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[1] A thermomechanical ice flow model is formulated using the finite volume method.
Separate submodels solve the full, two-dimensional momentum equations, the
advective-diffusive heat equation, and evolution of the free surface. A unique aspect of the
method is the use of a boundary-fitted, orthogonal, curvilinear coordinate system, which
simplifies the implementation of boundary conditions, leads to a straightforward
discretization scheme, and results in banded sparse coefficient matrices that can be
inverted directly. For simple boundary conditions and geometries, the model compares
well with analytical solutions. For more complicated boundary conditions and geometries,
the model compares well with full-stress solutions obtained by previous authors.
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1. Introduction

[2] When modeling the flow of large ice masses, a
number of simplifications are often employed. The most
common of these is the “shallow-ice” approximation in
which horizontal stress gradients are ignored under the
assumption that the ice thickness H is small compared to
its lateral extent [e.g., Fowler and Larson, 1978; Hutter,
1981]. This approximation is valid for portions of the ice
sheet that deform primarily through simple shear but not for
regions of transitional flow, where additional components of
the stress tensor are important. Longitudinal stress gradients
are particularly important near ice divides [Raymond, 1983],
in regions where basal relief varies significantly over
distances of order H [Budd, 1970a, 1970b; Whillans and
Johnsen, 1983], and in regions of flow transition such as the
tributaries to ice streams [Price et al., 2002].

[3] Finite difference (FDM) and finite element (FEM)
methods have been used successfully to construct full-
stress and “‘higher-order” flow models that account for
horizontal stress gradients in ice flow [e.g., Raymond,
1983; Hvidberg, 1996; Pattyn, 2002a]. The finite volume
method (FVM) or “control volume method” [Patankar,
1980; Versteeg and Malalasekera, 1995] is another method
for solving the full-stress equations without resorting to
higher-order approximations. Here, we formulate a new
thermomechanical flow band model in orthogonal, curvi-
linear coordinates using the FVM. To our knowledge, the
method has not been previously applied to ice flow. First we
present and discuss the governing equations, the coordinate
system, and the solution method. We then test the model by
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comparing results for simple domain geometries and bound-
ary conditions against analytical solutions, and by compar-
ing results for more complex conditions with results
published by others. In other studies we have used our
model to investigate the flow and thickness history of Siple
Dome, an interstream ridge in West Antarctica [Price et al.,
2007], to investigate the potential for inland migration of ice
streams [Price et al., 2005], and to model the evolution of a
glacier being deformed by an expanding lava dome [Price
and Walder, 2007].

2. Governing Equations
2.1. Conservation of Momentum

[4] In Cartesian coordinates with the x axis oriented along
flow, the y axis oriented across flow, and the z axis vertical
and perpendicular to the x, y plane, conservation of
momentum along the x; direction requires

(i=x,3,2).
(1)
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[5] Summation over repeat indices is implied here (and in
the remainder of the paper); u,; are the components of the
velocity vector in the coordinate directions x, y, and z. P is
the mean compressive stress, p is the ice density, 7 is the
effective viscosity, and g is the gravitational acceleration.
For ice flow, accelerations are negligible and the Reynolds
number is on the order of ~107'°. In this case, the
nonsteady and advective terms on the left-hand side of
equation (1) — 0 giving
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Table 1. Constants and Other Model Parameters
Symbol Constant Value Units
Ao flow law constant (6 > 263 K) 6.26° 10" pa—3 a~!
Ao flow law constant (6 < 263 K) 1.3% 10°Pa=3 a!
C specific heat () =152.5+7.12.6° Jkg 'K
g gravitational acceleration 9.81 ms 2
k conductivity k(B) = 9.828-exp(—0.0057-0)° WK 'm!
L characteristic length scale 1015 m
n power law exponent 3 -
0 activation energy (6 > 263 K) 139* 10% J mol™!
o] activation energy (6 < 263 K) 60" 10° J mol ™!
Oceo geothermal flux 70°¢ 1073 Wm™2
R universal gas constant 8.314 Jmol ' K7!
p density of ice 918 kg m~?
aSee Paterson [1994, pp. 86, 97].
®See Paterson [1994, p. 205].
°See Engelhardt [2004] and G. Clow (personal communication, 2005).
[6] Ice is assumed to be incompressible: [10] A more general form of equation (5) is
au_ Tij = 2775',17 (6)
1
—=0. 3
ox, (3)

[7] For flow in plane strain (i.e., gradients in the y
direction are negligible), the along-flow (u) and the vertical
(w) components of the velocity, together with the incom-
pressibility condition, are used to solve for the horizontal
and vertical velocity fields and the pressure field. Details of
the solution procedure are discussed below.

2.2. Conservation of Energy

[8] Conservation of energy requires that nonsteady and
advective changes in temperature are balanced by diffusive
heat flux and internal sources:

Tij€ij

pC "’

00 90 1 9 00 4
5+ = o0 o o) @
where 6 is the absolute ice temperature. Although the
specific heat capacity C and the thermal conductivity & are
temperature-dependent, for simplicity we do not specify the
dependence when writing out the equation. We assume that
ice density is constant, and that liquid water is not present in
the ice even at the pressure melting point.

2.3. Constitutive Relation
[v] We use a generalized form of Glen’s flow law [Nye,
1957]:

1-n

Ty = B(0)e &y, (5)

where 7;; is the deviatoric stress tensor, ¢; is the strain rate
tensor, and B(6) = A(f)~ is the inverse rate factor. The rate
factor follows an Arrhenius relation: A(6) = 4 exp(—2 /zo);
values of A, are given in Table 1. The flow law exponent
n = 3. The effective strain rate ¢, is related to the second
invariant of the strain rate tensor by 282 = &;i€4, in which

o . . oui | O
individual strain rate components are &; = %(g—'; + a—?) The
x; :

deviatoric stress is 7;; = 0 — %akkéij =0+ Pb;;, where 0;; is
the full stress, ¢;; is the Krénecker delta (or identity matrix)
and P is the mean compressive stress.

1—n
where n = %B(G)éeT is the temperature- and strain rate—
dependent effective viscosity (variables used in formulation
and solution of the energy and momentum equations are
given in Table 2).

3. Orthogonal, Curvilinear Coordinate System

[11] A unique aspect of our approach is that we solve the
governing equations in an orthogonal, curvilinear, bound-
ary-fitted coordinate system. This is analogous to using
polar coordinates » = (x> + y*)""? and 0 = tan"'(y/x) to
describe the location at any point on an annulus-shaped
domain, where x and y are the coordinates in a standard
Cartesian system. An advantage of this type of coordinate
system is that there are no cross terms in the expressions for
the boundary conditions, which simplifies the numerics.
Details of the construction of the coordinate system for two-
dimensional domains with arbitrarily shaped upper and
lower boundaries are in Appendix A.

