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NEAR-OPTIMAL BOUNDS FOR PHASE SYNCHRONIZATION∗

YIQIAO ZHONG† AND NICOLAS BOUMAL‡

Abstract. The problem of estimating the phases (angles) of a complex unit-modulus vector z
from their noisy pairwise relative measurements C = zz∗+σW , where W is a complex-valued Gaus-
sian random matrix, is known as phase synchronization. The maximum likelihood estimator (MLE) is
a solution to a unit–modulus-constrained quadratic programming problem, which is nonconvex. Ex-
isting works have proposed polynomial-time algorithms such as a semidefinite programming (SDP)
relaxation or the generalized power method (GPM). Numerical experiments suggest that both of
these methods succeed with high probability for σ up to Õ(n1/2), yet existing analyses only confirm
this observation for σ up to O(n1/4). In this paper, we bridge the gap by proving that the SDP

relaxation is tight for σ = O(
√

n/ logn), and GPM converges to the global optimum under the
same regime. Moreover, we establish a linear convergence rate for GPM, and derive a tighter `∞
bound for the MLE. A novel technique we develop in this paper is to (theoretically) track n closely
related sequences of iterates, in addition to the sequence of iterates GPM actually produces. As a
by-product, we obtain an `∞ perturbation bound for leading eigenvectors. Our result also confirms
predictions that use techniques from statistical mechanics.

Key words. angular synchronization, nonconvex optimization, semidefinite programming relax-
ation, projected power method, quadratically constrained quadratic program, maximum likelihood
estimator, eigenvector perturbation bound
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1. Introduction. Phase synchronization is the problem of estimating n angles
θ1, . . . , θn in [0, 2π) based on noisy measurements of their differences θk − θ` mod 2π.
This is equivalent to estimating n phases eiθ1 , . . . , eiθn from measurements of relative
phases ei(θk−θ`).

A typical noise model for this estimation problem is as follows. The target pa-
rameter (the signal) is the vector z ∈ C

n with entries zk = eiθk . The measurements
are stored in a matrix C ∈ C

n×n such that, for k < `,

Ck` = zkz̄` + σWk`,(1)

where σ ≥ 0 is the noise level and {Wk`}k<` are independent standard complex Gaus-
sian variables. Under this model, defining Wkk = 0 and W`k = Wk` for consistency,
the model is compactly written in matrix notation as

C = zz∗ + σW,(2)

where both C and W are Hermitian. An easy derivation1 shows that a maximum
likelihood estimator (MLE) x̂ ∈ C

n for the signal z is a global optimum of the following
quadratically constrained quadratic program (we define [n] = {1, . . . , n}):

max
x∈Cn

x∗Cx subject to |xk| = 1 for k ∈ [n].(P)
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1Since W is Gaussian, an MLE minimizes the squared Frobenius norm: ‖C − xx∗‖2F = ‖C‖2F +
‖xx∗‖2F − 2x∗Cx. Owing to |xk| = 1 ∀k, this is equivalent to maximizing x∗Cx.

989

D
o

w
n
lo

ad
ed

 0
6
/0

6
/1

8
 t

o
 1

4
0
.1

8
0
.2

5
1
.9

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

990 YIQIAO ZHONG AND NICOLAS BOUMAL

Problem (P) is nonconvex and hard in general ([41, Prop. 3.5]). Yet, numerical exper-
iments in [3, 2] suggest that, provided σ = Õ(

√
n),2 the following convex semidefinite

programming (SDP) relaxation for (P) admits x̂x̂∗ as its unique global optimum with
high probability (more generally, if the problem below admits a solution of rank 1,
x̂x̂∗, then the relaxation is said to be tight and x̂ is an optimum of (P)):

max
X∈Cn×n,X=X∗

trace(CX) subject to diag(X) = 1, X � 0.(SDP)

In this paper, we give a rigorous proof for this observation, improving on the previ-
ous best result which only handles σ = O(n1/4) [2]. Our result also provides some
justification for the analytical prediction in [20] on optimality of the SDP relaxation
approach.3

Theorem 1. If σ = O(
√

n/log n), with high probability for large n, the above
semidefinite program (SDP) admits a unique solution x̂x̂∗, where x̂ is a global optimum
of (P) (unique up to phase).

In the statement of theorem, “up to phase” refers to the fact that the measurements
C are relative: the distribution of C does not change if z is replaced by zeiθ for any
angle θ, so if x̂ is a solution of (P), then necessarily so is x̂eiθ for any θ, and z can
only be recovered up to a global phase shift.

Theorem 1 establishes that, in the proper noise regime, the nonconvex prob-
lem (P) can be solved by solving the tractable convex problem (SDP) instead, where
the latter problem is straightforward to construct through lifting. This lifting increases
the number of unknowns from n−1 to n(n−1), which is polynomial, and (SDP) itself
can be solved in time polynomial in n. Thus, in that regime, problem (P) can be
solved in polynomial time, despite nonconvexity, via a higher-dimensional but convex
formulation. This property is sometimes called hidden convexity.

The fact that (P) is not a computationally hard problem in the proper regime
hints that it may be possible to solve it directly in its natural dimension, avoiding the
lift. Indeed, numerical experiments in [9] suggest that local optimization algorithms
applied to (P) directly succeed in the same regime as (SDP). This was confirmed
theoretically in [9] for σ = O(n1/6), using both a modification of the power method,
called the generalized power method (GPM), and local optimization algorithms acting
directly on the search space of (P), which is a manifold. Results pertaining to the
GPM have been rapidly improved to allow for σ = O(n1/4) in [24].

In this paper, we consider a version of the GPM given as Algorithm 1 and prove
that it works in the same regime as the SDP relaxation, thus better capturing the
empirical observation. Note that the GPM, as a local algorithm, is a more desirable
approach than SDP relaxation in practice. The GPM and its variants are also con-
sidered in a number of related problems [22, 16, 32, 12], and can be seen as special
cases of the conditional gradient algorithm [22, 25].

Theorem 2. If σ = O(
√

n/log n), with high probability for large n, then Algo-
rithm 1 converges at least linearly to the global optimum of (P) (unique up to phase).

To establish both results, we develop an original proof technique based on follow-
ing n + 1 separate but closely related sequences of feasible points for (P), designed

2The notation Õ suppresses potential log factors.
3To be precise, in [20] it is predicted—but not proved—via statistical mechanics arguments that

the SDP relaxation is nearly optimal when σ = O(
√
n). Instead of showing that a solution of (SDP)

has rank 1, a rescaled leading eigenvector of its solution is used as an estimator.
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Algorithm 1. Generalized power method (GPM) without shift.

1: Input: Hermitian measurement matrix C ∈ C
n×n.

2: Initialize: Set x0 to be a leading eigenvector of C with ‖x0‖2 =
√
n.

3: for t = 1, 2 . . . do

4: xt = P(Cxt−1) . Apply entrywise P(a) =

{

a/|a| if a 6= 0,

1 otherwise.

5: end for

in such a way that they will have suitable statistical independence properties. Fur-
thermore, as a necessary step toward proving the main theorems, we prove an `∞
perturbation bound for eigenvectors, which is of independent interest.

It is worth noting that, for σ >
√
n, it is impossible to reliably detect, with

probability tending to 1, whether C is of the form zz∗ + σW or if it is only of
the form σW [29, Thm. 6.11], which suggests that σ <

√
n is necessary for a good

estimator to exist. This can be made precise by considering the simpler problem of
Z2 synchronization,4 where we have the move concrete knowledge that zk ∈ {±1}.
For the Z2 synchronization problem, nonrigorous arguments that use techniques from
statistical mechanics show that σ =

√
n is the information-theoretic threshold for

mean squared estimation error (MSE): when σ is above this threshold, no estimator
is able to beat the trivial estimator x = 0 as n → ∞ [20]. In [4, 23], it was rigorously
proved that σ =

√
n is the threshold for a different notion of MSE. These results

a fortiori imply, for phase synchronization, that σ = O(
√
n) is necessary5 for an

estimator to have nontrivial MSE (better than the trivial estimator x = 0). It is also
known that both the eigenvector estimator and the MLE have nontrivial MSE as soon
as σ <

√
n [11, 6, 20]. Whether the extra logarithmic factor is necessary to compute

the MLE efficiently up to the threshold remains to be determined.
To conclude this introduction, we state the relevance of the MLE x̂ as an estimator

for z.

Theorem 3. Let x̂ be a global optimum of (P), with global phase such that z∗x̂ =
|z∗x̂|. Then, deterministically,

‖x̂− z‖2 ≤ 4σ
‖W‖2√

n
.(3)

Furthermore, if σ = O(
√

n/ log n), then with high probability for large n,

‖x̂− z‖2 = O(σ) and(4)

‖x̂− z‖∞ = O
(

σ
√

log n/n
)

.(5)

The bound on `2 error appears in [2, Lem. 4.1], while the bound on `∞ error improves
on [2, Lem. 4.2] as a by-product of the results obtained here. We remark that σ =

4The problem is formulated as follows: z ∈ {−1, 1}n, with noise W a real random matrix, e.g.,
a Gaussian Wigner matrix, and the goal is to recover z from C = zzT + σW .

5Suppose the prior is supported and uniformly distributed on {−1, 1}n. By independence, the
Bayes-optimal estimator for phase synchronization is a function of Re(C), so we can use information-
theoretic results about the Z2 synchronization problem.
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992 YIQIAO ZHONG AND NICOLAS BOUMAL

O(
√

n/ log n) is necessary for a nontrivial `∞ error (smaller than 1, which is trivially
attained by x = 0) due to [2, 1].6

It is important to state that the eigenvector estimator mentioned above is
orderwise as good an estimator as the MLE, in that it satisfies the same error bounds
as in Theorem 3 up to constants. From the perspective of optimization, the main
merit of Theorems 1 and 2 is that they rigorously explain the empirically observed
tractability of (P) despite nonconvexity.

The difficulty: Statistical dependence. As will be argued momentarily, the
main difficulty in the analysis is proving a sharp bound for ‖Wx̂‖∞, which involves two
dependent random quantities: the noise matrix W and a solution x̂ of (P), which is a
nontrivial function ofW . While in the `2-norm the simple bound ‖Wx̂‖2 ≤ ‖W‖2‖x̂‖2
is sharp, no such simple argument is known to bound the `∞-norm. The need to study
perturbations in the `∞-norm appears inescapable, as it arises from the entrywise
constraints of (P) and the aim to control ‖x̂− z‖∞ as well as ‖x̂− z‖2.

This issue has already been raised in [2, sect. 4], which focuses on the relax-
ation (SDP). Specifically, in [2, eq. (4.10)], it is shown that the relaxation is tight in
particular if

n− 216σ2 − 3σ
√
n− σ‖Wx̂‖∞ > 0,(6)

where x̂ is an optimum of (P) which is then unique up to phase. From this expression,
it is apparent that if σ = O(

√

n/ log n), then it only remains to show that ‖Wx̂‖∞ =
O(

√
n log n) to conclude that solving (SDP) is equivalent to solving (P). This reduces

the task to one of carefully bounding this scalar, random variable:

‖Wx̂‖∞ = max
k∈[n]

|w∗
kx̂|,(7)

where w1, . . . , wn ∈ C
n are the columns of the random noise matrix W . If W and

x̂ were statistically independent, this would be bounded with high probability by
O(

√
n log n), as desired. Indeed, since the vector x̂ contains only phases and since the

Gaussian distribution is isotropic (the distribution is invariant under rotation in the
complex plane), w∗

kx̂ would be distributed identically to a sum of n− 1 independent
standard complex Gaussians. The modulus of such a variable concentrates close to√
n. Taking the maximum over k ∈ [n] incurs an additional O(

√
log n) factor.

