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We consider the minimization of a cost function f on a manifold M using Riemannian gradient descent
and Riemannian trust regions (RTR). We focus on satisfying necessary optimality conditions within a
tolerance ε. Specifically, we show that, under Lipschitz-type assumptions on the pullbacks of f to the
tangent spaces of M, both of these algorithms produce points with Riemannian gradient smaller than
ε in O

(

1/ε2
)

iterations. Furthermore, RTR returns a point where also the Riemannian Hessian’s least

eigenvalue is larger than −ε in O
(

1/ε3
)

iterations. There are no assumptions on initialization. The rates
match their (sharp) unconstrained counterparts as a function of the accuracy ε (up to constants) and
hence are sharp in that sense. These are the first deterministic results for global rates of convergence to
approximate first- and second-order Karush-Kuhn-Tucker points on manifolds. They apply in particular
for optimization constrained to compact submanifolds of Rn, under simpler assumptions.

Keywords: complexity; gradient descent; trust-region method; Riemannian optimization; optimization on
manifolds.

1. Introduction

Optimization on manifolds is concerned with solving nonlinear and typically nonconvex computational
problems of the form

min
x∈M

f (x), (P)

where M is a (smooth) Riemannian manifold and f : M → R is a (sufficiently smooth) cost function
(Gabay, 1982; Smith, 1994; Edelman et al., 1998; Absil et al., 2008). Applications abound in machine
learning, computer vision, scientific computing, numerical linear algebra, signal processing, etc. In
typical applications x is a matrix and M could be a Stiefel manifold of orthonormal frames (including
spheres and groups of rotations), a Grassmann manifold of subspaces, a cone of positive definite matrices
or simply a Euclidean space such as Rn.
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2 BOUMAL ET AL.

The standard theory for optimization on manifolds takes the standpoint that optimizing on a manifold
M is not fundamentally different from optimizing in R

n. Indeed, many classical algorithms from
unconstrained nonlinear optimization such as gradient descent, nonlinear conjugate gradients, BFGS,
Newton’s method and trust-region methods (Ruszczyński, 2006; Nocedal & Wright, 1999) have been
adapted to apply to the larger framework of (P) (Adler et al., 2002; Absil et al., 2007, 2008; Ring &
Wirth, 2012; Huang et al., 2015; Sato, 2016). Softwarewise, a few general toolboxes for optimization
on manifolds exist now, for example, Manopt (Boumal et al., 2014), PyManopt (Townsend et al., 2016)
and ROPTLIB (Huang et al., 2016).

As (P) is typically nonconvex, one does not expect general purpose, efficient algorithms to converge
to global optima of (P) in general. Indeed, the class of problems (P) includes known NP-hard problems.
In fact, even computing local optima is NP-hard in general (Vavasis, 1991, Chapter 5). Nevertheless,
one may still hope to compute points of M that satisfy first- and second-order necessary optimality
conditions. These conditions take up the same form as in unconstrained nonlinear optimization, with
Riemannian notions of gradient and Hessian. For M defined by equality constraints these conditions
are equivalent to first- and second-order Karush-Kuhn-Tucker (KKT) conditions, but are simpler to
manipulate because the Lagrangian multipliers are automatically determined.

The proposition below states these necessary optimality conditions. Recall that to each point x of
M there corresponds a tangent space (a linearization) TxM. The Riemannian gradient grad f (x) is the
unique tangent vector at x such that Df (x)[η] = 〈η, grad f (x)〉 for all tangent vectors η, where 〈·, ·〉
is the Riemannian metric on TxM and Df (x)[η] is the directional derivative of f at x along η. The
Riemannian Hessian Hess f (x) is a symmetric operator on TxM, corresponding to the derivative of the
gradient vector field with respect to the Levi-Civita connection—see Absil et al. (2008, Chapter 5).
These objects are easily computed in applications. A summary of relevant concepts about manifolds can
be found in Appendix A.

Proposition 1.1 (Necessary optimality conditions). Let x ∈ M be a local optimum for (P). If f is
differentiable at x then grad f (x) = 0. If f is twice differentiable at x then Hess f (x) � 0 (positive
semidefinite).

Proof. See Yang et al. (2014, Rem. 4.2 and Cor. 4.2). �

A point x ∈ M, which satisfies grad f (x) = 0, is a (first-order) critical point (also called a stationary
point). If x furthermore satisfies Hess f (x) � 0, it is a second-order critical point.

Existing theory for optimization algorithms on manifolds is mostly concerned with establishing
global convergence to critical points without rates (where global means regardless of initialization),
as well as local rates of convergence. For example, gradient descent is known to converge globally to
critical points, and the convergence rate is linear once the iterates reach a sufficiently small neighborhood

of the limit point (Absil et al., 2008, Chapter 4). Early work of Udriste (1994) on local convergence rates
even bounds distance to optimizers as a function of iteration count, assuming initialization in a set where
the Hessian of f is positive definite, with lower and upper bounds on the eigenvalues; see also Absil et al.

(2008, Thm. 4.5.6, Thm. 7.4.11). Such guarantees adequately describe the empirical behavior of those
methods, but give no information about how many iterations are required to reach the local regime from
an arbitrary initial point x0; that is, the worst-case scenarios are not addressed.

For classical unconstrained nonlinear optimization this caveat has been addressed by bounding the
number of iterations required by known algorithms to compute points that satisfy necessary optimality
conditions within some tolerance, without assumptions on the initial iterate. Among others, Nesterov
(2004) gives a proof that, for M = R

n and Lipschitz differentiable f , gradient descent with an
appropriate step size computes a point x where ‖grad f (x)‖ ≤ ε in O

(

1/ε2
)

iterations. This is sharp
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(Cartis et al., 2010). Cartis et al. (2012) prove the same for trust-region methods, and further show that
if f is twice Lipschitz continuously differentiable, then a point x where ‖grad f (x)‖ ≤ ε and Hess f (x) �
−ε Id is computed in O

(

1/ε3
)

iterations, also with examples showing sharpness.
In this paper we extend the unconstrained results to the larger class of optimization problems on

manifolds (P). This work builds upon the original proofs (Nesterov, 2004; Cartis et al., 2012) and on
existing adaptations of gradient descent and trust-region methods to manifolds (Absil et al., 2007, 2008).
One key step is the identification of a set of relevant Lipschitz-type regularity assumptions, which allow
the proofs to carry over from R

n to M with relative ease.

Main results

We state the main results here informally. We use the notion of retraction Retrx (see Definition 2.1),
which allows to map tangent vectors at x to points on M. Iterates are related by xk+1 = Retrxk

(ηk) for
some tangent vector ηk at xk (the step). Hence, f ◦ Retrx is a lift of the cost function from M to the
tangent space at x. For M = R

n, the standard retraction gives Retrxk
(ηk) = xk + ηk. By ‖·‖ we denote

the norm associated to the Riemannian metric.

About gradient descent. (See Theorems 2.5 and 2.8.) For problem (P), if f is bounded below on M and
f ◦ Retrx has Lipschitz gradient with constant Lg independent of x, then Riemannian gradient descent
with constant step size 1/Lg or with backtracking Armijo line-search returns x with ‖grad f (x)‖≤ ε in
O
(

1/ε2
)

iterations.

About trust regions. (See Theorem 3.4.) For problem (P), if f is bounded below on M and f ◦ Retrx

has Lipschitz gradient with constant independent of x then Riemannian trust region (RTR) returns x with
‖grad f (x)‖ ≤ εg in O

(

1/ε2
g

)

iterations, under weak assumptions on the model quality. If furthermore f

◦ Retrx has Lipschitz Hessian with constant independent of x then RTR returns x with ‖grad f (x)‖ ≤ εg

and Hess f (x) � −εH Id in O
(

max
{

1/ε3
H , 1/ε2

gεH

})

iterations, provided the true Hessian is used in the
model and a second-order retraction is used.

About compact submanifolds. (See Lemmas 2.4 and 3.1.) The first-order regularity conditions above
hold in particular if M is a compact submanifold of a Euclidean space E (such as Rn) and f : E → R

has a locally Lipschitz continuous gradient. The second-order regularity conditions hold if furthermore
f has a locally Lipschitz continuous Hessian on E and the retraction is second order (Definition 3.10).

Since the rates O
(

1/ε2
)

and O
(

1/ε3
)

are sharp for gradient descent and trust regions when M = R
n

(Cartis et al., 2010, 2012), they are also sharp for M a generic Riemannian manifold. Below, constants
are given explicitly, thus precisely bounding the total amount of work required in the worst case to attain
a prescribed tolerance.

The theorems presented here are the first deterministic results about the worst-case iteration
complexity of computing (approximate) first- and second-order critical points on manifolds. The choice
of analysing Riemannian gradient descent and RTR first is guided by practical concerns, as these are
among the most commonly used methods on manifolds so far.

The proposed complexity bounds are particularly relevant when applied to problems for which
second-order necessary optimality conditions are also sufficient. See for example Sun et al. (2015,
2016), Boumal (2015b, 2016), Bandeira et al. (2016), Bhojanapalli et al. (2016), Ge et al. (2016) and
the example in Section 4.
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4 BOUMAL ET AL.

Related work

The complexity of Riemannian optimization is discussed in a few recent lines of work. Zhang & Sra
(2016) treat geodesically convex problems over Hadamard manifolds. This is a remarkable extension of
important pieces of classical convex optimization theory to manifolds with negative curvature. Because
of the focus on geodesically convex problems, those results do not apply to the more general problem
(P), but have the clear advantage of guaranteeing global optimality. In Zhang et al. (2016), which
appeared a day before the present paper on public repositories, the authors also study the iteration
complexity of nonconvex optimization on manifolds. Their results differ from the ones presented here
in that they focus on stochastic optimization algorithms, aiming for first-order conditions. Their results
assume bounded curvature for the manifold. Furthermore, their analysis relies on the Riemannian
exponential map, whereas we cover the more general class of retraction maps (which is computationally
advantageous). We also do not use the notions of Riemannian parallel transport or logarithmic map,
which, in our view, makes for a simpler analysis.

Sun et al. (2015, 2016) consider dictionary learning and phase retrieval and show that these
problems, when appropriately framed as optimization on a manifold, are low-dimensional and have
no spurious local optimizers. They derive the complexity of RTR specialized to their application. In
particular, they combine the global rate with a local convergence rate, which allows them to establish
an overall better complexity than O

(

1/ε3
)

, but with an idealized version of the algorithm and restricted
to these relevant applications. In this paper we favor a more general approach, focused on algorithms
closer to the ones implemented in practice.

Recent work by Bento et al. (2017) (which appeared after a first version of this paper) focuses on
iteration complexity of gradient, subgradient and proximal point methods for the case of convex cost
functions on manifolds, using the exponential map as retraction.

For the classical, unconstrained case, optimal complexity bounds of order O
(

1/ε1.5
)

to generate x

with ‖grad f (x)‖ ≤ ε have also been given for cubic regularization methods (Cartis et al., 2011a, b) and
sophisticated trust region variants (Curtis et al., 2016). Bounds for regularization methods can be further
improved if higher-order derivatives are available (Birgin et al., 2017).