[12] Figure 1 shows an example of an orthogonal, curvi-
linear grid in the (x, z) domain (Figure 1a) and transformed
to the (¥, z) domain (Figure 1b). Length, area, and volume in
the two coordinate systems are related by a set of scale
factors. For an arbitrarily shaped domain, analytical expres-
sions for the scale factors do not exist. Instead, the scale
factors are calculated using the grid geometry in the (x, z)
domain and the grid spacing in the (¥, Z) domain. For
example, the unit vector €; and the scale factor /; along
the x direction are related by

or

ox

71_81‘ 1

or
e = §E7 (7)

aar>

where r is the position vector in the (x, z) domain and ||x||
denotes the magnitude of the vector x. The scale factor 4z,
which relates length in the (x, z) domain to length along the
X direction, is given by

1
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Table 2. Variables Used in Heat and Momentum Balance Models

Symbol Variable Units
A temperature-dependent rate factor Pa®a’!
A pentadiagonal, banded, sparse coefficient matrix -
ax generic FVM coefficient at volume center K (K = P, E, W, U, D)

o weight factor for calculating interface diffusivities -
B inverse rate factor Paa'?
Ei volume mean body force Nm™
b generic, nonsteady, advective-diffusion equation source term ® m>a’!
b ice-equivalent accumulation rate at surface ma'
I5] interpolation weight across time step At -
Dy, diffusive mass flow rate at interface k (k = e, w, u, d) kgm 'a!
dp", dp” pressure and velocity correction proportionality constant ma ' Pa'
Axg, Azg dimensions of individual volume at K (K = P, E, W, U, D) m
0y Kronecker delta or identity matrix -
bxx, Ozp distance between volume centers across face k (k = e, w, u, d) m
&y strain rate tensor a’!
£, effective strain rate a”!
F advective mass flow rate at interface k (k = e, w, u, d) kg mta!
T diffusivity for generic FVM equation -
H ice thickness m
J; combined advective and diffusive flux in direction i flux
pressure correction relaxation factor -
n; Cartesian surface-normal vector -
n effective viscosity Paa
Mk effective viscosity at volume interface k (k = e, w, u, d) Paa
P pressure Pa
P atmospheric pressure Pa
Py surface pressure Pa
P* Estimated pressure at interface k (k = e, w, u, d) Pa
Py pressure correction at interface £ (k = e, w, u, d) Pa
Pey, Peclet number at interface k (k = e, w, u, d) -
@ scaler solution to generic FVM equation -
S source term for generic FVM equation -
Sint volume-integrated source term for generic FVM equation -
g full-stress tensor Pa
0 absolute temperature K
t time a
Ty deviatoric stress tensor Pa
0, surface temperature K
Uy column-averaged velocity at finite volume face & (k = e, w, u, d) ma’
u, v horizontal and vertical components of velocity ma’!
Ug, Wi velocity at velocity-volume centerpoint, K (K = P, E, W, U, D) ma”!
u*, wi* estimated velocity at interface k (k = e, w, u, d) ma!
' Wi velocity correction at interface k (k = e, w, u, d) ma”
i, Wy pseudo velocity at interface k (k = e, w, u, d) ma '
flow band width m
X, z horizontal and vertical coordinates (Cartesian) m
X,z horizontal and vertical coordinates (orthogonal, curvilinear) -
X shape function for horizontal velocity -

“Heat and momentum balance equations have different coefficient definitions and thus different units.

[13] The gradients enclosed in brackets are calculated
numerically on the basis of the grid geometry as shown in
Figure 1c. A similar expression is used to calculate the scale
factor along the z direction, 4;. Appendix A shows how the
scale factors are used to scale the governing equations.

4. Boundary and Initial Conditions

[14] The energy and momentum equations are parabolic
and elliptic respectively, and so either the normal gradi-
ent or the value of u, w, and 6 must be specified at each
boundary. Where stress is specified at a boundary, the
traction vector must be continuous, and the normal and
tangential gradients in u (or w) must be specified along
with the pressure. The energy equation also requires
specification of an initial condition for the ice tempera-

ture. For illustration, here we derive boundary conditions
for the simplest orthogonal coordinate system, Cartesian
coordinates, with the understanding that extension to a
general, orthogonal, curvilinear coordinate system is
straightforward once the appropriate scale factors are at
hand. Incorporation of curvilinear geometry through scale
factors is discussed in Appendix A.

[15] Continuity of the traction vector 7; across the free
surface requires

T, = Ojinj = (Tij *P(Sij)nj = —Pumni, (9)

where P,,, is the atmospheric pressure and n; are the
components of the surface normal vector. Surface tension
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and wind stress are neglected. For a boundary-fitted
coordinate system, n; = [0,1]" on the upper surface, and so

. ou Ow
sz—277€zx—77(g+a) =0 (10)
ow
e = 2MEzy = 2N— =P — Py. 11
T. ne. 7782 1 ( )

[16] These describe the boundary conditions for velocity

B : oul| — _ Ow
gradients that are surﬁace};tangentlal E|sfc = _W|sfc and
_ Pye—Pum

S TP and for the mean compres-
sive stress at the surface Py = 277%—sz|5 P P

[17] At the sides of the domain we specify the boundary-
normal component of velocity. For example, the balance
flux from a flow divide that is frozen at the bed (u(x = 0) =
w(x = 0) = 0) to the “eastern” boundary (the right-hand side
of the domain) is

surface-normal 2

u(z);=tex(2), (12)

where x(z) is a shape function and the column-averaged
velocity u, = H% f o0 b(x)dx, where H, is the ice thickness at
the eastern boundary (x = e) and b(x) is the surface
accumulation rate in the x direction. Once a converged
velocity solution has been found using an initial estimate for
X(z), the shape function is recalculated according to u(z)/
usfe, where u(z) and uy, are taken from a velocity profile
several ice thicknesses inside of the domain boundary. To
minimize the influence of the boundary conditions on the
solution, we specify that domain boundaries are >20 ice
thicknesses beyond the region of interest.

[18] In the above example we assumed that ice is frozen
at the bed, but the analysis is easily extended to include
basal melting and/or sliding if the bed is at the pressure
melting point. For calculating the ice temperature, the
temperature gradient at the base of the underlying bedrock
is specified
90 Qo

0z k (13)

where Qg is the geothermal flux, and k. is the thermal
conductivity of the bedrock (generally assumed to be
constant through time). The temperature at the ice surface is
specified as a function of time and distance along flow,

0, = 0,(x, 1). (14)

[19] If the ice-bed interface reaches the pressure melting
point, any excess upward heat flux results in basal melting;

Figure 1. Orthogonal, curvilinear coordinate system:
(a) example of (X, Z) coordinate curves in (x, z) space and
(b) (%, 2) coordinate curves transformed into (¥, z) space. In
both cases, solid lines denote volume boundaries. Dashed
lines intersect one another at volume centers and intersect
solid lines at volume faces. Length, area, and volume in the
two coordinate systems are related by a set of scale factors
(equation 8)). (c) Variables needed to solve equation (8)
numerically for the scale factor 4;, which relates length in
the (x, z) domain to length along the X direction.
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the vertical velocity at the bed is set to the basal melt rate.
Lateral domain boundaries are specified sufficiently far
down flow so that the advective heat flux is orders of
magnitude larger than the diffusive heat flux; at these
boundaries the diffusive heat flux is set to zero. In the ice,
the initial temperature field is specified using the steady
state analytical solution at a flow divide [Hooke, 1998].

[20] We begin calculations by specifying an initial vis-
cosity and velocity field. The initial estimate of the temper-
ature field determines a rate factor field, from which the
vertical shearing rate % is calculated using the laminar flow
approximation [Hooke, 1998]. The horizontal velocity field
is obtained by integrating the vertical shearing rate from the
bed to the surface, explicitly accounting for higher shearing
rates near the bed because of warm, soft ice. The initial
vertical velocity field is then estimated from continuity. An
initial value for the effective viscosity is calculated using an
initial estimate of the rate factor and a characteristic value
for the effective strain rate (~10>—10"* a™").

5. Numerical Solution

[21] The FVM is well suited to solving ice flow problems
in which horizontal stress gradients are important. Like the
FDM, the FVM solves the governing equations on a struc-
tured grid. Like the FEM, the FVM solves the integral form of
the governing equations, and so easily accommodates
nonuniform grid spacing, providing that the grid itself is
orthogonal. Patankar [1980] and Versteeg and Malalasekera
[1995] give complete descriptions of the method.

[22] As discussed earlier, for simplicity we discuss sol-
utions for rectangular domains in Cartesian coordinates.
Extension to more complex curvilinear geometries is dis-
cussed in Appendix A. To avoid “checkerboard” pressure
and velocity solutions, the grid is staggered: u and w calcu-
lation volumes are offset one half grid space from P and 6
calculation volumes (Figure 2a). The nonsteady, advective-
diffusive equation for conservation of a scalar variable ¢
can be written in the general form

ANpp)  Opp) 0 (. 0p
(91,‘ +ul ax,- _OX[ Ff)x,— +Sl (15)

where S is a source term, and I is the conductivity.