Unfortunately, the intricate dependence between W and x̂ has not been satisfac-
torily resolved in previous work, where only suboptimal bounds have been produced
for ‖Wx̂‖∞, eventually leading to suboptimal bounds on the acceptable noise levels
σ; see [2, eq. (4.11)], [9, Lem. 12], and [24, Proof of Thm. 2].

As a key step in overcoming this difficulty, we (theoretically) introduce auxil-
iary problems to transform the question of controlling ‖Wx̂‖∞ into one about the
sensitivity of the optimum x̂ to perturbations of the data C. This is outlined next.

Introducing auxiliary problems to reduce dependence. Since the main
concern in controlling ‖Wx̂‖∞ is the statistical dependence between W and x̂, we
introduce n new optimization problems of the form (P), where, for each value of m
in [n], the cost matrix C is replaced by

C(m) = zz∗ + σW (m) with W
(m)
k` = Wk`1{k 6=m}1{` 6=m},(8)

6In [2, 1], it is suggested that information-theoretically exact recovery with high probability is

impossible for synchronization over Z2 if σ >
√

n/(2− ε) logn. We can use this result to show that

O(
√

n/ logn) is necessary for a nontrivial `∞ error by putting a uniform prior on {−1, 1}n.
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where 1 is the indicator function. In other terms, W (m) is W with the mth row and
column set to 0, so that C(m) is statistically independent from wm. As a result, a
global optimum x̂(m) of (P) with C set to C(m) is also independent from wm. This
usefully informs the following observation, where the global phases of x̂ and x̂(m) are
chosen so that x̂∗x̂(m) = |x̂∗x̂(m)|:

|(Wx̂)m| = |w∗
mx̂| ≤ |w∗

mx̂(m)|+ |w∗
m(x̂− x̂(m))|

≤ |w∗
mx̂(m)|+ ‖wm‖2‖x̂− x̂(m)‖2.(9)

Crucially, independence of wm and x̂(m) implies that the first term is O(
√
n log n)

with high probability, by the argument laid out after (7). In the second term, a
standard concentration argument shows that ‖wm‖2 = O(

√
n) with high probability;

see section 3. Hence, to control ‖Wx̂‖∞, it is sufficient to show that, with high
probability for all m, the solutions x̂ and x̂(m) are within distance O(1) of each other,
in the `2 sense.

This claim about the proximity of x̂ and x̂(m) turns out to be a delicate statement
about the sensitivity of the global optimum of (P) to perturbations of only those
measurements which involve the mth phase, zm. To establish it, we need precise
control of the properties of the optima of (P). To this end, we develop a strategy to
track the properties of sequences which converge to x̂ as well as to x̂(m) for each m.

To facilitate further discussion about `2 distances up to phase, consider the fol-
lowing distance-like function:

d2(x, y) := min
θ∈R

‖xeiθ − y‖2, x, y ∈ C
n.

Restricted to complex vectors of a given `2-norm or to complex vectors with unit-
modulus entries, d2 is a true metric on the quotient space induced by the equivalence
relation ∼:

x ∼ y ⇐⇒ ∃ θ : x = yeiθ.(10)

Thus, d2 is appropriate as a distance between estimators for (P) and as a distance
between candidate eigenvectors, being invariant under global phase shifts. Moreover,
the quotient space is a complete metric space with d2. More details will follow.

Coming back to our problem, the core argument is an analysis of recursive error
bounds of the GPM, and this analysis leads to the proof that all iterates stay in
N := N1 ∩N2, where

N1 = {x ∈ C
n : ‖Wx‖∞ ≤ κ2

√

n log n},(11)

N2 = {x ∈ C
n : d2(x, z) ≤ κ3

√
n},(12)

and κ2, κ3 > 0 are some constants (determined in section 4). On the one hand, we
show that, with high probability, the nonlinear mapping T x = P(Cx) iterated by the
GPM is Lipschitz continuous over N with constant ρ ∈ (0, 1). On the other hand,
we show that, with high probability, all iterates of the GPM are in N . Together,
these two properties imply that, with high probability, T is a contraction mapping
over the set of iterates of the GPM. By a completeness argument, this implies that
the sequence of iterates of the GPM converges in N . The roadmap of our proof is as
follows.

1. x0∈N (this requires developing new `∞ bounds for eigenvector perturbation;
see Theorem 8).
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2. xt ∈ N =⇒ xt+1 ∈ N (this is done in two stages,7 for small and large t; see
Theorems 15 and 17).

3. T is ρ-Lipschitz with ρ < 1 on N with respect to d2 (by completeness, this
implies that limt→∞ xt = x∞ ∈ N ; see Lemma 14).

4. Any fixed point x∞ of T in N is a global optimum of (P); see Lemma 18.
On top of securing results about the GPM, this will imply that (P) admits a solution
x̂ = x∞ which is in N and hence a fortiori satisfies ‖Wx̂‖∞ ≤ κ2

√
n log n, yielding

the announced results about the SDP relaxation as per (6).
As hinted above, we follow this reasoning not only for the sequence xt, which is

expected to converge to x̂, but also for auxiliary sequences xt,m expected to converge
to x̂(m). It is only through exploitation of the strong links between these sequences
and the reduction in statistical dependence they offer that we are able to go through
with the proof program above.

Note that T might not be a contraction mapping on all of N , since we do not show
that T (N ) ⊂ N . Nevertheless, T is a contraction on the iterates, which is sufficient for
our purpose; henceforth, we say that the mapping has the local contraction property.

We remark that, in the study of high-dimensional M -estimation [5], the idea
of introducing auxiliary problems (and associated optimizers) is also used to tackle
dependence, and it yields powerful analysis. While sharing similarity with that ap-
proach, our analysis relies on studying n auxiliary sequences of iterates, as will be
discussed shortly; see also Figure 1.

As a necessary and useful warm-up, we first focus on the task of showing that x0 (a
leading eigenvector of C) is in N via analysis of the related x0,m (leading eigenvectors
of C(m)). This requires sharp bounds for d2(x

0, x0,m). The outcome of this analysis
is an eigenvector perturbation bound in the `∞-norm, which is another motivation
for the introduction of auxiliary problems.

First analysis: An `∞ perturbation bound for eigenvectors. As the ini-
tializer of Algorithm 1, the leading eigenvector of C has several good properties nec-
essary for analysis, and we will discuss them in depth in section 3. Theorems and
lemmas in this direction are stated separately and proved first, because their proofs
are illustrative of the techniques deployed to prove results about (P). Most notably,
we prove a sharp `∞ perturbation bound for leading eigenvectors.

Theorem 4. If σ = O(
√

n/ log n), then, with high probability for large n, a
leading eigenvector x0 of the data matrix C (2) scaled such that ‖x0‖2 =

√
n satisfies

‖x0 − z‖∞ = O(σ
√

log n/n),(13)

where the global phase of x0 is suitably chosen (e.g., such that z∗x0 = |z∗x0|).
The crux of the proof lies in a sharp bound on d2(x

0, x0,m). This is obtained by
using (a suitable version of) the Davis–Kahan theorem (Lemma 11): when σ � √

n,

d2(x
0, x0,m) = O

(

σ‖(W −W (m))x0,m‖2
n

)

= O(σ
√

log n/n), whereas

d2(x
0, z) = O

(

σ‖Wz‖2
n

)

= O(σ).

7To be precise, for large t, we consider a slightly larger N (the constants in (11) and (12) are
larger), and prove that all xt stay in this larger region. This is a technical issue which does not affect
the overall plan.
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Fig. 1. Sequence {xt}∞t=0 produced by Algorithm 1, and n auxiliary sequences {xt,m}∞t=0 pro-
duced (conceptually) by Algorithm 1 with modified inputs. Crucial properties along the paths: (i)
proximity: xt and xt,m stay close; (ii) local contraction: xt and xt,m remain in the contraction
region N with high probability and converge in it.

To reach the first conclusion, we view x0 as the perturbed version of x0,m due to
perturbation σ(W −W (m)). Note that W −W (m) has nonzero entries only in the mth
row and column, and they are independent of x0,m. Compared to the full perturbation
σW which perturbs the eigenvector z to x0, the matrix σ(W − W (m)) results in a
much smaller d2 distance between x0,m and x0. Notice that, as will be detailed later,
these results combined with the reasoning of (9) imply that x0 is in N , as desired.

Comparing Theorem 4 to Theorem 3 readily shows that the eigenvector x0 is
an excellent estimator for z (up to the fact that its entries are not necessarily unit-
modulus, which can be easily corrected; see Theorem 8). Further efforts in this paper
are dedicated to characterizing the performance and tractability of the MLE x̂.

Analysis of iterations: Tracking n auxiliary sequences. While analyzing
the eigenvector x0 is relatively straightforward, the optima of (P) are more difficult
to tame due to the unit-modulus constraints. As mentioned above, the novel idea we
develop in this paper is to track the sequences {xt,m}∞t=0 produced by Algorithm 1
with inputs C(m) (8) instead of C for each m ∈ [n]. These auxiliary sequences—which
only serve for the analysis and are not (and could not be) computed in practice—enjoy
the crucial proximity property desired in the previous subsection; see Figure 1.

Indeed, we will show by induction that there exist absolute constants κ1, κ2, κ3

such that, for all m and for t = 0, 1, 2, . . . ,
1. d2(x

t, xt,m) ≤ κ1, proximity property
2. xt ∈ N1 = {x ∈ C

n : ‖Wx‖∞ ≤ κ2

√
n log n},

3. xt ∈ N2 = {x ∈ C
n : d2(x, z) ≤ κ3

√
n}.

}

contraction region

The proximity and local contraction properties8 are both crucial and complementary
to the analysis: the proximity property allows one to control `∞ quantities in the
presence of the random matrix W despite statistical dependence (as shown in (9)),
and the local contraction property is used to establish (14) below, making sure that
d2(x

t, xt,m) remains small.

8Formally, we only prove xt ∈ N but proximity implies that xt,m is also in a (slightly larger)
contraction region with different constants κ2, κ3.
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For the high-level idea, consider the nonlinear operators T and T (m) implicitly
defined by Algorithm 1 such that xt+1 = T xt and xt+1,m = T (m)xt,m. If we can show
that T is ρ-Lipschitz with constant ρ ∈ (0, 1) with respect to d2, then a recursive
error bound follows:

d2(x
t+1, xt+1,m) = d2(T xt, T (m)xt,m)

≤ d2(T xt, T xt,m) + d2(T xt,m, T (m)xt,m)

≤ ρ · d2(xt, xt,m) + discrepancy error.(14)

This ensures that d2(x
t, xt,m) does not accumulate with t, provided the discrepancy

error—which is caused by the difference between T and T (m)—is small enough. This
is assured with high probability, because C − C(m) is independent of xt,m, causing
the discrepancy error to be O(σ

√

log n/n)—considerably smaller than d2(x
t+1, z) =

O(σ). In spirit, this is the same argument as in the analysis of the eigenvector
estimator.

The above recursive error bound hinges on the other important property, that is,
xt staying in the contraction region. Crucially, to establish xt ∈ N1, we need a tight
bound on ‖Wxt‖∞. Fortunately, we have seen how to control this quantity in (9): for
any m ∈ [n],

(15) |(Wxt)m| ≤ |w∗
mxt,m|+ ‖wm‖2 · d2(xt, xt,m).

