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Bispectrum Inversion With Application to
Multireference Alignment

Tamir Bendory ~, Nicolas Boumal

Abstract—We consider the problem of estimating a signal from
noisy circularly translated versions of itself, called multireference
alignment (MRA). One natural approach to MRA could be to es-
timate the shifts of the observations first, and infer the signal by
aligning and averaging the data. In contrast, we consider a method
based on estimating the signal directly, using features of the signal
that are invariant under translations. Specifically, we estimate the
power spectrum and the bispectrum of the signal from the obser-
vations. Under mild assumptions, these invariant features contain
enough information to infer the signal. In particular, the bispec-
trum can be used to estimate the Fourier phases. To this end, we
propose and analyze a few algorithms. Our main methods consist
of nonconvex optimization over the smooth manifold of phases.
Empirically, in the absence of noise, these nonconvex algorithms
appear to converge to the target signal with random initializa-
tion. The algorithms are also robust to noise. We then suggest
three additional methods. These methods are based on frequency
marching, semidefinite relaxation, and integer programming. The
first two methods provably recover the phases exactly in the ab-
sence of noise. In the high noise level regime, the invariant features
approach for MRA results in stable estimation if the number of
measurements scales like the cube of the noise variance, which is
the information-theoretic rate. Additionally, it requires only one
pass over the data, which is important at low signal-to-noise ratio
when the number of observations must be large.

Index Terms—Bispectrum, multireference alignment, phase
retrieval, non-convex optimization, optimization on manifolds,
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semidefinite relaxation, phase synchronization, frequency march-
ing, integer programming, cryo-EM.

I. INTRODUCTION

E CONSIDER the problem of estimating a discrete
W signal from multiple noisy and translated (i.e., circu-
larly shifted) versions of itself, called multireference aligment
(MRA). This problem occurs in a variety of applications in
biology [1]-[4], radar [5], [6], image registration and super-
resolution [7]-[9], and has been the subject of recent theoretical
analysis [10], [11]. The MRA model reads

Ej:Rrjx+€j7 jzl,...,M, (1)

where ¢; are i.i.d. normal random vectors with variance o* and
the underlying signal 2 is in R" or in C*¥. Operator R, rotates
the signal x circularly by r; locations, namely, (R, x)[n| =
x[n — r;], where indexing is zero-based and considered modulo
N (throughout the paper). While both z and the translations {r; }
are unknown, we stress that the goal here is merely to estimate
. This estimation is possible only up to an arbitrary translation.

A chief motivation for this work arises from the imaging tech-
nique called single particle Cryo-Electron Microscopy (Cryo-
EM), which allows to visualize molecules at near-atomic res-
olution [12], [13]. In Cryo-EM, we aim to estimate a three
dimensional (3D) object from its two-dimensional (2D) noisy
projections, taken at unknown viewing directions [14], [15].
While typically the recovery process involves alignment of mul-
tiple observations in a low signal-to-noise ratio (SNR) regime,
the underlying goal is merely to estimate the 3D object. In this
manner, with the unknown shifts corresponding to the unknown
viewing directions, MRA can be understood as a simplified
model for Cryo-EM.

Existing approaches for MRA can be classified into two main
categories. The first class of methods aims to estimate the set
of translations {r;} first. Given this set, estimating = can be
achieved easily by aligning all observations &; and then aver-
aging to reduce the noise. The second class, which we favor in
this paper, consists of methods which aim to estimate the signal
directly, without estimating the shifts.

Considering the first class, one intuitive approach to estimat-
ing the translations is to fix a template observation, say &;, and
to estimate the relative translations by cross-correlation. This is
called template matching. Specifically, r; is estimated as

N -1

szargm]?x% ;}gl[n]gj[wrk] . j=2,-, M,
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TABLE I
COMPARISON OF MAIN MRA APPROACHES
Method Computational complexity | Storage requirement | Comments
Template alignment O(MN log N) O(N) Fails at moderate SNR (see Figure 1.1)
Angular synchronization O(M?N log N) O(M?) Fails at low SNR
Expectation maximization O(TMN log N) O(MN) Empirically accurate; #iterations 7' grows with noise level
Invariant features (this paper) | O(MN? + F(N)) O(N?) Under mild conditions, accurate estimation if M grows as g

F(N) denotes the complexity of inverting the bispectrum. For instance, for the FM algorithm, F'(N) = O (N?). Storage requirements include the possibility of streaming

computations where possible.

Observation 1

Observation 2

Cross-correlation

c=0.1

=07

g

Fig. 1.

A
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Alignment of two translated versions of the same signal in the presence of i.i.d. Gaussian noise with various standard deviations o. The true signal in

R'00 is a window of length 22 and height 1. Each row presents two observations and their cross-correlation. Importantly, beyond a certain threshold, noise makes

pairwise alignment impossible.

where R{z} and Z denote the real part and the conjugate of
a complex number z. This approach requires only one pass
over the data: for each observation, the best shift can be com-
puted in O(N log N) flops, and the aligned observations can
be averaged online. This results in a total computational cost of
O(M N log N) flops, see Table I. While this approach is sim-
ple and efficient, it necessarily fails below a critical SNR—see
Fig. 1 for a representative example.

The issue with template matching is that we rely on aligning
each observation to only one template: this is error prone at low
SNR. Instead, to derive a more robust estimator, one can look
for the most suitable alignment among all pairs of observations.
The M? relative shifts thus computed must then be reconciled
into a compatible choice of M shifts for the individual observa-
tions. This is a discrete version of the angular synchronization
problem, see [16]-[21]. The computational complexity of align-
ing all pairs individually is O(M? N log N), while storing the
results uses O(M?) memory.

Alternative algorithms for estimating the translations are
based on different SDP relaxations [22], [23], iterative tem-
plate alignment [24], zero phase representations [5] and neural
networks [6]. The statistical limits of alignment tasks were de-
rived for a variety of setups and noise models, see for instance
[25]-[28]. For example, for a continuous, 2D version of the
MRA model, it was shown that the Cramér—Rao lower bound

(CRLB) for translation estimation is proportional to the noise
variance o2 [25]; crucially, it does not improve with M, even
if the underlying signal is known. This is motivation to con-
sider the second category of MRA methods, where shifts are
not estimated.

Section VI elaborates on expectation maximization (EM)
which tries to compute the maximum marginalized likelihood
estimator (MMLE) of the signal—marginalization is done over
the shifts. This method acknowledges the difficulty of align-
ment by working not with estimates of the shifts themselves,
but rather with estimates of the probability distributions of the
shifts. As aresult, EM achieves excellent numerical performance
in practice. However its computational complexity is high and
its performance is not understood in theory.

It has been shown recently that the sample complexity of
MRA, under assumption that shifts are distributed uniformly, is
proportional to o in the low SNR regime. In other words, the
number of measurements M needs to scale like o° to retain a
constant estimation error [11].