Worst-case evaluation complexity bounds have been extended to constrained smooth problems in
Cartis et al. (2014, 2015a,b). There, it is shown that some carefully devised, albeit impractical, phase
1–phase 2 methods can compute approximate KKT points with global rates of convergence of the same
order as in the unconstrained case. We note that when the constraints are convex (but the objective may
not be), practical, feasible methods have been devised (Cartis et al., 2015a) that connect to our approach
below. Second-order optimality for the case of convex constraints with nonconvex cost has been recently
addressed in Cartis et al. (2016).

2. Riemannian gradient descent methods

Consider the generic Riemannian descent method described in Algorithm 1. We first prove that, provided
sufficient decrease in the cost function is achieved at each iteration, the algorithm computes a point xk

such that ‖grad f (xk)‖ ≤ ε with k = O
(

1/ε2
)

. Then we propose a Lipschitz-type assumption, which is
sufficient to guarantee that simple strategies to pick the steps ηk indeed ensure sufficient decrease. The
proofs parallel the standard ones (Nesterov, 2004, Sect. 1.2.3). The main novelty is the careful extension
to the Riemannian setting, which requires the well-known notion of retraction (Definition 2.1) and the
new Assumption 2.6 (see below).
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The step ηk is a tangent vector to M at xk. Because M is nonlinear (in general) the operation xk + ηk

is undefined. The notion of retraction provides a theoretically sound replacement. Informally, xk+1 =
Retrxk

(ηk) is a point on M that one reaches by moving away from xk, along the direction ηk, while

remaining on the manifold. The Riemannian exponential map (which generates geodesics) is a retrac-
tion. The crucial point is that many other maps are retractions, often far less difficult to compute than the
exponential. The definition of retraction below can be traced back to Shub (1986) and it appears under
that name in Adler et al. (2002); see also Absil et al. (2008, Def. 4.1.1 and Sect. 4.10) for additional
references.

Definition 2.1 (Retraction). A retraction on a manifold M is a smooth mapping Retr from the tangent
bundle1 TM to M with the following properties. Let Retrx : TxM → M denote the restriction of Retr
to TxM:

(i) Retrx(0x) = x, where 0x is the zero vector in TxM;

(ii) the differential of Retrx at 0x, D Retrx(0x), is the identity map.

These combined conditions ensure retraction curves t �→ Retrx(tη) agree up to first order with geodesics
passing through x with velocity η, around t = 0. Sometimes we allow Retrx to be defined only locally,
in a closed ball of radius �(x) > 0 centered at 0x in TxM.

In linear spaces such as Rn the typical choice is Retrx(η) = x + η. On the sphere, a popular choice is
Retrx(η) = x+η

‖x+η‖ .

Remark 2.2 If the retraction at xk is defined only in a ball of radius �k = �(xk) around the origin in
Txk

M, we limit the size of step ηk to �k. Theorems in this section provide a complexity result provided
� = infk �k > 0. If the injectivity radius of the manifold is positive, retractions satisfying the condition
infx∈M �(x) > 0 exist. In particular, compact manifolds have positive injectivity radius (Chavel, 2006,
Thm. III.2.3). The option to limit the step sizes is also useful when the constant Lg in Assumption 2.6
below does not exist globally.

The two central assumptions and a general theorem about Algorithm 1 follow.

Assumption 2.3 (Lower bound). There exists f ∗ > −∞ such that f (x) ≥ f ∗ for all x ∈ M.

Assumption 2.4 (Sufficient decrease). There exist c, c′ > 0 such that, for all k ≥ 0,

f (xk) − f (xk+1) ≥ min
(

c‖grad f (xk)‖, c′) ‖grad f (xk)‖.

Algorithm 1 Generic Riemannian descent algorithm

1: Given: f : M → R differentiable, a retraction Retr on M, x0 ∈ M, ε > 0
2: Init: k ← 0
3: while ‖grad f (xk)‖ > ε do

4: Pick ηk ∈ Txk
M (e.g., as in Theorem 2.8 or Theorem 2.11)

5: xk+1 = Retrxk
(ηk)

6: k ← k + 1
7: end while

8: return xk � ‖grad f (xk)‖ ≤ ε

1 Informally, the tangent bundle TM is the set of all pairs (x, ηx) where x ∈ M and ηx ∈ TxM. See the reference for a proper
definition of TM and of what it means for Retr to be smooth.
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6 BOUMAL ET AL.

Theorem 2.5 Under Assumptions 2.3 and 2.4, Algorithm 1 returns x ∈ M satisfying f (x) ≤ f (x0) and
‖grad f (x)‖ ≤ ε in at most

⌈

f (x0) − f ∗

c
· 1

ε2

⌉

iterations, provided ε ≤ c′
c

. If ε > c′
c

, at most
⌈

f (x0)−f ∗

c′ · 1
ε

⌉

iterations are required.

Proof. If Algorithm 1 executes K − 1 iterations without terminating, then ‖grad f (xk)‖ > ε for all k in
0, . . ., K − 1. Then using Assumptions 2.3 and 2.4 in a classic telescoping sum argument gives

f (x0) − f ∗ ≥ f (x0) − f (xK) =
K−1
∑

k=0

f (xk) − f (xk+1) > K min(cε, c′)ε.

By contradiction, the algorithm must have terminated if K ≥ f (x0)−f ∗

min(cε,c′)ε . �

To ensure Assumption 2.4 with simple rules for the choice of ηk it is necessary to restrict the class
of functions f . For the particular case M = R

n and Retrx(η) = x + η, the classical tion is to require f to
have a Lipschitz continuous gradient (Nesterov, 2004), that is, existence of Lg such that

∀ x, y ∈ R
n, ‖grad f (x) − grad f (y)‖ ≤ Lg‖x − y‖. (2.1)

As we argue momentarily, generalizing this property to manifolds is impractical. On the other
hand, it is well known that (2.1) implies (see for example Nesterov, 2004, Lemma 1.2.3; see also Berger,
2017, Appendix A for a converse):

∀ x, y ∈ R
n,

∣

∣ f (y) −
[

f (x) + 〈y − x, grad f (x)〉
]∣

∣ ≤ Lg

2
‖y − x‖2. (2.2)

It is the latter we adapt to manifolds. Consider the pullback2 f̂x = f ◦ Retrx : TxM → R, conveniently
defined on a vector space. It follows from the definition of retraction that grad f̂x(0x) = grad f (x).3

Thinking of x as xk and of y as Retrxk
(η), we require the following.

Assumption 2.6 (Restricted Lipschitz-type gradient for pullbacks). There exists Lg ≥ 0 such that, for

all xk among x0, x1, . . . generated by a specified algorithm, the composition f̂k = f ◦ Retrxk
satisfies

∣

∣

∣ f̂k(η) −
[

f (xk) + 〈η, grad f (xk)〉
]

∣

∣

∣ ≤
Lg

2
‖η‖2 (2.3)

for all η ∈ Txk
M such that ‖η‖≤ �k.4 In words, the pullbacks f̂k, possibly restricted to certain balls, are

uniformly well approximated by their first-order Taylor expansions around the origin.

2 The composition f ◦ Retrx is called the pullback because it, quite literally, pulls back the cost function f from the manifold
M to the linear space TxM.

3 ∀ η ∈ TxM, 〈grad f̂x(0x), η〉 = Df̂x(0x)[η] = Df (x)[DRetrx(0x)[η]] = Df (x)[η] = 〈grad f (x), η〉 .
4 See Remark 2.2; ρk = ∞ is valid if the retraction is globally defined and f is sufficiently nice (for example, Lemma 2.7).

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/drx080/4836777
by NERL, Nicolas Boumal
on 06 June 2018



GLOBAL RATES OF CONVERGENCE FOR NONCONVEX OPTIMIZATION 7

To the best of our knowledge, this specific tion has not been used to analyse convergence of
optimization algorithms on manifolds before. As will become clear, it allows for simple extensions
of existing proofs in R

n.
Notice that if each f̂k has a Lipschitz continuous gradient with constant Lg independent of k,5 then

Assumption 2.6 holds but the reverse is not necessarily true as Assumption 2.6 gives a special role to
the origin. In this sense the condition on f̂k is weaker than Lipschitz continuity of the gradient of f̂k. On
the other hand, we are requiring this condition to hold for all xk with the same constant Lg. This is why
we call the condition Lipschitz type rather than Lipschitz.

The following lemma states that if M is a compact submanifold of Rn then a sufficient condition
for Assumption 2.6 to hold is for f : Rn → R to have locally Lipschitz continuous gradient (so that it
has Lipschitz continuous gradient on any compact subset of Rn). The proof is in Appendix B.

Lemma 2.7 Let E be a Euclidean space (for example, E = R
n) and let M be a compact Riemannian

submanifold of E . Let Retr be a retraction on M (globally6 defined). If f : E → R has Lipschitz
continuous gradient in the convex hull of M, then the pullbacks f ◦ Retrx satisfy (2.3) globally with some
constant Lg independent of x; hence, Assumption 2.6 holds for any sequence of iterates and with �k = ∞
for all k.

There are mainly two difficulties with generalizing (2.1) directly to manifolds. First, grad f (x)
and grad f (y) live in two different tangent spaces, so that their difference is not defined; instead,
grad f (x) must be transported to TyM, which requires the introduction of a parallel transport

Px→y : TxM → TyM along a minimal geodesic connecting x and y. Second, the right-hand side ‖x

− y‖ should become dist(x, y): the geodesic distance on M. Both notions involve subtle definitions and
transports may not be defined on all of M. Overall, the resulting tion would read that there exists Lg

such that

∀ x, y ∈ M, ‖Px→ygrad f (x) − grad f (y)‖ ≤ Lgdist( x, y). (2.4)

It is of course possible to work with (2.4)—see for example Absil et al. (2008, Def. 7.4.3) and recent
work of Zhang & Sra (2016) and Zhang et al. (2016)—but we argue that it is conceptually and
computationally advantageous to avoid it if possible. The computational advantage comes from the
freedom in Assumption 2.6 to work with any retraction, whereas parallel transport and geodesic distance
are tied to the exponential map.

We note that, if the retraction is the exponential map, then it is known that Assumption 2.6 holds if
(2.4) holds—see for example Bento et al. (2017, Def. 2.2 and Lemma 2.1).

2.1 Fixed step-size gradient descent method

Leveraging the regularity Assumption 2.6, an easy strategy is to pick the step ηk as a fixed scaling of the
negative gradient, possibly restricted to a ball of radius �k.

