Open Set Text Classification using Convolutional Neural Networks

Sridhama Prakhya', Vinodini Venkataram’ and Jugal Kalita*

fSchool of Engineering & Technology, BML Munjal University, Gurugram, India
!Department of Computer Science, University of Colorado Colorado Springs, USA
fsridhama@sridhama.com

Hvvenkata, jkalita}@uccs.edu

Abstract

In a closed world setting, classifiers are
trained on examples from a number of
classes and tested with unseen examples
belonging to the same set of classes.
However, in most real-world scenarios, a
trained classifier is likely to come across
novel examples that do not belong to any
of the known classes. Such examples
should ideally be categorized as belonging
to an unknown class. The goal of an open
set classifier is to anticipate and be ready
to handle test examples of classes unseen
during training. The classifier should be
able to declare that a test example belongs
to a class it does not know, and possi-
bly, incorporate it into its knowledge as
an example of a new class it has encoun-
tered. There is some published research in
open world image classification, but open
set text classification remains mostly un-
explored. In this paper, we investigate the
suitability of Convolutional Neural Net-
works (CNNs) for open set text classifi-
cation. We find that CNNs are good fea-
ture extractors and hence perform better
than existing state-of-the-art open set clas-
sifiers in smaller domains, although their
open set classification abilities in general
still need to be investigated.

1 Introduction

With increasing amounts of textual data being gen-
erated by various online sources like social net-
works, text classifiers are essential for the anal-
ysis and organization of data. Text classification
usually consists of training a classifier on a la-
beled text corpus where individual examples be-
long to one or more classes based on their con-

tent, and then using the trained classifier to place
unseen examples in one of these classes. Pop-
ular text classification applications include spam
filtering, sentiment analysis, movie genre classi-
fication, and document classification. Traditional
text classifiers assume a closed world approach.
In other words, the classifier is implicitly expected
to be tested with examples from the same classes
with which it was initially trained. However, such
classifiers fail to identify and adapt when exam-
ples of previously unseen classes are presented
during testing. In real-world scenarios, a robust
trained classifier should be able to recognize ex-
amples of unknown classes and accordingly up-
date its learned model. This is known as the open
world approach to classification. Most research in
open set classification has been in the computer
vision domain, primarily in handwriting recogni-
tion (Jain et al., 2014), face recognition (Li and
Wechsler, 2005; Scheirer et al., 2013), object clas-
sification (Bendale and Boult, 2015; Bendale and
Boult, 2016) and computer forensics (Rattani et
al., 2015). Open set classification is important in
computer vision since the number of classes to
which a seen object can belong to is almost lim-
itless and datasets are available with training sam-
ples belonging to thousands of classes. Neverthe-
less, open set classification is important in natural
language processing as well. An example of an
open world text classification scenario is author-
ship attribution, where each author happens to be
a class. An open set text classifier must recognize
the author of a document to be one of the known
ones when appropriate. Importantly, the classi-
fier should also explicitly recognize when it fails
to classify an unseen document as written by one
of the known authors. Whether it is for historical
or fictional works from the past, or emails, social
media posts or leaked political documents, open
set classification may be immensely helpful.



In the recent past, many-layered Artificial Neu-
ral Networks (ANN) or deep learning techniques
(Goodfellow et al., 2016) have become popular in
Computer Vision and Natural Language Process-
ing. This is mainly attributed to the increase in
performance compared to standard machine learn-
ing techniques. As discussed later, current open
set text classifiers do not rely on deep learning
models. They employ either a clustering-based ap-
proach (Doan and Kalita, 2017) or a modified Sup-
port Vector Machine (SVM) (Fei and Liu, 2016).
To this end, we explore the possibility of using a
CNN for open set text classification and compare
it to existing techniques.