5.1. Conservation of Momentum

[23] An expression for the conservation of momentum in
the x direction comes from substituting ¢ in equation (15)
with the horizontal component of velocity u; I" with the
effective viscosity 7; and S with the imbalance between the
pressure gradient and the body force. In this case, terms on
the left-hand side tend to zero because the nonsteady and
advective terms are small. Integrating over the quadrilateral
volume shown in Figure 2b gives

Ou Ou Ou
P Azp—n 2 Ay
e G| 5P~ T | A2 g, UAXP
2 A S =0 (16)
Udazd P nt = V.

[24] Here and below we follow a subscript convention
similar to that used by Patankar [1980]; subscripts E, W, U,
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and D refer to values at volume centers adjacent to the
volume centered at P and subscripts e, w, u, and d refer to
values at adjacent interface centers (Figure 2b). The source
term S;,; is the integrated imbalance between pressure
gradients and the body force acting in the x direction:

S[nt == _(Pe - PW)AZP +EXA)CPAZP, (17)
where B, = pg, is the mean body force acting over the
calculation volume with center (xp zp). P, and P,, refer to the
pressures at the east and west interfaces of the calculation
volume centered at (xp zp). These points are also the centers of
adjacent P and 6 calculation volumes (Figure 2).

[25] Equations (16) and (17) describe the balance of
momentum fluxes across the east, west, upper, and lower
interfaces of the volume centered at (xp zp). A convenient
property of an orthogonal coordinate system is that these
interface fluxes are quantified by the gradient in u using
piecewise-linear profiles. The gradients are calculated using
values of u at the centers of the neighboring four volumes;
that is, those to the east (Ug), west (Uy), above (Uy), and
below (Up). Hence the discretized form of equation (16) is

Me et AZP*nw fr_Hw AZP+77M fv _tr A)Cp
§xe (wa 6Zu

— (w) Axp + Spy = 0.
bzq

(18)

[26] Values of éx and 6z are defined in Figure 2b.

[27] The interface viscosities 7,, 14, 7., and 70, are anal-
ogous to the interface thermal conductivity & in the heat
equation and the interface conductivity I in the generalized
equation. The interface “conductivity” (n, k, or I') is often a
function of the dependent variable (i.e., n(u), k(9), T'(p)),
which is calculated at volume centers and assumed to apply
over its entirety. For neighboring volumes with differing
conductivities, the interface conductivity is calculated from
the harmonic mean of conductivities at the adjacent volume
centers [Patankar, 1980]. For example, the harmonic mean
used to calculate 7, is

(19)

X
6%, ?

e = [ams' + (1= a)gp' ]

where 0 < o < 1 is a weighting factor given by a =
lengths 6x,._ and 6x, are defined in Figure 2b.

[28] From equation (18), we define the coefficients, azp =
w, aAw= n%xwp’ ay= UH(SZMP, ap= W&d P, and ap=agptawytay

+ )EED, which allow us to write equation (18) as

apup = dgug + awuy + ayuy + apup + Sint (20)

or

ajuy + Spy. (21)

m
dpup =

=1

[20] The subscript / denotes a “neighboring” volume
(m = 4 for 2-D coordinate systems). The domain is
characterized by » rows and ¢ columns; it is described

by r X c¢ equations of the form of equation (21). To
implement the boundary conditions, columns of “dummy”’
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Figure 2. Staggered grid used for numerical solution of
the momentum and energy balance equations. (a) Calcula-
tion volumes of u (w) offset 1/2 grid space in the horizontal
(vertical) direction from € and P calculation volumes.
Velocity volume centers are # and P interface centers and
vice versa. (b) Naming convention used to define a volume
centered at P with neighboring volumes centered at points to
the east, west, up, and down (E, W, U, and D, respectively)
and with interfaces at points e, w, u, and d. Finite volume
dimensions are given by Ax and Az. Distances 6x and 0z
from P to the center of neighboring volumes are assigned
subscripts depending on the neighboring volume (e.g., éx,
and 6z,). Distances from P to the respective interfaces are
assigned an additional subscript (e.g., éx._ and 6z,_).

volumes are added as the east and westmost columns of
the coefficient arrays az and ay: Similarly, rows of dummy
volumes are added as the top and bottom rows of the coefficient
arrays ay and ap. With boundary conditions included,
equation (21) gives r X c¢ linear equations in » X ¢ unknowns:

Aii = 5. (22)

[30] A is a sparse matrix with coefficients ag, ay; ay, ap
and ap along the appropriate diagonals. § is a vector of
source terms and u is the solution vector of horizontal
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velocity components. A similar set of equations is con-
structed to solve for the vertical velocity field. Because A
is banded with nonzero elements along only five of the
diagonals (A is “pentadiagonal’), it can be inverted directly.
Any appropriate method may be used to invert the matrix; we
use subroutines native to the Matlab, software package.

5.2. Conservation of Energy

[31] Conservation of energy in the x direction comes from
equation (15) by substituting ¢ with C6 on the left-hand side
and by substituting ¢ with 6, I" with k, and S with heat
sources due to strain heating on the right-hand side. In this
case the nonsteady and advective terms cannot be neglected
and the interface flux is partitioned into advective and
diffusive components. Forward time stepping is handled
in a fully implicit manner. Details of our treatment of the
energy balance are given in Appendix B.

5.3. Calculation of the Momentum Source Term

[32] The pressure field in the momentum source term in
equation (17) is not known a priori. We calculate the
pressure and velocity fields using an iterative “pressure
correction” method [Patankar, 1980; Ferziger and Peric,
1999; Versteeg and Malalasekera, 1995], which is similar to
methods employed by many commercially available com-
putational fluid dynamics packages. Briefly, an initial esti-
mate of the pressure field (for example, hydrostatic
pressure) is used to solve for the horizontal and vertical
velocity fields through equation (22) and the analogous
equation for the vertical component of velocity. Using these
velocity solutions, the continuity equation is integrated over
each volume to calculate a residual mass source (or sink);
deviations from zero are used to calculate a correction to the
pressure field, which is then used to solve for updated
horizontal and vertical velocity fields, and to calculate an
improved (smaller magnitude) estimate of the mass source
within each volume. Iterations continue until the mass
source is near zero. A complete description of the procedure
is given in Appendix C.

5.4. Solution Procedure

[33] At each time step, the domain geometry and the
boundary and initial conditions allow calculation of
the velocity field, which is used as an input to calculate the
energy balance and an updated temperature field. The
velocity field is also used to update the domain geometry
through the evolution of the free surface. The new temper-
ature field and domain geometry are then used as inputs for
calculating the velocity field for the next time step.

[34] Ice viscosity is a nonlinear function of the velocity
field, which makes the momentum equations nonlinear. This
nonlinearity is treated iteratively: an initial estimate of the
viscosity is used to calculate the velocity field, from which
updated strain rate and effective viscosity fields are calcu-
lated. Iterations continue until both the velocity and viscos-
ity fields converge. In all tests to date, the model converges
when the viscosity and pressure fields are iterated simulta-
neously; no subiterations are necessary.

[35] The free-surface boundary conditions discussed
above require specification of values for gradients in u, w,
and P at the surface, but these are not independent; for
example, the boundary condition on P requires knowledge

6 of 17



F03020

of w and vice versa. This problem is solved by using values
calculated from the previous iteration. As the viscosity,
pressure, and velocity fields converge over the course of
iterating, the differences between current and previous
estimates of u, w, and P vanish and the boundary conditions
become self-consistent.

[36] At each time step, internal heat sources are calculated
from the stress and strain rate fields. We make the simpli-
fying assumption that the dominant shear and strain rate
components are o, and £.,. The temperature dependence of
both C() and k(f) is small and nearly linear over the range
of temperatures expected in polar ice sheets. We use the
temperature field from the previous time step to calculate
C(0) and k(0) by interpolating between known values given
in Table 1. We use analytical expressions to calculate C(0)
and k(0) in the upper firn layer [Paterson, 1994].