5 This holds in particular in the classical setting M = R
n, Retrx(η) = x + η and grad f is Lg-Lipschitz.

6 This is typically not an issue in practice. For example, globally defined, practical retractions are known for the sphere, Stiefel
manifold, orthogonal group, their products and many others (Absil et al., 2008, Chapter 4).
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Theorem 2.8 (Riemannian gradient descent with fixed step size). Under Assumptions 2.3 and 2.6,
Algorithm 1 with the explicit strategy

ηk = − min

(

1

Lg

,
�k

‖grad f (xk)‖

)

grad f (xk)

returns a point x ∈ M satisfying f (x) ≤ f (x0) and ‖grad f (x)‖≤ ε in at most

⌈

2
(

f (x0) − f ∗) Lg · 1

ε2

⌉

iterations provided ε ≤ �Lg, where � = infk ρk. If ε > �Lg the algorithm succeeds in at most
⌈

2 (f (x0) − f ∗) 1
�

· 1
ε

⌉

iterations. Each iteration requires one cost and gradient evaluation and one
retraction.

Proof. The regularity Assumption 2.6 provides an upper bound for the pullback for all k:

∀ η ∈ Txk
M with ‖η‖ ≤ �k, f (Retrxk

(η)) ≤ f (xk) + 〈η, grad f (xk)〉 + Lg

2
‖η‖2. (2.5)

For the given choice of ηk and using xk+1 = Retrxk
(ηk), it follows easily that

f (xk) − f (xk+1) ≥ min

(‖grad f (xk)‖
Lg

, �k

)[

1 − Lg

2
min

(

1

Lg

,
�k

‖grad f (xk)‖

)]

‖grad f (xk)‖.

The term in brackets is at least 1/2. Thus, Assumption 2.4 holds with c = 1
2Lg

and c′ = �
2 , allowing us

to conclude with Theorem 2.3. �

Corollary 2.9 If there are no step-size restrictions in Theorem 2.5 (ρk ≡ ∞), the explicit strategy

ηk = − 1

Lg

grad f (xk)

returns a point x ∈ M satisfying f (x) ≤ f (x0) and ‖grad f (x)‖≤ ε in at most

⌈

2
(

f (x0) − f ∗) Lg · 1

ε2

⌉

iterations for any ε > 0.

2.2 Gradient descent with backtracking Armijo line-search

The following lemma shows that a basic Armijo-type backtracking line-search, Algorithm 2, computes
a step ηk satisfying Assumption 2.4 in a bounded number of function calls, without the need to know
Lg. The statement allows search directions other than −grad f (xk), provided they remain ‘related’
to −grad f (xk). This result is well known in the Euclidean case and carries over seamlessly under
Assumption 2.6.
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Algorithm 2 Backtracking Armijo line-search

1: Given: xk ∈ M, η0
k ∈ Txk

M, t̄k > 0, c1 ∈ (0, 1), τ ∈ (0, 1)

2: Init: t ← t̄k
3: while f (xk) − f

(

Retrxk

(

t · η0
k

))

< c1t
〈

−grad f (xk), η
0
k

〉

do

4: t ← τ · t

5: end while

6: return t and ηk = tη0
k

Lemma 2.10 For each iteration k of Algorithm 1, let η0
k ∈ Txk

M be the initial search direction to be
considered for line-search. Assume there exist constants c2 ∈ (0, 1] and 0 < c3 ≤ c4 such that, for all k,

〈

−grad f (xk), η
0
k

〉

≥ c2‖grad f (xk)‖
∥

∥

∥
η0

k

∥

∥

∥
and c3‖grad f (xk)‖ ≤

∥

∥

∥
η0

k

∥

∥

∥
≤ c4‖grad f (xk)‖.

Under Assumption 2.6, backtracking Armijo (Algorithm 2) with initial step size t̄k such that t̄k
∥

∥η0
k

∥

∥ ≤
�k returns a positive t and ηk = tη0

k such that

f (xk) − f
(

Retrxk
(ηk)

)

≥ c1c2c3t‖grad f (xk)‖2 and t ≥ min

(

t̄k,
2τc2(1 − c1)

c4Lg

)

(2.6)

in

1 + logτ

(

t/t̄k
)

≤ max

(

1, 2 +
⌈

logτ−1

(

c4 t̄kLg

2c2(1 − c1)

)⌉)

retractions and cost evaluations (not counting evaluation of f at xk).

Proof. See Appendix C. �

The previous discussion can be particularized to bound the amount of work required by a gradient
descent method using a backtracking Armijo line-search on manifolds. The constant Lg appears in the
bounds but needs not be known. Note that, at iteration k, the last cost evaluation of the line-search
algorithm is the cost at xk+1: it need not be recomputed.

Theorem 2.11 (Riemannian gradient descent with backtracking line-search). Under Assumptions 2.3
and 2.6, Algorithm 1 with Algorithm 2 for line-search using initial search direction η0

k = −grad f (xk)

with parameters c1, τ and t̄k � min
(

t̄, �k/‖grad f (xk)‖
)

for some t̄ > 0 returns a point x ∈ M satisfying
f (x) ≤ f (x0) and ‖grad f (x)‖≤ ε in at most

⎡

⎢

⎢

⎢

f (x0) − f ∗

c1 min
(

t̄, 2τ(1−c1)
Lg

) · 1

ε2

⎤

⎥

⎥

⎥
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10 BOUMAL ET AL.

iterations, provided ε ≤ �

min
(

t̄,
2τ (1−c1)

Lg

) � c, where � = infk �k. If ε > c, the algorithm succeeds in at

most
⌈ f (x0)−f ∗

c1�
· 1

ε

⌉

iterations. After computing f (x0) and grad f (x0), each iteration requires one gradient

evaluation and at most max
(

1, 2 +
⌈

logτ−1

( t̄Lg

2(1−c1)

)⌉)

cost evaluations and retractions.

Proof. Using η0
k = −grad f (xk), one can take c2 = c3 = c4 = 1 in Lemma 2.7. Equation (2.6) in that

lemma combined with the definition of t̄k ensures

f (xk) − f (xk+1) ≥ c1 min

(

t̄,
2τ(1 − c1)

Lg

,
�k

‖grad f (xk)‖

)

‖grad f (xk)‖2.

Thus, Assumption 2.4 holds with c = c1 min
(

t̄, 2τ(1−c1)
Lg

)

and c′ = c1�. Conclude with Theorem 2.3.�

3. RTR methods

The RTR method is a generalization of the classical trust-region method to manifolds (Absil et al., 2007;
Conn et al., 2000)—see Algorithm 3. The algorithm is initialized with a point x0 ∈ M and a trust-region
radius �0. At iteration k, the pullback f̂k = f ◦ Retrxk

is approximated by a model m̂k : Txk
M → R,

m̂k(η) = f (xk) + 〈η, grad f (xk)〉 + 1
2 〈η, Hk[η]〉 , (3.1)

where Hk : Txk
M → Txk

M is a map chosen by the user. The tentative step ηk is obtained by
approximately solving the associated trust-region subproblem:

min
η∈Txk

M
m̂k(η) subject to ‖η‖ ≤ �k. (3.2)

The candidate next iterate x+
k = Retrxk

(ηk) is accepted (xk+1 = x+
k ) if the actual cost decrease f (xk) −

f
(

x+
k

)

is a sufficiently large fraction of the model decrease m̂k

(

0xk

)

− m̂k(ηk). Otherwise, the candidate
is rejected (xk+1 = xk). Depending on the level of agreement between the model decrease and actual
decrease, the trust-region radius �k can be reduced, kept unchanged or increased, but never above some
parameter �̄. The parameter �̄ can be used in particular in case of a nonglobally defined retraction or if
the regularity conditions on the pullbacks hold only locally.

We establish worst-case iteration complexity bounds for the computation of points x ∈ M such
that ‖grad f (x)‖≤ εg and Hess f (x) �−εH Id, where Hess f (x) is the Riemannian Hessian of f at x.
Besides Lipschitz-type conditions on the problem itself, essential algorithmic requirements are that (i)
the models m̂k should agree sufficiently with the pullbacks f̂k (locally) and (ii) sufficient decrease in the
model should be achieved at each iteration. The analysis presented here is a generalization of the one in
Cartis et al. (2012) to manifolds.

3.1 Regularity conditions

In what follows, for iteration k, we make assumptions involving the ball of radius �k ≤ �̄ around 0xk

in the tangent space at xk. If Retrx is defined only in a ball of radius �(x), one (conservative) strategy to
ensure �k ≥�k as required in the assumption below is to set �̄ ≤ infx∈M:f (x)≤f (x0) �(x), provided this is
positive (see Remark 2.2).
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GLOBAL RATES OF CONVERGENCE FOR NONCONVEX OPTIMIZATION 11

Assumption 3.1 (Restricted Lipschitz-type gradient for pullbacks). Assumption 2.6 holds in the
respective trust regions of the iterates produced by Algorithm 3, that is, with �k ≥�k.

Algorithm 3 RTR, modified to attain second-order optimality

1: Parameters: �̄ > 0, 0 < ρ′ < 1/4, εg > 0, εH > 0
2: Input: x0 ∈ M, 0 < �0 ≤ �̄

3: Init: k ← 0
4: while true do

5: if ‖grad f (xk)‖ > εg then � First-order step
6: Obtain ηk ∈ Txk

M satisfying Assumption 3.6 (e.g., Lemma 3.7)
7: else if εH < ∞ then � Second-order step
8: if λmin(Hk) < −εH then

9: Obtain ηk ∈ Txk
M satisfying Assumption 3.8 (e.g., Lemma 3.9)

10: else

11: return xk � ‖grad f (xk)‖ ≤ εg and λmin(Hk) ≥ −εH

12: end if

13: else

14: return xk � ‖grad f (xk)‖ ≤ εg

15: end if

16: Compute

ρk = f̂k(0xk
) − f̂k(ηk)

m̂k(0xk
) − m̂k(ηk)

(3.3)

17: �k+1 =

⎧

⎪

⎨

⎪

⎩

1
4�k if ρk < 1

4 (poor model-cost agreement),

min
(

2�k, �̄
)

if ρk > 3
4 and |ηk‖ = �k (good agreement, limiting TR),

�k otherwise.

18: xk+1 =
{

Retrxk
(ηk) if ρk > ρ′ (accept the step),

xk otherwise (reject).

19: k ← k + 1
20: end while

Assumption 3.2 (Restricted Lipschitz-type Hessian for pullbacks). If εH < ∞ there exists LH ≥ 0 such
that, for all xk among x0, x1, . . . generated by Algorithm 3 and such that ‖grad f (xk)‖≤ εg, f̂k satisfies

∣

∣

∣

∣

f̂k(η) −
[

f (xk) + 〈η, grad f (xk)〉 + 1

2

〈

η, ∇2 f̂k(0xk
)[η]
〉

]∣

∣

∣

∣

≤ LH

6
‖η‖3 (3.4)

for all η ∈ Txk
M such that ‖η‖≤�k.
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12 BOUMAL ET AL.

As discussed in Section 3.5 below, if Retr is a second-order retraction, then ∇2 f̂k
(

0xk

)

coincides
with the Riemannian Hessian of f at xk.