2 Related Work

To allow for the possibility that the set of classes is
open or expandable during deployment, the classi-
fication algorithms need to be adaptive. (Scheirer
et al., 2013) combine empirical risk and open
space risk due to the existence of a space in
which classification probabilities are not currently
known. Empirical risk comes from actual ex-
amples being misclassified by a trained classifier,
and the open space risk recognizes the fact that
the presence of unknown classes is likely to in-
troduce errors into classification decisions. Their
model reduces the risk by introducing parallel hy-
perplanes, one near the class boundary and an-
other far from it to introduce slabs of subspaces
for the classes, and then develops a greedy op-
timization algorithm that modifies a linear SVM
and moves the planes incrementally. This work
was extended to multi-class open set classification
by introducing what (Scheirer et al., 2014) call a
Compact Abating Probability (CAP) model. They
build a classifier called W-SVM using properties
of Extreme Value Theory for calibration of scores
produced by 1-class and binary SVMs. Extreme
Value Theory (EVT) (Smith, 1990; De Haan and
Ferreira, 2007; Castillo, 2012) is usually used to
deal with and predict rare events or values that oc-
cur at the tails of distributions. The unnormalized
probability of inclusion for each class is estimated
by fitting a Weibull distribution (Sharif and Islam,
1980) over the positive class scores from SVM
classifiers. The assumption here is when a trained
classifier cannot classify an example as belonging
to any of the known classes, it is a case of “fail-
ure” of the classifier and is deemed unusual. (Jain
et al., 2014) also use EVT to formulate the open

set classification problem as one of modeling pos-
itive training data at the decision boundary. They
introduce a new algorithm called the P;-SVM for
estimating the unnormalized posterior probability
of class inclusion. Their approach is different from
the one introduced by (Platt and others, 1999) of
taking SVM outputs and converting them to prob-
abilities by fitting a sigmoid function to the SVM
scores.

(Bendale and Boult, 2015) present an approach
to minimize the weighted sum of empirical risk
and open set risk using thresholding sums of
monotonically decreasing recognition functions,
and use their approach to extend the Nearest Cen-
troid Classifier (NCM) (Rocchio, 1971). This
classifier represents classes by the mean feature
vector of its elements. An unseen example is as-
signed a class with the closest mean. The Near-
est Non-Outlier (NNO) algorithm (Bendale and
Boult, 2015) adapts NCM for open set classifica-
tion, taking into account open space risk and met-
ric learning. The nearest class mean metric learn-
ing (NCMML) (Mensink et al., 2013) approach
extends the NCM technique by replacing the Eu-
clidean distance with a learned low-rank Maha-
lanobis distance. This gives better results than the
former as the algorithm is able to learn features
inherent in the training data.

All the work mentioned so far have been in the
context of computer vision. Work in open set clas-
sification for textual data is limited. (Fei and Liu,
2016) use CBS learning (Fei and Liu, 2015) where
a document is represented as a vector of similari-
ties from centers of spheres that correspond to in-
dividual classes. Around the sphere that represents
positive examples of a class, they draw a slightly
bigger sphere to provide additional space for a
class to accommodate unseen examples. They also
use SVM hyperplanes to bound the bigger spheres.
The unbounded regions correspond to unknown
classes.

The Nearest Centroid Class (NCC) algorithm
(Doan and Kalita, 2017) builds upon the NCM,
but uses a density-based method following the
approach of the clustering algorithm called DB-
SCAN (Ester et al., 1996). They represent a class
not by a sphere but a set of density-connected re-
gions and also consider the centroids of these re-
gions and not the means.

In the context of deep learning, (Bendale and
Boult, 2016) adapt a CNN (Krizhevsky et al.,



2012) to perform open set classification in the vi-
sion domain. In closed set classification, the final
softmax layer of the CNN essentially chooses the
output class with the highest probability with re-
spect to all other output labels. Bendale and Boult
propose OpenMax, which is a new model layer
that estimates the probability of an input belong-
ing to an unknown class instead of softmax. (Ge
et al., 2017) adapt OpenMax to generative adver-
sarial networks (GANs) for open set vision prob-
lems. There have been no such attempts in the text
processing domain.

3 Method

Along the lines of existing open set techniques,
our work was also motivated by the Rocchio
method (Rocchio, 1971). We wanted to use pre-
trained word vectors (Mikolov et al., 2013) for
open set determination. This led us to perform
experiments to see whether simple cosine com-
putation can be used for open set classification.
We used a naive approach to construct document
vectors by averaging all word vectors (Le and
Mikolov, 2014) in a document. We calculated the
cosine similarities between the mean of all docu-
ment vectors and a test example. Due to the sim-
ilarities being too close (sometimes overlapping),
we concluded that calculating cosine similarity at
the document level was not suitable for open set
classification.