In this work, we propose a framework which achieves this
sample complexity by estimating the sought signal x directly
using features that are invariant under translations. For instance,
the mean of x is invariant under translation and can be esti-
mated easily from the mean of all observations. We further use
the power spectrum and the bispectrum of the observations—



BENDORY et al.: BISPECTRUM INVERSION WITH APPLICATION TO MULTIREFERENCE ALIGNMENT

which are Fourier-transform based invariants—to estimate the
magnitudes and phases of the signal’s Fourier transform,
respectively.

For any fixed noise level (which may be arbitrarily large),
these features can be estimated accurately provided sufficiently
many measurements are available. Hence, our approach allows
to deal with any noise level. Besides achieving the sample com-
plexity, the computational complexity and memory require-
ments of the methods we describe are relatively low. Indeed,
the only operations whose computational cost grows with M
are computations of averages over the data. These can be per-
formed on-the-fly and are easily parallelizable. We mention that
a recent tensor decomposition algorithm also achieves this esti-
mation rate [29].

Given estimators for the mean and power spectrum of x, es-
timating the DC component and Fourier magnitudes of z is
straightforward. In this paper, we thus focus on the task of
recovering the Fourier phases of = from an estimator of its bis-
pectrum. We propose two non-convex optimization algorithms
on the manifold of phases for this task, which we call bispectrum
inversion. We also discuss three additional algorithms which do
not require initialization (and hence could be used to initialize
others), based on frequency marching, SDP relaxation and in-
teger programming. The first two methods recover the phases
exactly in the absence of noise.

Beyond MRA, the bispectrum plays a central role in a variety
of signal processing applications. For instance, it is a key tool
to separate Gaussian and non-Gaussian processes [30], [31].
It is also used to investigate the cosmic background radiation
[32], [33], seismic signal processing [34], image deblurring [35],
feature extraction for radar [36], analysis of EEG signals [37],
MIMO systems [38] and classification [39] (see also [40]-[44]
and references therein). In Section III, we review previous works
on bispectrum inversion [34], [45], [46]. Reliable algorithms to
invert the bispectrum, as studied here, may prove useful in some
of these applications.

The paper is organized as follows. Section II discusses the
invariant feature approach for MRA. Section III presents the
non-convex algorithms on the manifold of phases for bispectrum
inversion. Section IV is devoted to additional algorithms that
can be used to initialize the non-convex algorithms. Section V
analyzes one of the proposed non-convex algorithm. Section VI
elaborates on the EM approach for MRA, Section VII shows
numerical experiments and Section VIII offers conclusions and
perspective.

Throughout the paper we use the following notation. Vec-
tors  in R or CV and y € C" denote the underlying signal
and its discrete Fourier transform (DFT), respectively. In the se-
quel, all indices are understood modulo IV, namely, in the range
0,..., N — 1. The phase of a complex scalar a, defined as a/|a|
if a # 0 and zero otherwise, is denoted by phase(a) or a. The
conjugate-transpose of a vector z is denoted by z*. We use 'o’ to
denote the Hadamard (entry-wise) product, E for expectation,
Tr(Z) for the trace and || Z || for the Frobenius norm of a matrix
Z. We reserve T'(z) for circulant matrices determined by their
first row z, i.e., T'(2)[k1, ko] = z[ka — k1], and HY for the set
of Hermitian matrices of size N x N.
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II. MULTIREFERENCE ALIGNMENT VIA INVARIANT FEATURES

We propose to solve the MRA problem directly using fea-
tures that are invariant under translations. Unlike pairwise align-
ment, this approach fuses information from all M observations
together—not just of pairs—and it only aims to recover the sig-
nal itself—not the translations. The essence of this idea was
discussed as a possible extension in [22, Appendix A]. The
invariant features can be understood either as auto-correlation
functions or as their Fourier transform. In this work, we make
use of the first three invariants defined as

] V-l
o= e = Zm[n],

n=0

LVl
ca[n] i Z x[n]xz[n —ny]
n=0
|Vl
cs[m,mo] = = ) zlnjzln —meln+ne], (@

n=0

forny,no =0,..., N — 1.Itis clear that ¢y, ¢, c3 are invariant
under circular shifts of x. For higher-order invariants based on
auto-correlations, see for instance [47].

The first feature is the mean of the signal which is the auto-
corrleation function of order one (i.e., ¢; in (2)). The distribution
of the mean of &; is then given by y1¢c, ~ N (11, 5 ) and we can
estimate /i, as

1 M o2
—M;< Z@ ) (uI,NM) 3)

Estimating the signal’s mean supplies only limited informa-
tion about the signal itself. Thus, we consider also the auto-
correlation function of order two (i.e., ¢o in (2)). Its Fourier
transform, the power spectrum, is explicitly defined as

ly[k][*,

for all k, where y is the DFT of x. An alternative way to un-
derstand the invariance of the power spectrum under shifts is
through the effect of shifts on the DFT of a signal:

=ylk]-e

Thus, shifts only affect the phases of the DFT, so that Py , = P,
for any shift R,. Furthermore, owing to independence of the
noise with respect to the signal itself and to the shift,

where the second term is the power spectrum of the noise ¢;.
Therefore, we estimate the power spectrum of x as:

R 1 M
Polk] = Z(Pfj (k] — No?). )

P, [k] =
727riks/AV. (4)

DFT(R,z) [K]

E{Pf/ +N(7

It can be shown that ]51 is unbiased and its variance is dominated
4 Fa .
by 97 for large 0. Hence, P, — P, as M — oo. In particular,
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accurate estimation of the power spectrum requires M to scale
like o*. In the sequel, we assume that o is known.!

Recovering a signal from its power spectrum is commonly re-
ferred to as phase retrieval. This problem received considerable
attention in recent years, see for instance [48]-[54]. It is well
known that almost no one-dimensional signal can be determined
uniquely from its power spectrum. Therefore, we use the power
spectrum merely to estimate the signal’s Fourier magnitudes. As
explained next, we use the auto-correlation of third order and
its Fourier transform, the bispectrum, to estimate the Fourier
phases.

Since phase retrieval is in general ill posed, we use the auto-
correlation function of order three (that is, c¢3 in (2)) through
its Fourier transform, the bispectrum, to estimate the Fourier
phases of the sought signal. The bispectrum is a function of two
frequencies ki, ks = 0,..., N — 1 and is defined as [55]:

B, [ky, k2] = ylki]y[k2]y[ke — K1]. (6)

Note that, if y[0] # 0, the power spectrum is explicitly included
in the bispectrum since P, [k] = B[k, k]/y[0]. The fact that
the bispectrum is invariant under shifts can also be deduced
from (4). Indeed, for any shift Ry,

Bgr, o[k1, ko] = (mkl]e—mk.s/z\f) (memkzsm)
- (ulkr — ket

= B[k, k2.
In matrix notation, we express this as

B, = yy* o T(y), (7

where T'(y) is a circulant matrix whose first row is y, that is,
T(y)[k1, k2] = y[ks — k1]. Observe that if 2: is real, then y[k] =

y[—k] so that T(y) and B, are Hermitian matrices. Simple
expectation calculations lead to the conclusion that

E {ng} =B, + O'QNQ,U':I:Av )]

where A = Ag or A = Ac depending on x € RY or 2 € CV
and

3111...1 2111...1
1100...0 0100...0
1010...0 0010...0

AR=11001...0,Ac=10001...0
(1000 ... 1] 0000 ... 1]

Since the bias term is proportional to 1, , we propose to esti-
mate B, 1, Dy averaging over B, for all j. This estimator
is unbiased and its variance is controlled by % for large o.
Therefore, M is required to scale like o9 to ensure accurate es-
timation. In practice, 1, is not known exactly. Thus, we estimate

f & is not known, it can be estimated from the data as

N-1
1
52 = N.variance <Z &j [n]) :
J=1,M

n=0
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the bispectrum by

1 M
By, =57 > By ©)
j=1

which is asymptotically unbiased. For finite M and large o, bias
induced by the approximation fi, =~ u, is significantly smaller
than the standard deviation of (9).

