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ABSTRACT
The digitization of legacy infrastructure constitutes an important

component of smart cities. While most cities worldwide possess

digital maps of their transportation infrastructure, few have ac-

curate digital information on their electric, natural gas, telecom,

water, wastewater, and district heating and cooling systems. Dig-

itizing data on legacy infrastructure systems comes with several

challenges such as missing data, data conversion issues, data incon-

sistency, differences in the data format, spatio-temporal resolutions,

structure, semantics and syntax, difficulty in providing controlled

access to the datasets, and so on. Therefore, we introduce GUIDES, a
new data conversion and management framework for urban infras-

tructure systems, which is comprised of big data analytics, efficient

data management techniques, semantic web technologies, methods

to ensure information security, and tools that aid visual analytics.

The proposed framework facilitates: (i) mapping of urban infras-

tructure systems; (ii) integration of heterogeneous geospatial data;

(iii) a secured way of storing, analyzing and querying data while

preserving the semantics; (iv) qualitative and quantitative analysis

over several spatio-temporal resolutions; and (v) visualization of

static (e.g., land use) and dynamic (e.g., road traffic) information.
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1 INTRODUCTION AND MOTIVATION
Complex geo-analytical applications require integration of two

or more cross-domain geospatial datasets such as soil types, un-

derground water pipes, traffic conditions, weather forecasts and

other events that change with respect to time and space for effective

spatial decision-making. The integration of datasets from multiple

different sources involve matching of the datasets geometrically

and topologically, as well as having some correspondence of at-

tributes.

Significant opportunities for smarter data management of urban

infrastructure systems are on the rise, as many US cities are moving

towards the vision of “smart cities”, employing recent advances in

information technology and creating open data portals that enable

city administrators and residents to explore urban data and per-

form predictive analyses. Despite the availability of a tremendous

volume of available data on cities, the lack of accurate geospatial

data for underground infrastructure systems remains a problem.

The need to address the poor state of the existing infrastructure

is a strong rationale to develop such data management systems.

For example, New York City has over 6,800 miles of water mains

whose average age is 69 years. Over two thirds of them are made

of materials susceptible to internal corrosion and prone to leakage,

causing over 400 water main breaks in 2013 alone. For an effective

infrastructure maintenance, it is important to locate pipes that need

to be replaced in order of priority while accounting for funding

constraints. Moreover, effort could be put into coordinating across

agencies so that road excavation and resurfacing be done at the

same time. Such scenarios also reiterate the need for integrating

multiple heterogeneous geospatial datasets.

The ultimate objective is to enable a wide variety of people, such

as service providers, policy makers, and the general public to ex-

plore, query, and analyze urban data to make intelligent decisions,

and understand and be aware of the events around them, while

simultaneously concealing the sensitive data. However, there are

several technical challenges associated with achieving this vision.

Data come from various sources, they possess differences in format,

representation, context, tools, traits, structure, events, data models,

spatio-temporal resolution, data collection and storage techniques,

and the relationship between various system properties in a given

region. Also, data are most often erroneous, incomplete, and in-

consistent, leading to uncertainty. All these factors affect a data

management framework, leading to imprecise results when the

data is analyzed.

In this paper, we describe GUIDES, a novel framework to map

and query urban underground infrastructure systems, and show

how heterogeneous geospatial datasets are mapped and integrated.

This framework involves big data analytics, methodologies for effi-

cient data management, algorithms to impart information security,

semantic web-based techniques to enable context-aware decisions,

and state-of-the-art visualization tools. We also present two sce-

narios which demonstrate the capabilities of GUIDES in terms of

pre-processing and integration of heterogeneous data.

2 FRAMEWORK
This section introduces the GUIDES framework (Figure 1) for

data management and briefly describes its components.

2.1 Mapping
2.1.1 Data Sources and Data Providers. Big-data driven decision

making in smart city applications require the integration of diverse

map-based data sources, many of which are non-standardized. Stan-

dardization of data sources and coordination among data providers,
such as municipalities and service providers can improve the accu-

racy of data that is being centrally integrated. Some municipalities

further verify map accuracy through on-field inspection and ever-

improving real-time sensor information. However, the accuracy of

such geospatial data still remains problematic. GUIDES also em-

ploys relevant external data sources such as census data, economic



Figure 1: The GUIDES Framework.

data, among others. One of the initial challenges of this framework

is to create accurate GIS-based representations of underground in-

frastructure systems from existing legacy data sources, and on-field

verification to enable the mapping of multiple thematic layers of

such data.