Prior open set text classification models (CBS
learning and NCC) do not use artificial neural net-
works. We decided to pursue a novel approach to
open set text classification that relied on a deep
learning model, viz. CNNs due to their ability
of extracting useful features. Since (Bendale and
Boult, 2016) explored the use of CNNs in open
set image classification, we started with their ap-
proach as the basis and extend the work as nec-
essary. The work of (Kim, 2014) in CNNs for
sentence classification helped us arrive at an ef-
ficient neural network architecture. Thus, we per-
form experiments with a single-layer CNN, using
the Weibull-modified final layer instead of soft-
max. We also examine if increasing the number
of CNN layers changes performance of open set
text classification. We develop a novel ensemble
approach to deal with the activations of the penul-
timate layer of the CNN. The penultimate layer is
the focus because this is the layer that contains the
real activations for nodes corresponding to the var-

ious classes for the problem at hand. Since these
are raw activations, in a standard CNN, they are
converted into probability-like values by perform-
ing the softmax operation.
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However, in our case, there is an unknown class
to be considered as well and we do not know the
activations or probabilities associated with such
an unknown class. Therefore, this softmax layer
needs to be modified. (Bendale and Boult, 2016)
replace the layer that computes softmax with the
so-called OpenMax layer, which uses a learned
distance metric taking into account the open set
risk.

Our new model uses an ensemble approach to
make a decision with the activations in the penul-
timate layer. Our model is also incremental in na-
ture. This means, the model does not have to be
retrained after the introduction of a new unknown
class. This is because open set determination hap-
pens after training, rather than during or before.

In our experiments discussed here, we compare
the performance of our ensemble-based open set
text classifier with other open set classifiers that
have been previously used for image classification
and the methods of (Fei and Liu, 2016) and (Doan
and Kalita, 2017), which were used for open set
text classification.
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3.1 Datasets

For efficacious open world evaluation, we must
choose a dataset with a large number of classes.
This allows us to hide classes during training.
These hidden classes can later be used during test-
ing to gauge the open world accuracy. We use the
following two freely available datasets.

e 20 Newsgroups (McCallum et al., 1998;
Slonim and Tishby, 2000) - Consists of
18,828 documents partitioned (nearly) evenly
across 20 mutually exclusive classes.

e Amazon Product Reviews (Jindal and Liu,
2008) - Consists of 50 classes of products or
domains, each with 1,000 review documents.

3.2 Evaluation Procedure

Traditional evaluation (closed set) occurs when the
classifier is assessed with data similar to what was
learned during training. The number of classes
presented during testing is equal to the number



the model was trained on. In open set evaluation,
the classifier has incomplete knowledge during the
training phase. Examples of unknown classes can
be submitted to the classifier during the testing
phase. During the training phase, we train the
classifiers on a limited number of classes. While
testing, we then present the model with additional
classes that were not learned during training. We
evaluate the performance of the classifier based on
how well it identifies these new classes. “Open-
ness”, proposed by (Scheirer et al., 2013; Scheirer
et al.,, 2014), is a measure to estimate the open
world range of a classifier. This measure is only
concerned with the number of classes rather than
the open space itself.

openness =1 —/(2x Cr)/(Cr+CEg) (2)
where:

Cr = number of classes used for training

Cr = number of classes to be recognized

C'r = number of classes used during
evaluation/testing

As a special case, when Cr = Cr = Cfp, the
value of openness is 0, i.e., it is the case of tradi-
tional classification when the numbers of classes
trained on, tested on, and recognized are the same.

Accuracy, precision, recall, and F-score are
used to measure the closed set performance of our
model. These metrics are expanded to the open set
scenario by grouping all unknown classes into the
same subset. A True Positive is when an exam-
ple of a known class is correctly classified and a
True Negative is when an example of an unknown
class is correctly predicted as unknown. False Pos-
itives (an unknown class predicted as known) and
False Negatives (a known class predicted as un-
known) are the two types of incorrect class assign-
ment. Figure 1 shows how openness varies with
the number of training classes when there are 10
testing classes.

4 Experiments

For all experiments, the CNN-static architecture
proposed by (Kim, 2014) is used. We use pre-
trained word2vec! (Mikolov et al., 2013) vec-
tors as our word embeddings. These embeddings
are kept static while other parameters of the model

"https://code.google.com/p/word2vec/
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Figure 1: Variation of openness with number of
training classes

Table 1: CNN baseline configuration

Description Values
word embedding | word2vec
filter sizes (3,4,5)
feature maps 100
activation function | ReLU

pooling 1-max pooling
dropout rate 0.5
L? norm constraint | 0.0

are learned. According to the experiments of
(Zhang and Wallace, 2015), imposing an L? norm
constraint on the weight vectors generally does not
improve performance drastically. Figures 3 and
4 show the accuracies achieved on the 20 News-
groups dataset while varying the L? norm con-
straint. Increasing the L? norm constraint proved
detrimental to the model accuracy. The configura-
tion details of the CNN used in all our experiments
are shown in Table 1. Figure 2 shows a depiction
of the CNN architecture we implemented. In our
case, we use a single static channel instead of mul-
tiple channels.