In the previous section, Lemma 2.7 gives a sufficient condition for Assumption 3.1 to hold; we
complement this statement with a sufficient condition for Assumption 3.2 to hold as well. In a nutshell,
if M is a compact submanifold of Rn and f : Rn → R has locally Lipschitz continuous Hessian, then
both assumptions hold.

Lemma 3.3 Let E be a Euclidean space (for example, E = R
n) and let M be a compact Riemannian

submanifold of E . Let Retr be a second-order retraction on M (globally defined). If f : E → R has
Lipschitz continuous Hessian in the convex hull of M, then the pullbacks f ◦ Retrx obey (3.4) with
some constant LH independent of x; hence, Assumption 3.2 holds for any sequence of iterates and trust-
region radii.

The proof is in Appendix B. Here too, if M is a Euclidean space and Retrx(η) = x + η, then
Assumptions 3.1 and 3.2 are satisfied if f has Lipschitz continuous Hessian in the usual sense.

3.2 Assumptions about the models

The model at iteration k is the function m̂k (3.1) whose purpose is to approximate the pullback f̂k =
f ◦ Retrxk

. It involves a map Hk : Txk
M → Txk

M. Depending on the type of step being performed
(aiming for first- or second-order optimality conditions), we require different properties of the maps Hk.
Conditions for first-order optimality are particularly lax.

Assumption 3.4 If ‖grad f (xk)‖ > εg (so that we are aiming only for a first-order condition at this step)
then Hk is radially linear. That is,

∀ η ∈ Txk
M, ∀ α ≥ 0, Hk[αη] = αHk[η]. (3.5)

Furthermore, there exists c0 ≥ 0 (the same for all first-order steps) such that

‖Hk‖ � sup
η∈Txk

M:‖η‖≤1

〈η, Hk[η]〉 ≤ c0. (3.6)

Radial linearity and boundedness are sufficient to ensure first-order agreement between m̂k and f̂k.
This relaxation from complete linearity of Hk, which would be the standard assumption, notably allows
the use of nonlinear finite difference approximations of the Hessian (Boumal, 2015a). To reach second-
order agreement, the conditions are stronger.

Assumption 3.5 If ‖grad f (xk)‖≤ εg and εH < ∞ (so that we are aiming for a second-order condition),

then Hk is linear and symmetric. Furthermore, Hk is close to ∇2 f̂k
(

0xk

)

along ηk in the sense that there
exists c1 ≥ 0 (the same for all second-order steps) such that

∣

∣

∣

〈

ηk,
(

∇2 f̂k(0xk
) − Hk

)

[ηk]
〉∣

∣

∣ ≤
c1�k

3
‖ηk‖2. (3.7)

The smaller �k, the more precisely Hk must approximate the Hessian of the pullback along ηk.
Lemma 3.6 (below) shows �k is lower bounded in relation with εg and εH.
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Equation (3.7) involves ηk, the ultimately chosen step that typically depends on Hk. The stronger
condition below does not reference ηk and yet still ensures (3.7) is satisfied:

∥

∥

∥
∇2 f̂k

(

0xk

)

− Hk

∥

∥

∥
≤ c1�k

3
.

Refer to Section 3.5 to relate Hk, ∇2 f̂k
(

0xk

)

and Hess f (xk).

3.3 Assumptions about sufficient model decrease

The steps ηk can be obtained in a number of ways, leading to different local convergence rates and
empirical performance. As far as global convergence guarantees are concerned though, the requirements
are modest. It is required only that, at each iteration, the candidate ηk induces sufficient decrease in

the model. Known explicit strategies achieve these decreases. In particular, solving the trust-region
subproblem (3.2) within some tolerance (which can be done in polynomial time if Hk is linear; see
Vavasis, 1991, Sect. 4.3) is certain to satisfy the assumptions. The Steihaug–Toint truncated conjugate
gradients method is a popular choice (Toint, 1981; Steihaug, 1983; Conn et al., 2000; Absil et al., 2007).
See also Sorensen (1982) and Moré & Sorensen (1983) for more about the trust-region subproblem. Here
we describe simpler yet satisfactory strategies. For first-order steps we require the following.

Assumption 3.6 There exists c2 > 0 such that, for all k such that ‖grad f (xk)‖ > εg, the step ηk satisfies

m̂k(0xk
) − m̂k(ηk) ≥ c2 min

(

�k,
εg

c0

)

εg. (3.8)

As is well known, the explicitly computable Cauchy step satisfies this requirement. For convenience
let gk = grad f (xk). By definition the Cauchy step minimizes m̂k (3.1) in the trust region along the
steepest descent direction –gk. Owing to radial linearity (Assumption 3.4), this reads

min
α≥0

m̂k(−αgk) = f (xk) − α‖gk‖2 + α2

2
〈gk, Hk[gk]〉

such that α‖gk‖ ≤ �k.

This corresponds to minimizing a quadratic in α over the interval [0, �k/‖gk‖]. The optimal value is
easily seen to be (Conn et al., 2000)

αC
k =

{

min
(

‖gk‖2

〈gk ,Hk[gk]〉 , �k

‖gk‖

)

if 〈gk, Hk[gk]〉 > 0,
�k

‖gk‖ otherwise.

Lemma 3.7 Let gk = grad f (xk). Under Assumption 3.4, setting ηk to be the Cauchy step ηC
k = −αC

k gk

for first-order steps fulfills Assumption 3.6 with c2 = 1/2. Computing ηC
k involves one gradient

evaluation and one application of Hk.

Proof. The claim follows as an exercise from m̂k

(

0xk

)

− m̂k

(

ηC
k

)

= αC
k ‖gk‖2 −

(

αC
k

)2

2 〈gk, Hk[gk]〉 and

〈gk, Hk[gk]〉 ≤ c0‖gk‖2 owing to Assumption 3.4. �
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14 BOUMAL ET AL.

The Steihaug–Toint truncated conjugate gradient method (Toint, 1981; Steihaug, 1983) is a
monotonically improving iterative method for the trust-region subproblem whose first iterate is the
Cauchy step; as such, it necessarily achieves the required model decrease.

For second-order steps the requirement is as follows.

Assumption 3.8 There exists c3 > 0 such that, for all k such that ‖grad f (xk)‖≤ εg and λmin(Hk) <

−εH , the step ηk satisfies

m̂k(0xk
) − m̂k(ηk) ≥ c3�

2
kεH . (3.9)

This can be achieved by making a step of maximal length along a direction that certifies that
λmin(Hk) < −εH (Conn et al., 2000): this is called an eigenstep. Like Cauchy steps, eigensteps can
be computed in a finite number of operations, independently of εg and εH.

Lemma 3.3 Under Assumption 3.5, if λmin(Hk) < −εH , there exists a tangent vector uk ∈ Txk
M with

‖uk‖ = 1, 〈uk, grad f (xk)〉 ≤ 0 and 〈uk, Hk[uk]〉 < −εH .

Setting ηk to be any eigenstep ηE
k = �kuk for second-order steps fulfills Assumption 3.8 with c3 = 1/2.

Let v1, . . . ,vn be an orthonormal basis of Txk
M, where n = dimM. One way of computing ηE

k

involves the application of Hk to v1, . . . ,vn plus O
(

n3
)

arithmetic operations. The amount of work is
independent of εg and εH.

Proof. Compute H, a symmetric matrix of size n that represents Hk in the basis v1, . . . ,vn, as Hij =
〈

vi, Hk

[

vj

]〉

. Compute a factorization LDLT = H + εHI where I is the identity matrix, L is invertible
and triangular and D is block diagonal with blocks of size 1 × 1 and 2 × 2. The factorization can be
computed in O

(

n3
)

operations (Golub & Van Loan, 2012, Sect. 4.4)—see the reference for a word of
caution regarding pivoting for stability; pivoting is easily incorporated in the present argument. The
matrix D has the same inertia as H + εHI, hence D is not positive semidefinite (otherwise H �−εHI.)
The structure of D makes it easy to find x ∈ R

n with xT Dx < 0. Solve the triangular system LT y = x

for y ∈ R
n. Now 0 > xT Dx = yT LDLT y = yT (H + εHI)y. Consequently, yT Hy < −εH‖y‖2. We can

set uk = ±
∑n

i=1 yivi/‖y‖, where the sign is chosen to ensure 〈uk, grad f (xk)〉 ≤ 0. To conclude check

that m̂k

(

0xk

)

− m̂k

(

ηE
k

)

= −
〈

ηE
k , grad f (xk)

〉

− 1
2

〈

ηE
k , Hk

[

ηE
k

]〉

≥ 1
2�2

kεH . �

Notice from the proof that this strategy either certifies that λmin(Hk) � −εH Id (which must be
checked at step 8 in Algorithm 3) or certifies otherwise by providing an escape direction. We further
note that, in practice, one usually prefers to use iterative methods to compute an approximate leftmost
eigenvector of Hk without representing it as a matrix.

3.4 Main results and proofs for RTR

Under the discussed assumptions, we now establish our main theorem about computation of approximate
first- and second-order critical points for (P) using RTR in a bounded number of iterations. The following
constants will be useful:

λg = 1

4
min

(

1

c0
,

c2

Lg + c0

)

and λH = 3

4

c3

LH + c1
. (3.10)
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GLOBAL RATES OF CONVERGENCE FOR NONCONVEX OPTIMIZATION 15

Theorem 3.9 Under Assumptions 2.3, 3.1, 3.4, 3.6 and assuming εg ≤ �0
λg

,7 Algorithm 3 produces an

iterate xN1 satisfying ‖grad f (xN1)‖ ≤ εg with

N1 ≤ 3

2

f (x0) − f ∗

ρ′c2λg

1

ε2
g

+ 1

2
log2

(

�0

λgεg

)

= O

(

1

ε2
g

)

. (3.11)

Furthermore, if εH < ∞ then under additional Assumptions 3.2, 3.5, and 3.8 and assuming εg ≤ c2
c3

λH

λ2
g

and εH ≤ c2
c3

1
λg

, Algorithm 3 also produces an iterate xN2 satisfying ‖grad f (xN2)‖ ≤ εg and λmin(HN2) ≥
−εH with

N1 ≤ N2 ≤ 3

2

f (x0) − f ∗

ρ′c3λ2

1

ε2εH

+ 1

2
log2

(

�0

λε

)

= O

(

1

ε2εH

)

, (3.12)

where we defined (λ, ε) = (λg, εg) if λgεg ≤ λHεH and (λ, ε) = (λH, εH) otherwise. Since the algorithm
is a descent method, f (xN2) ≤ f (xN1) ≤ f (x0).

Remark 3.10 Theorem 3.4 makes a statement about λmin(Hk) at termination, not about λmin(Hess f (xk)).
See Section 3.5 to connect these two quantities.

To establish Theorem 3.4 we work through a few lemmas, following the proof technique in Cartis
et al. (2012). We first show �k is bounded below in proportion to the tolerances εg and εH. This is used
to show that the number of successful iterations in Algorithm 3 before termination (that is, iterations
where ρk > ρ′; see (3.3)) is bounded above. It is then shown that the total number of iterations is at most
a constant multiple of the number of successful iterations, which implies termination in bounded time.

