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Structured Signal Recovery from Non-linear
and Heavy-tailed Measurements

Larry Goldstein, Stanislav Minsker and Xiaohan Wei

Abstract—We study high-dimensional signal recovery
from non-linear measurements with design vectors having
elliptically symmetric distribution. Special attention is
devoted to the situation when the unknown signal belongs
to a set of low statistical complexity, while both the
measurements and the design vectors are heavy-tailed.
We propose and analyze a new estimator that adapts to
the structure of the problem, while being robust both
to the possible model misspecification characterized by
arbitrary non-linearity of the measurements as well as
to data corruption modeled by the heavy-tailed distribu-
tions. Moreover, this estimator has low computational
complexity. Our results are expressed in the form of
exponential concentration inequalities for the error of
the proposed estimator. On the technical side, our proofs
rely on the generic chaining methods, and illustrate the
power of this approach for statistical applications. Theory
is supported by numerical experiments demonstrating
that our estimator outperforms existing alternatives when
data is heavy-tailed.

Index Terms—Signal reconstruction, Nonlinear mea-
surements, Heavy-tailed noise, Elliptically symmetric dis-
tribution.

I. INTRODUCTION.

Let (x, y) ∈ Rd × R be a random couple with
distribution P governed by the semi-parametric single
index model

y = f(〈x, θ∗〉, δ), (1)

where x is a measurement vector with marginal dis-
tribution Π, δ is a noise variable that is assumed
to be independent of x, θ∗ ∈ Rd is a fixed but
otherwise unknown signal (“index vector”), and f :
R2 7→ R is an unknown link function; here and in
what follows, 〈·, ·〉 denotes the Euclidean dot product.
We impose mild conditions on f , and in particular
it is not assumed that f is convex, or even contin-
uous.1 Our goal is to estimate the signal θ∗ from
the training data (x1, y1), . . . , (xm, ym) - a sequence
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of i.i.d. copies of (x, y) defined on a probability
space (Ω,B,P). As f(a−1〈x, aθ∗〉, δ) = f(〈x, θ∗〉, δ)
for any a > 0, the best one can hope for is to
recover θ∗ up to a scaling factor. Hence, without
loss of generality, we will assume that θ∗ satisfies
‖Σ1/2θ∗‖22 :=

〈
Σ1/2θ∗,Σ

1/2θ∗
〉

= 1, where Σ =
E(x− Ex)(x− Ex)T is the covariance matrix of x.

In many applications, θ∗ possesses special struc-
ture, such as sparsity or low rank (when θ∗ ∈
Rd1×d2 , d1d2 = d, is a matrix). To incorporate
such structural assumptions into the problem, we will
assume that θ∗ is an element of a closed set Θ ⊆ Rd
of small “statistical complexity” that is characterized
by its Gaussian mean width [1]. The past decade
has witnessed significant progress related to estima-
tion in high-dimensional spaces, both in theory and
applications. Notable examples include sparse linear
regression ([2], [3], [4]), low-rank matrix recovery ([5],
[6], [7]), and mixed structure recovery [8]. However,
the majority of the aforementioned works assume that
the link function f is linear, and their results apply
only to this particular case.

Generally, the task of estimating the index vector
requires approximating the link function f or its deriva-
tive, assuming that it exists (the so-called Average
Derivative Method), see [9], [10], [11]. However, when
the measurement vector x ∼ N (0, Id×d), a somewhat
surprising result states that one can estimate θ∗ di-
rectly, avoiding preliminary link function estimation
step completely. More specifically, it has been proven
in [12] that ηθ∗ = argminθ∈Rd E (y − 〈θ,x〉)2, where
η = E y 〈x, θ∗〉. Here is the short proof of this fact:

argmin
θ∈Rd

E (y − 〈θ,x〉)2

= argmin
θ∈Rd

[
‖θ‖22 − 2Ey 〈x, θ〉

]
= argmin

θ∈Rd

[
‖θ‖22 − 2Ey 〈x, θ∗〉 〈θ, θ∗〉 − 2Ey

〈
x, θ⊥∗

〉 〈
θ, θ⊥∗

〉]
= argmin

θ∈Rd

[
‖θ‖22 − 2Ey 〈x, θ∗〉 〈θ, θ∗〉

]
= argmin

θ∈Rd
‖θ − ηθ∗‖22,

where θ⊥∗ denotes the unit vector in the (θ∗, θ) plane
orthogonal to θ∗, and the third equality follows from
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the fact that
〈
x, θ⊥∗

〉
is a centered Gaussian random

variable independent of 〈x, θ∗〉, hence also independent
of y.

Later, in [13], this result was extended to the more
general class of elliptically symmetric distributions,
which includes Gaussian distributions as a special case;
see Lemma 5. In general, it is not always possible to
recover θ∗: see [14] for an example in the case when
f(x, δ) = sign(x) + δ (so-called “1-bit compressed
sensing” [15]).

Y. Plan, R. Vershynin and E. Yudovina recently pre-
sented the non-asymptotic study for the case of Gaus-
sian measurements in the context of high-dimensional
structured estimation, see [16], [17], [18]; we refer
the reader to [19], [14], [20], [21] for further details.
On a high level, these works show that when xj’s are
Gaussian, nonlinearity can be treated as an additional
noise term. To give an example, works [17] and [16]
demonstrate that under the same model as (1), when
xj ∼ N (0, Id×d) and θ∗ ∈ Θ, solving the constrained
problem

θ̂ = argmin
θ∈Θ

‖y −Xθ‖22, (2)

with y = [y1 · · · ym]T and X = 1√
m

[x1 · · · xm]T ,
results in the following bound: with probability ≥ 0.99,∥∥∥θ̂ − ηθ∗∥∥∥

2
≤ Cσ1ω(D(Θ, ηθ∗) ∩ Sd−1) + σ2√

m
, (3)

where (with formal definitions to follow in Section II)
C is an absolute constant,

g ∼ N (0, 1), η = E(f(g, δ)g),

σ2
1 = E

(
(f(g, δ)− ηg)2

)
,

σ2
2 = E

(
(f(g, δ)− ηg)2g2

)
,

Sd−1 is the unit sphere in Rd, D(Θ, θ) is the descent
cone of Θ at point θ, and ω(T ) is the Gaussian mean
width of a subset T ⊂ Rd. A different approach to
estimation of the index vector in model (1) with similar
recovery guarantees has been developed in [21]. How-
ever, the key assumption adopted in all these works
that the vectors {xj}mj=1 follow Gaussian distributions
preclude situations where the measurements are heavy
tailed, and hence might be overly restrictive for some
practical applications; for example, noise and outliers
observed in high-dimensional image recovery often
exhibit heavy-tailed behavior, see [22].

As we mentioned above, in [13] authors have shown
that direct consistent estimation of θ∗ is possible
when Π belongs to a family of elliptically symmet-
ric distributions. Our main contribution is the non-
asymptotic analysis for this scenario, with a particular
focus on the case when d > n and θ∗ possesses
special structure, such as sparsity. Moreover, we make
very mild assumptions on the tails of the response

variable y: for example, when the link function satisfies
f(〈x, θ∗〉 , δ) = f̃(〈x, θ∗〉) + δ, it is only assumed
that δ possesses 2 + ε moments, for some ε > 0. In
[17], Y. Plan and R. Vershynin present analysis for the
Gaussian case and ask “Can the same kind of accuracy
be expected for random non-Gaussian matrices?” In
this paper, we give a positive answer to their question.
To achieve our goal, we propose a Lasso-type estimator
that admits tight probabilistic guarantees in spirit of (3)
despite weak tail assumptions (see Theorem 1 below
for details).

Proofs of related non-asymptotic results in the liter-
ature rely on special properties of Gaussian measures
(see, for example, [23]). To handle a wider class of
elliptically symmetric distributions, we rely on recent
developments in generic chaining methods, see [24],
[25]. These general tools could prove useful in de-
veloping further extensions to a wider class of design
distributions.

II. DEFINITIONS AND BACKGROUND MATERIAL.

This section introduces main notation and the key
facts related to elliptically symmetric distributions,
convex geometry and empirical processes. The results
of this section will be used repeatedly throughout the
paper. For the unified treatment of vectors and matri-
ces, it will be convenient to treat a vector v ∈ Rd×1 as
a d× 1 matrix. Let d1, d2 ∈ N be such that d1d2 = d.
Given v1, v2 ∈ Rd1×d2 , the Euclidean dot product is
then defined as 〈v1, v2〉 = tr(vT1 v2), where tr(·) stands
for the trace of a matrix and vT denotes the transpose
of v.
The `1-norm of v ∈ Rd is defined as ‖v‖1 =∑d
j=1 |vj |. The nuclear norm of a matrix v ∈ Rd1×d2

is ‖v‖∗ =
∑min(d1,d2)
j=1 σj(v), where σj(v), j =

1, . . . ,min(d1, d2) stand for the singular values of
v, and the operator norm is defined as ‖v‖ =
maxj=1,...,min(d1,d2) σj(v).

A. Elliptically symmetric distributions.

A centered random vector x ∈ Rd has elliptically
symmetric (alternatively, elliptically contoured or just
elliptical) distribution with parameters Σ and Fµ, de-
noted x ∼ E(0, Σ, Fµ), if

x
d
= µBU, (4)

where d
= denotes equality in distribution, µ is a scalar

random variable with cumulative distribution function
Fµ, B is a fixed d × d matrix such that Σ = BBT ,
and U is uniformly distributed over the unit sphere
Sd−1 and independent of µ. Note that distribution
E(0, Σ, Fµ) is well defined, as if B1B

T
1 = B2B

T
2 ,

then there exists a unitary matrix Q such that B1 =
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B2Q, and QU
d
= U . Along these same lines, we

note that representation (4) is not unique, as one may
replace the pair (µ, B) with

(
cµ, 1

cBQ
)

for any
constant c > 0 and any orthogonal matrix Q. To avoid
such ambiguity, in the following we allow B to be
any matrix satisfying BBT = Σ, and noting that the
covariance matrix of U is a multiple of the identity, we
further impose the condition that the covariance matrix
of x is equal to Σ, i.e. E

(
xxT

)
= Σ.

