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Bispectrum Inversion With Application to

Multireference Alignment
Tamir Bendory , Nicolas Boumal , Chao Ma, Zhizhen Zhao , and Amit Singer

Abstract—We consider the problem of estimating a signal from
noisy circularly translated versions of itself, called multireference
alignment (MRA). One natural approach to MRA could be to es-
timate the shifts of the observations first, and infer the signal by
aligning and averaging the data. In contrast, we consider a method
based on estimating the signal directly, using features of the signal
that are invariant under translations. Specifically, we estimate the
power spectrum and the bispectrum of the signal from the obser-
vations. Under mild assumptions, these invariant features contain
enough information to infer the signal. In particular, the bispec-
trum can be used to estimate the Fourier phases. To this end, we
propose and analyze a few algorithms. Our main methods consist
of nonconvex optimization over the smooth manifold of phases.
Empirically, in the absence of noise, these nonconvex algorithms
appear to converge to the target signal with random initializa-
tion. The algorithms are also robust to noise. We then suggest
three additional methods. These methods are based on frequency
marching, semidefinite relaxation, and integer programming. The
first two methods provably recover the phases exactly in the ab-
sence of noise. In the high noise level regime, the invariant features
approach for MRA results in stable estimation if the number of
measurements scales like the cube of the noise variance, which is
the information-theoretic rate. Additionally, it requires only one
pass over the data, which is important at low signal-to-noise ratio
when the number of observations must be large.

Index Terms—Bispectrum, multireference alignment, phase
retrieval, non-convex optimization, optimization on manifolds,
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semidefinite relaxation, phase synchronization, frequency march-
ing, integer programming, cryo-EM.

I. INTRODUCTION

W
E CONSIDER the problem of estimating a discrete

signal from multiple noisy and translated (i.e., circu-

larly shifted) versions of itself, called multireference aligment

(MRA). This problem occurs in a variety of applications in

biology [1]–[4], radar [5], [6], image registration and super-

resolution [7]–[9], and has been the subject of recent theoretical

analysis [10], [11]. The MRA model reads

ξj = Rrj
x + εj , j = 1, . . . , M, (1)

where εj are i.i.d. normal random vectors with variance σ2 and

the underlying signal x is in R
N or in C

N . Operator Rrj
rotates

the signal x circularly by rj locations, namely, (Rrj
x)[n] =

x[n− rj ], where indexing is zero-based and considered modulo

N (throughout the paper). While both x and the translations {rj}
are unknown, we stress that the goal here is merely to estimate

x. This estimation is possible only up to an arbitrary translation.

A chief motivation for this work arises from the imaging tech-

nique called single particle Cryo-Electron Microscopy (Cryo-

EM), which allows to visualize molecules at near-atomic res-

olution [12], [13]. In Cryo-EM, we aim to estimate a three

dimensional (3D) object from its two-dimensional (2D) noisy

projections, taken at unknown viewing directions [14], [15].

While typically the recovery process involves alignment of mul-

tiple observations in a low signal-to-noise ratio (SNR) regime,

the underlying goal is merely to estimate the 3D object. In this

manner, with the unknown shifts corresponding to the unknown

viewing directions, MRA can be understood as a simplified

model for Cryo-EM.

Existing approaches for MRA can be classified into two main

categories. The first class of methods aims to estimate the set

of translations {rj} first. Given this set, estimating x can be

achieved easily by aligning all observations ξj and then aver-

aging to reduce the noise. The second class, which we favor in

this paper, consists of methods which aim to estimate the signal

directly, without estimating the shifts.

Considering the first class, one intuitive approach to estimat-

ing the translations is to fix a template observation, say ξ1 , and

to estimate the relative translations by cross-correlation. This is

called template matching. Specifically, rj is estimated as

r̂j = arg max
k
�
{

N−1
∑

n=0

ξ1 [n]ξj [n + k]

}

, j = 2, · · · ,M,
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TABLE I
COMPARISON OF MAIN MRA APPROACHES

F (N ) denotes the complexity of inverting the bispectrum. For instance, for the FM algorithm, F (N ) = O (N 2 ). Storage requirements include the possibility of streaming

computations where possible.

Fig. 1. Alignment of two translated versions of the same signal in the presence of i.i.d. Gaussian noise with various standard deviations σ. The true signal in
R100 is a window of length 22 and height 1. Each row presents two observations and their cross-correlation. Importantly, beyond a certain threshold, noise makes
pairwise alignment impossible.

where �{z} and z denote the real part and the conjugate of

a complex number z. This approach requires only one pass

over the data: for each observation, the best shift can be com-

puted in O(N log N) flops, and the aligned observations can

be averaged online. This results in a total computational cost of

O(MN log N) flops, see Table I. While this approach is sim-

ple and efficient, it necessarily fails below a critical SNR—see

Fig. 1 for a representative example.

The issue with template matching is that we rely on aligning

each observation to only one template: this is error prone at low

SNR. Instead, to derive a more robust estimator, one can look

for the most suitable alignment among all pairs of observations.

The M 2 relative shifts thus computed must then be reconciled

into a compatible choice of M shifts for the individual observa-

tions. This is a discrete version of the angular synchronization

problem, see [16]–[21]. The computational complexity of align-

ing all pairs individually is O(M 2N log N), while storing the

results uses O(M 2) memory.

Alternative algorithms for estimating the translations are

based on different SDP relaxations [22], [23], iterative tem-

plate alignment [24], zero phase representations [5] and neural

networks [6]. The statistical limits of alignment tasks were de-

rived for a variety of setups and noise models, see for instance

[25]–[28]. For example, for a continuous, 2D version of the

MRA model, it was shown that the Cramér–Rao lower bound

(CRLB) for translation estimation is proportional to the noise

variance σ2 [25]; crucially, it does not improve with M , even

if the underlying signal is known. This is motivation to con-

sider the second category of MRA methods, where shifts are

not estimated.

Section VI elaborates on expectation maximization (EM)

which tries to compute the maximum marginalized likelihood

estimator (MMLE) of the signal—marginalization is done over

the shifts. This method acknowledges the difficulty of align-

ment by working not with estimates of the shifts themselves,

but rather with estimates of the probability distributions of the

shifts. As a result, EM achieves excellent numerical performance

in practice. However its computational complexity is high and

its performance is not understood in theory.

It has been shown recently that the sample complexity of

MRA, under assumption that shifts are distributed uniformly, is

proportional to σ6 in the low SNR regime. In other words, the

number of measurements M needs to scale like σ6 to retain a

constant estimation error [11].

In this work, we propose a framework which achieves this

sample complexity by estimating the sought signal x directly

using features that are invariant under translations. For instance,

the mean of x is invariant under translation and can be esti-

mated easily from the mean of all observations. We further use

the power spectrum and the bispectrum of the observations—
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which are Fourier-transform based invariants—to estimate the

magnitudes and phases of the signal’s Fourier transform,

respectively.

For any fixed noise level (which may be arbitrarily large),

these features can be estimated accurately provided sufficiently

many measurements are available. Hence, our approach allows

to deal with any noise level. Besides achieving the sample com-

plexity, the computational complexity and memory require-

ments of the methods we describe are relatively low. Indeed,

the only operations whose computational cost grows with M
are computations of averages over the data. These can be per-

formed on-the-fly and are easily parallelizable. We mention that

a recent tensor decomposition algorithm also achieves this esti-

mation rate [29].

Given estimators for the mean and power spectrum of x, es-

timating the DC component and Fourier magnitudes of x is

straightforward. In this paper, we thus focus on the task of

recovering the Fourier phases of x from an estimator of its bis-

pectrum. We propose two non-convex optimization algorithms

on the manifold of phases for this task, which we call bispectrum

inversion. We also discuss three additional algorithms which do

not require initialization (and hence could be used to initialize

others), based on frequency marching, SDP relaxation and in-

teger programming. The first two methods recover the phases

exactly in the absence of noise.