This, in turn, requires a proximity result for d2(x
t, xt,m). This insight naturally

motivates an analysis of each iteration by induction.
There are two technical issues we briefly address before ending this introduction

with a remark.
The first issue concerns the probabilistic argument in the proof. In (14) and (15),

we invoke concentration inequalities to obtain tight bounds. However, since there
is a (small) probability that such inequalities will fail, we cannot use union bounds
for t = 1, 2, . . . , which is infinite. To overcome this obstacle, we use concentration
inequalities only for the first T = O(n2) iterations, and resort to a deterministic
analysis for iterations t > T . The critical observation is that d2(x

t+1, xt) decays
exponentially for t ≤ T due to contraction, so the level of update is tiny after T
iterations. Using another inductive argument, we can secure exponential decay for
t > T as well. The rationale is that we already established good properties about xT ,
and d2(x

t, xT ) is tiny for t > T , so we can easily relate xt to xT and show that xt

also has good properties. Essentially, xt remains in a contraction region with slightly
larger constants.

The second issue is identifying the limit x∞ = limt→∞ xt with a solution of (P).
We will verify the optimality and uniqueness (up to phase) of x∞ via a known dual
optimality certificate S = Re{ddiag(Cx∞(x∞)∗)} − C [2].

We close with a remark about the initializer x0 (and x0,m). Algorithm 1 uses the
leading eigenvector of C for initialization, and our analysis relies on `∞ perturbation
bounds to verify the base case of the induction. However, we point out that, even
in the absence of such perturbation results, we could in theory set x0 = x0,m = z,
deduce that x̂ ∈ N , and thus prove Theorem 1 about the SDP relaxation. In other
words, even if we leave out the discussion about the initializer altogether, there is
still enough material to secure tightness of the SDP relaxation. The proof augmented
with the analysis of the eigenvector perturbation has the advantage of also providing
a statement about Algorithm 1 which is actually runnable in practice.
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2. Main results. In this section we will state our main theorems formally. The
assumption on random noise W will also be relaxed to a broader class of random
matrices. To begin with, let us first clarify the “up to phase” statements in section 1.

The quotient space. For any θ ∈ R, whether the true phases are z or zeiθ does
not affect the measurements C (2). As a result, the available data are insufficient to
distinguish z from zeiθ. Clearly the program (P) is invariant to global phase shifts
as well. It thus makes sense to ignore the global phase in defining distances between
estimators. A reasonable notion of `2 error then becomes

d2(x, y) = min
θ∈R

‖xeiθ − y‖2 =
√

‖x‖22 + ‖y‖22 − 2|x∗y|,(16)

where the optimal phase eiθ is the phase (Arg) of x∗y. Similarly, a notion of `∞ error
can be defined:

d∞(x, z) = min
θ∈R

‖xeiθ − z‖∞.(17)

Formally, one can partition all points in C
n into equivalence classes via the equivalence

relation ∼ (10). The resulting quotient space C
n/∼ contains the equivalence classes

[x] = {xeiθ : θ ∈ R} for all x ∈ C
n. Specifically, the feasible set of (P),

(18) C
n
1 := {x ∈ C

n : |x1| = · · · = |xn| = 1},

reduces to C
n
1/∼ under this equivalence relation. It is easily verified that d2 defines a

distance on C
n
1/∼. In particular, it satisfies the triangular inequality (where d2(x, y)

is understood to mean d2([x], [y])):

∀x, y, z ∈ C
n
1 , d2(x, y) = min

θ1,θ2
‖xeiθ1 − z + z − yeiθ2‖2

≤ min
θ1

‖xeiθ1 − z‖2 +min
θ2

‖z − yeiθ2‖2 = d2(x, z) + d2(z, y).

Moreover, Cn
1/∼ is a complete metric space under d2 (see Theorem 17). Similarly,

d∞ is also a distance. As will be shown, the sequence {xt}∞t=1 described in section 1
satisfies the local contraction property (see (14)) on the metric space (Cn

1/∼, d2), and
hence converges to a fixed point which is exactly x̂ (understood as [x̂]).

The noise matrix. In section 1 we assume that W has independent standard com-
plex Gaussian variables above its diagonal. However, this restricted assumption is only
for expository convenience, and can be relaxed to the class of Hermitian Wigner ma-
trices with sub-Gaussian entries. Statements about Algorithm 1 and about tightness
of the SDP relaxation continue to hold, although of course the solution of (P) now
no longer necessarily corresponds to the MLE.

The class of sub-Gaussian variables subsumes Gaussian variables, but has one
defining feature similar to Gaussian variables, that is, the tail probability decaying
no slower than Gaussian variables. In our model, each entry of W satisfies the tail
bound

(19) P(|ξ| > t) ≤ exp(1− t2/K2)

for both real and imaginary parts, where K > 0 is an absolute constant. Formally, we
assume that the Hermitian matrix W satisfies the following: {Re(Wk`), Im(Wk`)}k<`

are jointly independent, have zero mean, and satisfy the sub-Gaussian tail bound (19);

D
o

w
n
lo

ad
ed

 0
6
/0

6
/1

8
 t

o
 1

4
0
.1

8
0
.2

5
1
.9

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

998 YIQIAO ZHONG AND NICOLAS BOUMAL

the diagonal elements are zero, and W`k = Wk` for any k < `. Note that there are
equivalent definitions of sub-Gaussian variables (up to constants) [36].

This random model is a much richer class of noise matrices, containing the
Gaussian model introduced in section 1 as a special case. Each random variable
in {Re(Wk`), Im(Wk`)}k≤` can be, for example, a symmetric Bernoulli variable, any
other centered and bounded variable, or simply zero.

SDP approach. The SDP approach tries to solve (P) via its convex SDP relax-
ation (SDP). It is a relaxation of (P) in the following sense. For any feasible x ∈ C

n,
the corresponding matrix X = xx∗ is feasible for (SDP). Likewise, any feasible matrix
X of rank 1 can be factored as X = xx∗ such that x is feasible for (P). Thus, the
relaxation consists in allowing solutions of rank more than 1 in (SDP). Consequently,
if (SDP) admits a solution of rank 1, X = x̂x̂∗, then the corresponding x̂ is a global
optimum for (P). Furthermore, if the rank-1 solution of (SDP) is unique, then it
can be recovered in polynomial time. For this reason, the regime of interest is one
where (SDP) admits a unique solution of rank 1.

The following theorem—a statement of Theorem 1 which holds in the broadened
noise model—closes the gaps in previous papers [3, 2, 24, 9].

Theorem 5. There exists an absolute constant c0 > 0 such that if σ ≤
c0
√

n/ log n, then, with probability 1−O(n−2), the semidefinite program (SDP) admits
a unique solution x̂x̂∗, where x̂ is the unique global optimum of (P) up to phase.

Note that the exponent 2 in the failure probability O(n−2) can be replaced by any
positive numerical constant, only affecting other absolute constants in the theorem
(and all other theorems).

GPM approach. The generalized power method (Algorithm 1) is an iterative al-
gorithm similar to the classical power method, but instead of projecting vectors onto
a sphere after matrix-vector multiplication Cxt−1, it extracts the phases from Cxt−1,
which is an entrywise projection. It is much faster than SDP and converges linearly
to a limit, which is the optimum x̂ up to phase (optimality is stated in Theorem 7).
The following two theorems form a precise version of Theorems 2 and 3.

Theorem 6. There exists an absolute constant c0 > 0 such that if σ≤ c0
√

n/ log n,
then, with probability 1 − O(n−2), the sequence {xt} produced by Algorithm 1 has a
linear convergence rate to some x̂ ∈ C

n
1 (up to phase):

d2(x
t+1, x̂) ≤ 1

2
d2(x

t, x̂), t = 0, 1, 2, . . . ,

and since d2(x
0, x̂) ≤

√
2n, we have d2(x

t, x̂) ≤
√
2n/2t.

The proof is based on induction: in each iteration, we will establish the proximity
property and the contraction property for xt. The proof is simply a rigorous justi-
fication of the heuristics we discussed in section 1. It also leads to `2 and `∞ error
bounds for x̂. The following theorem is a precise version of Theorem 3.

Theorem 7. Under the same conditions and with the same notation as in The-
orem 6, with probability 1−O(n−2), x̂ is the unique optimum of (P) up to phase. If
we choose the global phase of x̂ such that x̂∗z = |x̂∗z|, then

d2(x̂, z) = ‖x̂− z‖2 ≤ C0σ and d∞(x̂, z) ≤ ‖x̂− z‖∞ ≤ C0σ
√

log n/n,

where C0 > 0 is an absolute constant.
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Eigenvector estimator. We henceforth denote the leading eigenvector of C by x̃,
and similarly the leading eigenvector of C(m) by x̃(m). Note that x̃ and x0 (simi-
larly x̃(m) and x0,m) are identical.9 We highlight the significance of the eigenvector
estimator in the following theorem, which is a precise version of Theorem 4.

Theorem 8. Let x̃ be a leading eigenvector of C with scale and global phase
chosen such that ‖x̃‖2 =

√
n and x̃∗z = |x̃∗z|. There exists an absolute constant

c′0 > 0 such that if σ < c′0
√

n/ log n, then, with probability 1−O(n−2),

d2(x̃, z) = ‖x̃− z‖2 ≤ C ′
0σ and d∞(x̃, z) ≤ ‖x̃− z‖∞ ≤ C ′

0σ
√

log n/n,

where C ′
0 > 0 is some absolute constant. Moreover, the projected leading eigenvector,

namely, Px̃, satisfies the same bounds with C ′
0 replaced by 2C ′

0.

The eigenvector estimator has been studied extensively in recent years, most
prominently in the statistics literature [28, 21], under the spiked covariance model.
While the perturbation x̃ − z is usually studied under `2-norms, the `∞-norm has
received much less attention. A recent `∞ perturbation result appeared in [17], but
it is a deterministic bound and would produce a suboptimal result here.

3. Proof organization for eigenvector perturbations. We begin with some
concentration lemmas, which will also be useful in section 4. Recall the definition of
W (m) (8). We also define ∆W (m) := W −W (m), which has nonzero entries only in
the mth row and column, given by wm.

Concentration lemmas. The first concentration result is standard and is a
direct consequence of, for example, Proposition 2.4 in [33].

Lemma 9. With probability 1−O(n−2), the following holds for any m ∈ [n]:
(20)

‖W‖2 ≤ C ′
2

√
n, ‖W (m)‖2 ≤ C ′

2

√
n, ‖∆W (m)‖2 ≤ C ′

2

√
n, ‖wm‖2 ≤ C ′

2

√
n,

where C ′
2 > 0 is an absolute constant.

Let Sn−1 be the set of unit vectors in C
n. Suppose that for each m ∈ [n] we have

a finite (random) set U (m) ⊂ √
n S

n−1 whose elements are independent of ∆W (m),
and the cardinality of U (m) is not random. Concentration inequalities enable us to
bound ‖∆W (m)u‖2 uniformly over all u ∈ U (m) with high probability. We state this
formally in the next lemma.

Lemma 10. Suppose |U (m)| ≤ 3n2 for all m ∈ [n]. Let um be the mth entry of a
vector u ∈ U (m) and denote Mm = maxu∈U(m) |um|. Then, with probability 1−O(n−2),

(21) max
u∈U(m)

‖∆W (m)u‖2 ≤ C ′
1

√

n log n+ C ′
1

√
nMm ∀m ∈ [n],

where C ′
1 > 0 is an absolute constant. In particular, we can choose C ′

1 > 0 such that
if U (m) ⊂ C

n
1 (defined in (18)), then, with probability 1−O(n−2),

(22) max
m∈[n]

max
u∈U(m)

‖∆W (m)u‖2 ≤ C ′
1

√

n log n.

A straightforward application of Hoeffding’s inequality for sub-Gaussian vari-
ables [36] shows maxu∈U(m) |w∗

mu| = O(
√
n log n) with probability 1 − O(n−2).