The bispectrum contains information about the Fourier phases
of = because, defining (k] = phase(y[k]) and B, [k, ks] =
phase(B; [k1, k2]) where phase extracts the phase of a complex
number (and returns O if that number is 0), we have

B, [k1, ko] = gk |glk2]7[ks — K1) (10)

In matrix notation, the normalized bispectrum takes the form

B, = g7 o T(j).

Contrary to the power spectrum, the bispectrum is usually
invertible. Indeed, in the absence of noise, the bispectrum de-
termines the sought signal uniquely under moderate conditions:

Proposition II.1: For N > 5, let 2 € CV be a signal whose
DFT y obeys y[k] # 0 for k = 1,..., K, possibly also for k =
0, and zero otherwise. Up to integer time shifts, x is determined
exactly by its bispectrum provided K > %

For N > 5, let 2 € R" be a real signal whose DFT y obeys
ylk] #0fork=1,...,Kand k=N —1,...,N — K, pos-
sibly also for k£ = 0, and zero otherwise. Up to integer time
shifts, = is determined exactly by its bispectrum provided
¥ S K< 5

Proof: This is a direct corollary of Lemmas V.1 and B.1. H

We stress that the bispectrum estimator in (9) is not a bispec-
trum itself, since the set of bispectra is not a linear space: B,_ "
is not invertible as such [42]. Algorithms we propose aim to find
a stable inverse, in the sense that the recovered signal will have a
bispectrum which is close to the estimated bispectrum in CY <V,
The following propositions combined argue formally that this
can be done in the MRA model. The proofs in Appendix A are
constructive.

Proposition 11.2 (Stable bispectrum inversion): There exists
an estimator & with the following property. For any signal  in
RY or C" whose DFT is non-vanishing, there exist a precision
0 =0(x) > 0 and a sensitivity L = L(x) < oo such that if an
estimator B, of B, satisfies ||Bw — B,||lr < 0,then = JE(BJ)
satisfies min, o, y_1 ||z — Ry2|ls < L|| B, — B, ||r.

Proposition I1.3 (Bispectrum estimation): For any signal x
in RY or CV whose DFT is non-vanishing, for any required
precision § > 0 and for any probability p < 1, there exists a
constant C' = C(x, p,§) < oo such that, for any noise level o >
0, if the number of observations M exceeds C - (6 + o°), the
estimator

M
> B, —o’N*ji, A

Jj=1

- 1
B, = —
M
satisfies HBr — B, ||r < 0 with probability at least p.
We mention that uniqueness in the continuous setup was con-
sidered in [56]. The more general setting of bispectrum over
compact groups was considered in [57]-[60].
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Relative error of estimating the power spectrum and bispectrum for different noise levels as a function of the number of observations M . Results are

averaged over 10 repetitions for each value of M on a fixed real signal of length N' = 41 with i.i.d. normal random entries. The signal-to-noise ratio is then 1/02.

Importantly, the relative error decreases as 1/v/ M regardless of noise level.

Algorithm 1: Outline of the invariant approach for MRA.

Input: Set of observations §;, j = 1,..., M according
to (1) and noise level o
Output: z: estimation of x
Estimate invariant features:
1) Compute i, according to (3)
2) Compute ]5,7; according to (5)
3) Compute Bz,#_,, according to (9)
Estimate the signal’s DFT:
1) Estimate y[0] from /i,. For other frequencies:
2) Estimate the magnitudes of y from P,
3) Estimate the phases of y from B,,,_ u, (€8,
Algorithm 2)
Return: 2: inverse DFT of the estimated y

The MRA model here assumes i.i.d. Gaussian noise. How-
ever, the estimation is performed by averaging in the bispectrum
domain, where noise affecting individual entries is correlated.
Consequently, one may want to use a more robust estimator, such
as the median. Yet, computing the median of complex matrices
is computationally expensive, while computing the average can
be performed efficiently and on-the-fly, that is, without requiring
to store all observations. For Gaussian noise, we have noticed
numerically that using the mean or the median for bispectrum
estimation leads to comparable estimation errors (experiments
not shown). In other noise models, e.g., with outliers, it might be
useful to consider the median or the median of means method,
see for instance [61].

Fig. 2 presents the relative estimation error of the power spec-
trum and bispectrum as a function of the number of observations
M. For the bispectrum, the relative error is computed as

M
HBrfm - 1\17 Zj:l Béj —fiz ||F

relative error :=
(=2

)

F

and similarly for the power spectrum. As expected, the slope of
all curves is approximately 1/2 in logarithmic scale, implying
that the estimation error decreases as O(1/+/M ). The invariant
features approach for MRA is summarized in Algorithm 1.
Consider the case in which the number of samples M may
be very large whereas the size of the object is fixed, namely
N < M. This case is of interest in many applications, such as

cryo-EM [14], [15]. In this regime, the invariant features ap-
proach has two important advantages over methods that rely
on estimating the translations. First, in the invariant features
approach, we average over the M observations (which is com-
putationally cheap), and then apply a more complex algorithm
(say, to recover a signal from its bispectrum) whose input size
is a function of N but is independent of M. Hence, the overall
complexity of this approach can be relatively low. Second, the
alignment-based method requires storing all M observations,
namely, M N samples, which is unnecessary in the invariant
features approach. There, for each observation, we just need to
compute its invariants, to be averaged over all observations: this
can be done online (in streaming mode) and in parallel.

III. NON-CONVEX ALGORITHMS FOR BISPECTRUM INVERSION

After estimating the first Fourier coefficient y[0] as N fi,, our
approach for MRA by invariant features consists of two parts.
We use the power spectrum to estimate the signal’s Fourier
magnitudes and the bispectrum for the phases. The first part is

straightforward: |y[k]| can be estimated as 1/ P, [k] if P, [k] > 0,
and as O otherwise. Hereafter, we focus on estimation of the
phases of the DFT, g.

In the literature, two main approaches were suggested to in-
vert the discrete bispectrum. The first is based on estimating the
frequencies one after the other by exploiting simple algebraic
relations [45], [46]. The second approach suggests to estimate
the signal by least-squares solution and phase unwrapping [34],
[46]. We improve these methods and suggest a few new algo-
rithms. The algorithms are split into two sections. This section
is devoted to two new non-convex algorithms based on opti-
mization on the manifold of phases. Both of these algorithms re-
quire initialization. While experimentally it appears that random
initialization works well, for completeness, in the next section
we propose three additional algorithms which do not need ini-
tialization and hence could be used to initialize the non-convex
algorithms.