[37] Initially, the model geometry, temperature, effective
viscosity, and velocity fields are far from steady state and
10'~107 iterations of the momentum equations are necessary
for the solutions to converge. As the model evolves toward
steady state and solutions for the temperature, effective
viscosity, and velocity fields converge, the number of iter-
ations required during each time step generally decreases to
<10'. Solutions to the momentum equations obey both
integral and differential mass conservation to within machine
accuracy. The number of iterations required to obtain a
converged velocity solution is always greater than the single
iteration needed to obtain a converged temperature solution,
and so we run the energy balance model at each time step.

[38] The model domain consists of two layers: ice over-
lying bedrock. Momentum equations are not needed in the
bedrock layer and only the heat equation (with no advec-
tion) is solved there. In order to provide adequate thermal
inertia, we specify the minimum thickness of the bedrock
layer to be greater than the maximum thickness of the ice at
the start of a model run. The geometry and thermal
properties of the bedrock layer are held constant over time.
Within the ice, the velocity field and the specified accumu-
lation rate determine changes in the shape of the domain
through evolution of the free surface. For ice flow over a
frozen ice-bed interface, horizontal and vertical surface
velocities are <10' and 10° m a~', respectively. In this
case, updating the domain geometry at 20-year time steps is
adequate to model the evolution of the surface topography.
Small interpolation errors during regridding can cause small
errors in volume; for example, for steady state boundary
conditions (surface temperature, accumulation rate, and
geothermal flux), a fractional volume change of ~107°
percent occurs when a 1 x 40 km domain evolves over
10° a. The equivalent (erroneous) rate of ice thickness
change is ~10~" m a~'. In applications where errors of
this magnitude are unacceptable, they could be reduced by
adjusting the grid spacing and/or by iterating on the
momentum equations longer.

6. Model Validation
6.1. Comparison With Analytical Solutions
[39] For simple domain shapes and boundary conditions,
we compare output from our model with analytical solutions:
[40] 1. Hooke [1998] gives a 1-D, analytical temperature
solution for steady state flow at an ice divide that assumes

PRICE ET AL.: FULL-STRESS FINITE VOLUME FLOW MODEL

F03020

linearly decreasing vertical velocity, no horizontal advec-
tion, and temperature-independent thermal properties. We
specify these conditions in our model with constant accu-
mulation rate and geothermal flux on a 1000 m thick
rectangular slab discretized by a 100 finite volumes in the
vertical direction. We approximate a steady state tempera-
ture solution by forward-time stepping 10 at 10%a time
steps. Our model results agree with the 1-D analytical
solution to within <10~ K.

[41] 2. As an approximate test of a 2-D temperature
solution, we compare our model with analytical solutions
for steady state heat conduction within a portion of an
annulus shaped domain of constant conductivity. We
prescribe temperature on the outer radius, heat flux on the
inner radius, and insulated domain sides. Internal heat flow
is through conduction only. Our 2-D model temperature
field agrees with the analytical temperature field to within
10~"? K. We acknowledge that this is not a rigorous test of
the 2-D solution because we still only approximate a 1-D
temperature field. It does, however, confirm that there is no
spurious conductive heat flux within the model when we
consider a highly curvilinear 2-D domain.

[42] 3. As a test of the time-dependent temperature
solution, we compare the model response to a change in
surface temperature with results from a 1-D (vertical),
numerical, energy balance model [Morse et al., 2002]. In
both models we start from steady state and prescribe a
—10 K step change in surface temperature, and then allow
them to evolve for 2 Ma. During that period the vertical
temperature profiles from the two models agree to within
0.04 K. After allowing the model to equilibrate for an
additional 5 Ma under steady boundary conditions, the rate
of temperature change everywhere within the domain is
<1072 K a~!. We conclude that there are no spurious
energy sources or sinks in our energy balance model.

[43] 4. We test our momentum-balance model using
simple domain geometries and boundary conditions, and
then compare these results with those from analytical
solutions of the Navier-Stokes equations. Specific test cases
include case a, Poiseuille flow (here we examine flow
between two parallel plates); case b, isothermal flow in an
inclined parallel-sided slab with Newtonian viscosity; and
case ¢, same as case b but with a power law viscosity. In all
cases we assume an infinite length in the along- and across-
flow directions, in which case w is zero everywhere and u
varies as a function of the vertical position only. For case a
we specify no slip (u = w = 0) at the top and bottom
boundaries, and the analytical solution for « at the sides. For
cases b and ¢ we specify a stress-free upper boundary, no
slip on the bottom boundary, and the analytical solution for
u at the sides. We calculate solutions on a 20 x 30 grid for a
domain with a 1:100 aspect ratio.

[44] Gray scale plots in Figure 3 show the horizontal
velocity field (normalized by the maximum velocity in each
case) plotted as a function of the normalized vertical
position (z/H) and the normalized distance along the do-
main. Figure 3 also shows for each case, the analytical
solution (solid line) for the 1-D horizontal velocity field and
results from our model taken from near the center of the
model domain (dots). In this case, normalized horizontal
velocities are expressed in percent. In all cases the velocity

7 of 17



F03020

1
0.8
0.6

a: Poiseuille flow

0.4
0.2

0

0 20 40 60 80 100
1 1
b: slab flow (newtonian)
0.8 0.8
0.6 0.6
z/H

0.4 0.4
0.2

’ : * 0

0 20 40 60 80 100
1 1
c: slab flow (power law)
0.8 0.8
0.6 0.6
z/H

0.4 0.4
0.2 0.2

0

0 20 40 60 80
x/H

100

Figure 3. Numerical solutions for simple domain shapes
and boundary conditions and comparison with analytical
solutions. Gray scale plots show the 2-D horizontal velocity
field (normalized by the maximum velocity) plotted as a
function of the normalized vertical coordinate and the
normalized distance along the domain for (a) Poiseuille
flow; (b) isothermal, Newtonian-viscous slab flow; and (c)
isothermal, power law viscous slab flow. Also shown for
each case is the analytical solution (solid curve) for the
normalized 1-D horizontal velocity field (expressed as
percent) and results from our model near the center of the
model domain (dots).
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field calculated from the model is in excellent agreement
with the analytical solution.

6.2. Comparison With Previous Numerical Studies

[45] Currently, there is no generally accepted set of tests for
use in validating a full-stress flow model, in part because the
importance of using full stress (or “higher-order”) flow models
has been recognized relatively recently [e.g., Alley et al., 2005].
In the spirit of the European ice sheet model intercomparison
study [e.g., Huybrechts et al., 1996], an intercomparison of full
stress and higher-order flow models is currently underway
[Pattyn et al., 2007]. The goal is to provide the glaciological
community with a set of “benchmark” tests for validating full-
stress and higher-order flow models.

[46] Although our model is a part of that intercomparison
study, results are not yet available, and here we compare our
model results to those from other published, full-stress
numerical models. We choose two test cases for which a
“correct” solution requires accounting for normal (longitu-
dinal and vertical) stress gradients: (1) flow near an ice
divide, discussed previously by Raymond [1983] and also by
Hvidberg [1996], and (2) ice flow over sinusoidally varying
bedrock topography, discussed previously by Budd [1970b]
and also by Pattyn [2003]. Our purpose here is not to repeat
the interpretation of previous authors but to demonstrate that
the details of the velocity field solution from our model are
consistent with those from other full stress flow models.

[47] 1. We examine flow near an ice divide for three
cases: case a, isothermal flow in plane strain; case b,
isothermal flow along a linearly widening flow band (mod-
ifications needed for flow bands of varying width are given
in Appendix D); and case c, thermomechanically coupled
flow in plane strain. In all cases the velocity fields are
approximately steady state; surface temperature and accu-
mulation are held constant and the surface shape is allowed
to evolve until the rate of thickness change is < 10°ma’.