9We use the notation x̃ (similarly x̃(m)) to emphasize the leading eigenvector as an estimator, as
opposed to merely an initializer.
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Lemma 10 is more general, because |w∗
mu| ≤ ‖∆W (m)u‖2, and it will be useful in

later proofs.
For the eigenvector problem, we will choose U (m) = {ũ(m)} (a singleton), where

ũ(m) is a leading eigenvector of C(m) = zz∗ + σW (m) scaled to have norm
√
n. For

problem (P), for each m ∈ [n], the set U (m) will be {xt,m}Tt=0, namely, the first
T + 1 iterates of Algorithm 1 with input C(m), where T := 3n2 − 1. By construction,
elements of the set U (m) are independent of ∆W (m).

Introducing auxiliary eigenvector problems. As is well known, the leading
eigenvectors of C are the solutions to the following optimization problem (note that
this problem is a relaxation of (P)):

(P̃)
max
x∈Cn

x∗Cx

subject to ‖x‖2 =
√
n.

We aim to show that a solution x̃ of (P̃) is close to z in the sense of d∞. As before,
the major difficulty of the analysis is obtaining a sharp bound on ‖Wx̃‖∞. This is
apparent when we write λ1(C) for the leading eigenvalue of C and use Cx̃ = λ1(C)x̃
to obtain (choosing the global phase of x̃ such that z∗x̃ = |z∗x̃|)

|x̃m − zm| =
∣

∣

∣

∣

(Cx̃)m
λ1(C)

− zm

∣

∣

∣

∣

≤
∣

∣

∣

∣

|z∗x̃|
λ1(C)

− 1

∣

∣

∣

∣

+
σ|(Wx̃)m|
λ1(C)

∀m ∈ [n].

While it is easy to analyze λ1(C) and |z∗x̃|, bounding ‖Wx̃‖∞ requires more work.
For m ∈ [n], let x̃(m) be the solution to an auxiliary problem (P̃) in which C is

replaced by C(m) = zz∗ + σW (m); thus, x̃(m) is equivalent to x0,m. Following the
same strategy as in (9), we can now split Wx̃ into two terms and try to bound them
separately as

|(Wx̃)m| = |w∗
mx̃| ≤ |w∗

mx̃(m)|+ ‖wm‖2 · d2(x̃, x̃(m)),(23)

where |w∗
mx̃(m)| is the dominant term which can be easily bounded (see the paragraph

below Lemma 10) and ‖wm‖2 · d2(x̃, x̃(m)) = O(
√
nd2(x̃, x̃

(m))) is the higher-order
discrepancy error, which is the price we pay for replacing x̃ with x̃(m).

The crucial point is that d2(x̃, x̃
(m)) = O(σ

√

log n/n), which is much smaller
than d2(x̃, z) = O(σ). This is because the difference between x̃ and x̃(m) results from
a sparse perturbation ∆W (m), whose effect on the leading eigenvector is small. This
point is formalized in the next lemma, which follows from [15].10

Lemma 11 (Davis–Kahan sinΘ theorem). Suppose that A,E ∈ C
n×n are Her-

mitian matrices, and Ã = A+ E. Let δ := λ1(A)− λ2(A) be the gap between the top
two eigenvalues of A, and let u, ũ be leading eigenvectors of A and Ã, respectively,
normalized such that ‖u‖2 = ‖ũ‖2 =

√
n. If δ > ‖E‖2, then

(24) d2(ũ, u) ≤
√
2 ‖Eu‖2

δ − ‖E‖2
.

The benefit of this perturbation result is pronounced when E is a sparse random
matrix: if we set A = C(m), E = σ∆W (m), then the numerator in (24) becomes

10By the Davis–Kahan theorem and Weyl’s inequality, sin θ(ũ, u) ≤ ‖Eu‖2/
√
n (δ−‖E‖2). Thus,

the lemma follows from d2(ũ, u)2/n = 2− 2|ũ∗u|/n = 2− 2 cos θ(ũ, u) ≤ 2 sin2 θ(ũ, u). See also [40].
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√
2σ‖∆W (m)x̃(m)‖2 = O(σ

√
n log n) with high probability (by Lemma 10 and a

bound on Mm). If, however, we set A = zz∗, E = σW , then the numerator is√
2σ‖Wz‖2 = O(σn) with high probability. This is why d2(x̃, x̃

(m)) is so small and
(23) yields a tight bound.

We remark that in many later uses of perturbation results (e.g., [37, 30]), espe-
cially in statistics and theoretical computer science, it is common to invoke a variant
of the Davis–Kahan theorem in which ‖Eu‖2 is replaced by

√
n‖E‖2 in (24), which

would lead to a suboptimal result here. This is because ‖Eu‖2 � √
n‖E‖2 with high

probability when E is a random sparse matrix and ‖u‖∞ is not large. Our analy-
sis here is an example that shows the merit of using the more precise version of the
Davis–Kahan theorem.

4. Proof organization for phase synchronization. We begin with some use-
ful lemmas about the local contraction property. These will prove useful for estab-
lishing the desired properties of the iterates xt of Algorithm 1 by induction. These
properties extend to the limit x∞ = limt→∞ xt by continuity. Finally, we will use a
known optimality certificate for (SDP) to validate x∞.

Local contraction lemmas. First, let us denote the rescaled matrix C/n by L,
which can also be viewed as a linear operator in R

n:

Lx :=
1

n
Cx =

z∗x

n
z +

σ

n
Wx ∀x ∈ C

n.

This is a linear combination of z (signal) and Wx (noise). When σ‖W‖2 is small
compared to n, L is Lipschitz continuous on the sphere around z with respect to d2.

Lemma 12. Suppose ε ∈ (0, 1/2) and x, y ∈ √
n S

n−1, with d2(x, z) ≤ ε
√
n,

d2(y, z) ≤ ε
√
n. Then,

(25) d2(Lx,Ly) ≤
(

6ε+
σ‖W‖2

n

)

d2(x, y).

This lemma is instrumental in establishing the key local contraction property
(Lemma 14). It is related to the contraction mapping theorem, in which an iter-
atively defined sequence converges to a fixed point. We could use this lemma to
easily show (using [24, Proof of Thm. 2], for example) that the normalized version
L̄x := Lx/‖Lx‖2 is a contraction mapping in a neighborhood of z on

√
n S

n−1 that
is, L̄ is the power method operator.

However, our problem is more complicated due to the unit-modulus constraints
in (P) which call for the entrywise operator P(·) in Algorithm 1. Consequently, an
analysis of Algorithm 1 requires entrywise bounds on key quantities in each iteration,
which are more involved than `2 bounds. In the next two lemmas, we will see which
entrywise bounds are needed in order to establish the local contraction property.

Recall that P : Cn → C
n
1 maps each entry of a vector to the unit circle in the

complex plane:

∀ k ∈ [n], (P(x))k =

{

xk/|xk| if xk 6= 0,

1 if xk = 0.

The case xk = 0 will not appear in the proofs because it can be excluded with high
probability. Henceforth, we also drop the parentheses in P(x) for simplicity.
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In the next two lemmas, we establish the local contraction property of PL (the
GPM operator) under the distance d2. Under certain conditions on the input points,
PL shrinks the d2 distance between points by a ratio in (0, 1). In a rigorous sense, this
does not imply that PL is a contraction mapping, because the output points do not
necessarily satisfy the conditions themselves. However, for the sequences of interest,
the conditions are satisfied with high probability and this is all we need to ascertain
convergence; see Theorems 15 and 17.

Lemma 13. Suppose ε ∈ [0, 1). For any x, y ∈ C, if |x| ≥ 1− ε, |y| ≥ 1− ε, then

(26)

∣

∣

∣

∣

x

|x| −
y

|y|

∣

∣

∣

∣

≤ (1− ε)−1|x− y|.

As a consequence, for any w, v ∈ C
n with mink |wk| ≥ 1− ε and mink |vk| ≥ 1− ε,

(27) d2(Pw,Pv) ≤ (1− ε)−1d2(w, v).

This lemma says that P is Lipschitz continuous (in the quotient space C
n/∼) in

a region where |wk| and |zk| are uniformly lower bounded. The composition PL will
have the local contraction property as long as the contraction ratio in (25) is small
enough, and the ε in (27) is not too close to 1. The next lemma formalizes this result.
For later use in the proofs, we also introduce an additional notation: for a Hermitian
matrix W ′ ∈ C

n×n, we let L′ = (zz∗ + σW ′)/n.

Lemma 14. Suppose x, y ∈ √
n S

n−1, K1,K2 > 0, and ε1, ε2 ∈ (0, 1/2) with

d2(x, z) ≤ ε1
√
n, d2(y, z) ≤ ε2

√
n,(28)

‖Wx‖∞ ≤ K1

√

n log n, ‖W ′y‖∞ ≤ K2

√

n log n.(29)

Let ε = max{ε21/2 +K1σ
√

log n/n, ε22/2 +K2σ
√

log n/n}. If ε < 1, then

(30) d2(PLx,PL′y) ≤ (1− ε)−1d2(Lx,L′y).

In particular, when L = L′, if ε < 1 we have

(31) d2(PLx,PLy) ≤ ρ · d2(x, y),

where ρ = (1− ε)−1(6max{ε1, ε2}+ σ‖W‖2/n).
This deterministic lemma states that T := PL has the local contraction property

in a region where (28) and (29) are satisfied, as long as ρ < 1. Note that we have
to require `∞ bounds in (29) because of the entrywise nature of P. In the next
subsection, we use this lemma to show that, with high probability, d2(T xt, T xt,m) is
controlled by ρ · d2(xt, xt,m) where the ratio ρ lies in (0, 1).

Convergence analysis. Let us denote the rescaled matrix C(m)/n by L(m),
where m ∈ [n]. Also let T (m) = PL(m). Recall that x0 is identical to the leading
eigenvector x̃ of L and x0,m is identical to the leading eigenvector x̃(m) of L(m),
and they are normalized such that ‖x0‖2 = ‖x0,m‖2 =

√
n. Algorithm 1 iterates

xt+1 = T xt. The auxiliary sequences defined for theoretical analysis (not implemented
in practice) follow a similar update rule: xt+1,m = T (m)xt,m (Figure 1). Note that,
for all t ≥ 1, each entry of xt and xt,m has unit-modulus, i.e., xt, xt,m ∈ C

n
1 , but

x0, x0,m are not in C
n
1 in general.
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As shown in Lemma 14, the local contraction property of T hinges on the con-
dition that the vectors to be updated are in the contraction region N = N1

⋂N2,
where N1 and N2 are defined in (11) and (12). The absolute constants κ2, κ3 > 0 in
their definitions will be specified in Theorem 15.

In order to show that the iterates xt stay inN , we analyze the dependence between
the random quantities T and xt by making use of the auxiliary sequences xt,m, as
illustrated by (15). As shown in the analysis of eigenvectors in section 3, we know
that d2(x

0, x0,m) is small. Owing to the local contraction property (Lemma 14), we
can prove the recursive error bound (14), which ensures that d2(x

t,m, xt) is bounded
throughout all iterations. The analysis is based on induction.

As discussed in section 1, a technical issue is that we cannot use concentration
results infinitely many times for all t = 1, 2, . . . , because we use the union bound
to achieve a high probability result. We study the first T + 1 := 3n2 iterates using
concentration results, and resort to deterministic analysis for later iterations. In the
following theorems, constants C ′

1, C
′
2 are those constants in Lemmas 9 and 10.

Theorem 15. Suppose n ≥ 2 and σ satisfies

(32) σ ≤ min

{ √
n

120
√
2C ′

2

,
1

240κ2

√

n

log n

}

.

Then, with probability 1−O(n−2), for any t in {0, 1, 2, . . . , T},

d2(x
t,m, xt) ≤ κ1 ∀m ∈ [n],(33)

‖Wxt‖∞ ≤ κ2

√

n log n,(34)

d2(x
t, z) ≤ κ3

√
n.(35)

Here κ1, κ2, κ3 are absolute constants: κ1 = κ3 = 1/60 and κ2 = 4C ′
1 + 2C ′

2κ1.