Beyond MRA, the bispectrum plays a central role in a variety

of signal processing applications. For instance, it is a key tool

to separate Gaussian and non-Gaussian processes [30], [31].

It is also used to investigate the cosmic background radiation

[32], [33], seismic signal processing [34], image deblurring [35],

feature extraction for radar [36], analysis of EEG signals [37],

MIMO systems [38] and classification [39] (see also [40]–[44]

and references therein). In Section III, we review previous works

on bispectrum inversion [34], [45], [46]. Reliable algorithms to

invert the bispectrum, as studied here, may prove useful in some

of these applications.

The paper is organized as follows. Section II discusses the

invariant feature approach for MRA. Section III presents the

non-convex algorithms on the manifold of phases for bispectrum

inversion. Section IV is devoted to additional algorithms that

can be used to initialize the non-convex algorithms. Section V

analyzes one of the proposed non-convex algorithm. Section VI

elaborates on the EM approach for MRA, Section VII shows

numerical experiments and Section VIII offers conclusions and

perspective.

Throughout the paper we use the following notation. Vec-

tors x in R
N or C

N and y ∈ C
N denote the underlying signal

and its discrete Fourier transform (DFT), respectively. In the se-

quel, all indices are understood modulo N , namely, in the range

0, . . . , N − 1. The phase of a complex scalar a, defined as a/|a|
if a �= 0 and zero otherwise, is denoted by phase(a) or ã. The

conjugate-transpose of a vector z is denoted by z∗. We use ′◦′ to

denote the Hadamard (entry-wise) product, E for expectation,

Tr(Z) for the trace and ‖Z‖F for the Frobenius norm of a matrix

Z. We reserve T (z) for circulant matrices determined by their

first row z, i.e., T (z)[k1 , k2 ] = z[k2 − k1 ], and HN for the set

of Hermitian matrices of size N ×N .

II. MULTIREFERENCE ALIGNMENT VIA INVARIANT FEATURES

We propose to solve the MRA problem directly using fea-

tures that are invariant under translations. Unlike pairwise align-

ment, this approach fuses information from all M observations

together—not just of pairs—and it only aims to recover the sig-

nal itself—not the translations. The essence of this idea was

discussed as a possible extension in [22, Appendix A]. The

invariant features can be understood either as auto-correlation

functions or as their Fourier transform. In this work, we make

use of the first three invariants defined as

c1 = µx =
1

N

N−1
∑

n=0

x[n],

c2 [n1 ] =
1

N

N−1
∑

n=0

x[n]x[n− n1 ],

c3 [n1 , n2 ] =
1

N

N−1
∑

n=0

x[n]x[n− n1 ]x[n + n2 ], (2)

for n1 , n2 = 0, . . . , N − 1. It is clear that c1 , c2 , c3 are invariant

under circular shifts of x. For higher-order invariants based on

auto-correlations, see for instance [47].

The first feature is the mean of the signal which is the auto-

corrleation function of order one (i.e., c1 in (2)). The distribution

of the mean of ξj is then given by µξj
∼ N (µx , σ 2

N ) and we can

estimate µx as

µ̂x =
1

M

M
∑

j=1

(

1

N

N−1
∑

n=0

ξj [n]

)

∼ N
(

µx ,
σ2

NM

)

. (3)

Estimating the signal’s mean supplies only limited informa-

tion about the signal itself. Thus, we consider also the auto-

correlation function of order two (i.e., c2 in (2)). Its Fourier

transform, the power spectrum, is explicitly defined as

Px [k] = |y[k]|2 ,

for all k, where y is the DFT of x. An alternative way to un-

derstand the invariance of the power spectrum under shifts is

through the effect of shifts on the DFT of a signal:

DFT(Rsx) [k] = y[k] · e−2πiks/N . (4)

Thus, shifts only affect the phases of the DFT, so that PR s x = Px

for any shift Rs . Furthermore, owing to independence of the

noise with respect to the signal itself and to the shift,

E
{

Pξj
[k]
}

= Px [k] + Nσ2 ,

where the second term is the power spectrum of the noise εj .

Therefore, we estimate the power spectrum of x as:

P̂x [k] =
1

M

M
∑

j=1

(Pξj
[k]−Nσ2). (5)

It can be shown that P̂x is unbiased and its variance is dominated

by σ 4

M for large σ. Hence, P̂x → Px as M →∞. In particular,
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accurate estimation of the power spectrum requires M to scale

like σ4 . In the sequel, we assume that σ is known.1

Recovering a signal from its power spectrum is commonly re-

ferred to as phase retrieval. This problem received considerable

attention in recent years, see for instance [48]–[54]. It is well

known that almost no one-dimensional signal can be determined

uniquely from its power spectrum. Therefore, we use the power

spectrum merely to estimate the signal’s Fourier magnitudes. As

explained next, we use the auto-correlation of third order and

its Fourier transform, the bispectrum, to estimate the Fourier

phases.

Since phase retrieval is in general ill posed, we use the auto-

correlation function of order three (that is, c3 in (2)) through

its Fourier transform, the bispectrum, to estimate the Fourier

phases of the sought signal. The bispectrum is a function of two

frequencies k1 , k2 = 0, . . . , N − 1 and is defined as [55]:

Bx [k1 , k2 ] = y[k1 ]y[k2 ]y[k2 − k1 ]. (6)

Note that, if y[0] �= 0, the power spectrum is explicitly included

in the bispectrum since Px [k] = Bx [k, k]/y[0]. The fact that

the bispectrum is invariant under shifts can also be deduced

from (4). Indeed, for any shift Rs ,

BR s x [k1 , k2 ] =
(

y[k1 ]e
−2πik1 s/N

)(

y[k2 ]e
2πik2 s/N

)

·
(

y[k2 − k1 ]e
2πi(k1−k2 )s/N

)

= Bx [k1 , k2 ].

In matrix notation, we express this as

Bx = yy∗ ◦ T (y), (7)

where T (y) is a circulant matrix whose first row is y, that is,

T (y)[k1 , k2 ] = y[k2 − k1 ]. Observe that if x is real, then y[k] =
y[−k] so that T (y) and Bx are Hermitian matrices. Simple

expectation calculations lead to the conclusion that

E
{

Bξj

}

= Bx + σ2N 2µxA, (8)

where A = AR or A = AC depending on x ∈ R
N or x ∈ C

N

and

AR =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 1 1 1 . . . 1
1 1 0 0 . . . 0
1 0 1 0 . . . 0
1 0 0 1 . . . 0
...

...
...

...
. . .

...

1 0 0 0 . . . 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, AC =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 1 1 1 . . . 1
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Since the bias term is proportional to µx , we propose to esti-

mate B̂x−µx
by averaging over Bξj −µx

for all j. This estimator

is unbiased and its variance is controlled by σ 6

M for large σ.

Therefore, M is required to scale like σ6 to ensure accurate es-

timation. In practice, µx is not known exactly. Thus, we estimate

1If σ is not known, it can be estimated from the data as

σ̂2 =
1

N
. variance

(

N −1
∑

n =0

ξj [n]

)

j=1 , . . . ,M

.

the bispectrum by

B̂x−µx
=

1

M

M
∑

j=1

Bξj −µ̂x
, (9)

which is asymptotically unbiased. For finite M and large σ, bias

induced by the approximation µ̂x ≈ µx is significantly smaller

than the standard deviation of (9).