[48] Figure 4 shows horizontal and vertical velocity shape
functions from the model for these three cases. For all cases,
the shape functions show the same general patterns: at and
near a divide, the horizontal velocity shape functions are
more linear and the vertical velocity shape functions are
more parabolic in shape, relative to profiles off divide. For
isothermal plane strain (Figure 4a) the width of the zone of
“divide flow” (the region over which vertical velocity
shape functions differ from those on the flank) is ~1x
the ice thickness. For an isothermal flow band that widens
linearly by a factor of 15 at a distance of 20 ice thicknesses
(Figure 4b), the width of the zone of divide flow increases to
~4x the ice thickness. For the case of thermomechanically
coupled flow in plane strain (Figure 4c) flow off the divide is
more concentrated near the bed (where the ice is warmer and
softer). For each of the three cases, our model results are in
close agreement with results from full-stress, finite element
models of Raymond [1983] and Hvidberg [1996].

[49] 2. We examine flow over sinusoidal bed topography
for four cases in which the wavelength of the topography
varies by nearly an order of magnitude. For each case, the
surface topography is given by s(x) = —x - tan (@), where ¢
is a constant surface slope. The bed topography is given by
b(x) = s(x) — H+ Q sin (¥2), where H is the ice thickness
and ) and X are the amplitude and wavelength of the bed
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Figure 4. Modeled velocity shape functions at a flow
divide. Horizontal (u/us) and vertical (w/wg) velocity fields
are normalized by the respective surface velocities (ug and
wg) and are plotted as a function of the normalized vertical
coordinate for (a) isothermal plane strain; (b) isothermal
flow along a linearly widening flow band; and
(c) thermomechanical, coupled flow in plane strain. Curves
denote distance from the flow divide in units of ice
thickness (0, 1/2, 1, 2, 4, 10, and 20 ice thicknesses for u
and 0, 1/4, 1/2, 1, 2, 4, and 10 ice thicknesses for w).

topography, respectively. Here, ¢ = 0.009, H = 1000 m, () =
H/2, and we show results for A of 160, 80, 40, and 20 km.

[s0] Figure 5 shows horizontal (Figure 5a) and vertical
(Figure 5b) surface velocities from our model (solid lines)
as a function of the normalized along-flow coordinate, x/\.
Also shown (dots) are results from a full-stress, plane strain,
finite element model, published by Johnson and Staiger
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[2007]. Values of relevant physical parameters are identical
in both models. When ) is large, the velocity field is similar to
that from a model based on the shallow-ice approximation.
As )\ decreases, the solution from a full-stress model dem-
onstrates how longitudinal stress gradients smooth the ve-
locity field spatially [e.g., Pattyn, 2002b, 2003]. The good
agreement between the models does not mean that our model
is correct, but over the range of wavelengths tested it is
consistent with other full-stress models currently in use.

7. Conclusions

[51] We have developed a new, full-stress numerical ice
flow model for two-dimensional domains with variable
width. Our approach is similar to that used by Hvidberg
[1996] in that we use three interacting submodels: a heat
balance model, a momentum balance model, and a surface
evolution model. Governing equations are solved with the
FVM, which can be considered intermediate to the more
commonly used FEM and FDM,; it solves the integral form of
the governing equations on a structured grid with nonuniform
spacing and uses a FDM-like discretization scheme.

[52] A unique aspect of our model is the use of a
curvilinear, orthogonal coordinate system for the description
of arbitrarily shaped domains. The coordinate system has
some clear advantages over structured and unstructured
grids that are nonorthogonal. First, coordinate directions
are everywhere parallel and perpendicular to domain bound-
aries, which simplifies the implementation of boundary con-
ditions. Second, because of the orthogonal nature of the grid,

Usic (M a-1)

Wefe (M a-1)

Figure 5. Flow over sinusoidal bed topography of varying
wavelength A. (a) Horizontal and (b) vertical surface
velocities are plotted as a function of the normalized
along-flow coordinate x/A, from our model (curves) and
from the full-stress, FEM model of Johnson and Staiger
[2007] (dots). Numbers overlying individual curves corre-
spond to values of A in km. For all cases, boundary
conditions include a free surface, no slip at the bed, and
periodic horizontal velocities at the lateral boundaries.
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Table Al. Variables Used When Creating Orthogonal, Curvilinear Coordinate System

Symbol Variable Units
r position vector Cartesian reference frame m
e; tangent vector to coordinate curve x; R -
& unit vector along orthogonal coordinate direction i -

K surface elevation profile in Cartesian reference frame m
b bed elevation profile in Cartesian reference frame m
5 stretched vertical coordinate in Cartesian reference frame and vertical coordinate in curvilinear, orthogonal reference frame -
% horizontal coordinate in curvilinear, orthogonal reference frame -
Ax, Az horizontal and vertical distance between grid points in the nonorthogonal reference frame. m
Ax, Az horizontal and vertical distance between grid points in the orthogonal reference frame. -
g surface metric for nonorthogonal reference frame -
g5 surface metric for orthogonal reference frame -
I scale factor relating length in nonorthogonal reference frame to length along orthogonal coordinate direction i -

discretization of the governing equations leads to banded
sparse matrices that can be inverted directly, rather than
through iterative methods. Constructing the coordinate system
is relatively straightforward and could be easily adapted for use
with other solution methods that require a structured grid.

[53] While the FVM is easily extended to three dimen-
sions, constructing a 3-D orthogonal, curvilinear coordinate
system is not straightforward. For an arbitrarily shaped
domain, this would require embedding the domain of interest
within a larger domain with more simple boundaries, after
which internal boundary conditions could be applied to the
calculation domain [e.g., Adcroft et al., 2004]. Computer
codes are available to construct such a coordinate system; if
necessary, our model could be extended to three dimensions.

[54] While some time saving is afforded by inverting the
coefficient matrices directly, the iterative nature of the
pressure correction method requires that numerous smaller
matrices be inverted sequentially, rather than inverting for
the velocity and pressure fields simultaneously in one big
matrix. Run time also increases when using the model in a
predictive sense, which requires regridding at each time
step. Depending on the size of the time step required,
regridding could take a significant amount of the total run
time. On the other hand, because the continuity equation is
part of the solution to the momentum equations, we need
not solve an additional differential equation to describe
evolution of the domain thickness. In some other full-stress
and higher-order models, direct solution of the equation
describing the evolution of thickness may be unstable and
alternate solution methods may not conserve mass over
portions of the model domain [Pattyn, 2003].

[55] Our model results compare very well with analytical
solutions for simple domain shapes and boundary condi-
tions. Model results also compare very well with numerical
results for more complex domain shapes published by
previous authors.

Appendix A: Discrete, Orthogonal, Curvilinear
Coordinate System

[s6] Our coordinate system, which is constructed using
the method of orthogonal trajectories [Eiseman, 1982],
requires an initial coordinate system of the form

r(x,z) = r(x,z(x,2)). (A1)

[57] The position vector in a Cartesian reference frame r
has components x and z, which are normalized by a
convenient length scale. A “stretched” vertical coordinate
is defined as

z—b(x)

S~ b0 (A2)

z=

where s(x) and b(x) are the scaled surface and bed elevation
profiles, respectively (variables used in construction of the
coordinate system are given in Table A1). The z coordinate
varies from 0 along b(x) to 1 along s(x). Rearranging
equation (A2) gives

z(x,2) =z [s(x) — b(x)] + b(x). (A3)

[s8] Holding z constant and varying x produces a curve in
(x, z) space; j values of constant z produces a family of j
such curves. This family of X(x, z) curves constitute the set
of X coordinates in the new curvilinear coordinate system
shown in Figure la. The set of Z coordinate curves perpen-
dicular to these is derived using the method of orthogonal
trajectories [Eiseman, 1982].

Al. Orthogonal Trajectories

[59] The method of orthogonal trajectories employs the
surface metric:

_ Ox Ox;
Sk 8ij ayl ayk’ (A4)
which is the rule for changing from one set of planar surface
coordinates (x;, x») to another (1, y»). Here, gy is associated
with the orthogonal, or final coordinates (y;, y»), and g;; is
associated with the nonorthogonal, or initial coordinates
(1, x2). Individual components of the metric tensor g;; are
given by the dot product of the tangent vectors:

gi=¢ei-e, (AS)

where e; = % is the tangent vector in the x; direction. An

orthogonal, planar coordinate system must satisfy the
condition
(A6)

gn==e e =g =¢e- e =0
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Figure Al.

