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ABSTRACT

Single-Particle Reconstruction (SPR) in Cryo-Electron Mi-

croscopy (cryo-EM) is the task of estimating the 3D structure

of a molecule from a set of noisy 2D projections, taken from

unknown viewing directions. Many algorithms for SPR start

from an initial reference molecule, and alternate between re-

fining the estimated viewing angles given the molecule, and

refining the molecule given the viewing angles. This scheme

is called iterative refinement. Reliance on an initial, user-

chosen reference introduces model bias, and poor initializa-

tion can lead to slow convergence. Furthermore, since no

ground truth is available for an unsolved molecule, it is dif-

ficult to validate the obtained results. This creates the need

for high quality ab initio models that can be quickly obtained

from experimental data with minimal priors, and which can

also be used for validation. We propose a procedure to obtain

such an ab initio model directly from raw data using Kam’s

autocorrelation method. Kam’s method has been known since

1980, but it leads to an underdetermined system, with missing

orthogonal matrices. Until now, this system has been solved

only for special cases, such as highly symmetric molecules

or molecules for which a homologous structure was already

available. In this paper, we show that knowledge of just two

clean projections is sufficient to guarantee a unique solution

to the system. This system is solved by an optimization-based

heuristic. For the first time, we are then able to obtain a low-

resolution ab initio model of an asymmetric molecule directly

from raw data, without 2D class averaging and without tilting.

Numerical results are presented on both synthetic and experi-

mental data.

Index Terms— cryo-EM, single particle reconstruction,

Kam’s method, autocorrelation analysis, ab initio modeling,

orthogonal matrix retrieval, Riemannian optimization

1. INTRODUCTION

Cryo-EM is an increasingly popular method for determin-

ing the 3D structure of molecules, especially those that re-

sist crystalization [15, 3, 9]. Advances in this technique were
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recognized by the 2017 Nobel Prize in Chemistry [1]. For

SPR in cryo-EM, a sample containing many (ideally) identi-

cal molecules in unknown orientations are frozen in a sheet

of ice. An electron microscope produces a top view of the

sample in one image, called a micrograph, from which pro-

jection images of individual molecules are extracted in a pro-

cess called particle picking. In order to limit radiation dam-

age to the organic molecules caused by the electron beam, the

electron dosage must be kept low, resulting in a low signal-to-

noise ratio (SNR) in each of the projections. In addition, the

images are affected by the Contrast Transfer Function (CTF)

of the microscope, causing further aberrations. The goal is to

estimate the 3D structure of the molecule from a large set of

projections selected from multiple micrographs.

Typical approaches to SPR use iterative refinement proce-

dures that start from an initial guess of the 3D structure, apply

a low-pass filter, and then refine it by alternating between es-

timation of the viewing directions of the projections given the

molecule and vice versa [23, 4, 18]. Since these algorithms

solve a non-convex problem, the quality of their output as well

as the speed of their convergence depend on the initialization,

particularly at low SNR or with small particles [5, 7].

In contrast, ab initio methods do not require an initial

model. Currently, few ab initio methods are available. The

random conical tilt method [19] requires the molecule to

have a strongly preferred orientation. Methods that do not

involve tilting are either based on moments [22, 10] or com-

mon lines [25, 26]. However, these approaches typically fail

to recover the 3D structure from non-averaged experimental

images due to the low SNR.

We present a new method called orthogonal matrix re-

trieval by projection matching, based on Kam’s autocorrela-

tion analysis [13, 14]. Unlike the above mentioned methods

for ab initio modeling, Kam’s method completely sidesteps

estimation of particle orientations. It only requires the covari-

ance matrix of the projection images, which can be estimated

accurately for any SNR given sufficiently many particle im-

ages. Kam’s analysis recovers the expansion coefficients of

the structure, up to a sequence of missing orthogonal ma-

trices. It assumes the viewing directions are uniformly dis-

tributed over the sphere. Recently, there have been numerous

attempts to apply Kam’s method to XFEL [20, 21, 16] and

to cryo-EM [5, 7]. Restrictingly, the first make either strong

symmetry assumptions on the molecule or limit the rotations
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to a single axis, while the latter assume that the structure of a

similar molecule is already available.

In this work, we apply Kam’s method to resolve the

molecular structure directly from raw experimental images

without estimating viewing directions, for the first time. We

use the method of [6] to estimate the covariance matrix of

the projections from raw data. We then recover the missing

orthogonal matrices by matching to two clean or denoised

images, via Riemannian optimization. The computational

complexity of our algorithm is linear in the number of images.