A. Local Non-convex Algorithm Over the Manifold of Phases

In this section, similarly to (10), we let B denote our estimate
of the phases of B,. Since B =~ §3* o T(), one way to model
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recovery of the Fourier phases ¢ is by means of the non-convex
least-squares optimization problem
- 2
min [|W o (B —z2z"o0 T(z)) H subject to |z[k]| = 1, Vk.
2eCN F
an

The matrix W € RY*V is a weight matrix with nonnegative
entries. These weights can be used to indicate our confidence in
each entry of B. Expanding the squared Frobenius norm yields

HW o (B2 0T(2)) Hi — W o B2

+|[Wozzt o T(2)|5 — 2 <W oB,Wozz'o T(z)> ,
where
(U, V) = {Tx(U"V)}, (12)

is the real inner product associated to the Frobenius norm. Under
the constraints on z, the first two terms are constant and the inner
product term is equivalent to
<W oB,Wozz"o T(z)> =(z,M(z)z),
with
M(z) = W® o BoT(2), (13)
where we use the notation W(?) := W o W. One possibility

is to choose W = |Bm_ .. |, where the absolute value and the

square root are taken entry-wise, sothat M (z) = B, _,,, o T'(2).
Hence, optimization problem (11) is equivalent to
max f(z) = (2, M(2)z) subjectto |z[k]| =1,Vk. (14)
zeCN

We can also impose z[0] = phase(fi, ). If z is real, we have the
additional symmetry constraints z[k] = z[—k].

Since the cost function f is continuous and the search space
is compact, a solution exists. Of course, the solution is not
unique, in accordance with the invariance of the bispectrum
under integer time-shifts of the underlying discrete signal. This
is apparent through the fact that the cost function f is invariant
under the corresponding (discrete) transformations of z. This
is true independently of the data B and W. The proof is in
Appendix C.

Lemma IllI.1: The cost function f is invariant under trans-
formations of z that correspond to integer time-shifts of the
underlying signal.

To solve this non-convex program, we use the Riemannian
trust-region method (RTR) [62], whose usage is simplified by
the toolbox Manopt [63]. RTR enjoys global convergence to
second-order critical points, that is, points which satisfy first-
and second-order necessary optimality conditions [64] and a
quadratic local convergence rate. Empirically, in the noiseless
case it appears that the algorithm recovers the target signal with
random initialization, all local minima are global (with minor
technicality for even IV in the real case) and all second-order crit-
ical points have an escape direction, that is, saddles are “strict”.
Numerical experiments demonstrate reasonable robustness in
the face of noise. This algorithm is summarized in Algorithm 2
and studied in detail in Section V.
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Algorithm 2: Non-convex optimization on phase manifold.

Input: The normalized bispectrum B [k1, k2] and a weight
matrix W € RV*N

Qutput: y: an estimation of y

Compute: Using RTR [62], [63], approximately solve:

i = arg max R{z*M(z)z} subjectto |z[k]| =1, Vk,
zeCH

(if x is real) z[k] = z[—k], VE,

where M (z) := (W o W) o BoT(z).

B. Iterative Phase Synchronization Algorithm

In this section we present an alternative heuristic to the non-
convex algorithm on the manifold of phases. This algorithm is
based on iteratively solving the phase synchronization problem.
Suppose we get an estimation of , say ¢ 1. If Jx,_; ~ yisnon-
vanishing, then this estimation should approximately satisfy the
bispectrum relation:

BoT(jk-1) = G101
The underlying idea is now to push the current estimation to-

wards y by finding a rank-one approximation of Bo T(Gr-1)
with unit modulus entries. This problem can be formulated as:

arg max R {z* (B o M) z} subject to |z[{]| = 1, V¢,

2eCN

(15)
where we treat the matrix B o T (4. —1) as a constant. This prob-
lem is called phase synchronization. Many algorithms have been
suggested to solve the phase synchronization problem. Among
them are the eigenvector method, SDP relaxation, projected
power method, Riemannian optimization and approximate mes-
sage passing [16]-[20]. Notice that the solution of (15) is only
defined up to a global phase, namely, if z is optimal, then so
is ze'® for any angle ¢. To resolve this ambiguity, we require
knowledge of the phase of the mean, 3[0] (which is easy to es-
timate from the data) and we pick the global phase of ¢ such
that g [0] = g[0].

The kth iteration of our algorithm thus (tries to) solve
the phase synchronization problem with respect to the ma-
trix My._; := Bo T(Jx—1), where J;_; is the solution of the
previous estimation. Assuming the signal is real, we also im-
pose at each iteration the conjugate-reflection property of
Ur[€] = yi[—¢] for all ¢ so that M is Hermitian. In the nu-
merical experiments in Section VII, we solve (15) by the Rie-
mannian trust-region method described in [17]. Empirically, the
performance of this algorithm and Algorithm 2 is indistinguish-
able. The algorithm is summarized in Algorithm 3.

IV. INITIALIZATION-FREE ALGORITHMS

The previous section was devoted to non-convex algorithms
to invert the bispectrum. In this section we present three ad-
ditional algorithms based on frequency marching (FM), SDP
relaxation and phase unwrapping. These algorithms do not re-
quire initialization and therefore could be used to initialize the
non-convex algorithms.
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Algorithm 3: Iterative phase synchronization algorithm.

Input: The normalized bispectrum B, initial estimation 40,
phase of the mean g[0]
Output: : estimation of y
Setk =0
while stopping criterion does not trigger do:
-k—k+1
- Compute ;. as a solution of (15)
- Fix the global phase: g, + i - 7;‘1[%]
- If z is real, symmetrize: g, < phase ((gx) 1), see (B.1)
end while
Return: § < gy,

We prove that FM and the SDP recover the Fourier phases
exactly in the absence of noise under the assumption that we
can fix g[1]. If the signal has non-vanishing DFT, y[1] can be
estimated from the bispectrum using the fact that 7[1]" equals

phase (B, [N — 1,1]B,[1,2] - B,[1,2]--- B,[1,N — 1]).
(Any Nth root can be used for g[1], corresponding to the N
possible shifts of 2..) In all cases, we argue that forcing §[1] = 1
is acceptable if IV is large. Indeed, recall that a shift by ¢ entries
in the space domain is equivalent to modulating the kth Fourier
coefficient by e 27**/N In particular, it means that the phase
77[1] can be shifted by e 27"/ for an arbitrary £ € Z. Thus, for
signals of length N >> 1, the phase g[1] can be set arbitrarily
with only small error. In the numerical experiments of Section
VII, we give the correct value of [1] to the algorithms in order
to assess their best possible behavior.

We begin by discussing the FM algorithm, which is a sim-
ple propagation method: it is exact in the absence of noise.
Notwithstanding, its estimation for the low-frequency coeffi-
cients is sensitive to noise. Because of its recursive nature, error
in the low frequencies propagates to the high frequencies, re-
sulting in unreliable estimation. The other two algorithms are
more computationally demanding but appear more robust.