Discrete orthogonal, curvilinear coordinate system: (a) illustration of variables involved in

the numerical integration procedure discussed in text and (b) definitions of variables when calculating
discrete orthogonality at interface (x, z);;. The interface at (x, z);  is shared by the finite volumes centered
at the points (x, z); + 1j and (x, 2); — 1j. To obey discrete orthogonality, a line connecting these two points
must be orthogonal to a line connecting the two points (x, z);; + 1 and (x, z)ij — 1.

[60] Expanding equation (A4) with (x, xp) = (x, ) and
01, ¥2) = (x, 2) gives the ‘“fundamental equation for
orthogonal trajectories” [Eiseman, 1982]:

Ox _ 81

== . A7
02 g11 ( )

[61] It can be shown that equation (A7) can be written

_gn_

811

€ - €
€ - €

(b)) +H)(s—b)
1+ (E- (s =)+ b)

in which the primes denote derivatives with respect to x.
The Z coordinate curves are obtained by integrating the
fundamental equation between x coordinate curves (curves
of constant Z).

[62] Details of the numerical integration procedure are dis-
cussed later. Figure Ala shows an example in which an initial
point (X(,0), Z0,0)) is the intersection of the lowermost domain
boundary b(x) along which z = 0, and the leftmost domain
boundary, along which X = 0 (in the following discussion,
subscripts refer to coordinates along the X and z coordinate
curves). The goal is to find the coordinates in (x, z) space where
the Z coordinate curve originating at (x,0), Z(0,0)) intersects with
the next point (X Az), Z(0,A2))- Integrating equation (A7) from
z =0 to Az gives the desired x coordinate:

Y iz (A9)

SF

Az
X(0,A2) = X(0,0) + /
0

[63] The corresponding z coordinate zy a:) is obtained by
solving equation (A3) with x = x Az and Z = Az. The next
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segment of the Z coordinate curve is defined by starting at
X(,az and integrating from z = Az to 2AZz (for simplicity
here we assume constant grid spacing in the X and Z
directions). The coordinate curve is complete when the last
segment (that spanning Z = 1 — Az and Z = 1) has been
constructed. To build the entire grid, we continue by
integrating along the Z coordinate curve starting at (x(az,0),
Z(a%,0))> then along the curve starting at (xoa0) Z2A%0))
and so on (Figure Ala). The grid is complete when the
curve originating at (x(1,0), Zc1,0)) is constructed. Each grid
point in (X, Z) space is described by a corresponding grid point
in (x, z) space. In practice, the initial coordinates, the
integrand, and the integration limits in equation (A9) are row
vectors and the entire suite of Z coordinate curves is integrated
simultaneously (discussed further below). Because the grid is
discrete, rather than continuous, additional considerations are
necessary to ensure orthogonality at grid point intersections.

A2. Discrete Orthogonality

[64] Maintaining the flux balance between neighboring
volumes requires that the gradient in a variable at an
interface must be characterized entirely by the values of
the variable at the profile endpoints. With respect to a
discrete grid, this is equivalent to requiring that the line
segment describing the orientation of an interface be orthog-
onal to the line segment that connects the two volume centers
that share that interface. Figure A 1b illustrates discrete orthog-
onality at (x, z); j, which denotes an interface center common to
the two volumes with centers at (x, z);_; j and (x, z);;1 j. In the
discrete sense, the grid points (x, z);j_; and (x, 2); j+1 define the
east face of the volume centered at (x, z);_; j and the west face
of the volume centered at (x, z);;j. Orthogonality at the
common interface center (x, z);; requires that unit vectors
paralleling the line segments defined by points (x, z);;;; and
(x, 2)i_1 j, and points (x, z); j+; and (x, z); 1, have a dot product
of 0. We define this condition as “discrete orthogonality”. The
staggered grid requires that each internal grid point obey
discrete orthogonality. Individual volumes within the grid
are each defined by 9 grid points: 4 corner points, 4 interface
center points, and one center point. The positions of these
points are constrained by orthogonality and by the locations of
points defining neighboring volumes.

A3. Integration of the Fundamental Equation

[65s] The z coordinate curves are obtained by integrating
the fundamental equation between X coordinate curves
(curves of constant z). The integration scheme uses a
modified Euler-predictor corrector,

X = X1+ (g — ), (A10)

where x;;; and x;_; are row vectors of final and initial x
coordinates, respectively, and a is a row vector describing
the direction of travel in (x, z) space, from x;_; to X;;.
The subscript j indicates the X coordinate curve that the set
of x coordinates lie on. For example, the row vector of initial
points X;_, lies on the curve X;_; (defined by z;,_; = C_,). The
solution to the integration is the row vector x;,;, which has a
vector of corresponding z coordinates given by

Zir1 = 241 [8(Xj41) = b(X501)] + b (x511), (Al1)
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which is simply the vector analog of equation (A3). Given
some starting x;_;, the goal is to determine the location of x;;,
such that our definition of discrete orthogonality is obeyed at the
intermediate points x;, z;. To meet this requirement, the “slope”
vector a, with components a;, is weighted according to

J— @ + (1 _ )a_x
=Y “i) oz

Ly

i=1,23,.. .k (Al2)

ij+1

[66] The index i indicates which of the £ Z coordinate
curves is being integrated along; values for g—; at any index 7
are given by equation (A8). The weight w; takes on a value
between 0 and 1. For w; = 1, equation (A10) becomes a
simple Euler predictor. This is the value used for “shooting”
off from the lowermost domain boundary (the X coordinate
curve defined by b(x) and coinciding with z = 0). Along this
boundary the initial values for x are known (specified) and
there is no curve Z;_; = C_,. For this initial step, j is
substituted for j + 1 in equations (A10) and (All). The
vectors X; and z; obtained after this initial step define
the locations of all volume centers and interface centers along
the lowermost row of volumes in the grid (Figure A2a). From
this set of points, the next row (Figure A2b) of points, and all
rows of remaining points defining the z curves are determined
as follows:

[67] 1. With all w; = 0.5, equations (A10), (All), and
(A12) are used to predict a “trial”” location for the points
Xit+15 Zj+1-

[68] 2. A vector of discrete dot products d; is calculated for
the points x;, z;. For an internal grid point (x; ;, z; ;), calculation
of the intersection of curves %; and Z; is based on the line
segment connecting the points (x;, z;41) and (x;, z;_;) and the
line segment connecting the points (x;11, z;) and (x;_y, z;). The
dot product for points along a domain boundary are calcu-
lated similarly but using mixed centered and one-sided
differences (e.g., at the bottom boundary we calculate a
centered difference in x and a forward difference in z).

[69] 3. We arbitrarily chose an orthogonality tolerance € =
10~'°. If any point d; within the vector d; is such that |d] > ¢,
a Newton-Raphson iteration is used to find the perturbation
necessary to adjust the appropriate x; within the x;,; vector
(and thus to also adjust the appropriate z; in the z;,; vector)
so that |d;|] < e. Iterations of equations (A10)—(A12)
continue until the points X;.;, z;y; satisfy |d;| < e for the
points X;, z;.

[70] 4. The calculation continues by: (1) replacing the

points x;, z; with points X1, Z;1; (2) replacing the points
X;_1, z;_; with points x;, z; and (3) returning to step 1
above and predicting a new trial location for the points x;,,
Zii|.
][71] This procedure is applied to all internal grid points;
no separate calculation is needed for the final row of
coordinates because these are the last set of X, Z;
coordinates to be calculated (Figure A2c).