We start by showing that the trust-region radius is bounded away from zero. Essentially, this is
because if �k becomes too small, then the Cauchy step and eigenstep are certain to be successful owing
to the quality of the model in such a small region, so that the trust-region radius could not decrease any
further.

Lemma 3.11 Under the assumptions of Theorem 3.4, if Algorithm 3 executes N iterations without
terminating then

�k ≥ min
(

�0, λgεg, λHεH

)

(3.13)

for k = 0, . . . , N, where λg and λH are defined in (3.10).

Proof. This follows essentially the proof of Absil et al. (2008, Thm. 7.4.2), which itself follows classical
proofs (Conn et al., 2000). The core idea is to control ρk (see (3.3)) close to 1, to show that there cannot
be arbitrarily many trust-region radius reductions. The proof is in two parts.

7 Theorem 3.4 is scale invariant, in that if the cost function f (x) is replaced by αf (x) for some positive α (which does not
meaningfully change (P)), it is sensible to also multiply Lg, LH, c0, c1, εg and εH by α; consequently, the upper bounds on εg and
εH and the upper bounds on N1 and N2 are invariant under this scaling. If it is desirable to always allow εg, εH in, say, (0, 1], one
possibility is to artificially make Lg, LH, c0, c1 larger (which is always allowed).
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16 BOUMAL ET AL.

For the first part, assume ‖grad f (xk)‖ > εg. Then consider the gap

|ρk − 1| =
∣

∣

∣

∣

∣

f̂k(0xk
) − f̂k(ηk)

m̂k(0xk
) − m̂k(ηk)

− 1

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

m̂k(ηk) − f̂k(ηk)

m̂k(0xk
) − m̂k(ηk)

∣

∣

∣

∣

∣

. (3.14)

From Assumption 3.6, we know the denominator is not too small:

m̂k

(

0xk

)

− m̂k(ηk) ≥ c2 min

(

�k,
εg

c0

)

εg.

Now consider the numerator:

|m̂k(ηk) − f̂k(ηk)| =
∣

∣

∣
f (xk) + 〈grad f (xk), ηk〉 + 1

2 〈ηk, Hk[ηk]〉 − f̂k(ηk)

∣

∣

∣

≤
∣

∣

∣f (xk) + 〈grad f (xk), ηk〉 − f̂k(ηk)

∣

∣

∣+ 1
2 |〈ηk, Hk[ηk]〉|

≤ 1
2

(

Lg + c0

)

‖ηk‖2,

where we used Assumption 3.1 for the first term, and Assumption 3.4 for the second term. Assume for

the time being that �k ≤ min
(

εg

c0
,

c2εg

Lg+c0

)

= 4λgεg. Then, using ‖ηk‖≤�k, it follows that

|ρk − 1| ≤ 1

2

Lg + c0

c2 min
(

�k,
εg

c0

)

εg

�2
k ≤ 1

2

Lg + c0

c2εg

�k ≤ 1

2
.

Hence, ρk ≥ 1/2, and by the mechanism of Algorithm 3, it follows that �k+1 ≥�k.
For the second part, assume ‖grad f (xk)‖ < εg and λmin(Hk) < −εH . Then, by Assumption 3.8,

m̂k(0xk
) − m̂k(ηk) ≥ c3�

2
kεH .

Thus, by Assumptions 3.2 and 3.5,

|m̂k(ηk) − f̂k(ηk)| =
∣

∣

∣f (xk) + 〈grad f (xk), ηk〉 + 1
2 〈ηk, Hk[ηk]〉 − f̂k(ηk)

∣

∣

∣

≤ LH

6
‖ηk‖3 + 1

2

∣

∣

∣

〈

ηk,
(

∇2 f̂k
(

0xk

)

− Hk

)

[ηk]
〉∣

∣

∣

≤ LH + c1

6
�3

k .

As previously, combine these observations into (3.14) to see that if �k ≤ 3c3
LH+c1

εH = 4λHεH then

|ρk − 1| ≤ 1
2

LH + c1

3c3εH

�k ≤ 1
2 . (3.15)

Again, this implies �k+1 ≥�k.
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Now combine the two parts. We have established that, if �k ≤ 4 min
(

λgεg, λHεH

)

, then �k+1 ≥�k.
To conclude the proof, consider the fact that Algorithm 3 cannot reduce the radius by more than 1/4 in
one step. �

By an argument similar to the one used for gradient methods, Lemma 3.6 implies an upper bound
on the number of successful iterations required in Algorithm 3 to reach termination.

Lemma 3.12 Under the assumptions of Theorem 3.4, if Algorithm 3 executes N iterations without
terminating, define the set of successful steps as

SN = {k ∈ {0, . . . , N} : ρk > ρ′}

and let UN designate the unsuccessful steps, so that SN and UN form a partition of {0, . . . ,N}. Assume
εg ≤�0/λg. If εH = ∞, the number of successful steps obeys

|SN | ≤ f (x0) − f ∗

ρ′c2λg

1

ε2
g

. (3.16)

Otherwise, if additionally εg ≤ c2
c3

λH

λ2
g

and εH ≤ c2
c3

1
λg

, we have the bound

|SN | ≤ f (x0) − f ∗

ρ′c3

1

min(λgεg, λHεH)2εH

. (3.17)

Proof. The proof parallels Cartis et al. (2012, Lemma 4.5). Clearly, if k ∈ UN, then f (xk) = f (xk+1). On
the other hand, if k ∈ SN then ρk ≥ ρ′ (see (3.3)). Combine this with Assumptions 3.6 and 3.8 to see
that, for k ∈ SN,

f (xk) − f (xk+1) ≥ ρ′ (m̂k(0xk
) − m̂k(ηk)

)

≥ ρ′ min

(

c2 min

(

�k,
εg

c0

)

εg c3�
2
kεH

)

.

By Lemma 3.6 and the assumption λgεg ≤�0, it holds that �k ≥ min
(

λgεg, λHεH

)

. Furthermore, using
λg ≤ 1/c0 shows that min(�k, εg/c0) ≥ min(�k, λgεg) ≥ min

(

λgεg, λHεH

)

. Hence,

f (xk) − f (xk+1) ≥ ρ′ min
(

c2λgε
2
g , c2λHεgεH , c3λ

2
gε

2
gεH , c3λ

2
Hε3

H

)

. (3.18)

If εH = ∞ this simplifies to

f (xk) − f (xk+1) ≥ ρ′c2λgε
2
g .

Sum over iterations up to N and use Assumption 2.3 (bounded f ):

f (x0) − f ∗ ≥ f (x0) − f (xN+1) =
∑

k∈SN

f (xk) − f (xk+1) ≥ |SN |ρ′c2λgε
2
g .

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/drx080/4836777
by NERL, Nicolas Boumal
on 06 June 2018



18 BOUMAL ET AL.

Hence,

|SN | ≤ f (x0) − f ∗

ρ′c2λg

1

ε2
g

.

On the other hand, if εH < ∞ then, starting over from (3.18) and assuming both c3λ
2
gε

2
gεH ≤ c2λHεgεH

and c3λ
2
gε

2
gεH ≤ c2λgε

2
g (which is equivalent to εg ≤ c2λH/c3λ

2
g and εH ≤ c2/c3λg), it comes with the

same telescoping sum that

f (x0) − f ∗ ≥ |SN |ρ′c3 min(λgεg, λHεH)2εH .

Solve for |SN| to conclude. �

Finally, we show that the total number of steps N before termination cannot be more than a fixed
multiple of the number of successful steps |SN|.

Lemma 3.13 Under the assumptions of Theorem 3.4, if Algorithm 3 executes N iterations without
terminating, using the notation SN and UN of Lemma 3.7, it holds that

|SN | ≥ 2
3 (N + 1) − 1

3 max

(

0, log2

(

�0

λgεg

)

, log2

(

�0

λHεH

))

. (3.19)

Proof. The proof rests on the lower bound for �k obtained in Lemma 3.6. It parallels Cartis et al. (2012,
Lemma 4.6). For all k ∈ SN, it holds that �k+1 ≤ 2�k. For all k ∈ Uk, it holds that �k+1 ≤ 1

4�k. Hence,

�N ≤ 2|SN |
(

1
4

)|UN |
�0.

On the other hand, Lemma 3.6 gives

�N ≥ min
(

�0, λgεg, λHεH

)

.

Combine, divide by �0 and take the log in base 2:

|SN | − 2|UN | ≥ min

(

0, log2

(

λgεg

�0

)

, log2

(

λHεH

�0

))

.

Use |SN| + |UN| = N + 1 to conclude. �

We can now prove the main theorem.

Proof of Theorem 3.4. It is sufficient to combine Lemmas 3.6 and 3.7 in both regimes. First, we get
that if ‖grad f (xk)‖ > εg for k = 0, . . . , N, then

N + 1 ≤ 3
2

f (x0) − f ∗

ρ′c2λg

1

ε2
g

+ 1
2 log2

(

�0

λgεg

)

.
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(The term log2

(

�0
λHεH

)

from Lemma 3.8 is irrelevant up to that point, as εH could just as well have been
infinite.) Thus, after a number of iterations larger than the right-hand side, an iterate with sufficiently
small gradient must have been produced, to avoid a contradiction.

Second, we get that if for k = 0, . . . , N no iterate satisfies both ‖grad f (xk)‖≤ εg and λmin(Hk) ≥
−εH , then

N + 1 ≤ 3
2

f (x0) − f ∗

ρ′c3

1

min(λgεg, λHεH)2εH

+ 1
2 max

(

log2

(

�0

λgεg

)

, log2

(

�0

λHεH

))

.

Conclude with the same argument. �

3.5 Connecting Hk and Hess f(xk)

Theorem 3.4 states termination of Algorithm 3 in terms of ‖grad f (xk)‖ and λmin(Hk). Ideally, the latter
must be turned into a statement about λmin(Hess f (xk)), to match the second-order necessary optimality
conditions of (P) more closely (recall Proposition 1.1). Assumption 3.5 itself requires only Hk to be
(weakly) related to ∇2 f̂k(0xk

) (the Hessian of the pullback of f at xk), which is different from the
Riemannian Hessian of f at xk in general. It is up to the user to provide Hk sufficiently related to
∇2 f̂k

(

0xk

)

. Additional control over the retraction at xk can further relate ∇2 f̂k
(

0xk

)

to Hess f (xk), as we
do now. Proofs for this section are in Appendix D.

Lemma 3.9 Define the maximal acceleration of Retr at x as the real a such that

∀ η ∈ TxM with ‖η‖ = 1,

∥

∥

∥

∥

D2

dt2
Retrx(tη)|t=0

∥

∥

∥

∥

≤ a,

where D2

dt2
γ denotes acceleration of the curve t �→ γ (t) on M (Absil et al., 2008, Chapter 5). Then

∥

∥

∥Hess f (x) − ∇2 f̂x(0x)

∥

∥

∥ ≤ a · ‖grad f (x)‖.