As an information-theoretic guarantee, we prove that 2D co-

variance together with merely two clean images uniquely

determine the 3D molecular structure. For reproducibil-

ity, a Matlab implementation of our method is available at

https://github.com/eitangl/kam_cryo.

The rest of this paper is organized as follows. In Sec-

tion 2, we describe the image formation model in cryo-EM.

In Section 3, we describe Kam’s autocorrelation analysis and

formulate the orthogonal matrix retrieval problem. Section 4

describes our procedure for solving the orthogonal matrix re-

trieval problem, which enables us to recover the molecular

structure, and provides an information-theoretic guarantee. In

Section 5, we show the performance of our method on syn-

thetic and experimental datasets. Finally, in Section 6, we

discuss possible extensions of the method for future work.

2. IMAGE FORMATION MODEL

Let φ : R3 → R be the Coulomb potential representing the

molecular structure we wish to estimate. The jth projection

image Ij : R
2 → R is modeled as

Ij = Hj ∗ Pj [φ] + εj , j = 1, . . . , n. (1)

Here, Hj : R
2 → R corresponds to the CTF affecting the jth

image by convolution, εj is noise and Pj is the tomographic

projection operator given by

Pj [φ](x, y) =

∫ ∞

−∞

φ(RT
j r) dz, (2)

where r = (x, y, z)T are Cartesian coordinates and Rj ∈
SO(3) is the orientation of the jth particle. This formation

model is more neatly expressed in the Fourier domain. Ow-

ing to the Fourier-slice theorem [17, pp. 11], the 2D Fourier

transform of a 2D projection image is the restriction of the 3D

Fourier transform of φ to the plane passing through the ori-

gin perpendicular to the viewing direction. Denoting Fourier

transforms by hats, we can rewrite the formation model as

Îj(kx, ky) = Ĥj · φ̂
(
RT

j (kx, ky, 0)
T
)
+ ε̂j , (3)

where kx, ky are Cartesian coordinates in 2D Fourier space.

3. KAM’S AUTOCORRELATION ANALYSIS

We assume that the structure φ is essentially compactly sup-

ported and bandlimited with bandlimit c. We expand the

Fourier transform of the density in the eigenfunctions of the

Laplacian with Dirichlet boundary conditions over the radius

c ball in R
3, working in spherical coordinates:

φ̂(k, θ, ϕ) =

L∑

l=0

l∑

m=−l

S(l)∑

s=1

almsYlm(θ, ϕ)jls(k). (4)

Here, Ylm are the real spherical harmonics and

jls(k) =

√
2

c3/2|jl+1(ul,s)|
jl(ul,sk/c), (5)

where jl is the spherical Bessel function of order l, the scalar

ul,s is the sth positive zero of jl.

We shall assume a bandlimit c smaller than the Nyquist

frequency and a finite expansion of the above form, since we

focus on recovering a low-resolution version of the molecule,

suitable for an ab initio estimate. The truncation limit S(l)
is chosen by the sampling criterion proposed in [7, Eq. (8)],

enforcing essentially compact support in real space, and S(l)
is a monotonically decreasing function of l.

Our goal is to estimate the coefficients alms. In a seminal

paper [13], Kam showed that the matrices

Cl(s1, s2) =

l∑

m=−l

alms1alms2 , l = 0, . . . , L, (6)

can be recovered directly from the noisy projections, provided

that the viewing directions are uniformly distributed over the

sphere.

Defining the S(l)× (2l + 1) matrix of coefficients Al in-

dexed as Al(s,m) = alms for fixed l, the S(l)×S(l) matrices

Cl in Eq. (6) satisfy the relation

Cl = AlA
∗
l , (7)

where A∗ denotes the Hermitian conjugate of A. Since the

molecular density φ is real-valued, its Fourier transform is

conjugate-symmetric, and hence the matrices Al are purely

real for even l, and purely imaginary for odd l. Therefore,

Eq. (7) determines Al uniquely up to an orthogonal matrix of

size (2l + 1)× (2l + 1).

Formally, we take a Cholesky decomposition of the esti-

mated Cl to obtain S(l)× (2l+ 1) matrices Fl. Accordingly,

Al = FlOl for some unknown (2l+1)× (2l+1) orthogonal

matrices Ol. This is the missing orthogonal matrix problem

in Kam’s method, which we aim to solve with minimal priors

on the molecule. This would then allow us to recover the 3D

structure.
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4. ORTHOGONAL MATRIX RETRIEVAL BY

PROJECTION MATCHING

We begin by noting that the matrix O0 is just a sign ±1, and

can be easily recovered from the average image of the dataset.