2.1.2 Mapping & Pre-processing. Mapping deals with the con-

version of data from one or more non-standardized sources into a

single standardized format. Legacy data formats lack geographical

information and often contain all the relevant information in one

single source. Dimensions, for example, are often shown directly

on the CAD drawing as opposed to being an attribute of a piece of

infrastructure. Pre-processing algorithms that can automatically

detect and solve these types of issues are critical. GUIDES follows
a three-step approach for pre-processing. First, a set of rules were

developed based on domain knowledge to identify problem areas.

For example, a manhole in a water distribution system represented

as a circle with multiple nodes as opposed to a single node with an

attribute “manhole”. The second step leverages machine learning

to train and apply classifiers.To increase the accuracy of the classi-

fiers, new variables based on the network properties (e.g. number

of connections) are first generated from the converted data. We

also incorporate GIS features to test whether a point is located

within a polygon or not. After having highlighted misplaced or

missing elements, the third step is to “suggest” the correct configu-

ration, for which, we train other machine learning classifiers and

leverage the information present in other infrastructure systems.

For instance, given that most underground infrastructure systems

are buried under roads, road data can be used to suggest where

missing infrastructure should be located. Once complete, all errors

and added infrastructure elements can be flagged until they are

validated manually, during maintenance or new construction.

2.2 Geospatial Data Integration
Data may be collected with different spatial and temporal res-

olutions, update frequencies, and geometry types [10, 12] with

heterogeneity across dimension, location, scale and source. To ad-

dress these challenges, GUIDES uses two kinds of ontologies: (i) a

set of domain ontologies; and (ii) a spatio-temporal ontology. The

domain ontology deals with instances related to a specific domain

(e.g., water distribution) obtained from the GIS database or exter-

nal data sources, whereas the spatio-temporal ontology consists

only of the spatial and temporal hierarchies (e.g., urban spatial

hierarchy) and their corresponding instances. To handle the differ-

ences in data formats between the datasets, and to address several

forms of heterogeneities, we perform instance matching based on

the spatio-temporal components, which identifies the relationships

between each domain ontology and the spatio-temporal ontology.

The differences in spatial and temporal resolutions are handled

using spatio-temporal algebraic functions such as within, intersects,
overlaps, contains, and so on.

2.3 Geospatial Data Analytics & Visualization
The analytics component incorporates geostatistical models that

enable data exploration, precise predictions of values for geospatial

entities, evaluation and comparison of various geostatistical models,

quantification of uncertainty, and geostatistical simulations. This

component also implements models for descriptive, exploratory,

and explanatory statistics. It is important to display multivariate

data in a way that facilitates better decision making and data ex-

ploration with focus (e.g., details on an area where a water leakage

is being repaired) and context (e.g., sketch of other infrastructure

elements around the focus area) at the same time. Therefore, the vi-

sualization component consists of geometric, glyph- or icon-based,

pixel-oriented, and hierarchical techniques, along with an interac-

tive map-based interface to support data exploration.

2.4 Query & Update
GUIDES supports a wide range of geospatial queries using an

interactive map-based interface that incorporates the semantics of

different domains in the query processing algorithms, along with

aggregated data for use by various users (e.g. administrators, resi-

dents, maintenance crews). The interface facilitates queries using

an API for the SPARQL (SPARQL Protocol and RDF Query Lan-

guage) engine with spatio-temporal extension, to support multiple

geometry types, spatio-temporal functions, geospatial aggregate

functions and update statements. Once a query is issued, the su-

per classes (parent classes) and sub-classes (child classes) of the

spatio-temporal components are retrieved from the spatio-temporal

ontology, and geospatial data integration is carried out. The set of

functions that needs to be considered for a specific query depends

on which dataset’s instances are sub/super/equivalent classes (in

the spatio-temporal ontology) of the spatio-temporal components

in the query. Users can query location- and time-specific data based

on their particular data needs and authorized level of access. As

required by their work, some users would have access to infrastruc-

ture data that is deemed secure, but would not be searchable within

public access platforms.