Alternatively, the mean-zero elliptically symmetric
distribution can be defined uniquely via its character-
istic function

s→ ψ
(
sTΣs

)
, s ∈ Rd,

where ψ : R+ → R is called the characteristic
generator of x. See [26] for further details about
elliptical distribution.

An important special case of the family E(0, Σ, Fµ)
of elliptical distributions is the Gaussian distribution
N (0,Σ), where µ =

√
z with z

d
= χ2

d, and the
characteristic generator is ψ(x) = e−x/2.

The following elliptical symmetry property, general-
izing the well known fact for the conditional distribu-
tion of the multivariate Gaussian, plays an important
role in our subsequent analysis, see [27]:

Proposition 1. Let x = [x1, x2] ∼ Ed(0,Σ, Fµ),
where are of dimension d1 and d2 respectively, with
d1 + d2 = d. Let Σ be partitioning accordingly as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then, whenever Σ22 has full rank, the condi-
tional distribution of x1 given x2 is elliptical
Ed1(0,Σ1|2, Fµ1|2), where

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21,

and Fµ1|2 is the cumulative distribution function of
(µ2 − xT2 Σ−1

22 x2)1/2 given x2.

Note that µ2 − xT2 Σ−1
22 x2 is always nonnegative,

hence Fµ1|2 is well defined, since by (4) we have

xT2 Σ−1
22 x2 = µ2(B2U)T (B2B

T
2 )−1(B2U)

= µ2UTBT
2 (B2B

T
2 )−1B2U ≤ µ2UTU = µ2,

where B2 is the matrix consisting of the last d2 rows
of B in (4), and where the inequality holds due to the
fact that BT

2 (B2B
T
2 )−1B2 is a projection matrix. The

following corollary is easily deduced from the theorem
above:

Corollary 1. If x ∼ Ed(0,Σ, Fµ) with Σ of full
rank, then for any two fixed vectors y1,y2 ∈ Rd with
‖y2‖2 = 1,

E(〈x,y1〉 | 〈x,y2〉) = 〈y1,y2〉〈x,y2〉.

Proof. Let {v1, · · · ,vd} be an orthonormal basis in
Rd such that vd = y2. Let V = [v1 v2 · · · vd] and
consider the linear transformation

x̃ = VTx.

Then, by (4), x̃ = µVTBU , which is cen-
tered elliptical with full rank covariance matrix
VTΣV. Applications of Theorem 1 with x1 =
[〈x,v1〉, · · · , 〈x,vd−1〉] and x2 = 〈x,vd〉 = 〈x,y2〉
yields

E(〈x,y1〉 | 〈x,y2〉)

=E

(
d∑
i=1

〈x,vi〉〈y1,vi〉

∣∣∣∣∣ 〈x,vd〉
)

=E

(
d−1∑
i=1

〈x,vi〉〈y1,vi〉

∣∣∣∣∣ 〈x,vd〉
)

+ 〈x,vd〉〈y1,vd〉

=〈x,vd〉〈y1,vd〉 = 〈y1,y2〉〈x,y2〉,

where in the second to last equality we have
used the fact that the conditional distribution of
[〈v1,x〉, · · · , 〈vd−1,x〉] given 〈x,vd〉 is elliptical
with mean zero.

B. Geometry.

In this section, we recall the definitions of several
quantities that control the “complexity” of the estima-
tion problem in model (1).

Definition 1 (Gaussian mean width). The Gaussian
mean width of a set T ⊆ Rd is defined as

ω(T ) := E
(

sup
t∈T
〈g, t〉

)
,

where g ∼ N (0, Id×d).

Definition 2 (Descent cone). The descent cone of a
set Θ ⊆ Rd at a point θ ∈ Rd is defined as

D(Θ, θ) = {τh : τ ≥ 0,h ∈ Θ− θ}.

For example, when T = Sd−1, the unit sphere in Rd,
it is easy to see that ω(Sd−1) = E(‖g‖2) ∼

√
d. We

will be interested in the Gaussian mean widths of sub-
sets of the unit sphere of the form T = Sd−1∩D(Θ, θ),
where θ lies on the boundary of Θ; the importance of
such subsets in structured recovery is explained in [1].

Definition 3 (Restricted set). Given c0 > 1, the c0-
restricted set of the norm ‖ · ‖K at θ ∈ Rd is defined
as

Sc0(θ) := Sc0(θ;K)

=

{
v ∈ Rd : ‖θ + v‖K ≤ ‖θ‖K +

1

c0
‖v‖K

}
. (5)
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Restricted set is similar to the “cone of dominant coor-
dinates” that appears in the analysis of sparse recovery
problems; we provide more details and examples in the
Appendix.

Definition 4 (Restricted compatibility). The restricted
compatibility constant of a set A ⊆ Rd with respect to
the norm ‖ · ‖K is given by

Ψ(A) := Ψ(A;K) = sup
v∈A\{0}

‖v‖K
‖v‖2

.

The restricted compatibility concept is introduced to
capture the dependence of the equivalence constants
between two norms on the geometry of the set under
consideration.

Remark 1. The restricted set from the Definition 3 is
not necessarily convex. However, if the norm ‖ · ‖K is
decomposable (see Definition 8), then the restricted set
is contained in a convex cone, and the corresponding
restricted compatibility constant is easier to estimate.
Decomposable norms have been introduced by [28]
and later appeared in a number of works, e.g. see [29]
and references therein. For the reader’s convenience,
we provide a self-contained discussion in the Appendix.

III. MAIN RESULTS.

In this section, we define a version of Lasso estima-
tor that is well-suited for heavy-tailed measurements,
and state its performance guarantees.

We will assume that x1, x2, . . . , xm ∈ Rd
are i.i.d. copies of an isotropic vector x with
spherically symmetric distribution Ed(0, Id×d, Fµ). If
x ∼ Ed(0,Σ, Fµ) for some positive definite ma-
trix Σ, then by definition x

d
= µΣ1/2U , and

〈x, θ∗〉 =
〈
Σ−1/2x,Σ1/2θ∗

〉
, where Σ−1/2x =

µU ∼ Ed(0, Id×d, Fµ). Hence, if we set θ̃∗ := Σ1/2θ∗,
then all results that we establish for isotropic mea-
surements hold with θ∗ replaced by θ̃∗; remark after
Theorem 1 includes more details.

A. Description of the proposed estimator.

We first introduce an estimator under the scenario
that θ∗ ∈ Θ, for some known closed set Θ ⊆ Rd.
Define the loss function L0

m(·) as

L0
m(θ) := ‖θ‖22 −

2

m

m∑
i=1

〈yixi, θ〉 , (6)

which is the unbiased estimator of

L0(θ) := ‖θ‖22 − 2E 〈yx, θ〉 = E (y − 〈x, θ〉)2 − Ey2,

where the last equality follows since x is isotropic.
Clearly, minimizing L0(θ) over any set Θ ⊆
Rd is equivalent to minimizing the quadratic loss

E (y − 〈x, θ〉)2. If distribution Fµ has heavy tails, the
sample average 1

m

∑m
i=1 yixi might not concentrate

sufficiently well around its mean, hence we replace
it by a more “robust” version obtained via truncation.
Let µ ∈ R, U ∈ Sd−1 be such that x = µU (so that
µ = ‖x‖2), and set

Ũ =
√
dU, (7)

q = µy/
√
d,

so that qŨ = yx and Ũ is uniformly distributed on
the sphere of radius

√
d, implying that its covariance

matrix is Id, the identity matrix. Next, define the
truncated random variables

q̃i = sign(qi)(|qi| ∧ τ), i = 1, . . . ,m, (8)

where τ = m
1

2(1+κ) for some κ ∈ (0, 1) that is chosen
based on the integrability properties of q, see (17).
Finally, set

Lτm(θ) = ‖θ‖22 −
2

m

m∑
i=1

〈
q̃iŨi, θ

〉
, (9)

and define the estimator θ̂m as the solution to the
constrained optimization problem:

θ̂m := argmin
θ∈Θ

Lτm(θ). (10)

We will also denote

Lτ (θ) := ELτm(θ) = ‖θ‖22 − 2E
〈
q̃Ũ , θ

〉
. (11)

For the scenarios where structure on the unknown θ∗
is induced by a norm ‖ · ‖K (e.g., if θ∗ is sparse, then
‖ · ‖K could be the ‖ · ‖1 norm), we will also consider
the estimator θ̂λm defined via

θ̂λm := argmin
θ∈Rd

[
Lτm(θ) + λ‖θ‖K

]
, (12)

where λ > 0 is a regularization parameter to be
specified, and Lτm(θ) is defined in (9).

Let us note that truncation approach has previ-
ously been successfully implemented in [30] to handle
heavy-tailed noise in the context of matrix recovery
with sub-Gaussian design. In the present paper, we
show that truncation-based approach is also useful
in the situations where the measurements are heavy-
tailed.

Remark 2. 1) In the special case when the mea-
surement vector x is Gaussian, Y. Plan and R.
Vershynin [18] proposed and analyzed an esti-
mator similar to (6) in the framework of 1-bit
compressed sensing.