The bispectrum contains information about the Fourier phases

of x because, defining ỹ[k] = phase(y[k]) and B̃x [k1 , k2 ] =
phase(Bx [k1 , k2 ]) where phase extracts the phase of a complex

number (and returns 0 if that number is 0), we have

B̃x [k1 , k2 ] = ỹ[k1 ]ỹ[k2 ]ỹ[k2 − k1 ]. (10)

In matrix notation, the normalized bispectrum takes the form

B̃x = ỹỹ∗ ◦ T (ỹ).
Contrary to the power spectrum, the bispectrum is usually

invertible. Indeed, in the absence of noise, the bispectrum de-

termines the sought signal uniquely under moderate conditions:

Proposition II.1: For N ≥ 5, let x ∈ C
N be a signal whose

DFT y obeys y[k] �= 0 for k = 1, . . . , K, possibly also for k =
0, and zero otherwise. Up to integer time shifts, x is determined

exactly by its bispectrum provided K ≥ N +1
2 .

For N ≥ 5, let x ∈ R
N be a real signal whose DFT y obeys

y[k] �= 0 for k = 1, . . . , K and k = N − 1, . . . , N −K, pos-

sibly also for k = 0, and zero otherwise. Up to integer time

shifts, x is determined exactly by its bispectrum provided
N
3 ≤ K ≤ N−1

2 .

Proof: This is a direct corollary of Lemmas V.1 and B.1. �

We stress that the bispectrum estimator in (9) is not a bispec-

trum itself, since the set of bispectra is not a linear space: B̂x−µx

is not invertible as such [42]. Algorithms we propose aim to find

a stable inverse, in the sense that the recovered signal will have a

bispectrum which is close to the estimated bispectrum in C
N×N .

The following propositions combined argue formally that this

can be done in the MRA model. The proofs in Appendix A are

constructive.

Proposition II.2 (Stable bispectrum inversion): There exists

an estimator x̂ with the following property. For any signal x in

R
N or C

N whose DFT is non-vanishing, there exist a precision

δ = δ(x) > 0 and a sensitivity L = L(x) <∞ such that if an

estimator B̂x of Bx satisfies ‖B̂x −Bx‖F ≤ δ, then x̂ = x̂(B̂x)
satisfies minr=0...N−1 ‖x−Rr x̂‖2 ≤ L‖B̂x −Bx‖F .

Proposition II.3 (Bispectrum estimation): For any signal x
in R

N or C
N whose DFT is non-vanishing, for any required

precision δ > 0 and for any probability p < 1, there exists a

constant C = C(x, p, δ) <∞ such that, for any noise level σ >
0, if the number of observations M exceeds C · (σ2 + σ6), the

estimator

B̂x =
1

M

M
∑

j=1

Bξj
− σ2N 2 µ̂xA

satisfies ‖B̂x −Bx‖F ≤ δ with probability at least p.

We mention that uniqueness in the continuous setup was con-

sidered in [56]. The more general setting of bispectrum over

compact groups was considered in [57]–[60].
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Fig. 2. Relative error of estimating the power spectrum and bispectrum for different noise levels as a function of the number of observations M . Results are
averaged over 10 repetitions for each value of M on a fixed real signal of length N = 41 with i.i.d. normal random entries. The signal-to-noise ratio is then 1/σ2 .

Importantly, the relative error decreases as 1/
√

M regardless of noise level.

Algorithm 1: Outline of the invariant approach for MRA.

Input: Set of observations ξj , j = 1, . . . , M according

to (1) and noise level σ
Output: x̂: estimation of x
Estimate invariant features:

1) Compute µ̂x according to (3)

2) Compute P̂x according to (5)

3) Compute B̂x−µx
according to (9)

Estimate the signal’s DFT:

1) Estimate y[0] from µ̂x . For other frequencies:

2) Estimate the magnitudes of y from P̂x

3) Estimate the phases of y from B̂x−µx
(e.g.,

Algorithm 2)

Return: x̂: inverse DFT of the estimated y

The MRA model here assumes i.i.d. Gaussian noise. How-

ever, the estimation is performed by averaging in the bispectrum

domain, where noise affecting individual entries is correlated.

Consequently, one may want to use a more robust estimator, such

as the median. Yet, computing the median of complex matrices

is computationally expensive, while computing the average can

be performed efficiently and on-the-fly, that is, without requiring

to store all observations. For Gaussian noise, we have noticed

numerically that using the mean or the median for bispectrum

estimation leads to comparable estimation errors (experiments

not shown). In other noise models, e.g., with outliers, it might be

useful to consider the median or the median of means method,

see for instance [61].

Fig. 2 presents the relative estimation error of the power spec-

trum and bispectrum as a function of the number of observations

M . For the bispectrum, the relative error is computed as

relative error :=
‖Bx−µx

− 1
M

∑M
j=1 Bξj −µ̂x

‖F

‖Bx−µx
‖F

,

and similarly for the power spectrum. As expected, the slope of

all curves is approximately 1/2 in logarithmic scale, implying

that the estimation error decreases as O(1/
√

M). The invariant

features approach for MRA is summarized in Algorithm 1.

Consider the case in which the number of samples M may

be very large whereas the size of the object is fixed, namely

N �M . This case is of interest in many applications, such as

cryo-EM [14], [15]. In this regime, the invariant features ap-

proach has two important advantages over methods that rely

on estimating the translations. First, in the invariant features

approach, we average over the M observations (which is com-

putationally cheap), and then apply a more complex algorithm

(say, to recover a signal from its bispectrum) whose input size

is a function of N but is independent of M . Hence, the overall

complexity of this approach can be relatively low. Second, the

alignment-based method requires storing all M observations,

namely, MN samples, which is unnecessary in the invariant

features approach. There, for each observation, we just need to

compute its invariants, to be averaged over all observations: this

can be done online (in streaming mode) and in parallel.

III. NON-CONVEX ALGORITHMS FOR BISPECTRUM INVERSION

After estimating the first Fourier coefficient y[0] as Nµ̂x , our

approach for MRA by invariant features consists of two parts.

We use the power spectrum to estimate the signal’s Fourier

magnitudes and the bispectrum for the phases. The first part is

straightforward: |y[k]| can be estimated as

√

P̂x [k] if P̂x [k] ≥ 0,

and as 0 otherwise. Hereafter, we focus on estimation of the

phases of the DFT, ỹ.

In the literature, two main approaches were suggested to in-

vert the discrete bispectrum. The first is based on estimating the

frequencies one after the other by exploiting simple algebraic

relations [45], [46]. The second approach suggests to estimate

the signal by least-squares solution and phase unwrapping [34],

[46]. We improve these methods and suggest a few new algo-

rithms. The algorithms are split into two sections. This section

is devoted to two new non-convex algorithms based on opti-

mization on the manifold of phases. Both of these algorithms re-

quire initialization. While experimentally it appears that random

initialization works well, for completeness, in the next section

we propose three additional algorithms which do not need ini-

tialization and hence could be used to initialize the non-convex

algorithms.

A. Local Non-convex Algorithm Over the Manifold of Phases

In this section, similarly to (10), we let B̃ denote our estimate

of the phases of Bx . Since B̃ ≈ ỹỹ∗ ◦ T (ỹ), one way to model



1042 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

recovery of the Fourier phases ỹ is by means of the non-convex

least-squares optimization problem

min
z∈CN

∥

∥

∥
W ◦

(

B̃ − zz∗ ◦ T (z)
)∥

∥

∥

2

F
subject to |z[k]| = 1,∀k.

