2) invariant to lowest order in ’t Hooft coupling [9,10]. This property was used in the construction of 
conformal blocks for (N)MHV hexagons and heptagons [11–14].

The tree-level N-particle ratio function of the NMHV to MHV tree amplitudes

RN =
∑

1< j<k<N−2

[1, j, j + 1,k,k + 2] (2)

is determined by the R-invariants [15,16]

[i, j,k, l,m] =
δ0|4(χi( jklm) + cyclic)

(i jkl)( jklm)(klmi)(lmi j)(mijk)
, (3)
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Fig. 1. A tessellation of a polygon (dodecagon on the left) and its OPE dual graph (on the right).

with the four-bracket defined by the determinant ( jklm) ≡ ε J K LM Z
J

j
Z K
k
Z L
l
ZM
m built from the momentum twistors Z J

j
and χ A

j
being their 

fermionic partners. Within the pentagon form factor program, each individual Grassmann component R[r1,r2,...,rN−5] of RN , with R-weights 
r1, . . . , rN−5 of all parent excitations, corresponding to the SU(4) dimensions R of flux-tube excitations, r = 0, 1, 2, 3, 4 for R = 1̄, ̄4, 6, 4, 1, 
can be represented in terms of flux-tube integrals

R[r1,r2,...,rN−5] =
∑

α1,...,αN−5

e−tα1τ1−...−tN−5ταN−5
+ihα1ϕ1+...+ihαN−5

ϕN−5 (4)

×

∫ N−5∏

j=1

du j

2π
e2iσ1u1+...2iσN−5uN−5 IR1|...|RN−5(α1,u1| . . . |αN−5,uN−5) ,

where the 3(N − 5) conformal invariants of Eq. (2) were traded for N − 5 sets of triplets (τ j, σ j, ϕ j) with their reciprocal variables 
interpreted as the energy (or twist), momentum and helicity, respectively, of the particles propagating on the flux and their SU(4) repre-
sentation R j .

There is an infinite number of (parent) flux-tube excitations �R
α [12,14] of different spin/R-change and increasing energy (i.e., conformal 

primary states, in the language of CFT) which determine the integrand IR1|...|RN−5 . Their descendants arise by gluing small fermion–

antifermion pairs to �R
α ’s. A small fermion–antifermion pair ψsψ̄s is equivalent to the derivative since ψs at zero momentum becomes the 

generator of Poincaré supersymmetry Q and since {Q , Q̄ } ∼ P , according to their algebra, (ψsψ̄s)
n�R

α ∼ ∂n�R
α by analogy with conformal 

OPE alluded to above. In this note, we will construct multichannel conformal blocks for N-leg NMHV amplitudes by explicit resummation 
of the entire tower of small fermion–antifermions pairs accompanying parent particles, this will yield the substitution in the integrand

IR1|...|RN−5(α1,u1| . . . |αN−5,uN−5) (5)

→ IR1|...|RN−5(α1,u1| . . . |αN−5,uN−5)F
[r1,...,rN−5]

hα1 ,tα1 |...|hαN−5
,tαN−5

(u1,τ1| . . . |uN−5,τN−5)

where F are the conformal blocks in question. This formalism is equivalent to the projection technique for computation of conventional 
conformal blocks in a CFT, which we briefly review by applying it to a four-point correlator in Appendix A to draw a parallel with the 
flux-tube physics.

2. Kinematics

Before turning to dynamics, let us introduce some kinematics first. The starting point is a tessellation of a polygon determined by the 
reference momentum twistors Z j in terms of a sequence of squares formed by the polygon edges and internal light-like lines encoded 
in the momentum twistors Z ′

k
(see the left panel in Fig. 1 for the case of the dodecagon). A choice of a square automatically defines a 

conformal frame and thus a channel for propagation of parent flux excitations and their descendants. This is equivalent to a choice of 
an OPE channel for correlation functions (see the right panel in Fig. 1). To make the discussion more explicit, let us provide a choice of 
reference twistors for the dodecagon as a case of study (shown in Fig. 1)

Z1 = (6,4,12,5) , Z2 = (1,2,4,1) , Z3 = (0,1,1,0) , Z4 = (0,1,0,0) ,

Z5 = (0,2,−1,1) , Z6 = (−1,6,−4,6) , Z7 = (−4,6,−5,12) , Z8 = (−2,1,−1,4) ,

Z9 = (−1,0,0,1) , Z10 = (1,0,0,0) , Z11 = (2,0,1,1) , Z12 = (6,1,6,4) ,

(6)
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while the twistors connecting the cusps X j with opposite sites of the polygon are