A4. Incorporation of Curvilinear Geometry Through
Scale Factors

[72] Once the coordinate system has been constructed and
the scale factors have been calculated, it is straightforward
to adapt the governing equations and the boundary con-
ditions to incorporate the curvilinear nature of the model
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Figure A2. Section of a curvilinear grid demonstrating the
integration procedure: (a) first integration, starting from
the lowermost domain boundary, b(x) (z = 0), after which
the volume centers and interface centers have been defined
for the bottom row of volumes in the grid; (b) second
integration, after which the upper corners and upper
interface centers are defined for the bottom row of volumes
in the grid; and (c) further integrations defining successively
higher rows of volumes making up the grid.

domain. For example, following the rules for general,
orthogonal, curvilinear coordinates [Hughes and Gaylord,
1964], conservation of momentum in the x direction is

1 0 /[ h:0u 1 OP
heh: 0% \hy 0%) by 0%
where u is the component of velocity along the x direction

(analogous to equation (2)). Similarly, the tangential, stress-
free boundary condition at the free surface is

B0 (@) B0 (W)
h: 0z \ h; hy Ox \h:)

+ pg: =0, (A13)

(A14)
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where w is the component of velocity along the z direction
(analogous to equation (10)). In equation (Al14) we have
applied the rules for calculating shear strain rates in general,
orthogonal, curvilinear coordinates [Hughes and Gaylord,
1964]. In practice, scale factors are included as additional
scalars in the definition of the matrix coefficients. For example
the coefficient az defined from equation (18) becomes

hs\ n,Az
= <h75f>e 6566

and the other coefficients are altered in a similar manner. One
can verify that for a Cartesian coordinate system (where the
scale factors are unity) equations (A13) through (A15) revert to
their familiar Cartesian counterparts.

(A15)

Appendix B: Nonsteady and Advective Terms

B1. Nonsteady Term

[73] Including the nonsteady term in equation (4) requires
that we also integrate over the time step, Az. For the case of no
advection (# = w = 0) and a flow line of unit width (Ay = 1),
equation (4), becomes

. oy t+At eE _ GP
pAzAx(COp — COy) = ke Az
t

6x,

—k, (GP(S_ '95) Az +...+ EAXAZj| dt,
X
(B1)

where superscripts indicate the value of C@ at the current
time (C%)and at a future time (CH'). As with the spatial
discretization, an assumption is needed to describe how the
dependent variables on the right-hand side of equation (B1)
vary over the time step. For small time steps, it is reasonable
to assume a linear variation:

t+At
[ bnae =[085+ (1 - e8] (B2)

where 0 < § < 1 is an interpolation weight. Similar
expressions can be derived for 0, 0y; 0, and 0. Substituting
these and the coefficients derived earlier into equation (B1)
gives

aplp = ag[B0p + (1 — 5)9?;} +aw [B0w + (1 — /3)9% +... (B3)
et ay B0y + (1= B)6%] + ap[B0p + (1 — B)6] + b.

“1”

[74] We drop the superscript with the understanding
that an unmarked variable refers to its value at the future
time step. We also define several new variable definitions:

b = SAXAz + a6}, (B4)
o _ PCAXAz
= BS
a A (B5)
apEaE+aW+aU+aD+a0P. (B6)
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[75] For =0, 0.5, or 1, equation (B3) reduces to one of
three commonly used forms for forward-time marching when
solving parabolic, partial differential equations. 3 = 0 results
in the explicit scheme, 8 = 0.5 results in the semi-implicit,
“Crank-Nicholson” scheme, and 3 = 1 results in the fully
implicit scheme; here we use the fully implicit scheme.

B2. Advective-Diffusive Flux

[76] When treating the advective term in equation (4) it is
convenient to first combine the advective and diffusive
fluxes into a single flux term,

06
[77] For steady state,
oJ;
o S. (B8)

[78] For unit width Ay = 1, integration of equation (BS)
over the shaded finite volume in Figure 2b gives

JAzy — JyAzyy + J, A, — JiAxg = SAxpAzp. (B9)

[79] For an orthogonal coordinate system, the flux across
the interfaces is “one dimensional”: no interface-parallel
velocity components or gradients are required to quantify
the interface flux. With a known flow field, the analytical
expression for the advective-diffusive flux across interface e
in Figure 2b is

Op — O
J,=F,(0p+——L"7F )
< " oxp(Pey) — 1)

[s0] The Peclet number at the interface is the ratio of the
advective (F,) and the diffusive (D,) mass fluxes across the

interface: Pe, = L& = 282 Calculation of the exponential

D, kobx, 1Az,
term is computationally intensive and it is convenient to use
a power law approximation [Patankar, 1980]:

(B10)

Jo = Felp + [Dede(|Pec|) + | =Fe, O[}(0p — 0F),  (BI1)
where 4.(|Pe,|) = ||0,(1 — 0.1|Pe,|)’||. Here, ||a, b|| denotes
that the larger of a or b is used when evaluating the enclosed
expression. 4, is the area of the interface e. The advective-
diffusive fluxes at interfaces w, u, and d are evaluated using
similar expressions.

B3. Final Discretized Equation

[81] Including the nonsteady and advective terms in the
discretized, two-dimensional equation for C6 gives

apep = aWOW + aEQE + aDHD + aUHU + b, (BlZ)
where
ag = D.A.(|Pe.|) + ||—F., 0| (B13a)
aw = DyA,(|Pey|) + ||Fyw, 0| (B13b)
ay = DyA4,(|Pey|) + ||—Fu, 0| (B13c¢)
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ap = Dada(|Peal) + [[Fa, O], (B13d)

ap and b are defined in equations (B4)—(B6). The advective
and diffusive mass fluxes are

F,, = pCyu,, Az, (Bl4a)
F, = pCou,Az, (B14b)
F, = pC,w,Ax, (Bl4c)
Fd = pCdeAxd (B14d)
kAz,
= ——— Bl15
ox. (B15a)
ko.Az,
e = B1
o (B15b)
k, Ax,
= (B15¢)
bz,
kaAx,
Dy == (B15d)
6z4
[s2] The Peclet numbers are
F,
Pew = D—w (B16a)
F,
Pe, = ¢ B16
o= 5 (B160)
Pe, = —~ (B16¢)
Fy
Pe; = —. Bl
€q Dd ( 6d)

Appendix C: Pressure Correction Method

[83] Following Patankar [1980], the pressure and veloc-
ity fields are solved iteratively using the semi-implicit
method for pressure linked equations (SIMPLE) algorithm.
Starting with an estimate of the pressure field P*, the
discretized velocity equations are solved to obtain estimated
velocity fields u* and w*. A correction to the estimated
pressure field P, gives corrections #’ and w' to the estimated
velocity fields, and updated estimates:

P=pP" 4P (Cla)
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u=u +u (Clb)

* !
w=w —+Ww.

(Cle)
[s4] Substituting the estimated pressures and velocities
into equation (21) gives

m
@ﬁzgﬁﬁ—@ﬁmeHﬁA@mp (C2)
=1

[85] Subtracting equation (C2) from equation (21) gives
apulp = Za,u} — (P, = P,)Azp. (C3)
=1

[s6] Here and below we use lowercase subscripts to
emphasize that the pressures apply at the interfaces of the
u calculation volumes. Ignoring, for the moment, the first
set of terms on the RHS of equation (C3) gives

apily = —(P, — P,,) Azp, (C4)
which is rearranged to
Az
wp==(P=P) = =(P=P)dp(CS)

where dp = Azplap. dp is the constant of proportionality
between a pressure perturbation and the corresponding
perturbation to the velocity field. Substituting equation (C5)
into equation (C1b) gives the corrected horizontal velocity

up =y — (P, — P.)ds. (C6)
[87] A similar expression can be derived for the corrected
vertical velocity,

wp = wy — (P, = P})dj. (c7)

[s8] The right-hand sides of equations (C6) and (C7)
describe the velocity correction at interfaces to u and
w calculation volumes as a function of the bounding
pressure corrections. Still needed is an expression for the
pressure correction itself. The link between the pressure
correction and the velocity field is the incompressibility
condition. In 2-D, 9v/Qy = 0 and integration of the remain-
ing terms in equation (3) over the shaded finite volume in
Figure 2b gives

(tte — ) Azp + (W, — wy)Axp = 0. (C8)
[s9] Substituting the appropriate interface velocities from
equations (C6) and (C7) into equation (C8) gives
apP},:aEP/E-‘raWP’W-i-aUP/U-i-aUP'U-i-S. (C9)

[90] Uppercase subscripts indicate values at the centers of
pressure calculation volumes. The coefficients are ap =
pdez,, ay = pdyAz,, ay = pdy Ax,, ap = pdyAxg, ap =
ag + ay + ay + ap. The r x ¢ arrays for Ax, Az, and d at
interfaces are obtained by subsampling the appropriate rows
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(or columns) from the larger arrays. For example, d;, consists
of the first ¢ columns from the array dp and d}; consists of the
last 7 rows of the array dp; equation (C9) is solved through
direct inversion of the sparse coefficient matrix.