(11)

The matrix W ∈ R
N×N is a weight matrix with nonnegative

entries. These weights can be used to indicate our confidence in

each entry of B̃. Expanding the squared Frobenius norm yields
∥

∥

∥W ◦
(

B̃ − zz∗ ◦ T (z)
)∥

∥

∥

2

F
= ‖W ◦ B̃‖2

F

+ ‖W ◦ zz∗ ◦ T (z)‖2
F − 2

〈

W ◦ B̃,W ◦ zz∗ ◦ T (z)
〉

,

where

〈U, V 〉 = �{Tr(U ∗V )}, (12)

is the real inner product associated to the Frobenius norm. Under

the constraints on z, the first two terms are constant and the inner

product term is equivalent to
〈

W ◦ B̃,W ◦ zz∗ ◦ T (z)
〉

= 〈z,M(z)z〉 ,

with

M(z) := W (2) ◦ B̃ ◦ T (z), (13)

where we use the notation W (2) := W ◦W . One possibility

is to choose W =
√

|B̂x−µx
|, where the absolute value and the

square root are taken entry-wise, so that M(z) = B̂x−µx
◦ T (z).

Hence, optimization problem (11) is equivalent to

max
z∈CN

f(z) = 〈z,M(z)z〉 subject to |z[k]| = 1,∀k. (14)

We can also impose z[0] = phase(µ̂x). If x is real, we have the

additional symmetry constraints z[k] = z[−k].
Since the cost function f is continuous and the search space

is compact, a solution exists. Of course, the solution is not

unique, in accordance with the invariance of the bispectrum

under integer time-shifts of the underlying discrete signal. This

is apparent through the fact that the cost function f is invariant

under the corresponding (discrete) transformations of z. This

is true independently of the data B̃ and W . The proof is in

Appendix C.

Lemma III.1: The cost function f is invariant under trans-

formations of z that correspond to integer time-shifts of the

underlying signal.

To solve this non-convex program, we use the Riemannian

trust-region method (RTR) [62], whose usage is simplified by

the toolbox Manopt [63]. RTR enjoys global convergence to

second-order critical points, that is, points which satisfy first-

and second-order necessary optimality conditions [64] and a

quadratic local convergence rate. Empirically, in the noiseless

case it appears that the algorithm recovers the target signal with

random initialization, all local minima are global (with minor

technicality for even N in the real case) and all second-order crit-

ical points have an escape direction, that is, saddles are “strict”.

Numerical experiments demonstrate reasonable robustness in

the face of noise. This algorithm is summarized in Algorithm 2

and studied in detail in Section V.

Algorithm 2: Non-convex optimization on phase manifold.

Input: The normalized bispectrum B̃[k1 , k2 ] and a weight

matrix W ∈ R
N×N

Output: ŷ: an estimation of ỹ
Compute: Using RTR [62], [63], approximately solve:

ŷ = arg max
z∈CN

�{z∗M(z)z} subject to |z[k]| = 1, ∀k,

(if x is real) z[k] = z[−k], ∀k,

where M(z) := (W ◦W ) ◦ B̃ ◦ T (z).

B. Iterative Phase Synchronization Algorithm

In this section we present an alternative heuristic to the non-

convex algorithm on the manifold of phases. This algorithm is

based on iteratively solving the phase synchronization problem.

Suppose we get an estimation of ỹ, say ŷk−1 . If ŷk−1 ≈ ỹ is non-

vanishing, then this estimation should approximately satisfy the

bispectrum relation:

B̃ ◦ T (ŷk−1) ≈ ŷk−1 ŷ
∗
k−1 .

The underlying idea is now to push the current estimation to-

wards ỹ by finding a rank-one approximation of B̃ ◦ T (ŷk−1)
with unit modulus entries. This problem can be formulated as:

arg max
z∈CN

�
{

z∗
(

B̃ ◦ T (ŷk−1)
)

z
}

subject to |z[�]| = 1, ∀�,
(15)

where we treat the matrix B̃ ◦ T (ŷk−1) as a constant. This prob-

lem is called phase synchronization. Many algorithms have been

suggested to solve the phase synchronization problem. Among

them are the eigenvector method, SDP relaxation, projected

power method, Riemannian optimization and approximate mes-

sage passing [16]–[20]. Notice that the solution of (15) is only

defined up to a global phase, namely, if z is optimal, then so

is zeiφ for any angle φ. To resolve this ambiguity, we require

knowledge of the phase of the mean, ỹ[0] (which is easy to es-

timate from the data) and we pick the global phase of ŷk such

that ŷk [0] = ỹ[0].
The kth iteration of our algorithm thus (tries to) solve

the phase synchronization problem with respect to the ma-

trix Mk−1 := B̃ ◦ T (ŷk−1), where ŷk−1 is the solution of the

previous estimation. Assuming the signal is real, we also im-

pose at each iteration the conjugate-reflection property of

ŷk [�] = ŷk [−�] for all � so that Mk is Hermitian. In the nu-

merical experiments in Section VII, we solve (15) by the Rie-

mannian trust-region method described in [17]. Empirically, the

performance of this algorithm and Algorithm 2 is indistinguish-

able. The algorithm is summarized in Algorithm 3.

IV. INITIALIZATION-FREE ALGORITHMS

The previous section was devoted to non-convex algorithms

to invert the bispectrum. In this section we present three ad-

ditional algorithms based on frequency marching (FM), SDP

relaxation and phase unwrapping. These algorithms do not re-

quire initialization and therefore could be used to initialize the

non-convex algorithms.
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Algorithm 3: Iterative phase synchronization algorithm.

Input: The normalized bispectrum B̃, initial estimation ŷ0 ,

phase of the mean ỹ[0]
Output: ŷ: estimation of ỹ
Set k = 0
while stopping criterion does not trigger do:

- k ← k + 1
- Compute ŷk as a solution of (15)

- Fix the global phase: ŷk ← ŷk · ỹ [0]
ŷk [0]

- If x is real, symmetrize: ŷk ← phase ((ŷk )↓↑), see (B.1)

end while

Return: ŷ ← ŷk

We prove that FM and the SDP recover the Fourier phases

exactly in the absence of noise under the assumption that we

can fix ỹ[1]. If the signal has non-vanishing DFT, ỹ[1] can be

estimated from the bispectrum using the fact that ỹ[1]N equals

phase (Bx [N − 1, 1]Bx [1, 2] ·Bx [1, 2] · · ·Bx [1, N − 1]) .

(Any N th root can be used for ỹ[1], corresponding to the N
possible shifts of x.) In all cases, we argue that forcing ỹ[1] = 1
is acceptable if N is large. Indeed, recall that a shift by � entries

in the space domain is equivalent to modulating the kth Fourier

coefficient by e−2πi�k/N . In particular, it means that the phase

ỹ[1] can be shifted by e−2πi�/N for an arbitrary � ∈ Z. Thus, for

signals of length N � 1, the phase ỹ[1] can be set arbitrarily

with only small error. In the numerical experiments of Section

VII, we give the correct value of ỹ[1] to the algorithms in order

to assess their best possible behavior.

We begin by discussing the FM algorithm, which is a sim-

ple propagation method: it is exact in the absence of noise.

Notwithstanding, its estimation for the low-frequency coeffi-

cients is sensitive to noise. Because of its recursive nature, error

in the low frequencies propagates to the high frequencies, re-

sulting in unreliable estimation. The other two algorithms are

more computationally demanding but appear more robust.

A. Frequency Marching Algorithm

The FM algorithm is a simple propagation algorithm in the

spirit of [45], [46] that aims to estimate ỹ one frequency at a

time. This algorithm has computational complexity O(N 2) and

it recovers ỹ exactly for both real and complex signals in the

absence of noise, assuming ỹ[1] is known.