Note that (34) and (35) guarantee {xt}Tt=0 ⊂ N . Considering (14) from our proof
map,

d2(x
t+1,m, xt+1) ≤ d2(T xt,m, T xt) + d2(T (m)xt,m, T xt,m).

Assuming (34) and (35) for the case t, by the local contraction property
(Lemma 14), the first term is bounded by ρ ·d2(xt,m, xt), where ρ < 1. By the concen-
tration bounds (Lemma 10), the second term is bounded by O(σ‖∆W (m)xt,m‖2/n) =
O(σ

√

log n/n) = O(1) with high probability. Therefore, it is expected that (33) will
continue to hold for the case t+ 1.

This proximity property (33) is crucial to show that xt+1 stays in the local region
N . To bound ‖Wxt+1‖∞, we use the concentration bounds (Lemma 10) and the
proximity property (33) in the inequality (15).

To bound d2(x
t+1, z), we derive an entrywise bound on Lxt, then use Lemma 13.

This is straightforward once we have a bound on ‖Wxt‖∞.
The next result says that d2(x

t+1, xt) decreases geometrically for t = 0, . . . , T −1,
which is notably useful for analyzing later iterations (t ≥ T ).

Theorem 16. Under the same assumption as in Theorem 15, with probability
1−O(n−2), we have

(36) d2(x
t+1, xt) ≤ 1

2
d2(x

t, xt−1) ∀t ∈ {1, 2, . . . , T − 1},

and as a consequence, d2(x
T , xT−1) ≤ 22−T

√
n.
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1004 YIQIAO ZHONG AND NICOLAS BOUMAL

This result is similar to the contraction mapping theorem (though we cannot
prove T x ∈ N for all x ∈ N ), which says that the sequence produced by a contrac-
tion mapping is a Cauchy sequence and satisfies an inequality similar to (36). After
T = 3n2 − 1 iterations, the update from xt to xt+1 is almost negligible. Although
we no longer rely on concentration results, we will show, again by induction, that
d2(x

t, xT ) remains very small for all t ≥ T . This ensures that xt stays in a slightly
larger contraction region for all t (with larger constants). The next theorem depends
crucially on the conclusions of Theorems 15 and 16.

Theorem 17. Suppose that σ is bounded as in Theorem 15, ‖W‖2 ≤ C ′
2

√
n, and

for any t ≤ T −1 we have ‖Wxt‖∞ ≤ κ2

√
n log n and d2(x

t, z) ≤ κ3
√
n. Also suppose

that d2(x
T , xT−1) ≤ κ3/4. Then,

(37) d2(x
T+k, xT+k−1) ≤ 2−kd2(x

T , xT−1) ∀ k ≥ 0.

Furthermore, in the quotient space C
n
1/ ∼ equipped with distance d2, the sequence

[xt] (t ≥ 1) converges to a limit [x∞], where x∞ ∈ C
n
1 is a fixed point of T , i.e.,

T x∞ = x∞. This fixed point satisfies

d2 (x
∞, z) ≤ 3

2
κ3

√
n and ‖Wx∞‖∞ ≤ (κ2 + C ′

2κ3)
√

n log n,(38)

and d2(x
t+1, x∞) ≤ d2(x

t, x∞)/2 holds for all t ≥ 0. Moreover,

Cx∞ = diag(µ)x∞,(39)

where µk = |(Cx∞)k|.
Under the stated conditions, this theorem is a deterministic result. By Theo-

rems 15 and 16, the conditions hold with high probability (note that 22−T
√
n ≤ κ3/4

when n ≥ 2). This theorem establishes the convergence of [xt] and, importantly, the
bounds (38) extend to the limit [x∞] by continuity. This strong characterization of
the limit point puts us in a favorable position to verify optimality.

Verifying optimality. To verify optimality of x∞, it is convenient to use a
known dual certificate for the SDP relaxation. The following is a combination of
Lemmas 4.3 and 4.4 in [2].

Lemma 18. A feasible X for (SDP) is optimal if and only if

S(X) := Re{ddiag(CX)} − C(40)

is positive semidefinite, where ddiag sets all off-diagonal entries to zero. If further-
more rank(S) = n − 1, then X is the unique solution of (SDP), it is of the form
X = x̂x̂∗, and x̂ is the unique global optimum of (P) up to global phase.

To simplify notation, let x = x∞. Using the same developments as in
[2, sect. 4.4], we verify that S = S(xx∗) is positive semidefinite and has rank n−1 un-
der condition (32) on σ and the conclusions of Theorem 17, namely, inequalities (38)
and equation (39). By construction, Sx = 0. Hence, it is sufficient to verify that
u∗Su > 0 for all u ∈ C

n with ‖u‖2 = 1 and u∗x = 0:

u∗Su =
∑

k∈[n]

|uk|2 Re{(Cx)kxk} − u∗Cu

(39)
=

∑

k∈[n]

|uk|2|(Cx)k| − |u∗z|2 − σu∗Wu

≥ |z∗x| − σ‖Wx‖∞ − d22(z, x)− σ‖W‖2.
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(Owing to u∗x = 0, we used |u∗z| = |u∗(z − xeiθ)| ≤ ‖z − xeiθ‖2 = d2(z, x) with
an appropriate choice of θ.) Now using |z∗x| = n − 1

2d
2
2(z, x) and assuming that

‖W‖2 ≤ C ′
2

√
n and the bounds (38) will hold, it follows that

u∗Su ≥ n− 3

2
d22(z, x)− σ‖Wx‖∞ − σ‖W‖2

≥ n− 27

8
κ2
3n− σ(κ2 + C ′

2κ3)
√

n log n− σC ′
2

√
n.

Assume σ satisfies inequality (32). Then, using κ1 = κ3 = 1/60 and κ2 =
4C ′

1 + 2C ′
2κ1 ≥ 2C ′

2κ3 as in Theorem 15,

u∗Su ≥ n

(

1− 27

8
κ2
3 −

κ2 + κ2/2

240κ2
− 1

120
√
2

)

> 0.(41)

Thus, S is positive semidefinite and has rank n − 1 (which implies that xx∗ is
the unique solution of (SDP) and x is the unique solution of (P) up to phase by
Lemma 18) provided σ satisfies (32), ‖W‖2 ≤ C ′

2

√
n, and the conclusions of Theo-

rem 17 hold. Theorem 5 follows directly; details for Theorems 6–7 are in the appendix.

5. Conclusions and perspectives. We proved that both semidefinite program-
ming relaxation and the generalized power method are able to find the global optimum
of (P) under the regime σ = O(

√

n/ log n) with high probability. In other words, the
maximum likelihood estimator of phase synchronization is computationally feasible
under noise level σ = O(

√

n/ log n), which (nearly) matches the information-theoretic
threshold, thus closing the gaps in previous papers. We also derived `2 and `∞ bounds
on the optimum x̂, and the `∞ bound improves upon previous results. The proof is
based on tracking n auxiliary sequences, which is a novel technique developed in this
paper. As a by-product, we also proved an `∞ bound for the eigenvector estimator,
which is of independent interest.

An interesting problem for future work is to prove (or disprove) that second-order
necessary optimality conditions are sufficient for (P). If this is true, then any algorithm
that finds a second-order critical point also solves the nonconvex problem (P). This was
proved in [9] for σ = O(n1/6) and then in [24] for σ = O(n1/4). Numerical experiments
in [9] suggest that a local optimization method (namely, the Riemannian trust-region
method) with random initialization finds the global optimum with σ = Õ(n1/2) and
random initialization. The analysis presented here does not apply directly though,
because it hinges on a characterization of the limit points of the GPM; a priori, this
does not allow one to characterize all second-order critical points.

A natural extension of our work is to establish similar results for synchronization
over SO(d) [10, 38] and SE(d) [27]. The general synchronization problem is to recover
group elements g1, . . . , gn ∈ G from their noisy pairwise measurements g−1

k g`. Our
work here addresses synchronization over the group SO(2) (equivalently, the group
U(1)), that is, in-plane rotations (equivalently, points on the unit complex circle).
Another important group in practice is the rotation group SO(3), which is often used
to describe the orientation of an object [26, 14, 34]. It is shown empirically in [8] that
the Riemannian trust-region method performs well. The analysis may be complicated
by the fact that SO(3) is a noncommutative group.

Another important problem in practice is how to handle incomplete measurement
sets. In this paper, we suppose that all entries of C are known. A more realistic setting
is that some pairs of phase differences are measured, forming the edges of a graph.
This appears in many applications [39, 18] and is addressed in a number of papers
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1006 YIQIAO ZHONG AND NICOLAS BOUMAL

[35, 13]. The effect of an incomplete measurement graph on fundamental bounds is
well understood as being related to the Laplacian of the graph [7]. See [31] for robotics
applications.

Finally, another problem of practical concern is the robustness of estimation meth-
ods. Here, (P) minimizes the sum of squared errors. However, in practice, more robust
methods may be required to deal with outliers. In [38], for example, the authors mini-
mize a sum of unsquared errors. A common way to solve such problems is via iterative
reweighted least squares (IRLS), which is widely used in statistics [19]. IRLS solves a
weighed least squares problem in each step, where the weights depend on the current
iterate. In this regard, our analysis could be a first step toward understanding robust
methods with IRLS for synchronization problems.

Appendix A. Proofs.

Proofs for section 3.

Proof of Lemma 9. Let Mu be the upper triangular part of W , i.e., (Mu)ij =
Wij1i≤j , and Ml = W − Mu. Then Re(Mu), Im(Mu),Re(Ml), Im(Ml) are all ma-
trices with independent and sub-Gaussian entries, whose sub-Gaussian moments are
bounded by an absolute constant (see [36] for equivalent definitions of sub-Gaussian
variables). We can then apply Proposition 2.4 from [33] and obtain the desired con-
centration bound on W . For W (m), we take a union bound over the choice of m. The
bound on ∆W (m) follows from those on W and W (m). The bound on ‖wm‖2 follows
from that on ‖W‖2, since

‖W‖2 = sup
‖u‖2=1

‖Wu‖2 ≥ sup
‖u‖2=1

|w∗
mu| = ‖wm‖2.

Proof of Lemma 10. We will prove this lemma in the case where U (m) is a de-
terministic set. The case where U (m) is random follows easily from the deterministic
case, since we can first condition on U (m) and use independence between ∆W (m) and
U (m). In the proof, notations C1, C

′
1, C2, c1, c2 > 0 denote some absolute constants.

For a fixed m ∈ [n] and u ∈ U (m),

(42) ‖∆W (m)u‖22 = |(∆W (m)u)m|2 +
∑

k 6=m

|(∆W (m)u)k|2.

We will bound the two parts on the right-hand side separately. We can expand
(∆W (m)u)m into a sum: (∆W (m)u)m =

∑

k Wmkuk. By assumption, Re(Wmk) is
a sub-Gaussian random variable. By Hoeffding’s inequality for sub-Gaussian vari-
ables [36],

P

(∣

∣

∣

∣

∣

n
∑

k=1

Re(Wmk)Re(uk)

∣

∣

∣

∣

∣

≥ t

)

≤ exp

(

1− c1t
2

n

)

.

For sums of random variables of Re(Wmk) Im(uk), Im(Wmk)Re(uk), or
Im(Wmk) Im(uk) over k, similar concentration results hold. Thus, we can set t =
C1

√
n log n, where C1 > 0 is some large absolute constant such that c1C

2
1 ≥ 5, and

deduce that with probability at least 1− 4e · n−5,

|(∆W (m)u)m| ≤ 4C1

√

n log n.