4.1 Multi-layer CNN

In addition to Kim’s architecture, we have also ex-
perimented with multi-layer CNNs. We used 2
convolutional layers, the initial layer used a ker-
nel of size 3 x 1, while the second layer used a
kernel of size 3 x 300. The first layer convolves
the same feature across multiple words of the doc-
ument. The second layer convolves all features
(obtained from the previous convolution) across
multiple (3 in our case) rows. The motive be-
hind this approach was to extract activation vec-
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0.672

tors from the antepenultimate layer, which may
represent the document more accurately. Unfor-
tunately, the closed set (trained on 3 classes) accu-
racy of the muli-layer CNN was around 75%. The
accuracy decreased significantly as we increased
the number of training classes. A high closed set
accuracy is necessary to achieve respectable open
set results. Intuitively, the model must have a com-
prehensive understanding of what it knows. Only

then can it be competent enough to classify un-
known inputs correctly.

4.2 Ensemble Approach

In our open set classifier, we use an ensemble of
approaches to determine whether a test example
is from a known class or not. This ensemble in-
cludes probabilistic and high dimensional outlier
detectors.

4.2.1 Isolation Forest

The isolation forest algorithm (Liu et al., 2008) de-
tects outliers using combinations of a set of iso-
lation trees. Isolation trees recursively partition
the data at random partition points with randomly
chosen features. Doing so isolates instances into
nodes containing only one instance. The heights
of branches containing outliers are comparatively
less than other data points. The height of the
branch is used as the outlier score. The scores ob-
tained from the isolation forest are min-max nor-
malized and calculated for every training class.
Examples with scores below a predefined thresh-
old are labelled as unknown. In case of multi-
ple scores above the threshold, the example is as-
signed to the class with the highest score.

4.2.2 Probabilistic Approach

OpenMax (Bendale and Boult, 2016) is a new
model layer based on the concept of Meta-
Recognition (Scheirer et al., 2011). For all pos-
itive examples of every trained class, we collect
the scores in the penultimate layer of our neural



network. We call these scores activation vectors
(AV). We deviate from the original OpenMax by
finding the k-nearest examples to the centroid of
every training class. We refer to these examples
as k-Class Activation Vectors (k-CAV). For ev-
ery example in a training class, we calculate the
distances between the respective AV and the k-
CAVs. Doing so, results in k distances per AV.
We then take the average of these k calculated dis-
tances. As the number of classes in our dataset
is far less than those used in image classification,
the k-CAVs of a class are used represent a class
more accurately than a single mean activation vec-
tor. This also mitigates the effect of outlier AVs in
a class. We observed that when k is around 10,
the trade-off between performance and computa-
tion time is optimized. Therefore, for all experi-
ments, we fix the value of k£ = 10.

In our outlier ensemble, we use two distance
metrics — Mahalanobis distance and Euclidean-
cosine (Eucos) distance (Bendale and Boult,
2016). Ideally, we want a distance metric that can
tell us how much an example deviates from the
class mean. The Mahalanobis distance precisely
does this by giving us a multi-dimensional gener-
alization of the number of standard deviations a
point is from the distribution’s mean. The closer
an example is to the distribution mean, the lower is
the Mahalanobis distance. The Mahalanobis dis-
tance between point X and point y is given by:

1@ 5 =@ @-n 6
where C is the covariance matrix, among the fea-
ture variables calculated a priori. The Euclidean-
cosine distance is a weighted combination of Eu-
clidean and cosine distances.

The distances obtained are used to generate a
Weibull model for every training class. We use
the libMR? (Scheirer et al., 2011) FitHigh method
to fit these distances to a Weibull model that re-
turns a probability of inclusion of the respective
class. Figure 5 shows the probabilities of inclusion
obtained from the generated Weibull model for 2
training classes belonging to the 20 Newsgroups
dataset. As an example deviates more from the
class center (k-CAVs), the probability of inclusion
decreases.