2) Note that our estimator (12) is in general much
easier to implement than some other popular
alternatives, such as the usual Lasso estimator
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[2]. For example, when the signal θ is sparse,
our estimator takes the form

θ̂λm := argmin
θ∈Rd

[
‖θ‖22−

2

m

m∑
i=1

〈
q̃iŨi, θ

〉
+λ‖θ‖1

]
,

which yields a closed form solution in the form
of “soft-thresholding”. Specifically, let b =
1
m

∑m
i=1 q̃iŨi, then, the k-th entry of θ̂λm takes

the form:

(
θ̂λm

)
k

=


bk − λ/2, if bk ≥ λ/2,
0, if − λ/2 ≤ bk ≤ λ/2,
bk + λ/2, if bk ≤ −λ/2.

(13)

We should note however that such simplification
comes at the cost of prior knowledge that the
measurement vector x is isotropic. Despite having
low computational complexity, our estimator can
still exploit the structure of the problem, while
being robust both to the possible model misspec-
ification as well as to data corruption modeled
by the heavy-tailed distributions. We demonstrate
this in the following sections.

Remark 3 (Non-isotropic measurements). When x ∼
Ed(0,Σ, Fµ) for some Σ � 0, then estimator (10) has
to be replaced by

θ̂m := argmin
θ∈Θ

[
‖Σ1/2θ‖22 −

2

m

m∑
i=1

〈
q̃iŨi,Σ

1/2θ
〉 ]
,

(14)

which is equivalent to

θ̃m := argmin
θ∈Σ1/2Θ

[
‖θ‖22 −

2

m

m∑
i=1

〈
q̃iŨi, θ

〉 ]
,

is a sense that θ̃m = Σ1/2θ̂m. Hence, results obtained
for isotropic measurements easily extend to the more
general case. Similarly, estimator (12) should be re-
placed by

θ̂λm := argmin
θ∈Rd

[
‖Σ1/2θ‖22 −

2

m

m∑
i=1

〈
q̃iŨi,Σ

1/2θ
〉

+ λ‖Σ1/2θ‖K
]
, (15)

which is equivalent to

θ̃λm := argmin
θ∈Rd

[
‖θ‖22−

2

m

m∑
i=1

〈
q̃iŨi, θ

〉
+λ‖θ‖Σ1/2K

]
,

meaning that θ̃λm = Σ1/2θ̂λm.

B. Estimator performance guarantees.

In this section, we present the probabilistic guaran-
tees for the performance of the estimators θ̂m and θ̂λm
defined by (10) and (12) respectively.
Everywhere below, C, c, Cj denote numerical con-
stants; when these constants depend on parameters of
the problem, we specify this dependency by writing
Cj = Cj(parameters). Let

η = E 〈yx, θ∗〉 , (16)

and assume that η 6= 0 and ηθ∗ ∈ Θ.

Theorem 1. Suppose that x ∼ E(0, Id×d, Fµ).
Moreover, suppose that for some κ > 0

φ := E|q|2(1+κ) <∞. (17)

Then there exist constants C1 = C1(κ, φ), C2 =
C2(κ, φ) > 0 such that θ̂m satisfies

P
(∥∥∥θ̂m − ηθ∗∥∥∥

2
≥ C1

(ω(D(Θ, ηθ∗) ∩ Sd−1) + 1)β√
m

)
≤ C2e

−β/2,

for any m ≥ β2
(
ω(D(Θ, ηθ∗) ∩ Sd−1) + 1

)2
, β ≥ 8.

Remark 4. 1) Unknown link function f enters the
bound only through the constant η defined in (16).

2) Aside from independence, conditions on the noise
δ are implicit and follow from assumptions on
y. In the special case when the error is addi-
tive, that is, when y = f(〈x, θ∗〉) + δ, the mo-
ment condition (17) becomes E

∣∣‖x‖2f(〈x, θ∗〉) +

‖x‖2δ
∣∣2(1+κ)

< ∞, for which it is sufficient to

assume that E
∣∣∣‖x‖2f(〈x, θ∗〉)

∣∣∣2(1+κ)

< ∞ and

E |‖x‖2δ|2(1+κ)
<∞.

3) Theorem 1 is mainly useful when ηθ∗ lies on the
boundary of the set Θ. Otherwise, if ηθ∗ belongs
to the relative interior of Θ, the descent cone
D(Θ, ηθ∗) is the affine hull of Θ (which will often
be the whole space Rd). Thus, in such cases the
Gaussian mean width ω(D(Θ, ηθ∗) ∩ Sd−1) can
be on the order of

√
d, which is prohibitively large

when d� m. We refer the reader to [17], [16] for
a discussion of related result and possible ways
to tighten them.

4) As we mentioned in the introduction, for the spe-
cial case x ∼ N (0, Id×d), the work [17] shows
that solution of the problem (2) satisfies bound (3)
with high probability. It is worth comparing the
aforementioned bound with our results. Note that
(3) explicitly captures the effect of nonlinearity
on the error bound via two parameters σ1 and
σ2, whereas in our bound is the dependence on
these parameters is merged into an (unspecified)
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constant C1(κ, φ), mainly due to the limitations
imposed by the more involved proof techniques
required to handle the heavy-tailed distributions.

5) In the special case where only the noise variable
has heavy-tailed distribution while the measure-
ment vector x is sub-Gaussian, an alternative
approach based on LAD regression or Huber’s
regression is possible; non-asymptotic analysis
has been performed in several recent works, for
example see [31], [32]. However, construction of
the resulting estimators typically requires either
the known upper bound on the variance of the
noise, or the symmetry of the distribution of the
noise variable.

Next, we present performance guarantees for the un-
constrained estimator (12).

Theorem 2. Assume that the norm ‖ · ‖K dominates
the 2-norm, i.e. ‖v‖K ≥ ‖v‖2, ∀v ∈ Rd. Let x ∼
E(0, Id×d, Fµ), and suppose that for some κ > 0

φ := E|q|2(1+κ) <∞.

Then there exist constants C3 = C3(κ, φ), C4 =
C4(κ, φ) > 0 such that for all λ ≥ C3β√

m
(1 + ω(G))

P
(∥∥∥θ̂λm − ηθ∗∥∥∥

2
≥ 3

2
λ ·Ψ (S2 (ηθ∗))

)
≤ C4e

−β/2,

for any β ≥ 8 and m ≥ (ω(G) + 1)2β2, where G :=
{x ∈ Rd : ‖x‖K ≤ 1} is the unit ball of ‖ · ‖K norm,
and S2(·) and Ψ(·) are given in Definitions 3 and 4
respectively.

Remark 5 (Non-isotropic measurements). It fol-
lows from remark 3 and (14) that, whenever x ∼
Ed(0,Σ, Fµ), inequality of Theorem 1 has the form

P
(∥∥∥Σ1/2

(
θ̂m − ηθ∗

)∥∥∥
2
≥

C1

(
ω
(
Σ1/2D(Θ, ηθ∗) ∩ Sd−1

)
+ 1
)
β

√
m

)
≤ C2e

−β/2,

which can be further combined with the bound

ω
(
Σ1/2D(Θ, ηθ∗) ∩ Sd−1

)
≤ ‖Σ1/2‖ · ‖Σ−1/2‖ω

(
D(Θ, ηθ∗) ∩ Sd−1

)
,

that follows from remark 1.7 in [17]. Similarly, the
inequality of Theorem 2 holds with

GΣ1/2 := {x ∈ Rd : ‖x‖Σ1/2K ≤ 1},

the unit ball of ‖·‖Σ1/2K norm, in place of G. Namely,
for all λ ≥ C3β√

m
(1 + ω(GΣ1/2)),

P
(∥∥∥Σ1/2

(
θ̂λm − ηθ∗

)∥∥∥
2
≥

3

2
λ ·Ψ

(
S2

(
ηΣ1/2θ∗

)
; Σ1/2K

))
≤ C4e

−β/2

Note that ω (GΣ1/2) ≤ ‖Σ1/2‖ω(G). Moreover, we
show in the Appendix that for a class of decomposable
norms (which includes ‖ · ‖1 and nuclear norm),
the upper bounds for Ψ

(
S2

(
ηΣ1/2θ∗

)
; Σ1/2K

)
and

Ψ (S2(ηθ∗)) differ by the factor of
∥∥Σ−1/2

∥∥.

C. Examples.

We discuss two popular scenarios: estimation of the
sparse vector and estimation of the low-rank matrix.
Estimation of the sparse signal. Assume that
there exists J ⊆ {1, . . . , d} of cardinality s ≤
d such that θ∗,j = 0 for j /∈ J . Let
Θ =

{
θ ∈ Rd : ‖θ‖1 ≤ ‖ηθ∗‖1

}
, with η de-

fined in (16). In this case, it is well-known that
ω2
(
D(Θ, ηθ∗) ∩ Sd−1

)
≤ 2s log(d/s)+ 3

2s, see equa-
tion (8) in [33], hence Theorem 1 implies that, with
high probability,∥∥∥θ̂m − ηθ∗∥∥∥

2
.

√
s log(d/s)

m
(18)

as long as m & s log(d/s).
We compare this bound to result of Theorem 2 for con-
strained estimator. Let ‖·‖K be the `1 norm. It is well-
know that ω(G) = Emaxj=1,...,d |gj | ≤

√
2 log(2d),

where g ∼ N (0, Id×d). Moreover, we show in the
Appendix that Ψ (S2 (ηθ∗)) ≤ 4

√
s. Hence, for λ '√

log(2d)
m , Theorem 2 implies that

∥∥∥θ̂λm − ηθ∗∥∥∥
2
.