A. Frequency Marching Algorithm

The FM algorithm is a simple propagation algorithm in the
spirit of [45], [46] that aims to estimate y one frequency at a
time. This algorithm has computational complexity O(N?) and
it recovers y exactly for both real and complex signals in the
absence of noise, assuming ¢[1] is known.

Let us denote Blky, ky] = e'?IF1:52] and j[k] = 1], Ac-
cordingly, we can reformulate (6) as

Uk, ko] = aplki] — ¥[ka] + ¥ [ky — k1] mod 2,

where the modulo is taken over the sum of all three terms. Using
this relation, we can start to estimate the missing phases. The
first unknown phase, (2], can be estimated by:

S
=
i)

I

W[1] — [2] + +[1] mod 27
2¢[1] — P[1, 2] mod 27,

4
<
S

[
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where )[2] refers to the estimator of (2] (defined modulo 27).
We can estimate the next phase in the same manner:

U1, 3] = ¥[1] — ¢[3] + ¥[2] mod 27
P08 =601 + P12] - 9[1,3] mod 21

For higher frequencies, we have more measurements to rely
on. For the fourth entry, we now can derive two estimators as
follows:

W[1,4] = ¥[1] — [4] + ¢[3] mod 27
= W] =[] + ¢[3] — ¥[1,4] mod 2,
and
U[2,4] = ¥[2] — ¢¥[4] + ¥[2] mod 27
= P[] = 2¢[2] — [2,4] mod 2.

In the noiseless case, it is clear that 1[4] = (1) [4] = (%) [4].
In a noisy environment, we can reduce the noise by averaging
the two estimators, where averaging is done over the set of
phases (namely, over the rotation group SO(2)) as explained in
Appendix D. Specifically,

el = phase (ew(l)[‘” + e“&(z)m) .

We can iterate this procedure. To estimate phase ¢, we want
to consider all entries of B[k, ] = §[k]§[{]j[¢ — k] such that
exactly one of the indices k,¢, or £ — k is equal to ¢ and
all other indices are in 1,...,q — 1, so that all other phases
involved have already been estimated. A simple verification
shows that only entries B[p,q], p=1,...,q— 1, have that
property. Furthermore, because of symmetry in the bispec-
trum (25), half of these entries are redundant so that only entries
Blp.q), p=1,...,|%] remain. As a result, estimation of the
kth phase relies on averaging over |4 | equations, as summa-
rized in Algorithm 4, with the following simple guarantee. The
above construction yields the following proposition.

Proposition IV.1: Let B = B, be the normalized bispectrum
as defined in (10) and assume that g[1] is known. If y[k] # 0
fork =1,..., K, then Algorithm 4 recovers the Fourier phases
glk], k=1,..., K exactly.

We note in closing that, if the signal z is real, symmetries in
the phases y and B can be exploited easily in FM.

B. Semidefinite Programming Relaxation

In this section we assume that the DFT y is non-vanishing so
that the bispectrum relation can be manipulated as

B=ygy oT(y)=BoT(y) =9y,
where @ is its entry-wise conjugate. The developments are
easily adapted if the signal has zero mean. Similarly to the FM
algorithm, we assume that §[0] and §[1] are available. We aim
to estimate y by a convex program. As a first step, we decouple
the bispectrum equation and write the problem of estimating y
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Algorithm 4: Frequency marching algorithm.

Algorithm 5: Semidefinite relaxation algorithm.

Input: Normalized bispectrum B[k, , ko] = €'V k1521 g[0]

and g[1] # 0
Qutput: y: estimation of y
1) Set 4[0] = [0] and e'*!"]
2)For k. =2,...,N do:
a) Average the phase measurements:

u = phase Z e

b) Estimate 1)[k] through:

ezz:[k] — U, u 7& 0,
1, u=0.

Return: § « ¢'?

= g1

(0] 4+ [k—0)—T[¢,k))

as the following non-convex optimization problem:

i, | o (275 -2,
ZeHN zeCN

subject to Z = zz",
diag (Z) =1,
z[0] = g[0], =[1] = y[1],

(if x is real) z[k] = z[—k], Vk, (16)
where H" is the set of Hermitian matrices of size N and W €
RV >N is areal weight matrix with positive entries. In particular,
in the numerical experiments we set W = |B).

In the absence of noise, the minimizers of (16) satisfy the
bispectrum equation. However, in general these cannot be
computed in polynomial time. In order to make the problem
tractable, we relax the non-convex coupling constraint Z = zz*
to the convex constraint Z > zz* (that is, Z — zz* is positive
semidefinite). The convex relaxation is then given by

wo (BTG -2)],

subjectto Z = zz",

diag (Z) =1,

z[0] = g[0], 2[1] = g[1],
= 2[—k], Vk.

m
ZeHN ,zeCN

@if @ is real) z[k] (7
Upon solving (17), which can be done in polynomial time
with interior point methods, the phases y are estimated from
phase(z). In practice, we use CVX to solve this problem [65].
The algorithm is summarized in Algorithm 5. We note that
problem (17) is not a standard SDP, in that its cost function is
nonlinear.

In the noiseless case, the SDP relaxation (17) recovers the
missing phases exactly. Interestingly, the proof is not so much
based on optimality conditions as it is on an algebraic property

Input: The normalized bispectrum B, §[0] and 7[1]
Output: y: estimation of y

Solve the SDP with nonlinear cost function (17), for
example using CVX [65]

Return: § < phase(z)

of circulant matrices. The proof of the following property is
given in Appendix E.

Lemma IV.2: Let @ be the DFT of a vector u € CV obeying
ulk] = u[—k], so that @ is real. If u[0] = u[l] =1 and 4 is
non-negative, then u[k| = 1 for all k.

The following theorem is a direct corollary of Lemma IV.2.
The main proof idea is as follows. Consider u = § o z where
(Z, z) is optimal for the SDP; then, the constraints ensure u[0] =
u[1] = 1. Furthermore, one can see via the Schur complement
that the constraints force T'(u) to be positive semidefinite. Since
the eigenvalues of T'(u) are the DFT of w, it follows that @ is
non-negative, so that the lemma above applies and u = 1, or,
equivalently, z = g. Details of the proof are in Appendix F.

Theorem IV.3: For a real signal with non-vanishing DFT y,
if all weights in TV are positive, ¢[0] and g[1] are known and
the objective value of (17) attains O (which is the case in the
absence of noise), then the SDP has a unique solution given by
z=yand Z = zz".

We close with an important remark about the symmetry break-
ing purpose of constraint z[1] = ¢[1] in the SDP. Because the
signal = can be recovered only up to integer time shifts, even
in the noiseless case, without this constraint there are at least
N distinct solutions (z, Z) to the SDP. Because SDP is a con-
vex program, any point in the convex hull of these /N points is
also a solution. Thus, if the symmetry is not broken, the set of
solutions contains many irrelevant points. Furthermore, interior
point methods tend to converge to a center of the set of solutions,
which in this case is never one of the desired solutions.