In particular, if x is a critical point or if a = 0, the Hessians agree: Hess f (x) = ∇2 f̂x(0x).

The particular cases appear as Absil et al. (2008, Props. 5.5.5, 5.5.6). This result highlights the
crucial role of retractions with zero acceleration, known as second-order retractions and defined in
Absil et al. (2008, Prop. 5.5.5); we are not aware of earlier references to this notion.

Definition 3.14 A retraction is a second-order retraction if it has zero acceleration, as defined in
Lemma 3.9. Then retracted curves locally agree with geodesics up to second order.

Proposition 3.15 Let xk ∈ M be the iterate returned by Algorithm 3 under the assumptions of
Theorem 3.4. It satisfies ‖grad f (xk)‖≤ εg and Hk �−εH Id. Assume Hk is related to the Hessian of

the pullback as ‖∇2 f̂k
(

0xk

)

− Hk‖ ≤ δk. Further assume the retraction has acceleration at xk bounded by
ak, as defined in Lemma 3.9. Then

Hess f (xk) � −
(

εH + akεg + δk

)

Id .

In particular, if the retraction is second order and Hk = ∇2 f̂k
(

0xk

)

, then Hess f (xk) �−εH Id.
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We note that second-order retractions are frequently available in applications. Indeed, retractions
for submanifolds obtained as (certain types of) projections—arguably one of the most natural classes
of retractions for submanifolds—are second order (Absil & Malick, 2012, Thm. 22). For example, the
sphere retraction Retrx(η) = (x + η)/‖x + η‖ is second order. Such retractions for low-rank matrices are
also known (Absil & Oseledets, 2015).

4. Example: smooth semidefinite programs

This example is based on Boumal et al. (2016). Consider the following semidefinite program, which
occurs in robust PCA (McCoy & Tropp, 2011) and as a convex relaxation of combinatorial problems
such as Max-Cut, Z2-synchronization and community detection in the stochastic block model (Goemans
& Williamson, 1995; Bandeira et al., 2016):

min
X∈Rn×n

Tr(CX) subject to diag(X) = 1, X � 0. (4.1)

The symmetric cost matrix C depends on the application. Interior point methods solve this problem
in polynomial time, though they involve significant work to enforce the conic constraint X � 0
(X symmetric, positive semidefinite). This motivates the approach of Burer & Monteiro (2005) to
parameterize the search space as X = Y YT, where Y is in R

n×p for some well-chosen p:

min
Y∈Rn×p

Tr
(

CYYT
)

subject to diag
(

YYT
)

= 1. (4.2)

This problem is of the form of (P), where f (Y) = Tr
(

CYYT
)

and the manifold is a product of n unit
spheres in R

p:

M =
{

Y ∈ R
n×p : diag

(

YYT
)

= 1
}

=
{

Y ∈ R
n×p : each row of Y has unit norm

}

. (4.3)

In principle, since the parameterization X = YYT breaks convexity, the new problem could have many
spurious local optimizers and saddle points. Yet, for p = n + 1, it has recently been shown that
approximate second-order critical points Y map to approximate global optimizers X = YYT, as stated in
the following proposition. (In this particular case there is no need to control ‖grad f (Y )‖ explicitly.)

Proposition 4.1 (Boumal et al., 2016). If X� is optimal for (3.19) and Y is feasible for (4.1) with p >

n and Hess f (Y ) �−εH Id, the optimality gap is bounded as

0 ≤ Tr
(

CYYT
)

− Tr(CX�) ≤ n

2
εH .

Since f is smooth in R
n×p and M is a compact submanifold of Rn×p, the regularity Assumptions 3.1

and 3.2 hold with any second-order retraction (Lemmas 2.4 and 3.1). In particular, they hold if RetrY(Ẏ)

is the result of normalizing each row of Y + Ẏ (Section 3.5) or if the exponential map is used (which is
cheap for this manifold; see Appendix E). Theorem 3.4 then implies that RTR applied to the nonconvex
problem (4.2) computes a point X = Y YT feasible for (4.1) such that Tr(CX) −Tr(CX�) ≤ δ in O

(

1/δ3
)

iterations. Appendix E bounds the total work with an explicit dependence on the problem dimension n

as O
(

n10/δ3
)

arithmetic operations, where O hides factors depending on the data C and an additive log
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term. This result follows from a bound LH ≤ 8 ‖C‖2
√

n for Assumption 3.2, which is responsible for a
factor of n in the complexity—the remaining factors could be improved; see below.

In Boumal et al. (2016), it is shown that, generically in C, if p ≥
⌈√

2n
⌉

then all second-order
critical points of (4.2) are globally optimal (despite nonconvexity). This means RTR globally converges
to global optimizers with cheaper iterations (due to reduced dimensionality). Unfortunately, there is no
statement of quality pertaining to approximate second-order critical points for such small p, so that this
analysis is not sufficient to obtain an improved worst-case complexity bound.

These bounds are worse than guarantees provided by interior point methods. Indeed, following
Nesterov (2004, Sect. 4.3.3, with eq. (4.3.12)), interior point methods achieve a solution in
O
(

n3.5 log(n/δ)
)

arithmetic operations. Yet, numerical experiments in Boumal et al. (2016) suggest RTR

often outperforms interior point methods, indicating that the bound O
(

n10/δ3
)

is wildly pessimistic.
We report it here mainly because, to the best of our knowledge, this is the first explicit bound for a
Burer–Monteiro approach to solving a semidefinite program.

A number of factors drive the gap between our worst-case bound and practice. In particular,
strategies far more efficient than the LDLT factorization in Lemma 3.3 are used to compute second-
order steps, and they can exploit structure in C. High-accuracy solutions are reached owing to RTR
typically converging superlinearly, locally. And p is chosen much smaller than n + 1.

See also Mei et al. (2017) for formal complexity results in a setting where p is allowed to be
independent of n; this precludes reaching an objective value arbitrarily close to optimal, in exchange
for cheaper computations.

5. Conclusions and perspectives

We presented bounds on the number of iterations required by the Riemannian gradient descent algorithm
and the RTR algorithm to reach points that approximately satisfy first- and second-order necessary
optimality conditions, under some regularity assumptions but regardless of initialization. When the
search space M is a Euclidean space these bounds are already known. For the more general case of
M being a Riemannian manifold, these bounds are new.

As a subclass of interest, we showed the regularity requirements are satisfied if M is a compact
submanifold of Rn and f has locally Lipschitz continuous derivatives of appropriate order. This covers
a rich class of practical optimization problems.

While there are no explicit assumptions made about M, the smoothness requirements for the
pullback of the cost—Assumptions 2.6, 3.1 and 3.2—implicitly restrict the class of manifolds to which
these results apply. Indeed, for certain manifolds, even for nice cost functions f , there may not exist
retractions that ensure the assumptions hold. This is the case in particular for certain incomplete
manifolds, such as open Riemannian submanifolds of R

n and certain geometries of the set of fixed-
rank matrices—see also Remark 2.2 about injectivity radius. For such sets it may be necessary to
adapt the assumptions. For fixed-rank matrices for example, Vandereycken (2013, Sect. 4.1) obtains
convergence results assuming a kind of coercivity on the cost function: for any sequence of rank-k
matrices (Xi)i=1,2,... such that the first singular value σ1(Xi) → ∞ or the kth singular value σ k(Xi) → 0,
it holds that f (Xi) → ∞. This ensures iterates stay away from the open boundary.

The iteration bounds are sharp, but additional information may yield more favorable bounds in
specific contexts. In particular, when the studied algorithms converge to a nondegenerate local optimizer,
they do so with an at least linear rate, so that the number of iterations is merely O(log(1/ε)) once in
the linear regime. This suggests a stitching approach: for a given application, it may be possible to show
that rough approximate second-order critical points are in a local attraction basin; the iteration cost can
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then be bounded by the total work needed to attain such a crude point starting from anywhere, plus the
total work needed to refine the crude point to high accuracy with a linear or even quadratic convergence
rate. This is, to some degree, the successful strategy in Sun et al. (2015, 2016).

Finally, we note that it would also be interesting to study the global convergence rates of Riemannian
versions of adaptive regularization algorithms using cubics (ARC), since in the Euclidean case these can
achieve approximate first-order criticality in O

(

1/ε1.5
)

instead of O
(

1/ε2
)

(Cartis et al., 2011a). Work
in that direction could start with the convergence analyses proposed in Qi, (2011).
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Appendix A. Essentials about manifolds

We give here a simplified refresher of differential geometric concepts used in the paper, restricted to
Riemannian submanifolds. All concepts are illustrated with the sphere. See Absil et al. (2008) for a
more complete discussion, including quotient manifolds.

We endow R
n with the classical Euclidean metric: for all x, y ∈ R

n, 〈x, y〉 = xTy. Consider the
smooth map h : Rn �→ R

m with m ≤ n and the constraint set

M =
{

x ∈ R
n : h(x) = 0

}

.

Locally around each x, this set can be linearized by differentiating the constraint. The subspace
corresponding to this linearization is the kernel of the differential of h at x (Absil et al., 2008,
eq. (3.19)):

TxM =
{

η ∈ R
n : Dh(x)[η] = 0

}

.

If this subspace has dimension n − m for all x ∈ M then M is a submanifold of dimension n − m of Rn

(Absil et al., 2008, Prop. 3.3.3) and TxM is called the tangent space to M at x. For example, the unit
sphere in R

n is a submanifold of dimension n − 1 defined by

S
n−1 =

{

x ∈ R
n : xTx = 1

}

,

and the tangent space at x is

TxS
n−1 =

{

η ∈ R
n : xTη = 0

}

.

By endowing each tangent space with the (restricted) Euclidean metric we turn M into a Riemannian
submanifold of the Euclidean space R

n. (In general, the metric could be different and would depend on
x; to disambiguate, one would write 〈·, ·〉x.) An obvious retraction for the sphere (see Definition 2.1) is
to normalize:

Retrx(η) = x + η

‖x + η‖ .

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/drx080/4836777
by NERL, Nicolas Boumal
on 06 June 2018



26 BOUMAL ET AL.

Being an orthogonal projection to the manifold, this is actually a second-order retraction; see
Definition 3.10 and Absil & Malick (2012, Thm. 22).

The Riemannian metric leads to the notion of Riemannian gradient of a real function f defined in an
open set of Rn containing M.8 The Riemannian gradient of f at x is the (unique) tangent vector grad f (x)
at x satisfying

∀ η ∈ TxM, Df (x)[η] = lim
t→0

f (x + tη) − f (x)

t
= 〈η, grad f (x)〉 .

In this setting the Riemannian gradient is nothing but the orthogonal projection of the Euclidean
(classical) gradient ∇f (x) to the tangent space. Writing Projx : Rn → TxM for the orthogonal projector
we have (Absil et al., 2008, eq. (3.37))

grad f (x) = Projx(∇f (x)) .

Continuing the sphere example, the orthogonal projector is Projx(y) = y −
(

xTy
)

x, and if f (x) = 1
2 xTAx

for some symmetric matrix A then

∇f (x) = Ax, and grad f (x) = Ax − (xTAx)x.