[01] The source term in equation (C9) is the integrated
continuity equation based on the velocity estimates:

S = (u:Aze - u:;Azw> + (W:Axu - w:Axd>. (C10)

[92] A nonzero S represents a mass source (or sink)
associated with each volume, and hence the degree to which
the estimated velocity fields do not satisfy continuity. That
is, volumes with nonzero S are associated with nonzero P,
and thus nonzero u' and w' at the volume interfaces.
Successive iterations of the linked pressure and velocity
equations are used to generate solutions that converge
toward satisfying continuity. In practice, iterations are
stopped when the maximum mass residual within all of
the individual volumes is less than a specified threshold.

[93] When P, = P/, the velocity perturbation is zero
(equation (C6)). Thus, when the velocity at a boundary is
specified, a zero gradient is the necessary boundary condition
on P If the pressure at a boundary is specified, then the value
of the pressure perturbation at that boundary is set to zero.

[94] The pressure correction procedure is summarized as
follows:

[o5] 1. Estimate a pressure field (e.g., hydrostatic pressure).

[96] 2. Use this estimate to calculate an estimated velocity
field.

[97] 3. Calculate the pressure correction source term
(equation (C10)).

[98] 4. Solve for the pressure correction (equation (C9)).

[99] 5. Check if the pressure correction source term is ~0;
If yes, the current pressure and velocity fields have con-
verged; If no, correct the pressure and velocity fields
(equations (Cla), (C6), (C7)), and return to step (3).

C1. Relaxation
[100] If the change in a dependent variable between
iterations is too large, the solution may diverge or oscillate
indefinitely, rather than converging. In such cases, relaxa-
tion can be used to damp the change between iterations and
avoid diverging solutions. For example, a pressure pertur-

bation can be written as
P =P, + (1= NP,

new

(C11)

where the subscripts denote values calculated during the
current (new) and previous (old) iterations. Changes in the
pressure perturbation are underrelaxed for 0 < A < 1; they
will be more gradual than without relaxation. The pressure
correction method discussed above generally requires
underrelaxation to both the pressure (A ~ 0.5) and velocity
perturbations (A ~ 0.8). Further discussion on the
implementation of relaxation is given by Patankar [1980].

C2. Alternate, Improved Solution Method

[101] The pressure correction method described above
ignores the fact that the velocity correction in any volume
depends not only on the pressure correction in neighboring
volumes, but also on the velocity corrections in neighboring
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volumes (hence the ‘“‘semi-implicit” in SIMPLE). This
omission is allowable because the method leads to a set
of pressure and velocity fields that satisfy continuity, but it
does have shortcomings. Because the velocity field is
corrected by changing the pressure field alone, pressure
corrections can be large and the solution may not converge.
The usual remedy is to invoke underrelaxation to changes in
the pressure field, but this can slow convergence.

[102] The SIMPLE-Revised (SIMPLER) algorithm
[Patankar, 1980] addresses this shortcoming. Rearranging
equation (21) gives

n —
Z a,u, + BXAXPAZP
- P, —P,)Az
up:Fl _( e w) P. (C]Z)
ap R ap
ZU,”,"‘EXAXPAZP
— =1

[103] If we define ip
(C12) becomes

, then equation
ap

Up = ﬁp - (Pe — Pw)d;g. (C13)

[104] The first term on the RHS is the “pseudovelocity”
(the velocity that would exist in the absence of the pressure
field). The coefficient dp is the same as defined above in
equation (C5). Equation (C13) and its counterpart for the
vertical component of velocity have the same form as
equations (C6) and (C7) above. Inserting these expressions
into equation (C8) gives

apPp = agPg + awPw + ayPy + ayPy + S. (C14)
[105] The source term is
S = (1 Az, — i1,,Az,) + (W, Ax, — WgAxy), (C15)

which is the integrated continuity equation based on the
interface pseudovelocities.

[106] Unlike SIMPLE, where the initial pressure field is
estimated, SIMPLER calculates the initial pressure field
from equation (C1), which requires an initial estimate for
the pseudovelocity fields in equation (C15). After calculat-
ing the pressure field, SIMPLER proceeds in a manner
similar to SIMPLE: (1) u and w fields are calculated; (2) P,
' and W' are calculated; (3) the velocity field is corrected
via #'(P") and w'(P’). Unlike SIMPLE, the pressure field is
not corrected. Rather, the corrected velocity field gives
updated pseudovelocities and an updated pressure field for
the next iteration. Because the pressure field is not corrected
with P, the pressure corrections do not require underrelax-
ation (A = 1) and the velocity corrections require only minor
relaxation (A ~ 0.95). Computation time using SIMPLER is
typically 30—50% less than when using SIMPLE [Versteeg
and Malalasekera, 1995]; we use SIMPLER when solving
the momentum equations.

[107] For geometries, pressures, viscosities, and velocities
relevant to a polar ice sheet, we found that SIMPLER does
not consistently converge to an arbitrarily chosen degree of
accuracy. We suspect that this occurs because of large
round-off errors, which arise because the magnitude of the
pressure field is many orders of magnitude larger than the
other fields. We overcome this problem by nondimension-
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alizing the momentum equations in the manner described by
Raymond [1983].

Appendix D: Flow Band Adaptation

[108] Several modifications are made to adapt the “flow
line” model (where momentum and continuity are invariant
in the across-flow direction) to a “flow band” model that
allows for the effects of converging or diverging flow. For a
flow band with width W(x) varying in the along-
flow direction, the across-flow gradient in velocity is
[Waddington, 1981]

u(x,z)

@v(x,z) =&y = (D1)

where v is the across-flow component of velocity, and ¢,,, is
its across-flow gradient. Of interest here are the effects of
lateral convergence or divergence on the horizontal and
vertical velocities and the effects of ¢,,, on the ice viscosity.
For flow bands of varying width, we use the strain rate ¢,
from equation (D1) in equation (6). For flow bands of
constant width, &,, = 0 and the flow band and flow line
formulations are identical.

[109] Several other minor adjustments are necessary for flow
bands of varying width. First, the coefficients defined from
equation (18) must be scaled by the width of the individual finite
volume. For example, the coefficient a; becomes

_ nAz

ag =

We, (D2)

bx,

where W, is the width at the east face of the shaded volume
centered at P in Figure 2b. Similar adjustments are made to
the other coefficients associated with equation (C9).
Second, the estimated velocities on the RHS of equation
(C10) must also be scaled by their respective interface
widths; for a flow band equation (C10) becomes
*k * * *
S= <[u WAZL [u WAZL) + ([w WAX} [w WAx]d),
(D3)

u

where subscripts indicate that all values enclosed by
brackets apply at their respective interfaces. Similar
modifications are needed when using SIMPLER. Lastly,
the specified flux boundary condition must be altered so that
the surface accumulation rate is integrated over both the
length and width of the flow band. In this case, the column-
averaged velocity at the eastern boundary is

1

W= / :; b(x) W (x)dx,

(D4)

where W, is the width at the eastern boundary.
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