√
s log(d)

m

with high probability whenever m & log(2d). This
bound is only marginally weaker than (18) due to the
logarithmic factor, however, definition of θ̂λm does not
require the knowledge of ‖ηθ∗‖1, as we have already
mentioned before.
Estimation of low-rank matrices. Assume that
d = d1d2 with d1 ≤ d2, and θ∗ ∈
Rd1×d2 has rank r ≤ min(d1, d2). Let Θ ={
θ ∈ Rd1×d2 : ‖θ‖∗ ≤ ‖ηθ∗‖∗

}
. Then the Gaussian

mean width of the intersection of a descent cone with
a unit ball is bounded as ω2

(
D(Θ, ηθ∗) ∩ Sd−1

)
≤

3r(d1 + d2 − r) (see proposition 3.11 in [7]). Hence,
Theorem 1 yields that with high probability,∥∥∥θ̂m − ηθ∗∥∥∥

2
.

√
r(d1 + d2)

m
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as long as the number of observations satisfies m &
r(d1 + d2).
Finally, we derive the corresponding bound from The-
orem 2. The Gaussian mean width of the unit ball in
the nuclear norm is bounded by 2(

√
d1 +

√
d2), see

proposition 10.3 in [1]. It follows from results in the
Appendix that Ψ (S2 (ηθ∗)) ≤ 4

√
2r. Theorem 2 now

implies that with high probability∥∥∥θ̂m − ηθ∗∥∥∥
2
.

√
r(d1 + d2)

m
,

which matches the bound of Theorem 1.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of
proposed robust estimator (12) for one-bit compressed
sensing model. The model takes the following form:

y = sign(〈x, θ∗〉) + δ, (19)

where δ is the additive noise and the parameter θ∗

is assumed to be s-sparse. This model is highly non-
linear because one can only observe the sign of each
measurement.

The 1-bit compressed sensing model was previously
discussed extensively in a number of works, e.g. [16],
[14], [17]. It was shown that when the measurement
vectors are either Gaussian or sub-Gaussian, the Lasso
estimator recovers the support of θ∗ with high prob-
ability. Here, we show that under the heavy-tailed
elliptically distributed measurements, our estimator nu-
merically outperforms the standard Lasso estimator

θLasso = argmin
θ∈Rd

‖Xθ − y‖22 + λ‖θ‖1,

while taking the form of a simple soft-thresholding as
explained in (13).

In the first numerical experiment, data are simulated
in the following way: x1, x2, · · · , x128 ∈ R512

are i.i.d. with spherically symmetric distribution xi
d
=

µiUi, i = 1, . . . , n. The random vectors Ui ∈ R512

are i.i.d. with uniform distribution over the sphere of
radius

√
512, and the random variables µi ∈ R are also

i.i.d., independent of Ui and such that

µi
d
=

1√
2c(q)

(ξi,1 − ξi,2), (20)

where ξi,1 and ξi,2, i = 1, 2, · · · , 128 are i.i.d. with
Pareto distribution, meaning that their probability den-
sity function is given by

p(t; q) =
q

(1 + t)1+q
I{t>0},

c(q) := Var(ξ) = q
(q−1)2(q−2) , and q = 2.1. The true

signal θ∗ has sparsity level s = 5, with index of each

non-zero coordinate chosen uniformly at random, and
the magnitude having uniform distribution on [0, 1].

Since we can only recover the original signal θ∗ up
to scaling, define the relative error for any estimator θ̂
with respect to θ∗ as follows:

Relative error =

∣∣∣∣∣ θ̂

‖θ̂‖2
− θ∗

‖θ∗‖2

∣∣∣∣∣ . (21)

In each of the following two scenarios, we run the
experiment 200 times for both the Lasso estimator and
the estimator defined in (12) with ‖·‖K being the ‖·‖1
norm. We set the truncation level as τ = cm

1
2(1+κ) ,

and the values of c and regularization parameter λ are
obtained via the standard 2-fold cross validation for
the relative error (21). We then plot the histogram of
obtained results over 200 runs of the experiment.

In the first scenario, we set the additive error δi =
0, i = 1, 2, · · · , 128 in the 1-bit model (19) and plot
the histogram in Fig. 1. We can see from the plot that
the robust estimator (12) noticeably outperforms the
Lasso estimator.

In the second scenario, we set the additive error
δi, i = 1, 2, · · · , 128 to be i.i.d. heavy tailed noise
with signal-to-noise ratio (SNR)2 equal to 10dB, so
that the noise has the distribution

δi
d
= hi/

√
10,

and hi, i = 1, 2, · · · , 128 are i.i.d. random variables
with Pareto-type distribution (20). The results are
plotted in Fig. 2. The histogram shows that, while
performance of the Lasso estimator becomes worse,
results of robust estimator (12) are relatively stable.

In the second simulation study, the simulation frame-
work similar to the second scenario above, the only
difference being the increased sample size m. The
results are plotted in Fig. 3, 4 with sample sizes
m = 256 and m = 512 respectively.

V. FINAL REMARKS

In this paper, we investigated the problem of struc-
tured signal recovery from nonlinear and heavy-tailed
measurements. In particular, we focus on the scenario
where the measurement vectors have an elliptical sym-
metric distribution, and propose an estimator that is
robust both to non-linearity and heavy-tailed nature of
the measurements.

Several questions remain open: first, the proposed
estimator relies heavily on the prior knowledge of the
true covariance matrix of the measurements, whereas
the usual LASSO estimator is does not require such

2The signal-to-noise ratio (dB) is defined as SNR :=
10 log10(σ

2
signal/σ

2
noise). In our case, since 〈xi, θ

∗〉 can be positive
or negative with equal probability, σ2

signal = 1, and thus, σ2
noise =

1/10.
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Fig. 1. Lasso vs robust estimator in the noiseless case.

Fig. 2. Lasso vs robust estimator under heavy-tailed noise with
signal-to-noise ratio(SNR) equal to 10dB.

prior information. Is it possible to obtain strong theo-
retical guarantees in the case of heavy-tailed measure-
ments when the covariance matrix is unknown?

Second (and perhaps more important) question asks
whether one can extend results of the present paper
beyond the class of elliptically symmetric distributions.
We note that the case of non-Gaussian measurement
vectors with i.i.d. entries has been investigated in
several works including [14], [34] which showed that
the least squares-type estimator is often biased, and
the bias can be controlled by a certain distance (for
instance, the total variation distance) between the dis-
tribution of the entries and the Gaussian law.

VI. PROOFS.
This section is devoted to the proofs of Theorems 1

and 2.

A. Preliminaries.
We recall several useful facts from probability theory

that we rely on in the subsequent analysis.
The following well-known bound shows that the uni-
form distribution on a high-dimensional sphere enjoys
strong concentration properties.

Fig. 3. Lasso vs robust estimator under heavy-tailed noise with
signal-to-noise ratio(SNR) equal to 10dB and sample size m = 256.

Fig. 4. Lasso vs robust estimator under heavy-tailed noise with signal-
to-noise ratio(SNR) equal to 10dB and sample size m = 512.

Lemma 1 (Lemma 2.2 of [35]). Let U have the
uniform distribution on Sd−1. Then for any ∆ ∈ (0, 1)
and any fixed v ∈ Sd−1,

P (〈U,v〉 ≥ ∆) ≤ e−d∆2/2.

Next, we state several useful results from the theory of
empirical processes.

Definition 5 (ψq-norm). For q ≥ 1, the ψq-norm of a
random variable ξ ∈ R is given by

‖ξ‖ψq = sup
p≥1

p−
1
q (E(|X|p))

1
p .

Specifically, the cases q = 1 and q = 2 are known
as the sub-exponential and sub-Gaussian norms re-
spectively. We will say that ξ is sub-exponential if
‖ξ‖ψ1 <∞, and X is sub-Gaussian if ‖ξ‖ψ2 <∞.

Remark 6. It is easy to check that ψq-norm is indeed
a norm.

Remark 7. A useful property, equivalent to the previ-
ous definition of a sub-Gaussian random variable ξ, is
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that there exists a positive constant C such that

P (|ξ| ≥ u) ≤ exp(1− Cu2).

For the proof, see Lemma 5.5 in [36].

Definition 6 (sub-Gaussian random vector). A random
vector x ∈ Rd is called sub-Gaussian if there exists
C > 0 such that ‖〈x,v〉‖ψ2 ≤ C for any v ∈ Sd−1.
The corresponding sub-Gaussian norm is then

‖x‖ψ2
:= sup

v∈Sd−1

‖〈x,v〉‖ψ2
.

Next, we recall the notion of the generic chaining
complexity. Let (T, d) be a metric space. We say a
collection {Al}∞l=0 of subsets of T is increasing when
Al ⊆ Al+1 for all l ≥ 0.

Definition 7 (Admissible sequence). An increasing
sequence of subsets {Al}∞l=0 of T is admissible if
|Al| ≤ Nl, ∀l, where N0 = 1 and Nl = 22l , ∀l ≥ 1.

For each Al, define the map πl : T → Al as
πl(t) = arg mins∈Al d(s, t), ∀t ∈ T . Note that,
since each Al is a finite set, the minimum is always
achieved. When the minimum is achieved for multiple
elements in Al, we break the ties arbitrarily. The
generic chaining complexity γ2 is defined as

γ2(T, d) := inf sup
t∈T

∞∑
l=0

2l/2d(t, πl(t)), (22)

where the infimum is over all admissible sequences.
The following theorem tells us that γ2-functional con-
trols the “size” of a Gaussian process.

Lemma 2 (Theorem 2.4.1 of [24]). Let {G(t), t ∈ T}
be a centered Gaussian process indexed by the set T ,
and let

d(s, t) = E
(
(G(s)−G(t))2

)1/2
, ∀s, t ∈ T.

Then, there exists a universal constant L such that

1

L
γ2(T, d) ≤ E

(
sup
t∈T

G(t)

)
≤ Lγ2(T, d).