Z ′
1 = (4,1,5,3) , Z ′

2 = (1,1,3,1) , Z ′
3 = (1,0,1,1) , Z ′

4 = (0,0,1,0) ,

Z ′
5 = (0,0,0,1) , Z ′

6 = (0,1,−1,1) , Z ′
7 = (−1,1,−1,3) , Z ′

8 = (−1,4,−3,5) .
(7)

Every intermediate square enjoys a residual three-parameter conformal symmetry which leaves it invariant. These three parameters 
corresponds to the triplet (τ j, σ j, ϕ j) introduced above. The invariance matrices for the squares can be determined successively starting 
with the middle one, i.e., fourth square in Fig. 1, which reads

M4(τ ,σ , φ) = diag
(
eσ−iφ/2 ,e−σ−iφ/2 ,eτ+iφ/2 ,e−τ+iφ/2

)
, (8)

and its matrix elements fixed in a particular conformal frame as recalled in Appendix B. The symmetry transformations for the rest can 
be obtained by finding rotation matrices of the corresponding twistors defining adjacent squares1 and then using them for construction 
of the M-matrices, namely,

M7(τ7,σ7, φ7) = R−1
6 M6(τ7,σ7, φ7)R6 ,

M6(τ6,σ6, φ6) = R−1
5 M5(τ6,σ6, φ6)R5 ,

M5(τ5,σ5, φ5) = R−1
4 M4(τ5,σ5, φ5)R4 ,

M3(τ3,σ3, φ3) = R−1
3 M4(τ3,σ3, φ3)R3 ,

M2(τ2,σ2, φ2) = R−1
2 M3(τ2,σ2, φ2)R2 ,

M1(τ1,σ1, φ1) = R−1
1 M2(τ1,σ1, φ1)R1 , (9)

where

R1 =

⎛
⎝

10 2 11 7
−4 4 4 −2
5 −2 0 3

−23 −2 −21 −16

⎞
⎠ , R2 =

⎛
⎝

0 1 1 0
1 0 0 0
1 0 1 1
0 0 1 0

⎞
⎠ , R3 =

⎛
⎝

0 1 1 0
1 0 0 0
1 0 1 1
0 0 1 0

⎞
⎠ ,

R4 =

⎛
⎝

0 1 0 0
1 0 0 −1
0 0 0 1
0 −1 1 −1

⎞
⎠ , R5 =

⎛
⎝

0 1 −1 2
0 −2 1 −1

−1 −2 1 1
−1 1 −1 3

⎞
⎠ , R6 =

⎛
⎝

16 −16 14 −40
2 0 2 −6
14 −21 19 −44
10 −13 11 −28

⎞
⎠ .

(10)

In order to generate all inequivalent polygons, we act with these transformations on the twistors located either above or below it. For the 
case at hand, we have

Z1 → Z1M1M2M3 , Z2 → Z2M2M3 , Z3 → Z3 , Z4 → Z4 , (11)

Z5 → Z5M
−1
5 M−1

4 , Z6 → Z6M
−1
7 M−1

6 M−1
5 M−1

4 , Z7 → Z7M
−1
7 M−1

6 M−1
5 M−1

4 ,

Z8 → Z8M
−1
6 M−1

5 M−1
4 , Z9 → Z9M

−1
4 , Z10 → Z10 , Z11 → Z11M3 , Z12 → Z12M1M2M3 .

3. Dynamics: an example

Now we are in a position to turn to the flux-tube dynamics. Let us exemplify the inner workings of the formalism on the χ2
1 χ2

7

component of the NMHV dodecagon, corresponding at lowest twist to the creation of the scalar φ at the bottom, its propagation through 
all intermediate squares and eventual absorption at the top. The integrand of Eq. (4) reads in this case

I6|6|6|6|6|6|6(−1,u1| . . . | − 1,u7) = μφ(u1)Pφ|φ(−u1|u2)μφ(u2)Pφ|φ(−u2|u3) . . . Pφ|φ(−u6|u7)μφ(u7) , (12)

where α j = −1 in the nomenclature scheme of Ref. [14] according to which �6

−1 = φ with zero helicity and unit twist as reminded below. 
Here μφ and Pφ|φ are the scalar measure and its pentagon transition at lowest order in ’t Hooft coupling [17]. Fourier transform with 
respect to the rapidities provides the leading OPE contribution to the amplitude