The sum of all inclusion probabilities is taken
as the total closed set probability. Open set prob-
ability (OSP) is computed by subtracting the total

https://github.com/Vastlab/1libMR
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Figure 5: Weibull distribution generated using
libMR for two classes belonging to the 20 News-
groups dataset

closed set probability from 1.
OSP =1 — total closed set probability (4)

We then compare the maximum closed set prob-
ability and total open set probability. If the total
open set probability is greater than the former, we
label the example as unknown, otherwise, the ex-
ample is assigned the class with the highest closed
set probability. Parameters like threshold and dis-
tribution tail-size can be be adjusted to decrease
the open-space risk.

Weibull
(Mahalanobis)

Document
Activation
Vector

Weibull
(Eucos)

Output
Prediction

Isolation Forest

Figure 6: Our ensemble model

We use a voting scheme to combine the three
approaches (Mahalanobis Weibull, Eucos Weibull
and Isolation Forest), see Figure 6. It has been
observed that Mahalanobis and Eucos perform
nearly the same. Predictions from the Isolation
Forest are usually used as a tie-breaker in case of
differing predictions. When all 3 predictions dif-
fer, we give the Eucos Weibull the highest priority.

5 Results and Discussion

Open set performance largely depends on the “un-
known” classes used during evaluation. This is es-
pecially true when classes are not completely ex-
clusive. The activation vectors of similar classes



Table 2: Experiments on Amazon Product Reviews dataset (10, 20 domains)

Amazon Product Reviews 10 Domains
25% | 50% | 75% | 100%
our model 0.797 | 0.753 | 0.727 | 0.821
NCC § 0.61 | 0.714 | 0.781 | 0.854
cbsSVM* 0.450 | 0.715 | 0.775 | 0.873
1-vs-rest-SVM* 0.219 | 0.658 | 0.715 | 0.817
ExploratoryEM* 0.386 | 0.647 | 0.704 | 0.854
1-vs-set-linear™ 0.592 | 0.698 | 0.700 | 0.697
wsvm-linear* 0.603 | 0.694 | 0.698 | 0.702
wsvm-rbf* 0.246 | 0.587 | 0.701 | 0.792
P,-osvm-linear* 0.207 | 0.590 | 0.662 | 0.731
P,-osvm-rbf* 0.061 | 0.142 | 0.137 | 0.148
P,-svm-linear* 0.600 | 0.695 | 0.701 | 0.705
P,-svm-rbf* 0.245 | 0.590 | 0.718 | 0.774

Amazon Product Reviews 20 Domains
25% | 50% | 75% | 100%
our model 0.648 | 0.603 | 0.663 | 0.793
NCC § 0.606 | 0.657 | 0.702 | 0.78
cbsSVM* 0.566 | 0.695 | 0.695 | 0.760
1-vs-rest-SVM* 0.466 | 0.610 | 0.616 | 0.688
ExploratoryEM* 0.571 | 0.561 | 0.573 | 0.691
1-vs-set-linear* 0.506 | 0.560 | 0.589 | 0.620
wsvm-linear* 0.553 | 0.618 | 0.625 | 0.641
wsvm-rbf* 0.397 | 0.502 | 0.574 | 0.701
P.-osvm-linear* 0.453 | 0.531 | 0.589 | 0.629
P,-osvm-rbf* 0.143 | 0.079 | 0.058 | 0.050
P,-svm-linear* 0.547 | 0.620 | 0.628 | 0.644
P,-svm-rbf* 0.396 | 0.546 | 0.675 | 0.714

usually overlap in vector space. Similar to (Fei and
Liu, 2016; Doan and Kalita, 2017), we conduct
our experiments by introducing “unseen” classes
during testing. In reality, as the train-test partition
can be random, we arbitrarily specify the number
of testing domains. For every domain, we report
our results using 5 random train-test partitions for
each dataset. Both datasets are evaluated on the
same number of test classes (10, 20). We also eval-
uate our model on smaller domains, shown in Ta-
ble 4. The number of testing classes used during
training is varied in quarter-step increments (25%,
50%, 75% and 100%). We take the floor value
in case of fractional percentages. Using 100% of
the testing classes during training corresponds to
closed set classification.