Let (T, d) be a semi-metric space, and let
X1(t), · · · , Xm(t) be independent stochastic processes
indexed by T such that E|Xj(t)| < ∞ for all t ∈ T
and 1 ≤ j ≤ m. We are interested in bounding the
supremum of the empirical process

Zm(t) =
1

m

m∑
i=1

[Xi(t)− E(Xi(t))] . (23)

The following well-known symmetrization inequality
reduces the problem to bounds on a (conditionally)
Rademacher process Rm(t) = 1

m

∑m
i=1 εiXi(t), t ∈

T , where ε1, . . . , εm are i.i.d. Rademacher random
variables (meaning that they take values {−1,+1} with
probability 1/2 each), independent of Xi’s.

Lemma 3 (Symmetrization inequalities).

E sup
t∈T
|Zm(t)| ≤ 2E sup

t∈T
|Rm(t)|,

and for any u > 0, we have

P
(

sup
t∈T
|Zm(t)| ≥ 2E sup

t∈T
|Zm(t)|+ u

)
≤ 4P

(
sup
t∈T
|Rm(t)| ≥ u/2

)
.

Proof. See Lemmas 6.3 and 6.5 in [37]

Finally, we recall Bernstein’s concentration inequal-
ity.

Lemma 4 (Bernstein’s inequality). Let X1, · · · , Xm

be a sequence of independent centered random vari-
ables. Assume that there exist positive constants σ and
D such that for all integers p ≥ 2

1

m

m∑
i=1

E(|Xi|p) ≤
p!

2
σ2Dp−2,

then

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ σ√
m

√
2u+

D

m
u

)
≤ 2 exp(−u).

In particular, if X1, · · · , Xm are all sub-exponential
random variables, then σ and D can be chosen as
σ = 1

m

∑m
i=1 ‖Xi‖ψ1

and D = max
i=1...m

‖Xi‖ψ1
.

B. Roadmap of the proof of Theorem 1.

We outline the main steps in the proof of Theorem
1, and postpone some technical details to sections
VI-D and VI-E.
As it will be shown below in Lemma 5,
argmin
θ∈Θ

L0(θ) = ηθ∗ for η = E (〈yx, θ∗〉) and

L0(θ̂m)− L0(ηθ∗) = ‖θ̂m − ηθ∗‖22, hence

‖θ̂m − ηθ∗‖22
=Lτ (θ̂m)− Lτ (ηθ∗)

+
(
L0(θ̂m)− Lτ (θ̂m)− L0(ηθ∗) + Lτ (ηθ∗)

)
=Lτ (θ̂m)− Lτ (ηθ∗) + (Lτm(θ̂m)− Lτm(ηθ∗))

− (Lτm(θ̂m)− Lτm(ηθ∗))− 2Em
〈
yx− q̃Ũ , θ̂m − ηθ∗

〉
,

(24)

where Em(·) stands for the conditional expectation
given (xi, yi)

m
i=1, and where we used the equal-

ity L0(θ̂m) − Lτ (θ̂m) − L0(ηθ∗) + Lτ (ηθ∗) =
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−2Em
(〈
yx− q̃Ũ , θ̂m − ηθ∗

〉)
in the last step. Since

θ̂m minimizes Lτm, Lτm(θ̂m)− Lτm(ηθ∗) ≤ 0, and

‖θ̂m − ηθ∗‖22 ≤
2

m

m∑
i=1

(〈
q̃iŨi, θ̂m − ηθ∗

〉
− Em

(〈
q̃Ũ , θ̂m − ηθ∗

〉))
− 2Em

(〈
yx− q̃Ũ , θ̂m − ηθ∗

〉)
.

Note that θ̂m − ηθ∗ ∈ D(Θ, ηθ∗); dividing both sides
of the inequality by ‖θ̂m − ηθ∗‖2, we obtain

‖θ̂m − ηθ∗‖2 ≤

sup
v∈D(Θ,ηθ∗)∩Sd−1

∣∣∣∣∣ 2

m

m∑
i=1

〈
q̃iŨi,v

〉
− E

〈
q̃Ũ ,v

〉∣∣∣∣∣
+ 2 sup

v∈Sd−1

E
〈
yx− q̃Ũ ,v

〉
. (25)

To get the desired bound, it remains to estimate two
terms above. The bound for the first term is implied
by Lemma 8: setting T = D(Θ, ηθ∗) ∩ Sd−1, and ob-
serving that the diameter ∆d(T ) := supt∈T ‖t‖2 = 1,
we get that with probability ≥ 1− ce−β/2,

sup
v∈D(Θ,ηθ∗)∩Sd−1

∣∣∣∣∣ 2

m

m∑
i=1

〈
q̃iŨi,v

〉
− E

〈
q̃Ũ ,v

〉∣∣∣∣∣
≤ C (ω(T ) + 1)β√

m
.

To estimate the second term, we apply Lemma 7:

2 sup
v∈Sd−1

E
〈
yx− q̃Ũ ,v

〉
≤ C̃√

m
.

Result of Theorem 1 now follows from the combina-
tion of these bounds.

C. Roadmap of the proof of Theorem 2.

Once again, we will present the main steps while
skipping the technical parts. Lemma 5 implies that
argmin
θ∈Θ

L0(θ) = ηθ∗ for η = E 〈yx, θ∗〉 and

L0(θ̂λm)− L0(ηθ∗) = ‖θ̂λm − ηθ∗‖22.

Thus, arguing as in (24),

‖θ̂λm − ηθ∗‖22
= Lτ (θ̂λm)− Lτ (ηθ∗) + (Lτm(θ̂λm)− Lτm(ηθ∗))

− (Lτm(θ̂λm)− Lτm(ηθ∗))

− 2Em
〈
yx− q̃Ũ , θ̂λm − ηθ∗

〉
.

Since θ̂λm is a solution of problem (12), it follows that

Lτm(θλm) + λ
∥∥θλm∥∥K ≤ Lτm (ηθ∗) + λ ‖ηθ∗‖K ,

which further implies that

‖θ̂λm − ηθ∗‖22

≤ 2

m

m∑
i=1

(〈
q̃iŨi, θ̂

λ
m − ηθ∗

〉
− Em

〈
q̃Ũ , θ̂λm − ηθ∗

〉)
− 2Em

〈
yx− q̃Ũ , θ̂λm − ηθ∗

〉
+ λ

(
‖ηθ∗‖K − ‖θ̂λm‖K

)
=

〈
2

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)
, θ̂λm − ηθ∗

〉
− 2Em

〈
yx− q̃Ũ , θ̂λm − ηθ∗

〉
+ λ

(
‖ηθ∗‖K − ‖θ̂λm‖K

)
.

(26)

Letting ‖ · ‖∗K be the dual norm of ‖ · ‖K (meaning
that ‖x‖∗K = sup {〈x, z〉 , ‖z‖K ≤ 1}), the first term
in (26) can be estimated as〈

1

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)
, θ̂λm − ηθ∗

〉

≤

∥∥∥∥∥ 1

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)∥∥∥∥∥
∗

K

· ‖θ̂λm − ηθ∗‖K. (27)

Since∥∥∥∥∥ 1

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)∥∥∥∥∥
∗

K

= sup
‖t‖K≤1

〈
1

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)
, t

〉
,

Lemma 8 applies with T = G := {x ∈ Rd : ‖x‖K ≤
1}. Together with an observation that ∆d(T ) ≤
supt∈T ‖t‖K = 1 (due to the assumption ‖v‖2 ≤
‖v‖K, ∀v ∈ Rd), this yiels

P

(
sup
‖t‖K≤1

∣∣∣∣∣
〈

1

m

m∑
i=1

q̃iŨi − E
(
q̃Ũ
)
, t

〉∣∣∣∣∣
≥ C ′ (ω(G) + 1) β√

m

)
≤ c′e−β/2,

for any β ≥ 8 and some constants C ′, c > 0. For the
second term in (26), we use Lemma 7 to obtain

2Em
〈
yx− q̃Ũ , θ̂λm − ηθ∗

〉
≤ C ′′√

m
‖θ̂λm − ηθ∗‖2

≤ C ′′√
m
‖θ̂λm − ηθ∗‖K,

for some constant C ′′ > 0, where we have again
applied the inequality ‖v‖2 ≤ ‖v‖K. Combining the
above two estimates gives that with probability at least
1− ce−β/2,

‖θ̂λm − ηθ∗‖22 ≤ C
(ω(G) + 1) β√

m
‖θ̂λm − ηθ∗‖K

+ λ
(
‖ηθ∗‖K − ‖θ̂λm‖K

)
, (28)
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for some constant C > 0 and any β ≥ 8. Since
λ ≥ 2C (ω(G) + 1) β/

√
m by assumption, and the

right hand side of (28) is nonnegative, it follows that
1

2
‖θ̂λm − ηθ∗‖K + ‖ηθ∗‖K − ‖θ̂λm‖K ≥ 0.

This inequality implies that θ̂λm − ηθ∗ ∈ S2(ηθ∗).
Finally, from (28) and the triangle inequality,

‖θ̂λm − ηθ∗‖22 ≤
3

2
λ‖θ̂λm − ηθ∗‖K.

Dividing both sides by ‖θ̂λm − ηθ∗‖2 gives

‖θ̂λm − ηθ∗‖2 ≤
3

2
λ
‖θ̂λm − ηθ∗‖K
‖θ̂λm − ηθ∗‖2

≤ 3

2
λ ·Ψ (S2(ηθ∗)) .

This finishes the proof of Theorem 2.

D. Bias of the truncated mean.

The following lemma is motivated by and is similar
to Theorem 2.1 in [13].