R[2,2,2,2,2,2,2] = e−τ1−...−τ7
[
eσ1+σ2+σ3+σ4+σ5+σ6+σ7 + e−σ1+σ2−σ3+σ4−σ5+σ6−σ7

+

7∑

j=1

eσ1+σ2+σ3+σ4+σ5+σ6+σ7−2s j +

7∑

j=1

7∑

k= j+2

eσ1+σ2+σ3+σ4+σ5+σ6+σ7−2s j−2sk

+

7∑

j=1

7∑

k= j+2

7∑

l=k+2

eσ1+σ2+σ3+σ4+σ5+σ6+σ7−2s j−2sk−2sl
]−1

, (13)

1 For instance, the twistors for the 5-th square Z5 = (Z ′
6, Z4, Z ′

5, Z9) can be determined from the 4-th one Z4 = (Z ′
4, Z4, Z ′

5, Z10) via the transformation Z5 = R5Z4 .
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which agrees with the corresponding component of the ratio function (2) after the use of the twistors (10) as can immediately be verified 
with the package accompanying Ref. [18].

The next step is the inclusion of descendants, i.e., adding an arbitrary number of ψsψ̄s pairs to the parent scalar. This has to be done 
in every intermediate square. Let us begin with just one extra pair at the very bottom, i.e., the process 0 → φψsψ̄s → φ → ·· · → φ → 0. 
Then, the integrand (12) has to be multiplied by the factor

e−2τ1

∫

Cs

dv1 dv2

(2π)2

μψs(v1)μψs(v2)Pψs|φ(−v1|u2)Pψs|φ(−v2|u2)

|Pφ|ψs(u1|v1)|2|Pφ|ψs(u1|v2)|2|Pψs|ψ̄s
(v1|v2)|2

[
x[v1]

x[v2]

]1/2

×
1

6
[�6

0|φi1 i2ψ j1 ψ̄ j2

]k1k2(0|u1, v1, v2)[�
1

ψ j2 ψ̄ j1
φi1 i2

|φk1k2
](−v2,−v1,−u1|u2) ,

where the integrations run over the small fermion contours Cs . The first factor in the above integrand is the factorized form of multiparti-

cle pentagons along with the small fermion measures in conventions adopted from Ref. [19]. The second factor is the NMHV helicity form 
factor (on the small sheet) expressed via the Zhukowski variable x[v] � v + O (g2). Last but not least, is the SU(4) tensor part. The latter 
is quite lengthy but their explicit form can be found in appendices to Refs. [14] and [20] in the order they appear. Substituting the lowest 
order expressions in ’t Hooft coupling in the first line (where we already used the fact that the small fermion momentum is of order g2) 
and evaluating the contour integrals via the Cauchy theorem with the poles arising from the matrix part, one finds a very simple result 
for the factor in question

−e−2τ1( 3
2

+ iu1)(1 + iu1 + iu2) .

This rapidity polynomial can be recast as a differential operator acting on the Fourier exponent in the integrand of Eq. (4) and making 
use of the preceding OPE result (13) successfully compared with subleading term in the near collinear expansion of (2). We have repeated 
similar analyses with a ψsψ̄s pair in other intermediate squares, i.e., 0 → φ → . . . → φψsψ̄s → . . . → φ → 0 and every time found that the 
integrand acquires a factor

− e−2τ j (1 + iu j−1 + iu j)(1 + iu j + iu j+1) , for j = 2,3,4,5,6 ,

− e−2τ7(1+ iu6 + iu7)(
3
2

+ iu7) .

The procedure was then extended further to up to three pairs either in the same or different squares. We found a recursive pattern which 
was summarized in the following proposal for seven-channel conformal block of the flux-tube scalar:

F
[2,2,2,2,2,2,2]
1,1|...|1,1 (u1,τ1| . . . |u7,τ7) (14)

= FK

(
3
2

+iu1,1+iu1+iu2,...,1+iu6+iu7,
3
2

+iu7

1,1,1,1,1,1,1

∣∣∣∣∣ − e−2τ1 , . . .,−e−2τ7

)
.