C. Phase Unwrapping by Integer Programming Algorithm

The next algorithm is based on solving an over-determined
system of equations involving integers. Let us denote 7[k] =
e'VIFl and Bk, , ko] = e/?[¥1:-%2] 50 the normalized bispectrum
model is given by

VIR o) i 1) = (k2 ]+ [z k)

e e’(
By taking the logarithm, we get the algebraic relation
Ulky, ko] + 2mx[k1, ko] = Y[ki] — lka] + Y[ka — k1], (18)

where, as a result of phase wrapping, x takes on integer values.
Let Uy, and xyec be the column-stacked versions of ¥ and Y,
respectively. Then, the model reads

\Ijvec + 27"-Xvec = va

where the sparse matrix A € RY**N encodes the right hand
side of (18). It can be verified that A is of rank N — 1 (see
for instance [66]), with null space corresponding to the time-
shift-induced ambiguity on the phases (4). Note that both the

19)
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integer vector Yye and the phases ¢ are unknown. Given Xyec,
the phases v can be obtained easily by solving

min ||\I]vec + 27TXvec - Awnlﬂ

Y eRN

(20)

for some ¢, norm. Observe that any error in estimating x may
cause a big estimation error of ¢ in (20). These errors can be
thought of as outliers. Hence, we choose to use least unsquared
deviations (LUD), p = 1, which is more robust to outliers. The
more challenging task is to estimate the integer vector Xyec €
ZN? . To this end, we first eliminate 1) from (19) as follows. Let
C € RV =(N=1))xN? pe o £l rank matrix such that C A = 0,
that is, the columns of C7 are in the null space of AT | Matrix
C can be designed by at least two methods. One, suggested
in [67], exploits the special structure of A to design a sparse
matrix composed of integer values. Another, which we use here,
is to take C' to have orthonormal rows which form a basis of the
kernel of AT . Numerical experiments (not shown) indicate that
the latter approach is more stable. Next, we multiply both sides
of (19) from the left by C' to get

C((\I/vec + 27TXVCC) = CA¢ =0.

Therefore, the integer recovery problem can be formulated as

1
5 CVyee + C(Xvec
s

min
Xvec €EZN?

; 21
2

where we minimize over all integers. Note that C'W,, is a known
vector. The problem is then equivalent to finding a lattice vector
with the basis C' which is as close as possible to the vector
—CWye/(2m). While the problem is known to be NP-hard,
we approximate the solution of (21) with the LLL (Lenstra—
Lenstra—Lovasz) algorithm, which can be run in polynomial
time [68]. The LLL algorithm computes a lattice basis, called
a reduced basis, which is approximately orthogonal. It uses the
Gram—Schmidt process to determine the quality of the basis.
For more details, see [69, Ch. 17].

We note that (21) is under-determined as the matrix C' is
of rank N? — rank(A) = N? — (N — 1). While the LLL algo-
rithm works with under-determined systems, in our case we
can solve it for a determined system since we can fix the first
N — 1 entries of Yy to be zero.2 Once we have estimated
Xvec, We solve (20) with p = 1. This approach is summarized in
Algorithm 6.

V. ANALYSIS OF OPTIMIZATION OVER PHASES

In this section, we study the non-convex optimization prob-
lem (14) and give more implementation details to solve it, since
numerical experiments identify this as the method of choice
for MRA from invariant features among all methods compared.
We start by considering the general case of a complex signal
2 € CV and consider the real case in Appendix B. Recall that
we aim to maximize

f(z) = (z, M(2)z),

M(z):==W® o BoT(z),

2We omit the proof of this property here and only mention that it is based on
the derivation in [67].
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Algorithm 6: Phase unwrapping by integer programming.
W[k ks

Input: The normalized bispectrum B[k, k] = e
Output: §: estimation of g
1) (integer programming) Apply the LLL algorithm to
estimate the integer vector yye. from

min,z HC\I]vec/(27T) =+ CXvec||27
Xvec €ZN
where A is given in (19), CA = 0 and W, € RY’ is
a column-stacked version of W, e.g., using code
from [70].
2) (least-unsquared minimization) Let Yy be the
solution of stage 1. Then, solve

1) = arg Imn ||\Ilvec + 27 Xvee — Ad}”l
heRN

Return: §j < e'?

where the inner product is defined by (12), W is a real weighting
matrix and W(2) := W o W. The optimization problem lives on
amanifold, that is, a smooth nonlinear space. Indeed, the smooth
cost function f(z) is to be maximized over the set

M={zeCN :|2[0)|=---=|2[N —1]| =1},

which is a Cartesian product of /N unit circles in the com-
plex plane (a torus). Theory and algorithms for optimization on
manifolds can be found in the monograph [71]. We follow this
formalism here. Details can also be found in [17], which deals
with the similar problem of phase synchronization, using sim-
ilar techniques. For the numerical experiments below, we use
the toolbox Manopt which provides implementations of various
optimization algorithms on manifolds [63].

Under mild conditions, the global optima of (14) correspond
exactly to y up to integer time shifts. This fact is proven in
Appendix G.

Lemma V.1: For N > 3,letz € CY be a signal whose DFT
y is nonzero for frequencies k in {1,..., K}, possibly also
for k = 0, and zero otherwise. Up to integer time shifts, x is
determined exactly by its bispectrum B provided K > %
Furthermore, the global optima of (14) correspond exactly to the
relevant phases of y—up to the effects of integer time shifts—
provided Wk, £] is positive when B[k, £] # 0.

The problem at hand is

max f(z).

z2eEM 22)

This is smooth but non-convex, so that in general it is hard to
compute the global optimum. We derive first- and second-order
necessary optimality conditions. Points which satisfy these con-
ditions are called critical and second-order critical points, re-
spectively. Known algorithms converge to critical points (e.g.,
Riemannian gradient descent) and even to second-order critical
points (e.g., Riemannian trust-regions) regardless of initializa-
tion [62], [64], [71]. Empirically, despite non-convexity, the
global optimum appears to be computable reliably in favorable
noise regimes.
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As we proceed to consider optimization algorithms for (14),
the gradient of f will come into play:

Vf(z) = M(2)z+ M(2)"z + M (227,

where M4 : CN*N — CV is the adjoint of M with respect
to the inner product (-, -). Formally, the adjoint is defined such
that, for any z € CV, X € CV*V,

(2, M*(X)) = (M(2),X).
Specifically, in Appendix H we show that

M (X)[k] = Tr (T,I (W<2> oBo Y)) RNOX)

where T}, is a circulant matrix with ones in its kth (circular)
diagonal and zero otherwise, namely,

, . 1 lf g/ = g - k>
(Tl 0 = {0 otherwise.

As it turns out, under the symmetries of the problery at hand,
there is no need to evaluate M/*% explicitly. Indeed, 1B obeys

(25)

(24)

Blky — ki, ko] = glka — ki|g[ka]y[k1] = Blk1, k2]

This property is preserved when B is obtained by averaging
bispectra of multiple observations, as in (9). Assuming the
same symmetry for the real weights W, we find below that
M2 (z2*) = M(z)z. See Appendix 1.