Lemma 5. Let η = E〈yx, θ∗〉. Then

ηθ∗ = argmin
θ∈Θ

L0(θ),

and for any θ ∈ Θ,

L0(θ)− L0(ηθ∗) = ‖θ − ηθ∗‖22.

Proof. Since y = f(〈x, θ∗〉 , δ), we have that for any
θ ∈ Rd

E 〈yx, θ〉 =E〈x, θ〉f(〈x, θ∗〉, δ)
=EE(〈x, θ〉f(〈x, θ∗〉, δ) | 〈x, θ∗〉, δ)
=EE (〈x, θ〉 | 〈x, θ∗〉) · f(〈x, θ∗〉, δ)

=E
(
〈θ∗, θ〉〈x, θ∗〉f(〈x, θ∗〉, δ)

)
=η〈θ∗, θ〉,

where the third equality follows from the fact that
the noise δ is independent of the measurement vector
x, the second to last equality from the properties of
elliptically symmetric distributions (Corollary 1), and
the last equality from the definition of η. Thus,

L0(θ) = ‖θ‖22 − 2E(〈yx, θ〉) = ‖θ‖22 − 2η〈θ∗, θ〉
= ‖θ − ηθ∗‖22 − ‖ηθ∗‖22,

which is minimized at θ = ηθ∗. Furthermore,
L0(ηθ∗) = −‖ηθ∗‖22, hence

L0(θ)− L0(ηθ∗) = ‖θ − ηθ∗‖22,

finishing the proof.

Next, we estimate the “bias term”
supv∈Sd−1 E

〈
yx− q̃Ũ ,v

〉
in inequality (25). In

order to do so, we need the following preliminary
result.

Lemma 6. If x ∼ E(0, Id×d, Fµ), then the unit
random vector x/‖x‖2 is uniformly distributed over
the unit sphere Sd−1. Furthermore, Ũ =

√
dx/‖x‖2

is a sub-Gaussian random vector with sub-Gaussian
norm ‖Ũ‖ψ2 independent of the dimension d.

Proof. First, we use decomposition (4) for elliptical
distribution together with our assumption that Σ is the
identity matrix, to write x

d
= µU , which implies that

x/‖x‖2
d
= sign(µ)U/‖U‖2 = sign(µ)U

d
= U,

with the final distributional equality holding as Sd−1,
and hence its uniform distribution, is invariant with
respect to reflections across any hyperplane through
the origin.

To prove the second claim, it is enough to show
that

∥∥∥〈Ũ ,v〉∥∥∥
ψ2

≤ C, ∀v ∈ Sd−1 with constant C

independent of d. By the first claim and Lemma 1, we
have

P (〈x,v〉/‖x‖2 ≥ ∆) ≤ e−d∆2/2, ∀v ∈ Sd−1.

Choosing ∆ = u/
√
d gives

P
(〈
Ũ ,v

〉
≥ u

)
≤ e−u

2/2, ∀v ∈ Sd−1, ∀u > 0.

By an equivalent definition of sub-Gaussian random
variables (Lemma 5.5 in [36]), this inequality implies
that

∥∥∥〈Ũ ,v〉∥∥∥
ψ2

≤ C, hence finishing the proof.

With the previous lemma in hand, we now establish
the following result.

Lemma 7. Under the assumptions of Theorem 1, there
exists a constant C = C(κ, φ) > 0 such that∣∣∣E〈yx− q̃Ũ ,v〉∣∣∣ ≤ C/√m,
for all v ∈ Sd−1.

Proof. By (7), we have that yx = qŨ , thus the claim
is equivalent to∣∣∣E(〈Ũ ,v〉 (q̃ − q)

)∣∣∣ ≤ C/√m.
Since q̃ = sign(q)(|q| ∧ τ), we have |q̃ − q| = (|q| −
τ)1(|q| ≥ τ) ≤ |q|1(|q| ≥ τ), and it follows that∣∣∣E〈Ũ ,v〉 (q̃ − q)

∣∣∣
≤E

∣∣∣〈Ũ ,v〉 (q̃ − q)
∣∣∣

≤E
(∣∣∣〈Ũ ,v〉 q∣∣∣ · 1{|q|≥τ})

≤E
(∣∣∣〈Ũ ,v〉 q∣∣∣2)1/2

P (|q| ≥ τ)
1/2

≤E

(∣∣∣〈Ũ ,v〉∣∣∣ 2(1+κ)κ

) κ
2(1+κ)

E
(
|q|2(1+κ)

) 1
2(1+κ)P (|q| ≥ τ)

1/2
,
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where the second to last inequality uses Cauchy-
Schwarz, and the last inequality follows from Hölder’s
inequality.

For the first term, by Lemma 6, Ũ is sub-Gaussian
with ‖Ũ‖ψ2 independent of d. Thus, by the definition
of the ‖ · ‖ψ2 norm and the fact that v ∈ Sd−1,

E

(∣∣∣〈Ũ ,v〉∣∣∣ 2(1+κ)κ

) κ
2(1+κ)

≤
√

2(1 + κ)

κ
‖Ũ‖ψ2

.

Recall that φ = E|q|2(1+κ). Then, the second term
is bounded by φ

1
2(1+κ) . For the final term, since τ =

m
1

2(1+κ) , Markov’s inequality implies that

(P (|q| > τ))
1/2 ≤

(
E|q|2(1+κ)

τ2(1+κ)

)1/2

≤ φ1/2

√
m
.

Combining these inequalities yields∣∣∣E〈yx− q̃Ũ ,v〉∣∣∣
≤

√
2(1+κ)
κ ‖Ũ‖ψ2

φ
2+κ

2(1+κ)

√
m

:= C(κ, φ)/
√
m,

completing the proof.

E. Concentration via generic chaining.

In the following sections, we will use c, C,C ′, C ′′

to denote constants that are either absolute, or depend
on underlying parameters κ and φ (in the latter case,
we specify such dependence). To make notation less
cumbersome, constants denoted by the same letter
(c, C,C ′, etc.) might be different in various parts of
the proof.

The goal of this subsection is to prove the following
inequality:

Lemma 8. Suppose Ũi and q̃i are as defined according
to (7) and (8) respectively. Then, for any bounded
subset T ⊂ Rd,

P

(
sup
t∈T

∣∣∣∣∣ 1

m

m∑
i=1

〈
Ũi, t

〉
q̃i − E

(〈
Ũ , t

〉
q̃
)∣∣∣∣∣

≥ C (ω(T ) + ∆d(T ))β√
m

)
≤ ce−β/2,

for any β ≥ 8, a positive constant C = C(κ, φ) and
an absolute constant c > 0. Here

∆d(T ) := sup
t∈T
‖t‖2. (29)

The main technique we apply is the generic chaining
method developed by M. Talagrand [24] for bounding
the supremum of stochastic processes. Later, works
[38] and [39] advanced the technique to obtain a sharp
bound for supremum of processes index by squares
of functions. More recently, S. Mendelson [25] proved

a concentration result for the supremum of multiplier
processes under weak moment assumptions. In the cur-
rent work, we show that exponential-type concentration
inequalities for multiplier processes, such as the one in
Lemma 8, are achievable by applying truncation under
a bounded 2(1 + κ)-moment assumption.

Define

Z(t) =
1

m

m∑
i=1

〈
Ũi, t

〉
q̃i − E

(〈
Ũ , t

〉
q̃
)
,

Z(t) =
1

m

m∑
i=1

εiq̃i

〈
Ũi, t

〉
, ∀t ∈ T,

where T is a bounded set in Rd and {εi}mi=1 is a
sequence i.i.d. Rademacher random variables taking
values ±1 with probability 1/2 each, and independent
of {Ũi, q̃i, i = 1, . . . ,m}. Result of Lemma 8 easily
follows from the following concentration inequality:

Lemma 9. For any β ≥ 8,

P
[
sup
t∈T
|Z(t)| ≥ C (ω(T ) + ∆d(T ))β√

m

]
≤ ce−β/2,

(30)
where C = C(κ, φ) is another constant possibly
different from that of Lemma 8, and c > 0 is an
absolute constant.

To deduce the inequality of Lemma 8, we first apply
the symmetrization inequality (Lemma 3), followed by
Lemma 13 with β0 = 8. It implies that

E
(

sup
t∈T

∣∣Z(t)
∣∣) ≤ 2E

(
sup
t∈T
|Z(t)|

)
≤ 2C

(
8 + 2ce−4

) ω(T ) + ∆d(T )√
m

.

Application of the second bound of the symmetrization
lemma with u = 2C(ω(T ) + ∆d(T ))β/

√
m and (30)

completes the proof of Lemma 8.
It remains to justify (30). We start by picking an

arbitrary point t0 ∈ T such that there exists an
admissible sequence {t0} = A0 ⊆ A1 ⊆ A2 ⊆ · · ·
satisfying

sup
t∈T

∞∑
l=0

2l/2‖πl(t)− t‖2 ≤ 2γ2(T ), (31)

where we recall that πl is the closest point map from
T to Al and the factor 2 is introduced so as to deal
with the case where the infimum in the definition (22)
of γ2(T ) is not achieved. Then, write Z(t)−Z(t0) as
the telescoping sum:

Z(t)− Z(t0) =

∞∑
l=1

Z(πl(t))− Z(πl−1(t))

=
∞∑
l=1

1

m

m∑
i=1

εiq̃i

〈
Ũi, πl(t)− πl−1(t)

〉
.
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We claim that the telescoping sum converges with
probability 1 for any t ∈ T . Indeed, note that for each
fixed set of realizations of {xi}mi=1 and {εi}mi=1, each
summand is bounded as

|εiq̃i〈Ũi, πl(t)− πl−1(t)〉|
≤|q̃i|‖Ũi‖2‖πl(t)− πl−1(t)‖2
≤|q̃i|‖Ũi‖2(‖πl(t)− t‖2 + ‖πl−1(t)− t‖2).