It is given by the generalization of the Lauricella FK series, discussed by Saran in Ref. [21] for the case of three variables, to L variables

FK

(
α1, β1, . . ., βL−1,α2

γ1, . . .,γL

∣∣∣∣ z1, . . ., zL
)

=

∞∑

n1,...,nL=0

(α1)n1(β1)n1+n2 . . .(βL−1)nL−1+nL
(α2)nL

(γ1)n1 . . . (γL)nL

z
n1
1 . . .z

nL

L

n1! . . .nL !
. (15)

This conjecture was tested numerically to very high orders in the near-collinear expansion against data produced with the help of Ref. [18]
confirming its correctness.

4. N-sided NMHV polygons

Let us now present a generic form for the flux-tube integrands providing an exact representation for the tree level transitions

0 → �R

s1,α1
→ �R

s2,α2
→ . . . → �R

sL ,αL
→ 0 , (16)

with the signature s j = ±1. Depending on the channel, the parent excitations are

�6

+,0 = ψψs , �6

+,a>0 = gaψsψs , (17)

�6

−,−1 = φ , �6

−,0 = ψ̄ψ̄s , �6

−,a>0 = ḡaψ̄sψ̄s ,

for the sextet of respective helicities

h+,0 = 2 , h+,a = 2+ a , h−,−1 = 0 , h−,0 = −1 , h−,−1 = −1− a , (18)

they are

�4

+,0 = ψ , �4

+,a>0 = gaψs , (19)

�4

−,−1 = φψ̄s , �4

−,0 = ψ̄ψ̄sψ̄s , �4

−,a>0 = ḡaψ̄sψ̄sψ̄s ,
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for the quartet of fermionic particles with helicities

h+,0 = 1
2
, h+,a = 1

2
+ a , h−,−1 = − 1

2
, h−,0 = − 3

2
, h−,−1 = − 3

2
− a , (20)

and finally

�1

+,a>0 = ga , (21)

�1

−,−2 = ψψ̄s , �1

−,−1 = φψ̄sψ̄s , �1

−,0 = ψ̄ψ̄sψ̄sψ̄s , �1

−,a>0 = ḡaψ̄sψ̄sψ̄sψ̄s ,

for singlets with

h+,a = a , h−,−2 = 0 , h−,−1 = −1 , h−,0 = −2 , h−,−1 = −2− a . (22)

The integrands admits the same structure

I
R|...|R
s1|...|sN−5

(α1,u1|. . .|αN−5,uN−5) = h
R|...|R
s1|...|sN−5

(α1,u1|. . .|αN−5,uN−5) (23)

× μR

s1,α1
(u1)P

R|R

s1,α1|s2,α2
(−u1|u2)μ

R

s2,α2
(u2) . . .

× μR

sL−1,αN−6
(uN−6)P

R|R

sN−6,αN−6|sN−5,αN−5
(−uN−6|uN−5)μ

R

sN−5,αN−5
(uN−5) .

The helicity NMHV form factors are

h
6|...|6
s1|...|sN−5

(α1,u1|. . .|αN−5,uN−5) = (−1)1+α1

(
iu

[−α1/2−1]
1

u
[+α1/2]
1

)(1−s1)/2 (
iu

[−αL/2−1]
N−5

u
[+αN−5/2]
N−5

)(1+sN−5)/2

, (24)

h
4|...|4
s1|...|sL

(α1,u1|. . .|αN−5,uN−5) = (−1)1+α1

(
u

[−α1/2−1]
1 u

[−α1/2−2]
1

iu
[+α1/2]
1

)(1−s1)/2 (
1

iu
[+αN−5/2]
N−5

)(1+sN−5)/2

, (25)

h
1|...|1
s1|...|sN−5

(α1,u1|. . .|αN−5,uN−5)

= (−1)1+α1

(
iu

[−α1/2−1]
1 u

[−α1/2−2]
1 u

[−α1/2−3]
1

u
[+α1/2]
1

)(1−s1)/2 (
i

u
[+αN−5/2]
N−5 u

[−αN−5/2]
N−5

)(1+sN−5)/2

, (26)

where we used the notation u[α] ≡ u + iα, while the measure reads

μR

s,α(u) =
�(1 + α

2
+ iu)�(1 + α

2
− iu)