3 DEMONSTRATION SCENARIOS
This section demonstrates how the GUIDES framework enables

pre-processing and ontology-based data integrationmechanisms for

urban infrastructure data, using theWater Pipes and Buildings maps

from the University of Illinois at Chicago campus. These maps were

initially in dwg format and they were converted to shapefile format.

The original data contained several errors and inconsistencies, and

the conversion process generated several errors as well. We used

QGIS
1
for visualizing the maps. The maps are transformed into

a list of nodes and edges using a Python script [11], splitting the

edges at intersections with nodes.

1
http://qgis.org/

2

http://qgis.org/


3.1 Pre-processing the Water Pipes Map

Figure 2: Errors in Water Pipes Map.

The screenshot in Figure 2a is part of the Water Pipes dataset,
which is converted into shapefile from AutoCAD drawing. This

figure represents a manhole and should have been represented as a

single node as opposed to a circle (composed of several polylines)

with 3 nodes. The nodes (in the right side) are also disconnected.

This subsection deals with identifying and correcting such errors.

3.1.1 Fixing Duplicate Nodes. In Figure 2b, though the feature

highlighted in red appears to be a single node, the corresponding

feature table in Figure 2c shows that it is in fact two nodes with two

different IDs. That is, the two nodes are separate features within

the layer and there is no edge connecting them. These types of

scenarios are common and pose obvious issues, even when the

most basic operations on the network are performed. For example,

trying to find a path that goes through the edges in Figure 2b will

fail, simply because the overlapping nodes are not connected. To

resolve this, a Python script which involves the osgeo and networkx
libraries is run to remove one of those nodes for each pair of such

duplicate nodes, and connect its edges to the other copy of the node.

3.1.2 Differentiating Infrastructure Elements and CAD symbols.
Figure 2a shows an example of a loop representing a manhole.

Zooming into this figure, we can see that only one of the three

nodes is actually connected to the loop edge. The loop was deleted

and replaced with a new node in its center, with proper connections

to the others nodes on either side of it. A field named Is_drain is also
added to this node and is set to 1 in the attribute table of the map,

so that the information is kept intact, though the loop is removed.

3.1.3 Context-aware Pre-processing. To identify further errors

in theWater Pipes map, we used the Buildings layer. For example,

intuitively, a water pipe should either end in a building, or be con-

nected to other water pipes. If a water pipe is either disconnected

from the rest of the network or ends abruptly, it is reasonable to

assume that there is an error, and should be flagged for correction.

Such cases can be identified by finding the end nodes in the Water
Pipes layer, that is, nodes with degree 1. This hypothesis has been

confirmed by our experiments with synthetic map layers for Water
Pipes and Streets. After the random removal of water pipes, we

validated whether our logic suggests proper corrections to restore

the initial map. In doing so, using the constraints enforced by the

Streets layer (say, a water pipe would normally run underneath a

street, without crossing its borders), has proven to be fundamental

in reducing the number of false positives (pipes we would have

incorrectly added), raising the precision from 59% to 93%. Applying

this hypothesis to the UIC datasets, we should also ensure that

the end nodes that are placed within the perimeter of a building

should not be flagged. Therefore, this turns out to be a point-in-
polygon problem [13]. To resolve this, we use the osgeo Python

library, which, given a point (a node in the water pipes) and a poly-

gon (a building), checks whether the the point falls within the area

of the polygon.

The osgeo library allows for the creation of multipolygons, which

are objects that can contain several polygons. We made use of this

feature to have one object containing all the polygons of the build-

ings, instead of having one object (a polygon) for each building. The

point-in-polygon check was then performed with the multipolygon

in one iteration over the nodes, instead of using two iterations

to check if any of the nodes (1st iteration) is in any of the build-

ings/polygons (2nd iteration). Although the idea of having a single

iteration seems to be intuitively more computationally efficient, it

is not. The solution with two iterations results in a much faster

computation and was therefore chosen for the final implementation.

Figure 3: (a) Buildings (Purple Lines) and Corresponding
Polygons (Green Areas); (b) UIC Water Pipes and Buildings
Layer - Partial.