Now let us bound the second term in the right-hand side of (42). Observe that

(43)
∑

k 6=m

|(∆W (m)u)k|2 =
∑

k 6=m

|Wkmum|2 =
∑

k 6=m

(

Re(Wkm)2 + Im(Wkm)2
)

|um|2.D
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Since Re(Wkm) is sub-Gaussian, it follows that Re(Wkm)2 is subexponential with a
bounded subexponential norm. So we can use Bernstein’s inequality for subexponen-
tial random variables [36]:

P

(∣

∣

∣

∣

∣

n
∑

k=1

(Re(Wkm)2 − E[Re(Wkm)]2)

∣

∣

∣

∣

∣

≥ t

)

≤ 2 · exp
(

−c2 min

{

t2

4n
,
t

2

})

.

A similar concentration bound holds for
∑

k Im(Wkm)2. Setting t = n, we know that
with probability at least 1− 4e−c2n/4,

∣

∣

∣

∣

∣

n
∑

k=1

(|Wkm|2 − E|Wkm|2)
∣

∣

∣

∣

∣

≤ 2n.

From an equivalent definition of sub-Gaussian variables (see [36]), we obtain
∑n

k=1 E|Wkm|2 ≤ C2n, so it follows that
∑

k 6=m |(∆W (m)u)k|2 ≤ (2+C2)nM
2
m, where

Mm is a bound on |um|, uniform over U (m). Therefore, combining the upper bounds
for the two terms in (42), we deduce that, for some large absolute constant C ′

1 > 0,

‖∆W (m)u‖2 ≤
(

16C2
1n log n+ (2 + C2)nM

2
m

)1/2 ≤ C ′
1

√

n log n+ C ′
1

√
nMm

holds with probability 1 − 4en−5 − 4e−c2n/4. Taking a union bound over the choice
of u ∈ U (m) and m, we conclude that (21) holds with probability 1 − 12en−2 −
12n3e−c2n/4, or equivalently, 1−O(n−2).

Proof of Theorem 8. In this proof, we use a(n) . b(n) to mean that there exists
an absolute constant C such that a(n) ≤ Cb(n). We also suppose σ < c′0

√
n, where

c′0 < (8C ′
2)

−1 and C ′
2 is the absolute constant in Lemma 9. With probability 1 −

O(n−2), Lemma 9 and Lemma 10 hold, so we can safely use the concentration bounds.
First we note that the second part of Theorem 8 (about Px̃) follows directly from
[24, Prop. 1] once the first part is proved.

It is also straightforward to bound d2(x̃, z). Since zz∗ is a rank-1 matrix, the
eigengap δ(zz∗) = λ1(zz

∗) − λ2(zz
∗) is simply its leading eigenvalue, which is n.

From Lemma 11, clearly

d2(x̃, z) ≤
√
2σ‖Wz‖2

n− σ‖W‖2
≤

√
2σC ′

2n

n− C ′
2σ

√
n
≤ 8

√
2

7
C ′

2σ . σ.

This leads to the first claim of the theorem.
Now let us consider bounding ‖Wx̃‖∞. Following the inequality (23), we only

need to bound the two parts separately in (23). By Weyl’s inequality, δ(C(m)) =
λ1(C

(m))− λ2(C
(m)) ≥ λ1(zz

∗)− 2σ‖W (m)‖2, so Lemma 11 implies

(44) d2(x̃, x̃
(m)) ≤

√
2σ‖∆W (m)x̃(m)‖2

δ(C(m))− σ‖∆W (m)‖2
≤ 8

√
2 c′0

5
√
n

‖∆W (m)x̃(m)‖2.

Therefore, from (23) we have ‖Wx̃‖∞ . maxm(|w∗
mx̃(m)| + ‖∆W (m)x̃(m)‖2). Note

that the first term within the parentheses is dominated by the second, since w∗
mx̃(m) is

exactly the mth coordinate of ∆W (m)x̃(m). Lemma 10 implies that with probability
1−O(n−2),

(45) ‖Wx̃‖∞ . max
1≤m≤n

‖∆W (m)x̃(m)‖2 .
√

n log n+
√
n max

1≤m≤n
|x̃(m)

m |.
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We claim that maxm |x̃(m)
m | < 8/7. Indeed, for any m ∈ [n], by definition of x̃(m),

λ1(C
(m))x̃(m) = C(m)x̃(m) = (z∗x̃(m))z + σW (m)x̃(m).

Since W (m) has zero entries in its mth row, the mth coordinate of W (m)x̃(m) vanishes,
and we deduce

(46) |x̃(m)
m | = |(z∗x̃(m))zm|

λ1(C(m))
=

|z∗x̃(m)|
λ1(C(m))

≤ |z∗x̃(m)|
n− σ‖W (m)‖2

≤ n

n− C ′
2σ

√
n
< 8/7,

where we used Weyl’s inequality λ1(C
(m)) ≥ λ1(zz

∗) − σ‖W (m)‖2. This leads to

maxm |x̃(m)
m | < 8/7, and therefore ‖Wx̃‖∞ .

√
n log n. This `∞ bound is directly

related to d∞(x̃, z). We choose the global phase of x̃ such that x̃∗z = |x̃∗z|, and thus
d2(x̃, z)

2 = 2(n− |x̃∗z|). For any m ∈ [n], (Cx̃)m = (z∗x̃)zm + σ(Wx̃)m, so

|x̃m − zm| =
∣

∣

∣

∣

(Cx̃)m
λ1(C)

− zm

∣

∣

∣

∣

≤
∣

∣

∣

∣

z∗x̃

λ1(C)
− 1

∣

∣

∣

∣

+
σ‖Wx̃‖∞
λ1(C)

.

From d2(x̃, z) . σ and the identity d2(x̃, z)
2 = 2(n − |x̃∗z|), we have n ≥ |z∗x̃| ≥

n−O(σ2). By Weyl’s inequality |λ1(C)− n| ≤ σ‖W‖2 . σ
√
n, and therefore

‖x̃− z‖∞ .
σ2 + σ

√
n

n
+

σ
√
n log n

n
. σ

√

log n/n.

Proofs for section 4.

Proof of Lemma 12. Let us decompose x, y into two parts that are orthogonal:

(47) x = az +
√
nα, y = bz +

√
nβ,

where a, b ∈ C;α, β ∈ C
n; and α∗z = β∗z = 0. Without loss of generality, we

assume that a, b are real and a, b ≥ 0, since we can freely choose the global phases
of x and y. Also suppose we choose θ ∈ R such that ‖eiθx − y‖2 is minimized, i.e.,
‖eiθx− y‖2 = d2(x, y). The key part of the proof is to show

1

n
|z∗(eiθx− y)| = |eiθa− b| ≤ 6ε‖eiθα− β‖2.(48)

While the above equality is easily obtained by expressing x, y according to (47), the
difficulty lies in showing the inequality. Once proved, this immediately leads to the
desired inequality (25), because (using ‖eiθα− β‖2 ≤ d2(x, y)/

√
n)

‖eiθLx− Ly‖2 ≤ 1√
n
|z∗(eiθx− y)|+ σ

n
‖W (eiθx)−Wy‖2

≤ 6ε
√
n ‖eiθα− β‖2 +

σ‖W‖2
n

‖eiθx− y‖2

=

(

6ε+
σ‖W‖2

n

)

d2(x, y).

Since d2(Lx,Ly) ≤ ‖eiθLx − Ly‖2, the proof will be complete. Note that using the
Cauchy–Schwarz inequality is futile as it leads to |z∗(eiθx− y)| ≤ √

nd2(x, y), which
cannot be used to show that L is Lipschitz with a constant ρ < 1. An important
intuition is that, if x and y are close to z, and eiθ is close to 1, then eiθx− y cannot
be aligned too much with z. The rest of the proof is devoted to showing (48).
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Since d2(x, z)
2 = 2n(1−a) and d2(y, z)

2 = 2n(1−b), the conditions d2(x, z) ≤ ε
√
n

and d2(y, z) ≤ ε
√
n are equivalent to

(49) a ≥ 1− ε2/2, b ≥ 1− ε2/2.

Since ε < 1/2, we must have a+ b > 2(1−1/8) > 1, and thus |a− b| ≤ (a+ b)|a− b| =
|a2− b2|. Since ‖x‖2 = ‖y‖2 =

√
n, we know that a2+‖α‖22 = 1 and b2+‖β‖22 = 1, so

we have a2 − b2 = ‖β‖22 − ‖α‖22. Using the inequalities ‖α‖2 ≤ d2(x, z)/
√
n ≤ ε and

‖β‖2 ≤ d2(y, z)/
√
n ≤ ε, we derive

|a− b| ≤ (‖α‖2 + ‖β‖2) |‖α‖2 − ‖β‖2| ≤ 2ε‖eiθα− β‖2,(50)

where we used the triangular inequality in the second inequality. By the choice of θ,
we have ‖eiθx− y‖22 ≤ ‖x− y‖22, or equivalently

|eiθa− b|2 + ‖eiθα− β‖22 ≤ |a− b|2 + ‖α− β‖22.

Since |eiθa − b|2 − |a − b|2 = 2ab(1 − cos θ), and by the triangular inequality ‖α −
β‖2 − ‖eiθα− β‖2 ≤ |1− eiθ|‖α‖2 ≤ ε|1− eiθ|, we obtain

2ab(1− cos θ) ≤ ‖α− β‖22 − ‖eiθα− β‖22
≤ ε|1− eiθ|

(

‖α− β‖2 + ‖eiθα− β‖2
)

≤ ε|1− eiθ|
(

ε|1− eiθ|+ 2‖eiθα− β‖2
)

.

Notice that 2(1− cos θ) = |1− eiθ|2, and thus we derive

(ε−1ab− ε)|1− eiθ| ≤ 2‖eiθα− β‖2.
From (49), we have ab ≥ (1− ε2/2)2 > 1− ε2, so

ε−1ab− ε ≥ ε−1(1− ε2)− ε = ε−1(1− 2ε2) > (2ε)−1,

where the last inequality is due to the condition ε < 1/2. Therefore, we deduce that
|1− eiθ| ≤ 4ε‖eiθα− β‖2. Combining with (50), we obtain (recall that a ≤ 1)

|eiθa− b| = |eiθa− a+ a− b| ≤ |eiθ − 1|a+ |a− b| ≤ 6ε‖eiθα− β‖2.
This verifies (48) and completes the proof.

Proof of Lemma 13. By the cosine formula of triangles,

|x− y|2 = |x|2 + |y|2 − 2|x||y| cos θ,
where θ = |Arg(x)− Arg(y)| is the angle formed by x and y. Using the inequality of
arithmetic and geometric means (i.e., |x|2 + |y|2 ≥ 2|x||y| which follows from ||x| −
|y||2 ≥ 0), we have

(51) |x− y|2 ≥ 2|x||y| − 2|x||y| cos θ ≥ 2(1− ε)2(1− cos θ).

Using the same cosine formula, we also have
∣

∣

∣

∣

x

|x| −
y

|y|

∣

∣

∣

∣

2

= 2− 2 cos θ.

This equality, together with (51), leads to the desired inequality (26). Using (26) for
all k ∈ [n], it follows that ‖Pw − Pv‖2 ≤ (1 − ε)−1‖w − v‖2. The same is true if we
replace w by weiθ with an arbitrary θ ∈ R. The second inequality (27) is obtained by
minimizing ‖weiθ − v‖2 over θ.
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Proof of Lemma 14. We will first show that the moduli of (Lx)k and (L′y)k are
uniformly lower bounded for all k ∈ [n], so that we can use Lemma 13. Since
d2(z, x)

2 = 2(n − |z∗x|) and d2(z, x)
2 ≤ nε21, it follows that 2|z∗x| ≥ n(2 − ε21).