�
(
2+ (2− r)s + α

) , (27)

and the effective particle pentagon transitions are

P
R|R

s,α1|s,α2
(u1|u2) =

�(
α1−α2

2
+ iu1 − iu2)�

(
2+ (2 − r)s +

α1+α2
2

− iu1 + iu2

)

�(1 +
α1
2

+ iu1)�(1 +
α1
2

+ iu2)�(1 +
α1−α2

2
− iu1 + iu2)

, (28)

P
R|R

s,α1|−s,α2
(u1|u2) =

(−1)α2�(1 +
α1+α2

2
+ iu1 − iu2)

�(1 +
α1
2

+ iu1)�(1 +
α1
2

+ iu2)
. (29)

The resummation of the infinite number of small fermion–antifermion pairs in all intermediate transitions

0 → �R

s1,α1
(ψsψ̄s)

∞ → �R

s2,α2
(ψsψ̄s)

∞ → . . . → �R

sL ,αL
(ψsψ̄s)

∞ → 0 , (30)

provides the conformal blocks which we sought for

F
[r1,r2,...,rN−5]

h1,t1|h2,t2|...|hN−5,tN−5
(u1,τ1|u2,τ2| . . . |uN−5,τN−5) (31)

= FK

(
|h1 |

2 +
2r1+̂r1

4 +iu1,
|h1 |+|h2 |

2 +
r̂1+̂r2

4 +iu1+iu2,...,
|hN−5 |

2 +
2rN−5+̂rN−5−8

4 +iuN−5

t1, t2, . . . , tN−5

∣∣∣∣∣ − e−2τ1 , . . .,−e−2τN−5

)
,

where

r̂ j = (4 − r j)θ(h j > 0) + r jθ(h j ≤ 0) . (32)

This is the main result of this note.
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5. Conclusion

Building up on our previous work dedicated to the heptagon [14], we found the multichannel conformal blocks (31) for a polygon with 
any number of sides. The construction was based on resummation over descendants of parent flux-tube excitation propagating in a given 
NMHV component of the polygon (see Refs. [23–28] for detailed discussion). The blocks are determined by the generalizationof Lauricella 
hypergeometric series that was previously considered by Saran in the particular case of three variables. Multifold integral representation 
for the latter is available and its extension to the generic case should also be looked for since it would be of use for analytical resummation 
of infinite towers of flux-tube excitations of increasing helicities.
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Appendix A. 4-point correlator

For reader’s convenience, let us recall a method for computation of conformal blocks in CFT based on explicit resummation of descen-
dants, which is adopted in the main body of the paper to the case of scattering amplitudes. Here, it will suffice to discuss the holomorphic 
sector only (or, which is the same, a single light ray) and consider the global sl(2) subalgebra of the Virasoro algebra. Invariance under the 
sl(2) generators

L
+ = z2∂ + 2dz , L

− = ∂ , L
0 = z∂ + d , (33)

of the four-point correlator of operators O of the same conformal dimension d,

4∑

j=1

L
±,0
j

〈O(z1)O(z2)O(z3)O(z4)〉 = 0 , (34)

fixes its form

〈O(z1)O(z2)O(z3)O(z4)〉 =
F4(w)

z2d13z
2d
24

, w =
z12z34

z13z24
, (35)

up to a function of the conformal cross ratio w . Let us choose a conformal frame, by setting

z4 = 0 , z2 = 1 , z1 = ∞. (36)

The operator–state correspondence (in the radial quantization) allows us to write

lim
z1→∞

z2d1 〈O(z1)O(1)O(z3)O(0)〉 = 〈d|O(1)O(z3)|d〉 . (37)

To compute conformal blocks let us assume that the intermediate state is a primary state |�〉, i.e., L+|�〉 = 0, of dimension � and its 
descendants are

|�,k〉 ≡ (L−)k|�〉 ,k > 0 . (38)

Obviously, 〈�,k| ≡ 〈�|(L+)k . Here L±,0 are operators acting on the Hilbert space of states with the representation (33) on the primary 
fields �� . We can project on these with

�� =

∞∑

k=0

|�,k〉〈�,k|

N�,k

, (39)

obeying �2
� = �� , with the normalization N�,k = 〈�,k|�,k〉. Such that

F4(z3) = 〈d|O(1)��O(z3)|d〉 =

∞∑

k=0

1

N�,k

〈d|O(1)(L−)k|�〉〈�|(L+)kO(z3)|d〉 . (40)

The calculation of the matrix elements involved is straightforward making use of the sl(2) algebra. The normalization prefactor reads

N�,k = 〈�|[(L+)k, (L−)k]|�〉 = k!(2�)k , (41)

which is a generalization of the elementary commutation relation

〈�|[(L+)2, (L−)2]|�〉 = 2(2� + 1)〈�|[L+, L−]|�〉 = 2!2�(2� + 1)〈�|�〉 .