From Figure 3a, we can see that the polygons (green areas) do not

cover all of the buildings (purple lines) that the map contains. This

is again because, the map contains inconsistencies such as broken

edges, detached nodes, and so on, which makes it impossible for

GUIDES to build all the polygons properly. Therefore, this layer

needs to be pre-processed to remove impurities and connect nodes

that define the boundaries of a building, which we do by testing

whether a building node is on the edge of a full polygon or not, and

if not, it can be connected to the closest node and flagged. Figure 3b

shows a section of the maps of the water pipes, the buildings, and

the polygons. All the nodes that are not inside the green areas and

that have degree 1 will be flagged.

3.2 Ontologies in Geospatial Data Integration
This step encompasses ontology matching. More specifically, we

intend to match the instances associated with different concepts

in the ontologies. To do this, a domain ontology for each dataset

(e.g. crime as in Figure 4a), and a generic spatio-temporal ontology

(Figure 4b) are constructed using Protègè
2
, a widely used ontology

editor. For urban underground infrastructure systems, the local on-

tologies should be generic enough to accommodate minor changes

to the datasets. For example, theWater Pipes dataset of New York

and that of Chicago might have different structures, but they re-

fer to the same domain (Water Mains). Therefore, the ontology

should not only consider the concepts based on the attributes in

the dataset, but also the generalization and specialization of each

of these concepts. The future goal of the integration module is to

2
http://protege.stanford.edu/

3

http://protege.stanford.edu/


Figure 4: (a) DomainOntology (Example: Crime) - Partial; (b)
Spatio-temporal Ontology - Partial.

match the instances in each local ontology, with the instances of

the global ontology, based only on the spatio-temporal components,

using AgreementMakerLight (AML) [8], one of the top ontology

matching tools [7].

4 RELATEDWORK
GIVA [6], an interactive map-based application for Geospatial

and temporal data Integration, Visualization, and Analytics, enables

mapping several datasets with each other, for a given region and a

time interval. GUIDES adds on to the capabilities of GIVA, in terms

of pre-processing, categories of users, use of external data sources,

and themechanism used for data integration in the urban infrastruc-

ture domain. OpenGrid [14], a map-based open-source platform,

was developed by the City of Chicago, to support advanced queries

to identify and monitor incidents across the city. It is built on top

of Plenario [4], which is a geospatial data warehouse that allows

data from many sources to be registered into a common spatial and

temporal frame. OpenGrid only accepts queries that are based on

point data (e.g., location of potholes) and only on certain datasets.

Many of the vital infrastructure systems, such as gas, electricity,

water, sewer, transportation, and telecommunication systems are

not included in OpenGrid, and does not support data integration,

though it can be extended to perform predictive analytics on urban

data [1].

There are also several existing works on performing urban data

exploration and urban data analytics. Chang et al. [5] proposed a

model that enables visualization of urban relationships using data

aggregation techniques. However, it does not support geospatial

data integration, and does not address potential issues such as the

differences in data models or the spatial and temporal resolutions.

Urbane [9] is a 3D multi-resolution framework that involves a data-

driven approach for decision making in urban settings. The main

idea of this framework is to integrate various datasets and perform

impact analysis to evaluate the relationships between multiple at-

tributes and analyze how it impacts the neighborhood. One of the

main drawbacks of Urbane is that it supports data exploration only

on three different scales (between neighborhoods, within a neigh-

borhood, and indivdual building). Beck et al. [2, 3] have proposed

an integrated framework for utility data that uses light-weight on-

tologies to support knowledge and data integration. They took into

account various forms of heterogeneities, but the setup requires

major changes when a new dataset is to be integrated. Real-time

scenarios are more complex than these frameworks could handle.

For example, the existing urban data analytics platforms like Open-

Grid [14] do not support cross-domain querying mechanisms, thus

reinforcing the need for a new framework like GUIDES.
5 CONCLUSIONS AND FUTUREWORK

In this paper, we have introduced GUIDES, a semantic web-

based data management framework, which supports integration,

querying, analytics, and visualization of heterogeneous geospatial

datasets, focusing on the urban underground infrastructure domain.

The framework also supports several types of users such as admin-

istrator, planner, maintenance crew, general public, and so on, with

various levels of access. We highlighted the key architectural ele-

ments and their capabilities to handle several challenges associated

with geospatial data. Given the novelty of the proposed framework

and complexity of the problems this framework intends to address,

there is a great potential for expansion of this framework in all

possible directions. Opportunities for integration of the GUIDES
framework with open data exploration platforms such as OpenGrid,

will also be explored.
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