Thus, for any k ∈ [n],

|(Lx)k| =
1

n
|(z∗x)zk + σ(Wx)k| ≥

1

n
|z∗x| − σ

n
|(Wx)k| ≥ 1− 1

2
ε21 −K1σ

√

log n

n
.

Similarly, we have |(L′y)k| ≥ 1− ε22/2−K2σ
√

log n/n. Now that |(Lx)k| and |(L′y)k|
are uniformly lower bounded by 1− ε, where ε := max{ε21/2 +K1σ

√

log n/n, ε22/2 +

K2σ
√

log n/n} is assumed to be smaller than 1, we are able to invoke Lemma 13, and
we deduce

d2(PLx,PL′y) ≤ (1− ε)−1d2(Lx,L′y).

This proves the first claim of the lemma; the second claim follows directly from Lemma
12.

Proof of Theorem 15. Denote C ′′
1 = 4C ′

1. We note that x0,m requires special
treatment in the proof. Indeed, for t ≥ 1, xt,m has unit-modulus entries, whereas x0,m

does not (in general). From Lemma 9, we deduce that with probability 1 −O(n−2),
the matrix norm bounds of (20) hold. In Lemma 10, we set U (m) = {xt,m ∈ C

n : t =
0, . . . , T}. By construction, xt,m is a function of W (m) and is independent of ∆W (m).
Besides, we have |U (m)| = T +1 ≤ 3n2. This means that the conditions in Lemma 10
are satisfied, so with probability 1−O(n−2),

(52) max
0≤t≤T

|w∗
mxt,m| ≤ max

0≤t≤T
‖∆W (m)xt,m‖2 ≤ C ′′

1

√

n log n ∀m ∈ [n].

This is because for t ≥ 1, we can use (22) directly, and for t = 0, we use (21) and
derive ‖∆W (m)x0,m‖2 ≤ C ′

1

√
n log n+2C ′

1

√
n ≤ C ′′

1

√
n log n due to maxm∈[n] Mm ≤ 2

(derived in (46)).
First we verify (33)–(35) for t = 0. The initializers x0 and x0,m are simply eigen-

vectors of C and C(m), and their bounds have been studied in section 3. Recall that
x0,m is independent of σ∆W (m), so applying Lemma 11 (Davis–Kahan) yields

d2(x
0,m, x0) ≤

√
2σ‖∆W (m)x0,m‖2

δ(C(m))− σ‖∆W (m)‖2
≤

√
2C ′′

1 σ
√
n log n

n− 3σ‖∆W (m)‖2
≤

√
2κ2σ

√
n log n

n/2
< κ1.

Here, in the second inequality, we used the bounds ‖∆W (m)x0,m‖2 ≤ C ′′
1

√
n log n

by (52), ‖∆W (m)‖2 ≤ C ′
2

√
n, and δ(C(m)) = λ1(C

(m))−λ2(C
(m)) ≥ n−2σ‖∆W (m)‖2

by Weyl’s inequality. In the third inequality, we used C ′′
1 ≤ κ2 and 3σ‖∆W (m)‖2 ≤

3C ′
2σ

√
n < n/2. The final inequality is due to the condition (32). This verifies (33)

for the base case t = 0.
This immediately leads to (34), since by the reasoning in (23) we derive

‖Wx0‖∞ ≤ max
1≤m≤n

[

|w∗
mx0,m|+ ‖wm‖2 · d2(x0,m, x0)

]

≤ C ′′
1

√

n log n+ C ′
2

√
n · d2(x0,m, x0)

≤ (C ′′
1 + 2C ′

2κ1)
√

n log n

= κ2

√

n log n.
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Finally, applying Lemma 11 (Davis–Kahan) again, we obtain (35)

d2(x
0, z) ≤

√
2σ‖Wz‖2

n− σ‖W‖2
≤

√
2σ · C ′

2n

n− C ′
2

√
nσ

≤ n3/2/120

n/2
= κ3

√
n.

Now suppose that (33)–(35) are true for t, and our goal is to derive the same
inequalities for t+ 1 until t reaches T .

(i) Verifying (33) for t+ 1. Notice that

d2(x
t+1,m, xt+1) ≤ d2(T (m)xt,m, T xt,m) + d2(T xt,m, T xt).

We shall use Lemma 14 to bound the above two terms. Before doing so, let us examine
the conditions required in Lemma 14. In order to bound the first term, notice that

d2(x
t,m, z) ≤ d2(x

t,m, xt) + d2(x
t, z) ≤ κ1 + κ3

√
n ≤ (κ1 + κ3)

√
n.

Furthermore, let us check

‖Wxt,m‖∞ ≤ min
θ

‖W (eiθxt,m − xt)‖∞ + ‖Wxt‖∞
≤ ‖W‖2 · d2(xt,m, xt) + ‖Wxt‖∞
≤ C ′

2κ1

√
n+ κ2

√

n log n,

where we used the trivial inequality ‖ · ‖∞ ≤ ‖ · ‖2. Moreover, using (52),

‖W (m)xt,m‖∞ ≤ ‖∆W (m)xt,m‖∞ + ‖Wxt,m‖∞
≤ ‖∆W (m)xt,m‖2 + ‖Wxt,m‖∞
≤ C ′′

1

√

n log n+ C ′
2κ1

√
n+ κ2

√

n log n

≤ (C ′′
1 + 2C ′

2κ1 + κ2)
√

n log n = 2κ2

√

n log n

where we used the definition κ2 = C ′′
1 + 2C ′

2κ1. Applying Lemma 14, we obtain
by (52)

d2(T (m)xt,m, T xt,m) ≤ (1− η1)
−1d2(L(m)xt,m,Lxt,m)

≤ (1− η1)
−1‖(L(m) − L)xt,m‖2

= (1− η1)
−1σ‖∆W (m)xt,m‖2/n

≤ (1− η1)
−1σC ′′

1

√

log n/n,

where by condition (32)

η1 := (κ1 + κ3)
2/2 + 2κ2σ

√

log n/n ≤ 1

1800
+

1

120
< 1/2.

This now leads to

(53) d2(T (m)xt,m, T xt,m) ≤ 2σC ′′
1

√

log n/n ≤ 2σκ2

√

log n/n ≤ 1

120
=

κ1

2

by (32) again. We can bound d2(T xt,m, T xt) similarly. From the inequalities

d2(x
t, z) ≤ κ3

√
n, d2(x

t,m, z) ≤ κ3

√
n+ κ1 ≤ (κ1 + κ3)

√
n,

‖Wxt‖∞ ≤ κ2

√

n log n, ‖Wxt,m‖∞ ≤ C ′
2κ1

√
n+ κ2

√

n log n,
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and Lemma 14, we derive

d2(T xt,m, T xt) ≤ (1− η2)
−1(6(κ1 + κ3) + σ‖W‖2/n) · d2(xt,m, xt)

≤ 2 · (0.2 + σ‖W‖2/n)κ1,

where, since 2C ′
2κ1 < C ′′

1 + 2C ′
2κ1 = κ2,

η2 := (κ1 + κ3)
2/2 + (2C ′

2κ1 + κ2)σ
√

log n/n < η1 ≤ 1/2.

Since 0.2 + σ‖W‖2/n ≤ 0.2 + σC2/
√
n < 1/4 by condition (32), it follows that

(54) d2(T xt,m, T xt) ≤ κ1/2.

Therefore, bounds (53) and (54) imply that d2(x
t+1,m, xt+1) ≤ κ1.

(ii) Verifying (34) for t+ 1. Following (15), for any m ∈ [n], we obtain

|(Wxt+1)m| ≤ |w∗
mxt+1,m|+ ‖wm‖2 · d2(xt+1, xt+1,m)

≤ C ′′
1

√

n log n+ C ′
2

√
n · κ1,

where we used d2(x
t+1, xt+1,m) ≤ κ1 (proved in (i)). Thus,

‖Wxt+1‖∞ ≤ (C ′′
1 + 2C ′

2κ1)
√

n log n = κ2

√

n log n.

(iii) Verifying (35) for t+ 1. Since Pz = z, by Lemma 13 we deduce

d2(x
t+1, z) = d2(PLxt,Pz) ≤ (1− ε0)

−1d2(Lxt, z),(55)

where ε0 = 1−mink |(Lxt)k|. This is only informative if mink |(Lxt)k| > 0. Observe
that

min
θ

‖eiθLxt − z‖∞ ≤ min
θ

‖(eiθ(z∗xt)/n− 1)z‖∞ + σ‖Wxt‖∞/n,

≤ min
θ

|eiθ(z∗xt)/n− 1|+ κ2σ
√

log n/n,

where we used ‖Wxt‖∞ ≤ κ2

√
n log n (by the induction hypothesis). Since

min
θ

|eiθ(z∗xt)/n− 1| = 1− |z∗xt|/n =
d2(x

t, z)2

2n
≤ κ2

3/2

and κ2σ
√

log n/n ≤ 1/240 = κ3/4, and also κ3 = 1/60, it follows that

d∞(Lxt, z) = min
θ

‖eiθLxt − z‖∞ ≤ κ3/120 + κ3/4 < κ3/2.

This a fortiori verifies mink |(Lxt)k| ≥ 1− κ3/2 > 1/2, and thus from (55),

(56) d2(x
t+1, z) ≤ 2d2(Lxt, z) ≤ 2

√
nd∞(Lxt, z) < κ3

√
n.

Here, the inequality d2(w, v) ≤
√
nd∞(w, v) (∀w, v ∈ C

n
1 ) is obtained by considering

d2(w, v) ≤ ‖eiθw − v‖2 ≤ √
n‖eiθw − v‖∞ = d∞(w, v) for the choice of θ determined

by d∞.
Finally, we use induction and deduce that, for any t = 0, 1 . . . , T , the desired

bounds (33)–(35) hold with probability 1−O(n−2).
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Proof of Theorem 16. In Theorem 15, we showed that with probability 1−O(n−2),
xt ∈ N for t ≤ T . Now we can use Lemma 14, which yields

d2(T xt, T xt−1) ≤ ρ · d2(xt, xt−1) ∀ 1 ≤ t ≤ T − 1,

where ρ = (1 − ε)−1(6κ3 + σ‖W‖2/n) and ε = κ2
3/2 + κ2σ

√

log n/n < 1/2. Thus,

ρ ≤ 2 · (0.1 + σC ′
2/
√
n) ≤ 2 · (0.1 + 1/120

√
2) < 1/2. This leads to

d2(x
t+1, xt) ≤ 1

2
d2(x

t, xt−1) ∀1 ≤ t ≤ T − 1,

and thus d2(x
T , xT−1) ≤ 21−T d2(x

1, x0) ≤ 21−T (‖x1‖2 + ‖x0‖2) = 22−T
√
n.

Proof of Theorem 17. Consider the first part of the theorem. Let us use induction
on k to establish (37). Trivially, (37) holds for k = 0. Now suppose that, for all ` ≤ k,
d2(x

T+`, xT+`−1) ≤ 2−`d2(x
T , xT−1). We now show the same for k + 1. First,

d2(x
T+k, xT−1) ≤

k
∑

`=0

d2(x
T+`, xT+`−1) ≤ κ3

4

k
∑

`=0

2−` <
κ3

2
.

Similarly, d2(x
T+k−1, xT−1) < κ3/2. By assumption, d2(x

T−1, z) ≤ κ3
√
n, so

(57) d2(x
T+k, z) ≤ 3κ3

√
n/2, d2(x

T+k−1, z) ≤ 3κ3

√
n/2.