Let us denote B̃[k1 , k2 ] = eiΨ[k1 ,k2 ] and ỹ[k] = eiψ [k ] . Ac-

cordingly, we can reformulate (6) as

Ψ[k1 , k2 ] = ψ[k1 ]− ψ[k2 ] + ψ[k2 − k1 ] mod 2π,

where the modulo is taken over the sum of all three terms. Using

this relation, we can start to estimate the missing phases. The

first unknown phase, ψ[2], can be estimated by:

Ψ[1, 2] = ψ[1]− ψ[2] + ψ[1] mod 2π

⇒ ψ̂[2] = 2ψ[1]−Ψ[1, 2] mod 2π,

where ψ̂[2] refers to the estimator of ψ[2] (defined modulo 2π).

We can estimate the next phase in the same manner:

Ψ[1, 3] = ψ[1]− ψ[3] + ψ[2] mod 2π

⇒ ψ̂[3] = ψ[1] + ψ̂[2]−Ψ[1, 3] mod 2π.

For higher frequencies, we have more measurements to rely

on. For the fourth entry, we now can derive two estimators as

follows:

Ψ[1, 4] = ψ[1]− ψ[4] + ψ[3] mod 2π

⇒ ψ̂(1) [4] = ψ[1] + ψ̂[3]−Ψ[1, 4] mod 2π,

and

Ψ[2, 4] = ψ[2]− ψ[4] + ψ[2] mod 2π

⇒ ψ̂(2) [4] = 2ψ̂[2]−Ψ[2, 4] mod 2π.

In the noiseless case, it is clear that ψ[4] = ψ̂(1) [4] = ψ̂(2) [4].
In a noisy environment, we can reduce the noise by averaging

the two estimators, where averaging is done over the set of

phases (namely, over the rotation group SO(2)) as explained in

Appendix D. Specifically,

eiψ̂ [4] = phase
(

eiψ̂ ( 1 ) [4] + eiψ̂ ( 2 ) [4]
)

.

We can iterate this procedure. To estimate phase q, we want

to consider all entries of B̃[k, �] = ỹ[k]ỹ[�]ỹ[�− k] such that

exactly one of the indices k, �, or �− k is equal to q and

all other indices are in 1, . . . , q − 1, so that all other phases

involved have already been estimated. A simple verification

shows that only entries B̃[p, q], p = 1, . . . , q − 1, have that

property. Furthermore, because of symmetry in the bispec-

trum (25), half of these entries are redundant so that only entries

B̃[p, q], p = 1, . . . ,
⌊

q
2

⌋

remain. As a result, estimation of the

kth phase relies on averaging over
⌊

k
2

⌋

equations, as summa-

rized in Algorithm 4, with the following simple guarantee. The

above construction yields the following proposition.

Proposition IV.1: Let B̃ = B̃x be the normalized bispectrum

as defined in (10) and assume that ỹ[1] is known. If y[k] �= 0
for k = 1, . . . , K, then Algorithm 4 recovers the Fourier phases

ỹ[k], k = 1, . . . , K exactly.

We note in closing that, if the signal x is real, symmetries in

the phases ỹ and B̃ can be exploited easily in FM.

B. Semidefinite Programming Relaxation

In this section we assume that the DFT y is non-vanishing so

that the bispectrum relation can be manipulated as

B̃ = ỹỹ∗ ◦ T (ỹ) ≡ B̃ ◦ T (ỹ) = ỹỹ∗,

where T (ỹ) is its entry-wise conjugate. The developments are

easily adapted if the signal has zero mean. Similarly to the FM

algorithm, we assume that ỹ[0] and ỹ[1] are available. We aim

to estimate ỹ by a convex program. As a first step, we decouple

the bispectrum equation and write the problem of estimating ỹ
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Algorithm 4: Frequency marching algorithm.

Input: Normalized bispectrum B̃[k1 , k2 ] = eiΨ[k1 ,k2 ] , ỹ[0]
and ỹ[1] �= 0
Output: ŷ: estimation of ỹ

1) Set ŷ[0] = ỹ[0] and eiψ̂ [1] = ỹ[1]
2) For k = 2, . . . , N do:

a) Average the phase measurements:

u = phase

⎛

⎜

⎝

� k
2 �
∑

�=1

ei(ψ̂ [�]+ ψ̂ [k−�]−Ψ[�,k ])

⎞

⎟

⎠

b) Estimate ψ̂[k] through:

eiψ̂ [k ] =

{

u, u �= 0,
1, u = 0.

Return: ŷ ← eiψ̂

as the following non-convex optimization problem:

min
Z∈HN ,z∈CN

∥

∥

∥W ◦
(

B̃ ◦ T (z)− Z
)∥

∥

∥

2

F

subject to Z = zz∗,

diag (Z) = 1,

z[0] = ỹ[0], z[1] = ỹ[1],

(if x is real) z[k] = z[−k], ∀k, (16)

where HN is the set of Hermitian matrices of size N and W ∈
R

N×N is a real weight matrix with positive entries. In particular,

in the numerical experiments we set W = |B|.
In the absence of noise, the minimizers of (16) satisfy the

bispectrum equation. However, in general these cannot be

computed in polynomial time. In order to make the problem

tractable, we relax the non-convex coupling constraint Z = zz∗

to the convex constraint Z � zz∗ (that is, Z − zz∗ is positive

semidefinite). The convex relaxation is then given by

min
Z∈HN ,z∈CN

∥

∥

∥
W ◦

(

B̃ ◦ T (z)− Z
)∥

∥

∥

2

F

subject to Z � zz∗,

diag (Z) = 1,

z[0] = ỹ[0], z[1] = ỹ[1],

(if x is real) z[k] = z[−k], ∀k. (17)

Upon solving (17), which can be done in polynomial time

with interior point methods, the phases ỹ are estimated from

phase(z). In practice, we use CVX to solve this problem [65].

The algorithm is summarized in Algorithm 5. We note that

problem (17) is not a standard SDP, in that its cost function is

nonlinear.

In the noiseless case, the SDP relaxation (17) recovers the

missing phases exactly. Interestingly, the proof is not so much

based on optimality conditions as it is on an algebraic property

Algorithm 5: Semidefinite relaxation algorithm.

Input: The normalized bispectrum B̃, ỹ[0] and ỹ[1]
Output: ŷ: estimation of ỹ
Solve the SDP with nonlinear cost function (17), for

example using CVX [65]

Return: ŷ ← phase(z)

of circulant matrices. The proof of the following property is

given in Appendix E.

Lemma IV.2: Let û be the DFT of a vector u ∈ C
N obeying

u[k] = u[−k], so that û is real. If u[0] = u[1] = 1 and û is

non-negative, then u[k] = 1 for all k.

The following theorem is a direct corollary of Lemma IV.2.

The main proof idea is as follows. Consider u = ỹ ◦ z where

(Z, z) is optimal for the SDP; then, the constraints ensure u[0] =
u[1] = 1. Furthermore, one can see via the Schur complement

that the constraints force T (u) to be positive semidefinite. Since

the eigenvalues of T (u) are the DFT of u, it follows that û is

non-negative, so that the lemma above applies and u ≡ 1, or,

equivalently, z = ỹ. Details of the proof are in Appendix F.

Theorem IV.3: For a real signal with non-vanishing DFT y,

if all weights in W are positive, ỹ[0] and ỹ[1] are known and

the objective value of (17) attains 0 (which is the case in the

absence of noise), then the SDP has a unique solution given by

z = ỹ and Z = zz∗.
We close with an important remark about the symmetry break-

ing purpose of constraint z[1] = ỹ[1] in the SDP. Because the

signal x can be recovered only up to integer time shifts, even

in the noiseless case, without this constraint there are at least

N distinct solutions (z, Z) to the SDP. Because SDP is a con-

vex program, any point in the convex hull of these N points is

also a solution. Thus, if the symmetry is not broken, the set of

solutions contains many irrelevant points. Furthermore, interior

point methods tend to converge to a center of the set of solutions,

which in this case is never one of the desired solutions.