Notice that the critical points of f on Sn−1 coincide with the unit eigenvectors of A.
We can further define a notion of Riemannian Hessian as the projected differential of the Riemannian

gradient:9

Hess f (x)[η] = Projx
(

D
(

x �→ Projx∇f (x)
)

(x)[η]
)

.

Hess f (x) is a linear map from TxM to itself, symmetric with respect to the Riemannian metric. Given
a second-order retraction (Definition 3.10), it is equivalently defined by

∀ η ∈ TxM, 〈η, Hess f (x)[η]〉 = d2

dt2
f (Retrx(tη))

∣

∣

∣

∣

t=0;

see Absil et al. (2008, eq. (5.35)). Continuing our sphere example,

D
(

x �→ Projx∇f (x)
)

(x)[η] = D
(

x �→ Ax −
(

xTAx
)

x
)

(x)[η] = Aη − (xTAx)η − 2(xTAη)x.

Projection of the latter gives the Hessian:

Hess f (x)[η] = Projx(Aη) − (xTAx)η.

8 The function f need not be defined outside of M, but this is often the case in applications and simplifies exposition.
9 Proper definition of Riemannian Hessians requires the notion of Riemannian connections, which we omit here; see

Absil et al. (2008, Chapter 5).
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Consider the implications of a positive semidefinite Hessian (on the tangent space):

Hess f (x) � 0 ⇐⇒ 〈η, Hess f (x)[η]〉 ≥ 0 ∀ η ∈ TxS
n−1

⇐⇒ ηTAη ≥ xTAx ∀ η ∈ TxS
n−1, ‖η‖ = 1.

Together with first-order conditions this implies that x is a leftmost eigenvector of A.10 This is an
example of an optimization problem on a manifold for which second-order necessary optimality
conditions are also sufficient. This is not the norm.

As another (very) special example consider the case M = R
n; then, TxR

n = R
n, Retrx(η) = x + η

is the exponential map (a fortiori a second-order retraction), Projx is the identity, grad f (x) = ∇f (x) and
Hess f (x) = ∇2f (x).

Appendix B. Compact submanifolds of Euclidean spaces

In this appendix we prove Lemmas 2.4 and 3.1, showing that if f has locally Lipschitz continuous
gradient or Hessian in a Euclidean space E (in the usual sense), and it is to be minimized over a compact
submanifold of E , then Assumptions 2.6, 3.1 and 3.2 hold.

Proof of Lemma 2.4. By assumption, ∇f is Lipschitz continuous along any line segment in E joining x

and y in M. Hence, there exists L such that, for all x, y ∈ M,

| f (y) − [ f (x) + 〈∇f (x), y − x〉]| ≤ L

2
‖y − x‖2. (B.1)

In particular this holds for all y =Retrx(η), for any η ∈ TxM. Writing grad f (x) for the Riemannian
gradient of f |M and using that grad f (x) is the orthogonal projection of ∇f (x) to TxM (Absil et al.,
2008, eq. (3.37)) the inner product above decomposes as

〈∇f (x), Retrx(η) − x〉 = 〈∇f (x), η + Retrx(η) − x − η〉
= 〈grad f (x), η〉 + 〈∇f (x), Retrx(η) − x − η〉 . (B.2)

Combining (B.1) with (B.2) and using the triangle inequality yields

∣

∣f (Retrx(η)) −
[

f (x) + 〈grad f (x), η〉
]∣

∣ ≤ L

2
‖Retrx(η) − x‖2 + ‖∇f (x)‖‖Retrx(η) − x − η‖.

Since ∇f (x) is continuous on the compact set M there exists finite G such that ‖∇f (x)‖≤ G for all
x ∈ M. It remains to show there exist finite constants α, β ≥ 0 such that, for all x ∈ M and for all
η ∈ TxM,

‖Retrx(η) − x‖ ≤ α‖η‖ and (B.3)

‖Retrx(η) − x − η‖ ≤ β‖η‖2. (B.4)

10 Indeed, any y ∈ Sn−1 can be written as y = αx + βη with xT η = 0, ‖η‖ = 1 and α2 + β2 = 1; then, yT Ay = α2xT Ax +
β2ηT Aη + 2αβηT Ax; by first-order condition, ηT Ax = (xT Ax)ηT x = 0, and by second-order condition, yT Ay ≥ (α2 + β2)xT

Ax = xT Ax; hence xT Ax is minimal over Sn−1.
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For small η, this will follow from Retrx(η) = x + η + O
(

‖η‖2
)

by Definition 2.1; for large η this will
follow a fortiori from compactness. This will be sufficient to conclude, as then we will have for all
x ∈ M and η ∈ TxM that

∣

∣f (Retrx(η)) −
[

f (x) + 〈grad f (x), η〉
]∣

∣ ≤
(

L

2
α2 + Gβ

)

‖η‖2.

More formally our assumption that the retraction is defined and smooth over the whole tangent bundle
a fortiori ensures the existence of r > 0 such that Retr is smooth on K = {η ∈ TM : ‖η‖ ≤ r}, a
compact subset of the tangent bundle (K consists of a ball in each tangent space). First, we determine α;
see (B.3). For all η ∈ K we have

‖Retrx(η) − x‖ ≤
∫ 1

0

∥

∥

∥

∥

d

dt
Retrx(tη)

∥

∥

∥

∥

dt =
∫ 1

0
‖DRetrx(tη)[η]‖ dt

≤
∫ 1

0
max
ξ∈K

‖DRetr(ξ)‖‖η‖ dt = max
ξ∈K

‖DRetr(ξ)‖‖η‖,

where the max exists and is finite owing to compactness of K and smoothness of Retr on K; note that
this is uniform over both x and η. (If ξ ∈ TzM the notation DRetr(ξ ) refers to DRetrz(ξ ).) For all η /∈ K

we have

‖Retrx(η) − x‖ ≤ diam(M) ≤ diam(M)

r
‖η‖,

where diam(M) is the maximal distance between any two points on M: finite by compactness of M.
Combining, we find that (B.3) holds with

α = max

(

max
ξ∈K

‖DRetr(ξ)‖,
diam(M)

r

)

.

Inequality (B.4) is established along similar lines. For all η ∈ K we have

‖Retrx(η) − x − η‖ ≤
∫ 1

0

∥

∥

∥

∥

d

dt
(Retrx(tη) − x − tη)

∥

∥

∥

∥

dt =
∫ 1

0
‖DRetrx(tη)[η] − η‖ dt

≤
∫ 1

0
‖DRetrx(tη) − Id ‖‖η‖ dt ≤ 1

2
max
ξ∈K

‖D2Retr(ξ)‖‖η‖2,

where the last inequality follows from DRetrx(0x) = Id and

‖DRetrx(tη) − Id ‖ ≤
∫ 1

0

∥

∥

∥

∥

d

ds
DRetrx(stη)

∥

∥

∥

∥

ds ≤ ‖tη‖
∫ 1

0

∥

∥

∥D2Retrx(tη)

∥

∥

∥ ds.
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The case η /∈ K is treated as before:

‖Retrx(η) − x − η‖ ≤ ‖Retrx(η) − x‖ + ‖η‖ ≤ diam(M) + r

r2
‖η‖2.

Combining, we find that (B.4) holds with

β = max

(

1

2
max
ξ∈K

∥

∥D2Retr(ξ)
∥

∥,
diam(M) + r

r2

)

,

which concludes the proof. �

We now prove the corresponding second-order result, whose aim is to verify Assumptions 3.2.

Proof of Lemma 3.1. By assumption ∇2f is Lipschitz continuous along any line segment in E joining x

and y in M. Hence, there exists L such that, for all x, y ∈ M,

∣

∣

∣f (y) −
[

f (x) + 〈∇f (x), y − x〉 + 1
2

〈

y − x, ∇2f (x)[y − x]
〉]∣

∣

∣ ≤
L

6
‖y − x‖3. (B.5)

Fix x ∈ M. Let Projx denote the orthogonal projector from E to TxM. Let grad f (x) be the Riemannian
gradient of f |M at x and let Hess f (x) be the Riemannian Hessian of f |M at x (a symmetric operator
on TxM). For Riemannian submanifolds of Euclidean spaces we have these explicit expressions with
η ∈ TxM—see Absil et al. (2008, eqs. (3.37), (5.15), Def. (5.5.1)) and Absil et al. (2013):

grad f (x) = Projx∇f (x), and

〈η, Hess f (x)[η]〉 =
〈

η, D
(

x �→ Projx∇f (x)
)

(x)[η]
〉

=
〈

η,
(

D
(

x �→ Projx
)

(x)[η]
)

[∇f (x)] + Projx∇2f (x)[η]
〉

= 〈II(η, η), ∇f (x)〉 +
〈

η, ∇2f (x)[η]
〉

,

where II, as implicitly defined above, is the second fundamental form of M: II(η, η) is a normal vector
to the tangent space at x, capturing the second-order geometry of M—see Absil et al. (2009, 2013) and
Monera et al. (2014) for presentations relevant to our setting. In particular, II(η, η) is the acceleration
in E at x of a geodesic γ (t) on M defined by γ (0) = x and γ̇ (0) = η: γ̈ (0) = II(η, η) (O’Neill, 1983,
Cor. 4.9).

Let η ∈ TxM be arbitrary; y = Retrx(η) ∈ M. Then

〈∇f (x), y − x〉 − 〈grad f (x), η〉 = 〈∇f (x), y − x − η〉 and
〈

y − x, ∇2f (x)[y − x]
〉

− 〈η, Hess f (x)[η]〉 = 2
〈

η, ∇2f (x)[y − x − η]
〉

+
〈

y − x − η, ∇2f (x)[y − x − η]
〉

− 〈∇f (x), II(η, η)〉 .
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Since M is compact and f is twice continuously differentiable, there exist G, H, independent of x, such
that ‖∇f (x)‖≤ G and

∥

∥∇2f (x)
∥

∥ ≤ H (the latter is the induced operator norm). Combining with (B.5)
and using the triangle and Cauchy–Schwarz inequalities multiple times,

∣

∣

∣

∣

f (y) −
[

f (x) + 〈grad f (x), η〉 + 1

2
〈η, Hess f (x)[η]〉

]∣

∣

∣

∣

≤ L

6
‖y − x‖3 + G

∥

∥

∥

∥

y − x − η − 1

2
II(η, η)

∥

∥

∥

∥

+ H‖η‖‖y − x − η‖ + 1

2
H‖y − x − η‖2.

Using the same argument as for Lemma 2.4 we can find finite constants α, β independent of x and η

such that (B.3) and (B.4) hold. Use ‖y − x − η‖2 ≤ ‖y − x − η‖ (‖y − x‖ + ‖η‖) ≤ β(α + 1)‖η‖3 to
upper bound the right-hand side above with

(

L

6
α3 + Hβ + Hβ(α + 1)

2

)

‖η‖3 + G

∥

∥

∥

∥

y − x − η − 1

2
II(η, η)

∥

∥

∥

∥

.