Specifically, we take the radially-isotropic average of all the

projections, and note that this average is determined only by

the l = 0 component, proportional to
∑S(0)

s=1 a00sj0s(k). This

determines the coefficients for l = 0.

The main contribution of this paper is the observation

that the remaining {Ol}Ll=1 may be retrieved by matching to

merely two clean or denoised projections. These projections

can be obtained for example by using the Wiener filter-based

method of [6] to denoise and CTF-correct individual projec-

tion images. To see how a known clean projection constrains

the missing {Ol}, we write Eq. (4) in matrix form to get

φ̂({Ol}) =
L∑

l=0

jlFlOlYl, (8)

where matrices are indexed as [jl]k,s = jls(k), [Yl]m,(θ,ϕ) =
Ylm(θ, ϕ) and Fl is obtained from a Cholesky decomposition

of Cl mentioned in Section 3.

Without loss of generality, the first clean projection is the

restriction to the kxky-plane of φ̂, as the molecule can only

be estimated up to a global rotation and reflection. Now, let

the orientation of the particle in the second clean image be

given by an unknown R ∈ SO(3). Since rotating real spheri-

cal harmonics of degree l may be expressed with matrix mul-

tiplication [12], the second clean image also imposes linear

constraints on {Ol}. Writing D
(R)
l for the (2l+1)× (2l+1)

Wigner D-matrix of R in this irreducible representation of

SO(3), the second projection imposes the constraints

φ̂({Ol}, R) =

L∑

l=0

jlFlOlD
(R)
l Yl. (9)

From Rodrigues’ formula for associated Legendre poly-

nomials, restricting Ylm to θ = π/2 (the kxky-plane) sets

all the rows of Yl for which l �≡ m (mod 2) to zero. Thus

the clean projections constrain every other column of {Ol}
and {OlD

(R)
l }, respectively. It can be shown (proof omitted

here due to space limitations) that under mild technical con-

ditions these linear constraints in fact uniquely determine the

orthogonal matrices {Ol} and the rotation R, and hence the

3D structure itself.

In practice, given two clean or denoised images Ic1 , I
c
2 , we

begin by matching to each image separately. To do this, we

assume both projections lie on the kxky-plane corresponding

to the 3×3 identity rotation matrix I3, let φ̂({Ol})kxky
denote

the restriction of Eq. 8 to the kxky plane, and obtain estimates

for every other column in two sets of orthogonal matrices:

{ol;1}Ll=1 = argmin
ol∈R

(2l+1)×(l+1)

oTl ol=Il+1

||φ̂
(
{ol}

)
kxky

− Îc1 ||2F ,

{ol;2}Ll=1 = argmin
ol∈R

(2l+1)×(l+1)

oTl ol=Il+1

||φ̂
(
{ol}

)
kxky

− Îc2 ||2F .
(10)

We estimate {ol;1}, {ol;2} via optimization over the appropri-

ate product of manifolds using Manopt [8]. Note that Rie-

mannian gradient descent is only guaranteed to converge to

critical points of the cost function [2]. However, for the pur-

poses of ab initio modeling, our implementation performs sat-

isfactorily, as seen empirically in Section 5.

Continuing the algorithm, we then merge results from the

two images together. Writing Ol for the missing orthogonal

matrices, taking the first image to have identity orientation

and the second R, it follows that every other column of Ol

should equal columns of ol;1 while every other column of

OlD
(R)
l should equal columns of ol;2. We solve for R and

{Ol} by making these as consistent as possible. Formally, for

each l = 1, . . . , L, we form the matrices Dl =
[
Ĩ2l+1 | D̃(R)

l

]

and Bl = [ol;1 | ol;2], where we denote by Ã ∈ R
(2l+1)×(l+1)

the matrix obtained from A ∈ R
(2l+1)×(2l+1) by taking only

every other column including the first and last, and where

[X |Y ] denotes the horizontal concatenation of matrices X
and Y . We then solve the minimization

min
R∈SO(3)

L∑

l=1

min
Ol∈O(2l+1)

||OlDl −Bl||2F . (11)

This is done by densely sampling R ∈ SO(3) and noting that

for R fixed the minimization minOl∈O(2l+1) ||OlDl −Bl||2F
is an instance of the orthogonal Procrustes problem, which

has a closed form solution via SVD of BlD
T
l [24]. Finally,

we further refine our estimates of {Ol} and R using Manopt.