C. Phase Unwrapping by Integer Programming Algorithm

The next algorithm is based on solving an over-determined

system of equations involving integers. Let us denote ỹ[k] =
eiψ [k ] and B̃[k1 , k2 ] = eiΨ[k1 ,k2 ] so the normalized bispectrum

model is given by

eiΨ[k1 ,k2 ] = ei(ψ [k1 ]−ψ [k2 ]+ψ [k2−k1 ]) .

By taking the logarithm, we get the algebraic relation

Ψ[k1 , k2 ] + 2πχ[k1 , k2 ] = ψ[k1 ]− ψ[k2 ] + ψ[k2 − k1 ], (18)

where, as a result of phase wrapping, χ takes on integer values.

Let Ψvec and χvec be the column-stacked versions of Ψ and χ,

respectively. Then, the model reads

Ψvec + 2πχvec = Aψ, (19)

where the sparse matrix A ∈ R
N 2×N encodes the right hand

side of (18). It can be verified that A is of rank N − 1 (see

for instance [66]), with null space corresponding to the time-

shift-induced ambiguity on the phases (4). Note that both the
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integer vector χvec and the phases ψ are unknown. Given χvec,

the phases ψ can be obtained easily by solving

min
ψ∈RN

‖Ψvec + 2πχvec −Aψ‖p , (20)

for some �p norm. Observe that any error in estimating χ may

cause a big estimation error of ψ in (20). These errors can be

thought of as outliers. Hence, we choose to use least unsquared

deviations (LUD), p = 1, which is more robust to outliers. The

more challenging task is to estimate the integer vector χvec ∈
Z

N 2
. To this end, we first eliminate ψ from (19) as follows. Let

C ∈ R
(N 2−(N−1))×N 2

be a full rank matrix such that CA = 0,

that is, the columns of CT are in the null space of AT . Matrix

C can be designed by at least two methods. One, suggested

in [67], exploits the special structure of A to design a sparse

matrix composed of integer values. Another, which we use here,

is to take C to have orthonormal rows which form a basis of the

kernel of AT . Numerical experiments (not shown) indicate that

the latter approach is more stable. Next, we multiply both sides

of (19) from the left by C to get

C(Ψvec + 2πχvec) = CAψ = 0.

Therefore, the integer recovery problem can be formulated as

min
χvec∈ZN 2

∥

∥

∥

∥

1

2π
CΨvec + Cχvec

∥

∥

∥

∥

2

, (21)

where we minimize over all integers. Note that CΨvec is a known

vector. The problem is then equivalent to finding a lattice vector

with the basis C which is as close as possible to the vector

−CΨvec/(2π). While the problem is known to be NP-hard,

we approximate the solution of (21) with the LLL (Lenstra–

Lenstra–Lovasz) algorithm, which can be run in polynomial

time [68]. The LLL algorithm computes a lattice basis, called

a reduced basis, which is approximately orthogonal. It uses the

Gram–Schmidt process to determine the quality of the basis.

For more details, see [69, Ch. 17].

We note that (21) is under-determined as the matrix C is

of rank N 2 − rank(A) = N 2 − (N − 1). While the LLL algo-

rithm works with under-determined systems, in our case we

can solve it for a determined system since we can fix the first

N − 1 entries of χvec to be zero.2 Once we have estimated

χvec, we solve (20) with p = 1. This approach is summarized in

Algorithm 6.

V. ANALYSIS OF OPTIMIZATION OVER PHASES

In this section, we study the non-convex optimization prob-

lem (14) and give more implementation details to solve it, since

numerical experiments identify this as the method of choice

for MRA from invariant features among all methods compared.

We start by considering the general case of a complex signal

x ∈ C
N and consider the real case in Appendix B. Recall that

we aim to maximize

f(z) = 〈z,M(z)z〉 , M(z) := W (2) ◦ B̃ ◦ T (z),

2We omit the proof of this property here and only mention that it is based on
the derivation in [67].

Algorithm 6: Phase unwrapping by integer programming.

Input: The normalized bispectrum B̃[k1 , k2 ] = eiΨ[k1 ,k2 ]

Output: ŷ: estimation of ỹ
1) (integer programming) Apply the LLL algorithm to

estimate the integer vector χvec from

min
χvec∈ZN 2

‖CΨvec/(2π) + Cχvec‖2 ,

where A is given in (19), CA = 0 and Ψvec ∈ R
N 2

is

a column-stacked version of Ψ, e.g., using code

from [70].

2) (least-unsquared minimization) Let χ̂vec be the

solution of stage 1. Then, solve

ψ̂ = arg min
ψ∈RN

‖Ψvec + 2πχ̂vec −Aψ‖1 .

Return: ŷ ← eiψ̂

where the inner product is defined by (12), W is a real weighting

matrix and W (2) := W ◦W . The optimization problem lives on

a manifold, that is, a smooth nonlinear space. Indeed, the smooth

cost function f(z) is to be maximized over the set

M =
{

z ∈ C
N : |z[0]| = · · · = |z[N − 1]| = 1

}

,

which is a Cartesian product of N unit circles in the com-

plex plane (a torus). Theory and algorithms for optimization on

manifolds can be found in the monograph [71]. We follow this

formalism here. Details can also be found in [17], which deals

with the similar problem of phase synchronization, using sim-

ilar techniques. For the numerical experiments below, we use

the toolbox Manopt which provides implementations of various

optimization algorithms on manifolds [63].

Under mild conditions, the global optima of (14) correspond

exactly to ỹ up to integer time shifts. This fact is proven in

Appendix G.

Lemma V.1: For N ≥ 3, let x ∈ C
N be a signal whose DFT

y is nonzero for frequencies k in {1, . . . , K}, possibly also

for k = 0, and zero otherwise. Up to integer time shifts, x is

determined exactly by its bispectrum B provided K ≥ N +1
2 .

Furthermore, the global optima of (14) correspond exactly to the

relevant phases of y—up to the effects of integer time shifts—

provided W [k, �] is positive when B[k, �] �= 0.

The problem at hand is

max
z∈M

f(z). (22)

This is smooth but non-convex, so that in general it is hard to

compute the global optimum. We derive first- and second-order

necessary optimality conditions. Points which satisfy these con-

ditions are called critical and second-order critical points, re-

spectively. Known algorithms converge to critical points (e.g.,

Riemannian gradient descent) and even to second-order critical

points (e.g., Riemannian trust-regions) regardless of initializa-

tion [62], [64], [71]. Empirically, despite non-convexity, the

global optimum appears to be computable reliably in favorable

noise regimes.
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As we proceed to consider optimization algorithms for (14),

the gradient of f will come into play:

∇f(z) = M(z)z + M(z)∗z + M adj(zz∗),

where M adj : C
N×N → C

N is the adjoint of M with respect

to the inner product 〈·, ·〉. Formally, the adjoint is defined such

that, for any z ∈ C
N , X ∈ C

N×N ,
〈

z,M adj(X)
〉

= 〈M(z), X〉 .
Specifically, in Appendix H we show that

M adj(X)[k] = Tr
(

T�k

(

W (2) ◦ B̃ ◦X
))

, (23)

where Tk is a circulant matrix with ones in its kth (circular)

diagonal and zero otherwise, namely,

(Tk )[�′, �] =

{

1 if �′ = �− k,
0 otherwise.