We turn to the last term. Consider K ⊂ TM as defined in the proof of Lemma 2.4 for some r > 0. If
η /∈ K, that is, ‖η‖ > r, then since II is bilinear for a fixed x ∈ M, we can define

‖II‖ = max
x∈M

max
ξ∈TxM,‖ξ‖≤1

‖II(ξ , ξ)‖

(finite by continuity and compactness) so that ‖II(η, η)‖≤‖II‖‖η‖2. Then,

∥

∥

∥

∥

y − x − η − 1

2
II(η, η)

∥

∥

∥

∥

≤ ‖y − x‖ + ‖η‖ + 1

2
‖II(η, η)‖ ≤

(

diam(M)

r3
+ 1

r2
+ 1

2

‖II‖
r

)

‖η‖3.

Now assume η ∈ K, that is, ‖η‖≤ r. Consider φ(t) = Retrx(tη) (a curve on M) and let φ
′ ′

denote its
acceleration on M and φ̈ denote its acceleration in E , while φ̇ = φ′ denotes velocity along the curve. It
holds that φ̈(t) = φ′′(t)+II(φ̇(t), φ̇(t)) (O’Neill, 1983, Cor. 4.9). Since Retr is a second-order retraction,
acceleration on M is zero at t = 0, that is, φ

′ ′
(0) = 0, so that φ(0) = x, φ̇(0) = η and φ̈(0) = II(η, η).

Then by Taylor expansion of φ in E ,

y = Retrx(η) = φ(1) = x + η + 1

2
II(η, η) + R3(η),

where

‖R3(η)‖ =
∥

∥

∥

∥

∫ 1

0

(1 − t)2

2

...
φ(t) dt

∥

∥

∥

∥

≤ 1

6
max
ξ∈K

∥

∥

∥D3Retr(ξ)

∥

∥

∥ ‖η‖3.

The combined arguments ensure existence of a constant γ , independent of x and η, such that

∥

∥

∥

∥

y − x − η − 1

2
II(η, η)

∥

∥

∥

∥

≤ γ ‖η‖3.
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Combining, we find that for all x ∈ M and η ∈ TxM,

∣

∣

∣

∣

f (Retrx(η)) −
[

f (x) + 〈grad f (x), η〉 + 1

2
〈η, Hess f (x)[η]〉

]∣

∣

∣

∣

≤
(

L

6
α3 + Hβ(α + 3)

2
+ γ

)

‖η‖3.

Since Retr is a second-order retraction, Hess f (x) coincides with the Hessian of the pullback f ◦ Retrx

(Lemma 3.9). This establishes Assumption 3.2. �

Appendix C. Proof of Lemma 2.7 about Armijo line-search

Proof of Lemma 2.7. By Assumption 2.6, upper bound (2.5) holds with η = tη0
k for any t such that

‖η‖≤ �k:

f (xk) − f
(

Retrxk

(

t · η0
k

))

≥ t
〈

−grad f (xk), η
0
k

〉

− Lt2

2

∥

∥

∥η
0
k

∥

∥

∥

2
. (C.1)

We determine a sufficient condition on t for the stopping criterion in Algorithm 2 to trigger. To this end
observe that the right-hand side of (C.1) dominates c1t

〈

−grad f (xk), η
0
k

〉

if

t(1 − c1) ·
〈

−grad f (xk), η
0
k

〉

≥ Lt2

2

∥

∥

∥
η0

k

∥

∥

∥

2
.

Thus, the stopping criterion in Algorithm 2 is satisfied in particular for all t in

[

0,
2(1 − c1)

〈

−grad f (xk), η
0
k

〉

Lg‖η0
k‖2

]

⊇
[

0,
2c2(1 − c1)‖grad f (xk)‖

Lg‖η0
k‖

]

⊇
[

0,
2c2(1 − c1)

c4Lg

]

.

Unless it equals t̄k, the returned t cannot be smaller than τ times the last upper bound. In all cases the
cost decrease satisfies

f (xk) − f
(

Retrxk

(

t · η0
k

))

≥ c1t
〈

−grad f (xk), η
0
k

〉

≥ c1c2t‖grad f (xk)‖
∥

∥

∥η
0
k

∥

∥

∥

≥ c1c2c3t‖grad f (xk)‖2.

To count the number of iterations consider that checking whether t = t̄k satisfies the stopping criterion
requires one cost evaluation. Following that, t is reduced by a factor τ exactly logτ (t/t̄k) = logτ−1(t̄k/t)

times, each followed by one cost evaluation. �
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Appendix D. Proofs for Section 3.5 about Hk and the Hessians

Proof of Lemma 3.9. The Hessian of f and that of the pullback are related by the following formulas.
See (Absil et al., 2008, Chapter 5) for the precise meanings of the differential operators D and d. For all
η in TxM, writing f̂x = f ◦ Retrx for convenience,

d

dt
f (Retrx(tη)) =

〈

grad f (Retrx(tη)),
D

dt
Retrx(tη)

〉

,

〈

∇2 f̂x(0x)[η], η
〉

= d2

dt2
f (Retrx(tη))

∣

∣

∣

∣

t=0

=
〈

Hess f (x) [DRetrx(0x)[η]],
D

dt
Retrx(tη)

∣

∣

∣

∣

t=0

〉

+
〈

grad f (x),
D2

dt2
Retrx(tη)

∣

∣

∣

∣

t=0

〉

= 〈Hess f (x)[η], η〉 +
〈

grad f (x),
D2

dt2
Retrx(tη)

∣

∣

∣

∣

t=0

〉

.

(To get the third equality it is assumed one is working with the Levi-Civita connection, so that Hess f is
indeed the Riemannian Hessian.) Since the acceleration of the retraction is bounded, we get the result
via Cauchy–Schwarz. �

Proof of Proposition 3.11. Combine ‖grad f (xk)‖≤ εg and Hk �−εH Id with

∥

∥

∥Hess f (xk) − ∇2 f̂xk
(0xk

)

∥

∥

∥ ≤ ak · ‖grad f (xk)‖ and
∥

∥

∥∇2 f̂k(0xk
) − Hk

∥

∥

∥ ≤ δk

by the triangular inequality. �

Appendix E. Complexity dependence on n in the Max-Cut example

This appendix supports Section 4. By Proposition 4.1, running Algorithm 3 with εg = ∞ and εH = 2δ
n

yields a solution Y within a gap δ from the optimal value of (4.2). Let f and f denote the minimal and

maximal values of f (Y) =
〈

C, YYT
〉

over M (see (4.3)), respectively, with metric 〈A, B〉 = Tr
(

ATB
)

and
associated Frobenius norm ‖·‖F . Then using ρ′ = 1/10, setting c3 = 1/2 in Assumption 3.8 as allowed by
Lemma 3.4 and using the true Hessian of the pullbacks for Hk so that c1 = 0 in Assumption 3.5,
Theorem 3.4 guarantees that Algorithm 3 returns an answer in at most

214(f − f ) · L2
H · 1

ε3
H

+ log term (E.1)

iterations. Using the LDLT-factorization strategy of Lemma 3.3 with a randomly generated orthonormal
basis at each tangent space encountered, since dimM = n2 for p = n + 1, the cost of each iteration is
O
(

n6
)

arithmetic operations (dominated by the cost of the LDLT factorization). It remains to bound LH,
in compliance with Assumption 3.2.
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Let g : R → R be defined as g(t) = f (RetrY(tẎ)). Then using a Taylor expansion,

f (RetrY(Ẏ)) = g(1) = g(0) + g′(0) + 1

2
g′′(0) + 1

6
g′′′(t) (E.2)

for some t ∈ (0, 1). Let f̂Y = f ◦ RetrY . Definition 2.1 for retractions implies

g(0) = f (Y), g′(0) =
〈

grad f (Y), Ẏ
〉

, g′′(0) =
〈

Ẏ , ∇2 f̂Y(0Y)[Ẏ]
〉

, (E.3)

so that it only remains to bound |g
′ ′ ′

(t)| uniformly over Y , Ẏ and t ∈ [0, 1].
For this example it is easier to handle g′′′ if the retraction used is the exponential map (similar bounds

can be obtained with the orthogonal projection retraction; see Mei et al., 2017, Lemmas 4 and 5). This
map is known in explicit form and is cheap to compute for the sphere S

n =
{

x ∈ R
n+1 : xTx = 1

}

.
Indeed, if x ∈ S

n and η ∈ TxS
n, following Absil et al. (2008, Ex. 5.4.1),

γ (t) = Expx(tη) = cos(t‖η‖)x + sin(t‖η‖) 1

‖η‖η. (E.4)

Conceiving of γ as a map from R to R
n+1 its differentials are easily derived:

γ̇ (t) = −‖η‖ sin(t‖η‖)x + cos(t‖η‖)η, γ̈ (t) = −‖η‖2γ (t),
...
γ (t) = −‖η‖2γ̇ (t). (E.5)

Extending this map rowwise gives the exponential map for M—of course, this is a second-order
retraction. We define Φ(t) = RetrY(tẎ) and g(t) = f (RetrY(tẎ)) = 〈CΦ(t), Φ(t)〉. In particular
Φ̈(t) = −DΦ(t) and

...
Φ(t) = −DΦ̇(t), where D = diag

(

‖ẏ1‖2, . . . , ‖ẏn‖2
)

and ẏT
k is the kth row of

Ẏ . As a result, for a given Y and Ẏ , a little bit of calculus gives

g′′′(t) = −6
〈

CΦ̇(t), DΦ(t)
〉

− 2
〈

CΦ(t), DΦ̇(t)
〉

. (E.6)

Using Cauchy–Schwarz multiple times, as well as the inequality ‖AB‖F ≤ ‖A‖2 ‖B‖F where ‖A‖2

denotes the largest singular value of A, and using that ‖Φ(t)‖F = √
n and ‖Φ̇(t)‖F = ‖Ẏ‖F for all t, and

additionally that ‖D‖2 ≤ Tr(D) = ‖Ẏ‖2
F , it follows that

sup
Y∈M,Ẏ∈TYM,Ẏ �=0,t∈(0,1)

|g′′′(t)|
‖Ẏ‖3

F

≤ 8 ‖C‖2

√
n. (E.7)

As a result an acceptable constant LH for Assumption 3.2 is LH = 8 ‖C‖2
√

n.
Combining all the statements of this section it follows that a solution Y within an absolute gap δ of

the optimal value can be obtained for problem (4.2) using Algorithm 3 in at most O
(

(f −f ) ‖C‖2
2 ·n10 · 1

δ3

)

arithmetic operations, neglecting the additive logarithmic term.
Note that, following Mei et al. (2017, Appendix A.2, points 1 and 2), it is also possible to bound LH

as 6 ‖C‖2 + 2‖C‖1, where ‖·‖1 is the �1 operator norm. This reduces the explicit dependence on n from
n10 to n9 in the bound on the total amount of work.
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