Moreover,

‖WxT+k‖∞ ≤ ‖WxT−1‖∞ +min
θ

‖W (eiθxT+k − xT−1)‖2

≤ κ2

√

n log n+ ‖W‖2 · d2(xT+k, xT−1)

≤ (κ2 + C ′
2κ3)

√

n log n,(58)

and similarly ‖WxT+k−1‖∞ ≤ (κ2 + C ′
2κ3)

√
n log n. Using Lemma 14, we have

d2(T xT+k, T xT+k−1) ≤ (1− ε)−1(9κ3 + σ‖W‖2/n) · d2(xT+k, xT+k−1)

≤ 2

(

9

60
+

1

120
√
2

)

· d2(xT+k, xT+k−1)

≤ 1

2
d2(x

T+k, xT+k−1),(59)

where ε ≤ ( 32κ3)
2/2 + (κ2 + C ′

2κ3)σ
√

log n/n < 1/2. By the induction hypothesis,
d2(x

T+k, xT+k−1) ≤ 2−kd2(x
T , xT−1), so d2(T xT+k, T xT+k−1) ≤ 2−k−1d2(x

T , xT−1).
This completes the induction and proves (37).

Now consider the second part of the theorem. By (37), {[xt]} is a Cauchy se-
quence. The existence of the limit follows since the metric space C

n
1/∼ is complete

(which can be proved by standard arguments). Hence, [xt] converges to a limit [x∞]
in C

n
1/ ∼. The inequalities in (38) follow from (57), (58), and the continuity ar-

gument. Moreover, under the conditions of the theorem, for all t ≥ 0, we have
d2(x

t, z) ≤ 3κ3
√
n/2 and ‖Wxt‖∞ ≤ (κ2 + C ′

2κ3)
√
n log n, i.e., all iterates lie in a

slightly larger contraction region. Similarly as in (59), we can use Lemma 14 and
derive d2(T x∞, T xt) ≤ d2(x

∞, xt)/2 for all t ≥ 0. Once we show T x∞ = x∞, as
proved below, we can deduce d2(x

∞, xt+1) ≤ d2(x
∞, xt)/2.

Finally, we show that x∞ is a fixed point of T . As argued above, for all t ≥ 0, we
have d2(T x∞, T xt) ≤ d2(x

∞, xt)/2. The right-hand side is vanishing as t → ∞, so
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d2(T x∞, x∞) ≤ lim
t→∞

(

d2(T x∞, T xt−1) + d2(T xt−1, x∞)
)

= 0.

This implies that there exists some θ ∈ R such that eiθT x∞ =x∞. Since mink |(Lx∞)k|
> 1− ε > 0 (as in (59)), we can rewrite it as

eiθLx∞ = n−1diag(µ)x∞,

where µk = n|(Lx∞)k|. The above identity implies eiθ(x∞)∗Lx∞ =
∑n

k=1 µk/n > 0.
Since L is Hermitian, (x∞)∗Lx∞ is real, so eiθ ∈ {±1}. Note that eiθ must be 1, since

(x∞)∗Lx∞ =
1

n
|(x∞)∗z|2 + 1

n
σx∗Wx ≥ 1

n
(n− d2(x

∞, z)2/2)2 − σ‖W‖2

≥ n(1− (3κ3/2)
2/2)2 − C ′

2σ
√
n = n

(

1− 1

3200

)2

− C ′
2σ

√
n,

which is positive under condition (32). Replacing L with C/n, we finish the proof.

Proofs for section 2. This subsection presents the proofs of the main results
in Theorems 6 and 7. Note that Theorem 8 has already been proven in section 3, and
Theorem 5 was proved in section 4.

Proof of Theorem 6. We choose c0 to satisfy the conditions on σ in Theorems 15
and 17. With probability 1 − O(n−2), the conclusions of Lemma 9 and Theorem 15
hold, and consequently, other conditions in Theorem 17 hold. Thus, as one conclusion
of Theorem 17, we have, with probability 1 − O(n−2), d2(x

t+1, x∞) ≤ d2(x
t, x∞)/2

for all t ≥ 0. Moreover, in the subsection “Verifying optimality,” we established the
fact that x∞ is the unique solution of (P) up to phase, provided that σ satisfies (32),
‖W‖2 ≤ C ′

2

√
n, and the conclusions of Theorem 17 hold (see the paragraph below

(41)). Therefore, with probability 1 − O(n−2), x̂ and x∞ are identical up to phase,
and thus this theorem is proved.

Proof of Theorem 7. Without loss of generality, suppose n ≥ 2 and fix the global
phase of x∞ such that z∗x∞ = |z∗x∞|. Also suppose that the constant c0 satisfies (32).

(i) We first show ‖x∞− z‖2 ≤ 4C ′
2σ. This follows from the same argument as in

[2, Lem. 4.1]. Note that due to the sub-Gaussian assumption in this paper,
a difference is the bound on ‖W‖2: ‖W‖2 ≤ C ′

2

√
n by Lemma 9 (whereas

‖W‖2 ≤ 3
√
n in [2]).

(ii) In the last subsection of section 4, “Verifying optimality,” we showed, using
the conclusions of Theorem 17, that x∞ is the unique optimum of (P) up to
phase with probability 1−O(n−2).

(iii) Next we show that ‖x∞−z‖∞ ≤ Cσ
√

log n/n, where C > 0 is some constant.
From (i), |z∗x∞| = n−‖x∞ − z‖22/2 ≥ n− 8(C ′

2)
2σ2. In the proof of Lemma

4.2 in [2], it is shown that

|z∗x∞|‖x∞ − z‖∞ ≤ 2σ‖Wx∞‖∞.

Therefore, it follows that

‖x∞ − z‖∞ ≤ 2n−1σ‖Wx∞‖∞ + 8(C ′
2)

2n−1σ2‖x∞ − z‖∞
≤ 2n−1σ(κ2 + C ′

2κ3)
√

n log n+ 16(C ′
2)

2n−1σ2,

where we used (38) in Theorem 17 and a trivial bound ‖x∞−z‖∞ ≤ 2. Since
σ = O(

√

n/ log n), we conclude that there exists a constant C such that

‖x∞ − z‖∞ ≤ Cσ
√

log n/n.
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[11] M. Capitaine, C. Donati-Martin, and D. Féral, The largest eigenvalues of finite rank defor-
mation of large Wigner matrices: Convergence and nonuniversality of the fluctuations, Ann.
Probab., 37 (2009), pp. 1–47.

[12] Y. Chen and E. Candes, The Projected Power Method: An Efficient Algorithm for Joint
Alignment from Pairwise Differences, preprint, arXiv:1609.05820, 2016.

[13] M. Cucuringu, Y. Lipman, and A. Singer, Sensor network localization by eigenvector syn-
chronization over the Euclidean group, ACM Trans. Sens. Netw., 8 (2012), 19.

[14] M. Cucuringu, A. Singer, and D. Cowburn, Eigenvector synchronization, graph rigidity and
the molecule problem, Inform. Inference., 1 (2012), pp. 21–67.

[15] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturbation. III, SIAM J.
Numer Anal., 7 (1970), pp. 1–46.

[16] Y. Deshpande, A. Montanari, and E. Richard, Cone-constrained principal component anal-
ysis, in Advances in Neural Information Processing Systems 27, Z. Ghahramani et al., eds.,
Curran Associates, Red Mook, NY, 2014, pp. 2717–2725.

[17] J. Fan, W. Wang, and Y. Zhong, An `∞ Eigenvector Perturbation Bound and Its Application
to Robust Covariance Estimation, preprint, arXiv:1603.03516, 2016.

[18] A. Giridhar and P. R. Kumar, Distributed clock synchronization over wireless networks:
Algorithms and analysis, in Proceedings of the 45th IEEE Conference on Decision and Control,
San Diego, CA, 2006, pp. 4915–4920.

[19] P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted least-squares,
Commun. Statist. Theory Methods, 6 (1977), pp. 813–827.

[20] A. Javanmard, A. Montanari, and F. Ricci-Tersenghi, Phase transitions in semidefinite
relaxations, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. E2218–E2223.

[21] I. M. Johnstone and A. Y. Lu, On consistency and sparsity for principal components analysis
in high dimensions, J. Amer. Statist. Assoc., 104 (2009), pp. 682–703.

[22] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, Generalized power method for
sparse principal component analysis, J. Mach. Learn. Res., 11 (2010), pp. 517–553.

[23] M. Lelarge and L. Miolane, Fundamental Limits of Symmetric Low-rank Matrix Estimation,
preprint, arXiv:1611.03888, 2016.

[24] H. Liu, M.-C. Yue, and A. M.-C. So, On the Estimation Performance and Convergence Rate
of the Generalized Power Method for Phase Synchronization, preprint, arXiv:1603.00211, 2016.

[25] R. Luss and M. Teboulle, Conditional gradient algorithms for rank-one matrix approxima-
tions with a sparsity constraint, SIAM Rev., 55 (2013), pp. 65–98.

D
o

w
n
lo

ad
ed

 0
6
/0

6
/1

8
 t

o
 1

4
0
.1

8
0
.2

5
1
.9

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1016 YIQIAO ZHONG AND NICOLAS BOUMAL

[26] D. Martinec and T. Pajdla, Robust rotation and translation estimation in multiview re-
construction, in Proceechings of the 2007 IEEE Conference on Computer Vision and Pattern
Recognition, Minneapolis, MN, 2007.

[27] O. Ozyesil, N. Sharon, and A. Singer, Synchronization over Cartan Motion Groups via
Contraction, preprint, arXiv:1612.00059, 2016.

[28] D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model,
Statist. Sinica, 17 (2007), pp. 1617–1642.

[29] A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra, Optimality and Sub-optimality of
PCA for Spiked Random Matrices and Synchronization, preprint, arXiv:1609.05573, 2016.

[30] K. Rohe, S. Chatterjee, and B. Yu, Spectral clustering and the high-dimensional stochastic
blockmodel, Ann. Statist., 2011, pp. 1878–1915.

[31] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, A Certifiably Correct Algo-
rithm for Synchronization over the Special Euclidean Group, preprint, arXiv:1611.00128, 2016.

[32] V. Roulet, N. Boumal, and A. d’Aspremont, Computational Complexity Versus Statistical
Performance on Sparse Recovery Problems, preprint, arXiv:1506.03295, 2015.

[33] M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: Extreme singu-
lar values, preprint, arXiv:1003.2990, 2010.

[34] Y. Shkolnisky and A. Singer, Viewing direction estimation in cryo-EM using synchroniza-
tion, SIAM J. Imaging Sci., 5 (2012), pp. 1088–1110.

[35] A. Singer, Angular synchronization by eigenvectors and semidefinite programming, Appl. Com-
put. Harmon. Anal., 30 (2011), pp. 20–36.

[36] R. Vershynin, Introduction to the Non-asymptotic Analysis of Random Matrices, preprint,
arXiv:1011.3027, 2010.

[37] U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), pp. 395–416.
[38] L. Wang and A. Singer, Exact and stable recovery of rotations for robust synchronization,

Inform. Inference, 2 (2013), pp. 145–193.
[39] S. X. Yu, Angular embedding: From jarring intensity differences to perceived luminance, in

Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami,
FL, 2009, pp. 2302–2309.

[40] Y. Yu, T. Wang, and R. J. Samworth, A useful variant of the Davis–Kahan theorem for
statisticians, Biometrika, 102 (2015), pp. 315–323.

[41] S. Zhang and Y. Huang, Complex quadratic optimization and semidefinite programming,
SIAM J. Optim., 16 (2006), pp. 871–890.

D
o

w
n
lo

ad
ed

 0
6
/0

6
/1

8
 t

o
 1

4
0
.1

8
0
.2

5
1
.9

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p


	Introduction
	Main results
	Proof organization for eigenvector perturbations
	Proof organization for phase synchronization
	Conclusions and perspectives
	Appendix A. Proofs
	Acknowledgments