Lemma V.2: 1f Blky — ki, ko] = Bk, ko] and W [ky — ki,
ko] = Wk, ko] forall ky, ko, then M2Y (22*) = M(z)z forall
zeCN.

Thus, under the symmetries assumed in Lemma V.2, the gra-
dient of f simplifies and we get a simple expression for the
Hessian as well:

Vf(z)=2M(z)z+ M(2)"z,

V2 f(2)[2] = 2M (£)242M (2)z4+M(2)* z4+M(2) 2. (26)

For unconstrained optimization, the first-order necessary op-
timality conditions are V f(z) = 0. In the presence of the con-
straint z € M, the conditions are different. Namely, follow-
ing [71, eq. (3.37)], since M is a submanifold of CN | first-order
necessary optimality conditions state that the orthogonal projec-
tion of the gradient V f(z) to the tangent space to M at z must
vanish. The result of this projection is called the Riemannian
gradient. Formally, the tangent space is obtained by linearizing
(differentiating) the constraints |z[k]|> = (z[k], z[k]) = 1 forall
k, yielding

T. M = {z € C" : (z[K], 2[k]) = 0,Vk}.
Orthogonal projection of u € CV to the tangent space T, M
can be computed entry-wise by subtracting from each u[k] its
component aligned with z[k]. Let Proj, : CV — T, M denote
this projection. This operation admits a compact matrix notation
as

u— Proj,(u) =u—R{uoz}oz
= u — R{ddiag(uz")}z,

where ddiag : CV*N — CN*¥ gets all non-diagonal entries of
a matrix to zero. Equipped with this notion and the expression
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for V f(z) (26), it follows that the Riemannian gradient of f at
z on M is

gradf(z) := Proj.(Vf(2)) = Vf(2) - D(2)z,
with
D(z) := R{ddiag (V f(z)z")} = R{diag (Vf(z) 0 2)}.

Lemma V.3: If z € M is optimal for (22), then grad f(z) =
0; equivalently, diag(V f(2)z*) = V f(z) o Z is real.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. For the equivalence,
notice that Proj, (u) = 0 if and only if u[k] = R{u[k]z[k]} z[k]
for all k, and multiply by z[k] on both sides using |z[k]|=1. B

A point z which satisfies these conditions is called a critical
point. Likewise, we can define a notion of Riemannian Hessian
as the linear, self-adjoint operator on T, M which captures in-
finitesimal changes in the Riemannian gradient around z. With-
out getting into technical details, we follow [71, eq. (5.15)] and
define (with Dthe directional derivative operator):

Hessf(z)[2] := Proj, (D(z — gradf(z)) (z)[z])
= Proj. (V*f(2)[2] — D(2)z — (DD(2)[2])2) ,

where DD(z)[2] is areal, diagonal matrix. Its contribution to the
Hessian is zero, since (DD(z)[Z]) z vanishes under the projection
Proj.. Hence,

Hessf(2)[] = Proj. (V*f(2)[2] — D(2)2) .

The Riemannian Hessian intervenes in the second-order neces-
sary optimality conditions as follows.

Lemma V.4: If z € M is optimal for (22), then grad f(z) =
0 and Hessf(z) < 0, that is, for all 2 € T, M we have

(2, Hessf(2)[2]) = (£, V*f(2)[2]) — (¢, D(2)%) < 0.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. In the equality, we
used the fact that Proj, is self-adjoint and 2 € T, M. |

A point z which satisfies these conditions is called a second-
order critical point. With unit weights, the following lemma
shows that second-order critical points z, in the noiseless case,
cannot have an arbitrarily bad objective value f(z). This re-
sult is weak, however, since empirically it is observed that in
the noiseless case local optimization methods consistently con-
verge to global optima whose value are N2, suggesting that all
second-order critical points are global optima in this simplified
scenario. While we do not have a proof for this stronger con-
jecture, we provide the lemma below because it is analogous
to [17, Lemma 14] which, in that reference, is a key step toward
proving global optimality of second-order critical points.

Lemma V.5: In the absence of noise and with unit weights, a
second-order critical point z of (22) satisfies

Vf(z)oz>2(vV3-1)>0.
In particular, this implies

F2) = 2 vy = 28D

Proof: See Appendix J for the proof of the inequality. It fol-
lows from two key considerations. First, because z is a critical

N.
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point, Lemma V.3 indicates that V f(z) o Z is real. Second, be-
cause z is second-order critical, the Riemannian Hessian at 2
must be negative semidefinite by Lemma V.4. Applied to all
tangent directions at z which perturb only one phase at a time
implies the desired inequality. The fact that 3f(z) = (z, Vf(z))
follows from (26). |

One final ingredient that is necessary to optimize f over M
is a means of moving away from a current iterate z € M to
the next by following a tangent vector Z. A simple means of
achieving this is through a retraction [71, Def. 4.1.1]. For M,
an obvious retraction is the following:

Retr, (2) = phase(z + 2) € M. 27

With the formalism of (22) and the above derivations, we
can now run a local Riemannian optimization algorithm. As
an example, the Riemannian gradient ascent algorithm would
iterate the following:

20D = Retr, ) (n(t) gradf(z(t)))
= phase (z(t) + n® gradf(,z(t))) ,

where 77(*) > 0 is an appropriately chosen step size and z(*) €
M is an initial guess. It is relatively easy to choose the step
sizes such that the sequence z(*) converges to critical points
regardless of 29 with a linear local convergence rate [71,
§4]. In practice, we prefer to use the Riemannian trust-region
method (RTR) [62], whose usage is simplified by the toolbox
Manopt [63]. RTR enjoys global convergence to second-order
critical points [64] and a quadratic local convergence rate.

In this section, the analysis focused on complex signals. For
real signals, we can follow the same methodology while taking
the symmetry in the Fourier domain into account. This analysis
is given in Appendix B.

VI. EXPECTATION MAXIMIZATION

In this section, we detail the expectation maximization algo-
rithm (EM) [73] applied to MRA. As the numerical experiments
in Section VII demonstrate, EM achieves excellent accuracy in
estimating the signal. However, compared to the invariant fea-
tures approach proposed in this paper, it is significantly slower
and requires many passes over the data (thus excluding online
processing).

Let X =[&,...,&y] be the data matrix of size N x M,
following the MRA model (1). The maximum marginalized
likelihood estimator (MMLE) for the signal x given X is the
maximizer of the likelihood function L(x; X) = p(X|x) (the
probability density of X given x). This density could in principle
be evaluated by marginalizing the joint distribution p(X, r|z)
over the unknown shifts 7 € {0,..., N — 1} This, however,
is intractable as it involves summing over N terms.