Furthermore, since T is a compact subset of Rd, its
Gaussian mean width is finite. Thus, by lemma 2,
γ2(T ) ≤ Lω(T ) <∞. This inequality further implies
that the sum on the left hand side of (31) converges
with probability 1.

Next, with β ≥ 8 being fixed, we split the index set
{l ≥ 1} into the following three subsets:

I1 = {l ≥ 1 : 2lβ < log em};
I2 = {l ≥ 1 : log em ≤ 2lβ < m};
I3 = {l ≥ 1 : 2lβ ≥ m}.

By the assumptions in Theorem 1 and the bound β ≥ 8,
we have that m ≥ (ω(T ) + 1)2β2 ≥ 64, implying that
log em = 1 + logm < m, and hence these three index
sets are well defined. Depending on β, some of them
might be empty, but this only simplifies our argument
by making the partial sum over such an index set equal
0.

The following argument yields a bound for
Z(πl(t)) − Z(πl−1(t)), assuming all three index sets
are nonempty. Specifically, we show that

P

sup
t∈T

∣∣∣∣∣∣
∑
l∈Ij

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣∣
≥ C γ2(T )β√

m

)
≤ ce−β/2, (32)

for C = C(κ, φ) and j = 1, 2, 3, respectively.
1) The case l ∈ I1:

Proof of inequality (32) for the index set I1. Recall
that τ = m

1
2(1+κ) .

For each t ∈ T we apply Bernstein’s inequality
(Lemma 4) to estimate each summand

Z(πl(t))− Z(πl−1(t))

=
1

m

m∑
i=1

εiq̃i

〈
Ũi, πl(t)− πl−1(t)

〉
.

For any integer p ≥ 2, we have the following chains
of inequalities:

E
(∣∣∣εq̃ 〈Ũ , πl(t)− πl−1(t)

〉∣∣∣p)
≤E
(∣∣∣ε〈Ũ , πl(t)− πl−1(t)

〉∣∣∣p q2 · |q̃|p−2
)

≤E
(∣∣∣〈Ũ , πl(t)− πl−1(t)

〉∣∣∣p q2
)
· τp−2

≤τp−2E
(∣∣∣〈Ũ , πl(t)− πl−1(t)

〉∣∣∣ 1+κκ p
) κ

1+κ

E
(
q2(1+κ)

) 1
1+κ

≤τp−2‖Ũ‖pψ2

(
(1 + κ)p

κ

)p/2
φ

1
1+κ ‖πl(t)− πl−1(t)‖p2,

where the second inequality follows from the trunca-
tion bound, the third from Hölder’s inequality, and the
last from the assumption that E

(
q2(1+κ)

)
≤ φ and the

following bound: by Lemma 6, Ũi is sub-Gaussian,
hence for any p ≥ 2(

E
〈
Ũi,v

〉 1+κ
κ p
) κ

(1+κ)p

≤
(

(1 + κ)p

κ

)1/2

‖Ũi‖ψ2‖v‖2, ∀v ∈ Rd.

We also note that ‖Ũi‖ψ2
does not depend on d

by Lemma 6. Next, by Stirling’s approximation,
p! ≥

√
2π
√
p(p/e)p, thus there exist constants C ′ =

C ′(κ, φ) and C ′′ = C ′′(κ) such that

E
∣∣∣εq̃ 〈Ũ , πl(t)− πl−1(t)

〉∣∣∣p
≤ p!

2
C ′‖πl(t)−πl−1(t)‖22(C ′′τ‖πl(t)−πl−1(t)‖2)p−2.

Bernstein’s inequality (Lemma 4), with σ =
C ′‖πl(t) − πl−1(t)‖2, D = C ′′τ‖πl(t) − πl−1(t)‖2
and τ = m1/2(1+κ) now implies

P

(∣∣∣∣∣ 1

m

m∑
i=1

εiq̃i

〈
Ũi, πl(t)− πl−1(t)

〉∣∣∣∣∣
≥

(
C ′
√

2u√
m

+
C ′′u

m1− 1
2(1+κ)

)
‖πl(t)− πl−1(t)‖2

)
≤ 2e−u,

for any u > 0. Taking u = 2lβ, noting that as β ≥ 8
by assumption, we have m ≥ (ω(T ) + 1)2β2 ≥ 64,
and since l ∈ I1, 2l ≤ 2lβ < log em. In turn, this
implies

2l

m1− 1
2(1+κ)

=
2l/2

m1/2
· 2l/2

mκ/2(1+κ)

≤ 2l/2

m1/2
·
√

log em

mκ/(1+κ)
≤
√

1 + κ

κ

2l/2

m1/2
,

where the last inequality follows from the fact that
log em is dominated by 1+κ

κ mκ/(1+κ) for all m ≥
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1. This inequality implies that there exists a positive
constant C = C(κ, φ) such that for any β ≥ 8

P (Ωl,t) ≤ 2 exp(−2lβ), (33)

where for all l ≥ 1 and t ∈ T we let

Ωl,t =

{
ω :

∣∣∣∣∣ 1

m

m∑
i=1

εiq̃i

〈
Ũi, πl(t)− πl−1(t)

〉∣∣∣∣∣
≥ C 2l/2β√

m
‖πl(t)− πl−1(t)‖2

}
.

Notice that for each l ≥ 1 the number of pairs
(πl(t), πl−1(t)) appearing in the sum in (32) can be
bounded by |Al| · |Al−1| ≤ 22l+1

. Thus, by a union
bound and (33),

P

(⋃
t∈T

Ωl,t

)
≤ 2 · 22l+1

exp(−2lβ),

and hence,

P

 ⋃
l∈I1,t∈T

Ωl,t

 ≤∑
l∈I1

2 · 22l+1

exp(−2lβ)

≤
∑
l∈I1

2 · 22l+1

exp
(
−2l−1β − β/2

)
≤ce−β/2,

for some absolute constant c > 0, where in the last
inequality we use the fact β ≥ 8 to get a geometrically
decreasing sequence. Thus, on the complement of the
event ∪l∈I1,t∈TΩl,t, we have that with probability at
least 1− ce−β/2,

sup
t∈T

∣∣∣∣∣∑
l∈I1

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣
≤ sup
t∈T

∑
l∈I1

|Z(πl(t))− Z(πl−1(t))|

≤ sup
t∈T

C
∑
l∈I1

2l/2β√
m
‖πl(t)− πl−1(t)‖2

≤ sup
t∈T

C
∞∑
l=1

2l/2β√
m
‖πl(t)− πl−1(t)‖2

≤4C
γ2(T )β√

m
,

for C = C(κ, φ), where the last inequality fol-
lows from triangle inequality ‖πl(t) − πl−1(t)‖2 ≤
‖πl−1(t) − t‖2 + ‖πl(t) − t‖2 and (31). This proves
the inequality (32) for l ∈ I1.

2) The case l ∈ I2: This is the most technically
involved case of the three. For any fixed t ∈ T and

l ∈ I2, we let Xi = q̃i

〈
Ũi, πl(t)− πl−1(t)

〉
and wi =

〈Ũi, πl(t)− πl−1(t)〉. Then Xi = q̃iwi and

Z(πl(t))−Z(πl−1(t)) =
1

m

m∑
i=1

εiXi =
1

m

m∑
i=1

εiwiq̃i.

(34)
For every fixed k ∈ {1, 2, · · · ,m − 1} and fixed
u > 0, we bound the summation using the following
inequality

P

∣∣∣∣∣
m∑
i=1

εiXi

∣∣∣∣∣ ≥
k∑
i=1

X∗i + u

(
m∑

i=k+1

(X∗i )2

)1/2


≤ 2 exp(−u2/2),

where {X∗i }mi=1 is the non-increasing rearrangement
of {|Xi|}mi=1 and {εi}mi=1 is a sequence of i.i.d. Rade-
mancher random variables independent of {Xi}mi=1.

Remark 8. This bound was first stated and proved
in [40] with a sequence of fixed constants {Xi}mi=1.
The current form can be obtained using independence
property and conditioning on {Xi}mi=1. Furthermore,
paper [40] tells us that the optimal choice of k is
at O(u2) Applications of this inequality to generic
chaining-type arguments were previously introduced in
[25].

Letting J be the set of indices of the variables corre-
sponding to the k largest coordinates of {|wi|}mi=1 and
of {|q̃i|}mi=1, we have |J | ≤ 2k and with probability at
least 1− 2 exp(−u2/2)∣∣∣∣∣

m∑
i=1

εiXi

∣∣∣∣∣
≤
∑
i∈J

X∗i + u

(∑
i∈Jc

(X∗i )2

)1/2

≤2
k∑
i=1

w∗i q̃
∗
i + u

(∑
i∈Jc

(w∗i q̃
∗
i )2

)1/2

≤2

(
k∑
i=1

(w∗i )2

)1/2( k∑
i=1

(q̃∗i )2

)1/2

+ u

(
m∑

i=k+1

(w∗i )
2(1+κ)
κ

) κ
2(1+κ)

(
m∑

i=k+1

(q̃∗i )2(1+κ)

) 1
2(1+κ)

≤2

(
k∑
i=1

(w∗i )2

)1/2( m∑
i=1

q̃2
i

)1/2

+ u

(
m∑

i=k+1

(w∗i )
2(1+κ)
κ

) κ
2(1+κ)

(
m∑
i=1

q̃
2(1+κ)
i

) 1
2(1+κ)

(35)

where the second to last inequality is a consequence
of Hölder’s inequality. We take u = 2(l+1)/2

√
β. The
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key is to pick an appropriate cut point k for each
l ∈ I2. Here, we choose k = b2lβ/ log(em/2lβ)c,
which makes k = O(2lβ) and also guarantees that
k ∈ {1, 2, · · · ,m − 1}; see Lemma 16. Under this
choice, we have the following lemma:

Lemma 10. Let k = b2lβ/ log(em/2lβ)c, wi =〈
Ũi, πl(t)− πl−1(t)

〉
and {w∗i }mi=1 be the nonincreas-

ing rearrangement of {|wi|}mi=1. Then there exists an
absolute constant C > 1 such that for all β ≥ 8,

P

( k∑
i=1

(w∗i )2

)1/2

≥ C2l/2‖πl(t)− πl−1(t)‖2
√
β
)

≤ 2 exp(−2lβ).