(24)

As it turns out, under the symmetries of the problem at hand,

there is no need to evaluate M adj explicitly. Indeed, B̃ obeys

B̃[k2 − k1 , k2 ] = ỹ[k2 − k1 ]ỹ[k2 ]ỹ[k1 ] = B̃[k1 , k2 ]. (25)

This property is preserved when B̃ is obtained by averaging

bispectra of multiple observations, as in (9). Assuming the

same symmetry for the real weights W , we find below that

M adj(zz∗) = M(z)z. See Appendix I.

Lemma V.2: If B̃[k2 − k1 , k2 ] = B̃[k1 , k2 ] and W [k2 − k1 ,
k2 ] = W [k1 , k2 ] for all k1 , k2 , then M adj(zz∗) = M(z)z for all

z ∈ C
N .

Thus, under the symmetries assumed in Lemma V.2, the gra-

dient of f simplifies and we get a simple expression for the

Hessian as well:

∇f(z) = 2M(z)z + M(z)∗z,

∇2f(z)[ż] = 2M(ż)z+2M(z)ż+M(ż)∗z+M(z)∗ż. (26)

For unconstrained optimization, the first-order necessary op-

timality conditions are ∇f(z) = 0. In the presence of the con-

straint z ∈M, the conditions are different. Namely, follow-

ing [71, eq. (3.37)], sinceM is a submanifold of C
N , first-order

necessary optimality conditions state that the orthogonal projec-

tion of the gradient ∇f(z) to the tangent space toM at z must

vanish. The result of this projection is called the Riemannian

gradient. Formally, the tangent space is obtained by linearizing

(differentiating) the constraints |z[k]|2 = 〈z[k], z[k]〉 = 1 for all

k, yielding

TzM = {ż ∈ C
N : 〈z[k], ż[k]〉 = 0,∀k}.

Orthogonal projection of u ∈ C
N to the tangent space TzM

can be computed entry-wise by subtracting from each u[k] its

component aligned with z[k]. Let Projz : C
N → TzM denote

this projection. This operation admits a compact matrix notation

as

u �→ Projz (u) = u−�{u ◦ z} ◦ z

= u−�{ddiag(uz∗)}z,

where ddiag : C
N×N → C

N×N sets all non-diagonal entries of

a matrix to zero. Equipped with this notion and the expression

for ∇f(z) (26), it follows that the Riemannian gradient of f at

z onM is

gradf(z) := Projz (∇f(z)) = ∇f(z)−D(z)z,

with

D(z) := �{ddiag (∇f(z)z∗)} = �{diag (∇f(z) ◦ z)}.
Lemma V.3: If z ∈M is optimal for (22), then gradf(z) =

0; equivalently, diag(∇f(z)z∗) = ∇f(z) ◦ z is real.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. For the equivalence,

notice that Projz (u) = 0 if and only if u[k] = �{u[k]z[k]}z[k]
for all k, and multiply by z[k] on both sides using |z[k]|=1. �

A point z which satisfies these conditions is called a critical

point. Likewise, we can define a notion of Riemannian Hessian

as the linear, self-adjoint operator on TzM which captures in-

finitesimal changes in the Riemannian gradient around z. With-

out getting into technical details, we follow [71, eq. (5.15)] and

define (with D the directional derivative operator):

Hessf(z)[ż] := Projz (D(z �→ gradf(z)) (z)[ż])

= Projz
(

∇2f(z)[ż]−D(z)ż − (DD(z)[ż])z
)

,

where DD(z)[ż] is a real, diagonal matrix. Its contribution to the

Hessian is zero, since (DD(z)[ż])z vanishes under the projection

Projz . Hence,

Hessf(z)[ż] = Projz
(

∇2f(z)[ż]−D(z)ż
)

.

The Riemannian Hessian intervenes in the second-order neces-

sary optimality conditions as follows.

Lemma V.4: If z ∈M is optimal for (22), then gradf(z) =
0 and Hessf(z)  0, that is, for all ż ∈ TzM we have

〈ż,Hessf(z)[ż]〉 =
〈

ż,∇2f(z)[ż]
〉

− 〈ż, D(z)ż〉 ≤ 0.

Proof: See [72, Rem. 4.2 and Cor. 4.2]. In the equality, we

used the fact that Projz is self-adjoint and ż ∈ TzM. �

A point z which satisfies these conditions is called a second-

order critical point. With unit weights, the following lemma

shows that second-order critical points z, in the noiseless case,

cannot have an arbitrarily bad objective value f(z). This re-

sult is weak, however, since empirically it is observed that in

the noiseless case local optimization methods consistently con-

verge to global optima whose value are N 2 , suggesting that all

second-order critical points are global optima in this simplified

scenario. While we do not have a proof for this stronger con-

jecture, we provide the lemma below because it is analogous

to [17, Lemma 14] which, in that reference, is a key step toward

proving global optimality of second-order critical points.

Lemma V.5: In the absence of noise and with unit weights, a

second-order critical point z of (22) satisfies

∇f(z) ◦ z ≥ 2(
√

3− 1) > 0.

In particular, this implies

f(z) =
1

3
〈z,∇f(z)〉 ≥ 2(

√
3− 1)

3
N.

Proof: See Appendix J for the proof of the inequality. It fol-

lows from two key considerations. First, because z is a critical
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point, Lemma V.3 indicates that ∇f(z) ◦ z is real. Second, be-

cause z is second-order critical, the Riemannian Hessian at z
must be negative semidefinite by Lemma V.4. Applied to all

tangent directions at z which perturb only one phase at a time

implies the desired inequality. The fact that 3f(z) = 〈z,∇f(z)〉
follows from (26). �

One final ingredient that is necessary to optimize f over M
is a means of moving away from a current iterate z ∈M to

the next by following a tangent vector ż. A simple means of

achieving this is through a retraction [71, Def. 4.1.1]. For M,

an obvious retraction is the following:

Retrz (ż) = phase(z + ż) ∈M. (27)

With the formalism of (22) and the above derivations, we

can now run a local Riemannian optimization algorithm. As

an example, the Riemannian gradient ascent algorithm would

iterate the following:

z(t+1) = Retrz ( t )

(

η(t) gradf(z(t))
)

= phase
(

z(t) + η(t) gradf(z(t))
)

,

where η(t) > 0 is an appropriately chosen step size and z(0) ∈
M is an initial guess. It is relatively easy to choose the step

sizes such that the sequence z(t) converges to critical points

regardless of z(0) , with a linear local convergence rate [71,

§4]. In practice, we prefer to use the Riemannian trust-region

method (RTR) [62], whose usage is simplified by the toolbox

Manopt [63]. RTR enjoys global convergence to second-order

critical points [64] and a quadratic local convergence rate.

In this section, the analysis focused on complex signals. For

real signals, we can follow the same methodology while taking

the symmetry in the Fourier domain into account. This analysis

is given in Appendix B.

VI. EXPECTATION MAXIMIZATION

In this section, we detail the expectation maximization algo-

rithm (EM) [73] applied to MRA. As the numerical experiments

in Section VII demonstrate, EM achieves excellent accuracy in

estimating the signal. However, compared to the invariant fea-

tures approach proposed in this paper, it is significantly slower

and requires many passes over the data (thus excluding online

processing).

Let X = [ξ1 , . . . , ξM ] be the data matrix of size N ×M ,

following the MRA model (1). The maximum marginalized

likelihood estimator (MMLE) for the signal x given X is the

maximizer of the likelihood function L(x;X) = p(X|x) (the

probability density of X given x). This density could in principle

be evaluated by marginalizing the joint distribution p(X, r|x)
over the unknown shifts r ∈ {0, . . . , N − 1}M . This, however,

is intractable as it involves summing over NM terms.

Alternatively, EM tries to estimate the MMLE as follows.