Alternatively, EM tries to estimate the MMLE as follows.
Given a current estimate for the signal xj, consider the ex-
pected value of the log-likelihood function, with respect to the
conditional distribution of r given X and x;:

(28)

Q(.’L’|$k) = Er|X,zk {Ing(er‘xk)} .
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This step is called the E-step. Then, iterate by computing the
M-step:

Tpy1 = arg mfo(a?kEk). (29)

For the MRA model, this can be done in closed form. Indeed,
the log-likelihood function follows from the i.i.d. Gaussian noise
model:

;XM

257 — &3 + constant.

logp(X,r|z) = — | R, @ (30)
j=1
To take the expectation with respect to , we need to compute
J : for each observation j, this is the probability that the shift
rj 1s equal to £, given X and assuming « = xj. This also follows
easily from the i.i.d. Gaussian noise model:

: 1
U)ﬁ'J X exp <%2||ka - §j||§> ; (3D

(with appropriate scale so that Zév 01 wf /= 1). This allows to

write (Q down explicitly:
| M oN-1

] Z Z wi! || Rex — €| + constant.

Q(x|zy) =

This is a convex quadratic expression in & with maximizer

M N-1

Th+1 = *Zzw?Rg &

j=1 (=0

(32)

In words: given an estimator x, the next estimator is obtained
by averaging all shifted versions of all observations, weighted
by the empirical probabilities of the shifts. Considering all shifts
of all observations would, in principle, induce an iteration com-
plexity of O(M N 2), but fortunately, for each observation, the
matrix of its shifted versions is circulant, which makes it pos-
sible to use FFT to reduce the overall computational cost to
O(MN log N). See the available code for details. We note that
Matlab naturally parallelizes the computations over M.

In practice, we set zy ~ N (0, Iy ) to be a random guess. Fur-
thermore, for M > 3000, we first execute 3000 batch iterations,
where the EM update is computed based on a random sample
of 1000 observations (fresh sample at each iteration). This in-
expensively transforms the random initialization into a ballpark
estimate of the signal. The algorithm then proceeds with full-
data iterations until the relative change between two consecutive
estimates drops below 10~ (in £5-norm, up to shifts).

VII. NUMERICAL EXPERIMENTS

This section is devoted to numerical experiments, examining
all proposed algorithms. Code for all algorithms and to repro-
duce the experiments is available online.® The experiments were
conducted as follows. The true signal = of length N =41 is a
fixed window of height 1 and width 21. With this signal, the
signal-to-noise ratio is :
shifted noisy versions of = as

& = Bz +e,

B

3https://github.com/NicolasBoumal/MR A
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Fig. 3. Relative recovery error for the signal z as a function of the number of
observations M for fixed noise level o = 1. The curves corresponding to the
optim. phase manifold (Algorithm 2) and the iter. phase synch. (Algorithm 3)
overlap.
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Fig. 4.  Average computation times corresponding to Fig. 3.

where each shift was randomly drawn from a uniform distri-
bution over {0,...,N — 1} and ¢; ~ N(0,5°I) for all j. The
relative recovery error for a single experiment is defined as

[Rs — |2

relative error(z, &) = T
Tlj2

s€{0,...,N—1} ’
where 2 is the estimation of the signal. All results are averaged
over 20 repetitions. While we present here results for a specific
signal, alternative signal models (e.g., random signals) showed
similar numerical behavior.

The following figures compare the recovery errors for all
proposed algorithms, with random initialization for those that
need initialization. The non-convex algorithm on the manifold of
phases, Algorithm 2, runs the Riemannian trust-region method
(RTR) [62] using the toolbox Manopt [63]. Algorithm 3 runs 15
iterations with warm-start using the same toolbox. For the phase
unwrapping algorithm, Algorithm 6, we use an implementation
of LLL available in the MILES package [70]. The SDP is solved
with CVX [65]. The EM algorithm is implemented as explained
in Section VI. We compared the algorithms with an oracle who
knowns the random shifts 7; and therefore simply averages out
the Gaussian noise. Experiments are run on a computer with 30
CPUs available. These CPUs are used to compute the invariants
in parallel (with Matlab’s parfor), while the EM algorithm
benefits from parallelism to run the many thousands of FFTs it
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with M = 10,000 observations. The curves corresponding to the optim. phase
manifold (Algorithm 2) and the iter. phase synch. (Algorithm 3) overlap.

10%F

— Invariant features, FM

——Invariant features, phase unwrapping
Invariant features, SDP

—— Invariant features, iter. phase synch.

102 F — Invariant features, optim. phase manifold

Expectation maximization

Computation time [s]

4 . . )
10
102 107 10° 10
Noise level o

Fig. 6.  Average computation times corresponding to Fig. 5.

requires efficiently (built-in Matlab). The algorithms that need
§[0] and y[1] are given the correct values.

Figs. 3 and 4 present the recovery error and computation time
of all algorithms as a function of the number of observations M
for fixed noise level o = 1. Of course, the oracle who knows
the shifts of the observations is unbeatable. Algorithms 2 and 3
outperform all invariant approach methods. The inferior perfor-
mance of the SDP might be explained by the fact that we are
minimizing a smooth non-linear objective. This is in contrast
to SDPs with linear or piecewise linear objectives which tend
to promote “simple” (i.e., low rank) solutions [74], [75, Re-
mark 6.2]. Additionally, while this is not depicted on the figure,
we note that for 0 = 0 all methods get exact recovery up to
machine precision. EM outperforms the best invariant features
approaches by a factor of 3, at the cost of being significantly
slower. For large M, the best invariant features approaches are
faster than EM by a factor of 25. Note, however, that for M up to
about 300, EM is faster than the other algorithms. For invariant
features approaches (aside from the SDP), almost all of the time
is spent computing the bispectrum estimator, while inverting the
bispectrum is relatively cheap.

Figs. 5 and 6 show the recovery error and computation time as
a function of the noise level o with M = 10,000 observations.
Surprisingly, for high noise level o 2 3, the invariant features
algorithms outperform EM.
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VIII. CONCLUSIONS AND PERSPECTIVE

The goal of this paper is twofold. First, we have suggested
a new approach for the MRA problem based on features that
are invariant under translations. This technique enables us to
deal with any noise level as long as we have access to enough
measurements and particularly it achieves the sample complex-
ity of MRA. Extensions have been proposed shortly after a first
appearance of this manuscript, focusing on non-uniform distri-
bution of translations and the heterogeneous MRA model [76],
[77]. The invariant features approach has low computational
complexity and it requires less memory with respect to alterna-
tive methods, such as EM.

A main ingredient of the invariant features approach is esti-
mating the signal’s Fourier phases by inverting the bispectrum.
Hence, the second goal of this paper was to study algorithms
for bispectrum inversion. We have proposed a few algorithms
for this task. In the presence of noise, the non-convex algo-
rithms on the manifold of phases, namely, Algorithms 2 and 3,
perform the best. Empirically, these algorithms have a remark-
able property: despite their non-convex landscape, they appear
to converge to the target signal from random initialization. We
provide some analysis for Algorithm 2 but this phenomenon is
not well understood.

Our chief motivation for this work comes from the more
involved problem of cryo-EM. In cryo-EM, a 3D object is es-
timated from its 2D projections at unknown rotations in a low
SNR environment. One line of research for the object recovery
is based on first estimating the unknown rotations [78]—[80].
However, the rotation estimation is performed in a very noisy
environment and therefore might be inaccurate. An interesting
question is to examine whether the 3D object can be estimated
directly from the acquired data using features that are invariant
under the unknown viewing directions [81], [82].
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