The matrix element in the numerator of the right-hand side of Eq. (40) reads

〈�|(L+)kO(z3)|d〉 = 〈�|[L+, [L+, . . . [L+,O(z3)] . . . ]]|d〉 = (L+)k〈�|O(z3)|d〉 . (42)
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Since

〈�|O(z3)|d〉 = 1/z2d−�
3 , (43)

is just the three-point function (fixed up to an overall normalization (set here to one) by conformal symmetry), we immediately find after 
repetitive differentiation

〈�|(L+)kO(z3)|d〉 = (�)k/z
2d−�−k
3 . (44)

Putting everything together, we find for F4(z3)

F4(z3) = z
�−2 j
3

∞∑

k=0

(�)2
k

k!(2�)k
zk = z�−2d

3 2F1

(
�,�

2�

∣∣∣∣ z3
)

, (45)

which is a well-known result [29].
The same result can be obtained making use of the eigenvalue equation for the quadratic Casimir of the sl(2) algebra,

C2 = 1
2

(
L

+
L

− +L
−
L

+
)
− (L0)2 (46)

in a given OPE channel. For instance, in the (34)-channel, which is the same as the (12)-channel,

L
±,0
34 = L

±,0
3 +L

±,0
4 , (47)

the equation

C2,(34)〈O(z1)O(z2)O(z3)O(z4)〉 = �(1− �)〈O(z1)O(z2)O(z3)O(z4)〉 , (48)

immediately implies that F4(w) obeys

w2(w − 1)F ′′
4 (w) +

[
4dw(w − 1) − w2

]
F

′
4(w) + [2d(1+ 2d(w − 1)) + �(� − 1)]F4(w) = 0 . (49)

It has two solutions

F4(w) = w�−2d
2F1

(
�,�

2�

∣∣∣∣ w
)

+ cw1−�−2d
2F1

(
1− �,1 − �

2− 2�

∣∣∣∣ w
)

. (50)

However, the second one does not possess correct asymptotic behavior and thus have to be dropped, i.e., c = 0. This way, we recover our 
previous result for the conformal block.

Appendix B. Conformal frame for polygons

The choices made in the body for the elements of the symmetry matrices of middles squares in the tessellation of a generic polygon 
correspond to the following conformal cross ratios [22]

eτ2 j+1 =
(− j − 1, j + 1, j + 2, j + 3)(− j − 2,− j − 1,− j, j + 2)

(− j − 2,− j − 1, j + 2, j + 3)(− j − 1,− j, j + 1, j + 2)
, (51)

eτ2 j+1+σ2 j+1−iφ2 j+1 =
(− j − 2,− j − 1,− j,− j + 1)(− j − 1,− j, j + 2, j + 3)

(− j − 2,− j − 1,− j, j + 3)(− j − 1,− j,− j + 1, j + 2)
, (52)

eτ2 j+1+σ2 j+1+iφ2 j+1 =
( j + 1, j + 2, j + 3, j + 4)(− j − 1,− j, j + 2, j + 3)

(− j − 1, j + 2, j + 3, j + 4)(− j, j + 1, j + 2, j + 3)
, (53)

eτ2 j =
(− j, j + 1, j + 2, j + 3)(− j − 1,− j,− j + 1, j + 2)

(− j − 1,− j, j + 2, j + 3)(− j,− j + 1, j + 1, j + 2)
, (54)

eτ2 j+σ2 j−iφ2 j =
(− j − 1,− j, j + 1, j + 2)( j, j + 1, j + 2, j + 3)

(− j − 1, j + 1, j + 2, j + 3)(− j, j, j + 1, j + 2)
, (55)

eτ2 j+σ2 j+iφ2 j =
(− j − 2,− j − 1,− j,− j + 1)(− j − 1,− j, j + 1, j + 2)

(− j − 2,− j − 1,− j, j + 2)(− j − 1,− j,− j + 1, j + 1)
. (56)

Here the odd and even ratios have different form due to opposite orientation of overlapping sequential pentagons.
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