Results of the Amazon Product Reviews and 20
Newsgroups datasets are shown in Tables 2 and 3
respectively. We report only the F-scores due to

space constraints. Classifiers used as baselines for
comparison are described below.

o 1-vs-rest-SVM - Standard 1-vs-rest multi-
class SVM with Platt Probability Estimation
(Platt and others, 1999)

e 1-vs-set-linear - 1-vs-set machine model
proposed by (Scheirer et al., 2013)

e W-SVM - Weibull-calibrated SVM (Scheirer
etal., 2014)

e P;-SVM - SVM model that estimates the un-
normalized posterior probability of class in-
clusion (Jain et al., 2014)

e ExploratoryEM - “Exploratory” version of
Expectation-Maximization algorithm (EM)
(Dalvi et al., 2013)

e chsSVM - Center-Based Similarity Space
SVM (Fei and Liu, 2016)



Table 3: Experiments on 20 Newsgroups dataset (10, 20 domains)

20 Newsgroups 10 Domains
25% | 50% | 75% | 100%
our model 0.719 | 0.747 | 0.738 | 0.864
NCC § 0.652 | 0.781 | 0.818 | 0.878
cbsSVM* 0.417 | 0.769 | 0.796 | 0.855
1-vs-rest-SVM* | 0.246 | 0.722 | 0.784 | 0.828
ExploratoryEM* | 0.648 | 0.706 | 0.733 | 0.852
1-vs-set-linear* | 0.678 | 0.671 | 0.659 | 0.567
wsvm-linear* 0.666 | 0.666 | 0.665 | 0.679
wsvm-rbf* 0.320 | 0.523 | 0.675 | 0.766
P;-osvm-linear* | 0.300 | 0.571 | 0.668 | 0.770
P,-osvm-rbf* 0.059 | 0.074 | 0.032 | 0.026
P,-svm-linear®* | 0.666 | 0.667 | 0.667 | 0.680
P;-svm-rbf* 0.320 | 0.540 | 0.705 | 0.749

20 Newsgroups 20 Domains
25% | 50% | 75% | 100%
our model 0.668 | 0.686 | 0.685 | 0.787
NCC § 0.635 | 0.723 | 0.735 | 0.884
cbsSVM* 0.593 | 0.701 | 0.720 | 0.852
1-vs-rest-SVM* | 0.552 | 0.683 | 0.682 | 0.807
ExploratoryEM* | 0.555 | 0.633 | 0.713 | 0.864
1-vs-set-linear* | 0.497 | 0.557 | 0.550 | 0.577
wsvm-linear* 0.563 | 0.597 | 0.602 | 0.677
wsvm-rbf* 0.365 | 0.469 | 0.607 | 0.773
P;-osvm-linear* | 0.438 | 0.534 | 0.640 | 0.757
P;-osvm-rbf* 0.143 | 0.029 | 0.022 | 0.009
P;-svm-linear®* | 0.563 | 0.599 | 0.603 | 0.678
P;-svm-rbf* 0.370 | 0.494 | 0.680 | 0.767

e NCC - Nearest Centroid Class model (Doan
and Kalita, 2017)

F-score performances of 1-vs-rest-SVM, 1-vs-set
SVM, W-SVM, P,-SVM, and cbsSVM are from
study (Fei and Liu, 2016), marked as *. Re-
sults pertaining to the Nearest Centroid Class
model (NCC) are from study (Doan and Kalita,
2017), marked as §. Our model performs bet-
ter than cbsSVM and NCC classifiers in smaller
domains. Figure 7 shows the activation vectors
obtained from models trained on 2 classes plot-
ted in 2-dimensional space. The plots show dis-
tinct clusters of activation vectors. We believe the
CNN approach effectively isolates documents in
smaller domains compared to other SVM-based
approaches.

Unlike cbsSVM, our model is an incremental
model i.e., we do not have to retrain the model

Table 4: Open set results of Amazon Product Re-
views Dataset in smaller domains (3, 4, 5)

Classes Trained on Classes Tested on
3 4 5

2 0.802 | 0.824 | 0.808

3 - 0.725 | 0.763

4 - - 0.797

when new unknown classes are introduced. Such
models are more viable in real world scenarios.

6 Conclusion

Our incremental open set approach handles text
documents of unseen classes in smaller domains
more consistently than existing text classifica-
tion models, namely CBS learning and the NCC
model. This research can prove beneficial when
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Figure 7: Activation vectors obtained from models trained on 2 randomized classes.

classifying novel data, applications of which can
be used to tackle tough text classification problems
in domains like forensic linguistics.

Our future work will involve improving the
number and diversity of classifiers used in the en-
semble. In addition, we plan to consider different
neural network architectures that learn sequential
information from text, namely variants of recur-
rent neural networks like Long Short-Term Mem-
ory networks with attention mechanism.
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