5. NUMERICAL EXAMPLES

We begin with results on a synthetic dataset consisting of

5×104 noisy projections of size 109×109 with SNR = 1/10
from uniformly random viewing directions of the 70S ribo-

some with P-site tRNA, available in the Protein Data Bank

(EMDB) as EMD-5360. The images are divided into 100 de-

focus groups, and are centered. The bandlimit is assumed

to be c = 1/4 (half the Nyquist frequency), and the trunca-

tion for the expansion of the structure is set to L = 10. The

two images for the reconstruction were chosen uniformly at

random. The reconstruction results are presented in Fig. 1

(a) and (c), where we also show the Fourier Shell Correla-

tion (FSC) [11] of our reconstruction with the low-resolution

ground truth. The resolution of the reconstruction is 19 Å

using the FSC = 0.5 criterion.
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We also present results on an experimental dataset con-

sisting of 3.5×105 projections of size 330×330 of the yeast

mitochondrial ribosome, available in the Electron Microscopy

Public Image Archive (EMPIAR) as EMPIAR-10107, out of

which we chose 2 × 105 random projections for implemen-

tation reasons. We pre-processed the data only by whitening

the projections using the method described in [6, Sec. 2.2],

and directly applied the method of [6] to estimate the covari-

ance matrix of the projections, from which we obtained {Cl}.

Here we set c = 1/4 and L = 7. Once again, the two pro-

jections for the reconstruction were chosen randomly. We ran

the algorithm on a machine with 60 cores, running at 2.3 GHz,

with total RAM of 1.5TB. The pre-processing then took ∼5

hours, while the reconstruction itself took ∼15 minutes. The

resolution of the reconstruction is 89 Å using the FSC = 0.5
criterion. For the ground truth, we took the RELION recon-

struction available as EMD-3551, and expanded it in a finite

expansion of the form Eq. 4 with the same truncation as for

our own reconstruction. The original EMD-3551 is presented

alongside its finite expansion for comparison, slightly low-

passed with a Gaussian filter to remove noise artifacts present

in the reconstruction.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new method to obtain ab

initio low-resolution 3D molecular structures directly from

raw cryo-EM data. We rely on Kam’s autocorrelation analy-

sis, which recovers the expansion coefficients of the molecule

from the covariance matrix of its projections, up to a set of

missing orthogonal matrices. We retrieve these matrices using

two clean or denoised projections, and showed that two clean

projections determine the structure under mild assumptions.

Finally, we demonstrated the performance of the method on

both synthetic and experimental datasets. This is the first ap-

plication of Kam’s method to ab initio modeling of asymmet-

ric molecules from raw experimental data without any aver-

aging.

Nevertheless, we observe in practice that our method is

only capable of recovering a low-resolution version of the

molecule. While sufficient to initialize iterative refinement

algorithms and validate their output, we would like to im-

prove the method to obtain higher-resolution reconstructions,

while keeping the computational cost low. We believe our

resolution limitation stems from several features present in

real datasets, but which our formulation currently ignores.

First, because individual projection images are picked from

extremely noisy micrographs, the projections may not be cen-

tered. Second, while we assume all the molecules in the sam-

ple are identical, in practice they may appear in different con-

formations, and so the projections would come from several

different molecules. Third, Kam’s method as stated here as-

sumes the viewing angles of the projections are uniformly dis-

tributed over the sphere. In practice, molecules have preferred

orientations, which skews the distribution of viewing angles.

For symmetric molecules, it can be shown that a single clean

image is sufficient to determine the missing orthogonal ma-

trices, in which case our method may be simplified and im-

proved. We intend to extend Kam’s method to account for

these features. Finally, it may be possible to avoid the need

for clean projections in the first place by using higher-order

correlations in addition to the covariance matrix, as originally

suggested by Kam [13].
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(a) (b)

(c) (d)

Fig. 1. Reconstruction results. (a) Synthetic data results: the

reconstruction (grey), the ground truth (yellow), and the orig-

inal (blue). (b) FSC curve for synthetic data. (c) Raw data

results for yeast mitochondrial ribosome (EMPIAR-10107):

the reconstruction (grey), the ground truth, taken as the cor-

responding low-resolution EMD-3551 (yellow) and the orig-

inal EMD-3551, reconstructed using RELION, slightly low-

passed with a Gaussian filter to remove noise artifacts (blue).

(d) FSC curve for raw data. Note that the reconstruction was

measured with respect to the low-resolution ground truth in

both (b) and (d).

(a) (b) (c) (d)

Fig. 2. Images used for raw data reconstruction. (a) and (c)

are the original noisy images and (b) and (d) are the corre-

sponding denoised images used for the optimization.
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