Given a current estimate for the signal xk , consider the ex-

pected value of the log-likelihood function, with respect to the

conditional distribution of r given X and xk :

Q(x|xk ) = Er |X,xk
{log p(X, r|xk )} . (28)

This step is called the E-step. Then, iterate by computing the

M-step:

xk+1 = arg max
x

Q(x|xk ). (29)

For the MRA model, this can be done in closed form. Indeed,

the log-likelihood function follows from the i.i.d. Gaussian noise

model:

log p(X, r|x) = − 1

2σ2

M
∑

j=1

‖Rrj
x− ξj‖2

2 + constant. (30)

To take the expectation with respect to r, we need to compute

w�,j
k : for each observation j, this is the probability that the shift

rj is equal to �, given X and assuming x = xk . This also follows

easily from the i.i.d. Gaussian noise model:

w�,j
k ∝ exp

(

− 1

2σ2
‖R�xk − ξj‖2

2

)

, (31)

(with appropriate scale so that
∑N−1

�=0 w�,j
k = 1). This allows to

write Q down explicitly:

Q(x|xk ) = − 1

2σ2

M
∑

j=1

N−1
∑

�=0

w�,j
k ‖R�x− ξj‖2

2 + constant.

This is a convex quadratic expression in x with maximizer

xk+1 =
1

M

M
∑

j=1

N−1
∑

�=0

w�,j
k R−1

� ξj . (32)

In words: given an estimator xk , the next estimator is obtained

by averaging all shifted versions of all observations, weighted

by the empirical probabilities of the shifts. Considering all shifts

of all observations would, in principle, induce an iteration com-

plexity of O(MN 2), but fortunately, for each observation, the

matrix of its shifted versions is circulant, which makes it pos-

sible to use FFT to reduce the overall computational cost to

O(MN log N). See the available code for details. We note that

Matlab naturally parallelizes the computations over M .

In practice, we set x0 ∼ N (0, IN ) to be a random guess. Fur-

thermore, for M ≥ 3000, we first execute 3000 batch iterations,

where the EM update is computed based on a random sample

of 1000 observations (fresh sample at each iteration). This in-

expensively transforms the random initialization into a ballpark

estimate of the signal. The algorithm then proceeds with full-

data iterations until the relative change between two consecutive

estimates drops below 10−5 (in �2-norm, up to shifts).

VII. NUMERICAL EXPERIMENTS

This section is devoted to numerical experiments, examining

all proposed algorithms. Code for all algorithms and to repro-

duce the experiments is available online.3 The experiments were

conducted as follows. The true signal x of length N = 41 is a

fixed window of height 1 and width 21. With this signal, the

signal-to-noise ratio is
‖x‖2

‖ε‖2 ≈ 1
2σ 2 . We generated a set of M

shifted noisy versions of x as

ξj = Rrj
x + εj ,

3https://github.com/NicolasBoumal/MRA
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Fig. 3. Relative recovery error for the signal x as a function of the number of
observations M for fixed noise level σ = 1. The curves corresponding to the
optim. phase manifold (Algorithm 2) and the iter. phase synch. (Algorithm 3)
overlap.

Fig. 4. Average computation times corresponding to Fig. 3.

where each shift was randomly drawn from a uniform distri-

bution over {0, . . . , N − 1} and εj ∼ N (0, σ2I) for all j. The

relative recovery error for a single experiment is defined as

relative error(x, x̂) = min
s∈{0,...,N−1}

‖Rs x̂− x‖2

‖x‖2
,

where x̂ is the estimation of the signal. All results are averaged

over 20 repetitions. While we present here results for a specific

signal, alternative signal models (e.g., random signals) showed

similar numerical behavior.

The following figures compare the recovery errors for all

proposed algorithms, with random initialization for those that

need initialization. The non-convex algorithm on the manifold of

phases, Algorithm 2, runs the Riemannian trust-region method

(RTR) [62] using the toolbox Manopt [63]. Algorithm 3 runs 15

iterations with warm-start using the same toolbox. For the phase

unwrapping algorithm, Algorithm 6, we use an implementation

of LLL available in the MILES package [70]. The SDP is solved

with CVX [65]. The EM algorithm is implemented as explained

in Section VI. We compared the algorithms with an oracle who

knowns the random shifts rj and therefore simply averages out

the Gaussian noise. Experiments are run on a computer with 30

CPUs available. These CPUs are used to compute the invariants

in parallel (with Matlab’s parfor), while the EM algorithm

benefits from parallelism to run the many thousands of FFTs it

Fig. 5. Relative recovery error for the signal x as a function of the noise level σ
with M = 10,000 observations. The curves corresponding to the optim. phase
manifold (Algorithm 2) and the iter. phase synch. (Algorithm 3) overlap.

Fig. 6. Average computation times corresponding to Fig. 5.

requires efficiently (built-in Matlab). The algorithms that need

ỹ[0] and ỹ[1] are given the correct values.

Figs. 3 and 4 present the recovery error and computation time

of all algorithms as a function of the number of observations M
for fixed noise level σ = 1. Of course, the oracle who knows

the shifts of the observations is unbeatable. Algorithms 2 and 3

outperform all invariant approach methods. The inferior perfor-

mance of the SDP might be explained by the fact that we are

minimizing a smooth non-linear objective. This is in contrast

to SDPs with linear or piecewise linear objectives which tend

to promote “simple” (i.e., low rank) solutions [74], [75, Re-

mark 6.2]. Additionally, while this is not depicted on the figure,

we note that for σ = 0 all methods get exact recovery up to

machine precision. EM outperforms the best invariant features

approaches by a factor of 3, at the cost of being significantly

slower. For large M , the best invariant features approaches are

faster than EM by a factor of 25. Note, however, that for M up to

about 300, EM is faster than the other algorithms. For invariant

features approaches (aside from the SDP), almost all of the time

is spent computing the bispectrum estimator, while inverting the

bispectrum is relatively cheap.

Figs. 5 and 6 show the recovery error and computation time as

a function of the noise level σ with M = 10,000 observations.

Surprisingly, for high noise level σ � 3, the invariant features

algorithms outperform EM.
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VIII. CONCLUSIONS AND PERSPECTIVE

The goal of this paper is twofold. First, we have suggested

a new approach for the MRA problem based on features that

are invariant under translations. This technique enables us to

deal with any noise level as long as we have access to enough

measurements and particularly it achieves the sample complex-

ity of MRA. Extensions have been proposed shortly after a first

appearance of this manuscript, focusing on non-uniform distri-

bution of translations and the heterogeneous MRA model [76],

[77]. The invariant features approach has low computational

complexity and it requires less memory with respect to alterna-

tive methods, such as EM.

A main ingredient of the invariant features approach is esti-

mating the signal’s Fourier phases by inverting the bispectrum.

Hence, the second goal of this paper was to study algorithms

for bispectrum inversion. We have proposed a few algorithms

for this task. In the presence of noise, the non-convex algo-

rithms on the manifold of phases, namely, Algorithms 2 and 3,

perform the best. Empirically, these algorithms have a remark-

able property: despite their non-convex landscape, they appear

to converge to the target signal from random initialization. We

provide some analysis for Algorithm 2 but this phenomenon is

not well understood.

Our chief motivation for this work comes from the more

involved problem of cryo-EM. In cryo-EM, a 3D object is es-

timated from its 2D projections at unknown rotations in a low

SNR environment. One line of research for the object recovery

is based on first estimating the unknown rotations [78]–[80].

However, the rotation estimation is performed in a very noisy

environment and therefore might be inaccurate. An interesting

question is to examine whether the 3D object can be estimated

directly from the acquired data using features that are invariant

under the unknown viewing directions [81], [82].
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