Proof. By Lemma 6, we know that {wi}mi=1 are i.i.d.
sub-Gaussian random variables. Thus, by Lemma 14,
w2
i is sub-exponential with norm

‖w2
i ‖ψ1

= 2‖wi‖2ψ2
≤ 2‖Ũi‖2ψ2

‖πl(t)− πl−1(t)‖22.
(36)

It then follows from Bernstein’s inequality (Lemma 4)
that for any fixed set J ⊆ {1, 2, · · · ,m} with |J | = k,

P

(∣∣∣∣∣1k∑
i∈J

(
w2
i − E

(
w2
i

))∣∣∣∣∣
≥ 2‖Ũi‖2ψ2

‖πl(t)− πl−1(t)‖22

(√
2u

k
+
u

k

))
≤ 2 exp(−u).

We choose u = 4 · 2lβ = 2l+2β. Since 2lβ ≥
b2lβ/ log(em/2lβ)c = k ≥ 1, the factor u/k dom-
inates the right hand side. Noting that E

(
w2
i

)
=

‖πl(t)− πl−1(t)‖22, we obtain

P

(∑
i∈J

w2
i

)1/2

≥ C2l/2‖πl(t)− πl−1(t)‖2
√
β


≤ 2 exp(−4 · 2lβ),

where C ≤ 4‖Ũi‖ψ2
; note that the upper bound for C

is independent of d by Lemma 1. Thus,

P

( k∑
i=1

(w∗i )2

)1/2

≥ C2l/2‖πl(t)− πl−1(t)‖2
√
β


=P
(
∃J ⊆ {1, · · · ,m}, |J | = k :(∑
i∈J

w2
i

)1/2

≥ C2l/2‖πl(t)− πl−1(t)‖2
√
β


≤
(
m
k

)
P

(∑
i∈J

w2
i

)1/2

≥ C2l/2‖πl(t)− πl−1(t)‖2
√
β


≤2

(
m
k

)
exp(−4 · 2lβ)

≤2
(em
k

)k
exp(−4 · 2lβ) ≤ 2 exp(−2lβ),

where the last step follows from
(
em
k

)k ≤ exp(3·2lβ),
an inequality proved in Lemma 15 in the Appendix.

Lemma 11. Let k = b2lβ/ log(em/2lβ)c, wi =〈
Ũi, πl(t)− πl−1(t)

〉
and {w∗i }mi=1 be the non-

increasing rearrangement of {|wi|}mi=1. Then

P

( m∑
i=k+1

(w∗i )
2(1+κ)
κ

) κ
2(1+κ)

≥ C(κ)m
κ

2(1+κ) ‖πl(t)− πl−1(t)‖2
)

≤ exp(−2lβ),

for any β ≥ 8 and some constant C(κ) > 0.

Proof. To avoid possible confusion, we use i to index
the nonincreasing rearrangement and j for the orig-
inal sequence. We start by noting that {wj}mj=1 are
i.i.d. sub-Gaussian random variables with ‖wj‖ψ2

≤
‖Ũj‖ψ2

‖πl(t)−πl−1(t)‖2. By an equivalent definition
of sub-Gaussian random variables (Lemma 5.5. in
[36]), we have for any fixed j ∈ {1, 2, . . . ,m},

P
(
|wj | − E(|wj |) ≥ Cu‖Ũj‖ψ2‖πl(t)− πl−1(t)‖2

)
≤ e−u

2

, (37)

for any u > 0 and an absolute constant C > 0.
To establish the claim of the lemma, we bound each

w∗i separately for i = 1, 2 . . . ,m and then combine
individual bounds. Instead of using a fixed value of u in
(37), our choice of u will depend on the index i. Specif-
ically, for each w∗i , we choose u = cκ(m/i)κ/4(1+κ)

with

cκ := max


√

5
(
2 + 4

κ

) 2+κ
4(1+κ)

e1/2(1+κ)
,

√
4(1 + κ)

κ

 . (38)



16

The reason for this choice will be clear as we proceed.
First, for a fixed nonincreasing rearrangement index

i > k, by (37) and the fact that

E(|wj |) ≤ E
(
w2
j

)1/2
= ‖πl(t)− πl−1(t)‖2,

∀j ∈ {1, 2, · · · ,m},

we have ∀j ∈ {1, 2, · · · ,m},

P
(
|wj | ≥

(
1 + Ccκ‖Ũj‖ψ2

)
·
(
m

j

) κ
4(1+κ)

‖πl(t)− πl−1(t)‖2

)

≤ exp

(
−c2κ

(
m

j

) κ
2(1+κ)

)
.

To simplify notation, let C ′ = 1 + Ccκ‖Ũj‖ψ2
(note

that it depends only on κ). It then follows that

P
(
w∗i ≥ C ′

(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2

)
=P
(
∃J ⊆ {1, · · · ,m}, |J | = i :

wj ≥ C ′
(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2, ∀j ∈ J

)
≤
(
m
i

)
· P
(
|wj | ≥ C ′

(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2

)i
≤
(
m
i

)
exp

(
−c2m

κ
2(1+κ) i

2+κ
2(1+κ)

)
≤
(em
i

)i
exp

(
−c2m

κ
2(1+κ) i

2+κ
2(1+κ)

)
.

Union bound gives

P
(
∃i > k : w∗i ≥ C ′

(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2

)
≤

m∑
i=k+1

(em
i

)i
exp

(
−c2m

κ
2(1+κ) i

2+κ
2(1+κ)

)
=

m∑
i=k+1

exp
(
i log

(em
i

)
− c2m

κ
2(1+κ) i

2+κ
2(1+κ)

)
≤m · exp

(
k log

(em
k

)
− c2m

κ
2(1+κ) k

2+κ
2(1+κ)

)
≤ exp

(
4 · 2lβ − c2m

κ
2(1+κ) k

2+κ
2(1+κ)

)
,

where the second to last inequality follows since by
the definition (38) of cκ, cκ ≥

√
4(1 + κ)/κ, the

function v(i) = i log
(
em
i

)
− c2κm

κ
2(1+κ) · i

2+κ
2(1+κ) is

monotonically decreasing with respect to i (recall that
i ≤ m), and thus is dominated by v(k). The final
inequality follows from Lemma 15 as well as the
fact that logm ≤ log(em) ≤ 2lβ. Furthermore,

by Lemma 16 in the Appendix and (38) implying
cκ ≥

√
5
(
2 + 4

κ

) 2+κ
4(1+κ) /e1/2(1+κ), we have

c2κm
κ

2(1+κ) k
2+κ

2(1+κ) ≥ 5 · 2lβ.

Overall, we have the following bound:

P
(
∃i > k : w∗i ≥ C ′

(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2

)
≤ exp

(
4 · 2lβ − 5 · 2lβ

)
≤ exp(−2lβ).

Thus, with probability at least 1− exp(−2lβ),

w∗i ≤ C ′
(m
i

) κ
4(1+κ) ‖πl(t)− πl−1(t)‖2, ∀i > k,

hence with the same probability(
m∑

i=k+1

(w∗i )
2(1+κ)
κ

) κ
2(1+κ)

≤C ′‖πl(t)− πl−1(t)‖2

( ∑
i=k+1

(m
i

)1/2
) κ

2(1+κ)

≤C ′‖πl(t)− πl−1(t)‖2m
κ

4(1+κ)

(∫ m

1

dx

x1/2

) κ
2(1+κ)

≤2
κ

2(1+κ)C ′‖πl(t)− πl−1(t)‖2m
κ

2(1+κ) ,

and the desired result follows.

Lemma 12. The following inequalities hold for any
β ≥ 8:

P

( m∑
i=1

q̃2
i

)1/2

≥ C ′
√
βm

 ≤ 2e−β ,

P

( m∑
i=1

q̃
2(1+κ)
i

) 1
2(1+κ)

≥ C ′′(βm)
1

2(1+κ)

 ≤ 2e−β ,

for some positive constants C ′ = C ′(φ, κ), C ′′ =
C ′′(φ, κ).

Proof. Recall that q̃i = sign(qi)(|qi| ∧ τ), τ =

m1/2(1+κ), and φ = E
(
q

2(1+κ)
i

)
. Thus, E

(
q̃2
i

)
≤

E
(
q2
i

)
≤ φ1/1+κ, and for any integer p ≥ 2, we have

E
(
q̃2p
i

)
= E

(
q̃

2p−2(1+κ)
i q̃

2(1+κ)
i

)
≤ m

p−1−κ
1+κ E

(
q

2(1+κ)
i

)
≤ m

p−1−κ
1+κ φ.

Thus, for any p ≥ 2,

E
(
|q̃2
i − E

(
q̃2
i

)
|p
)
≤ E

(
q̃2p
i

)
+
(
E
(
q2
i

))p
≤ m

p−1−κ
1+κ φ+ φ

p
1+κ ≤ (m+ φ)

1−κ
1+κ φ(m+ φ)

p−2
1+κ .
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By Bernstein’s inequality (Lemma 4), with probability
at least 1− 2e−β ,∣∣∣∣∣ 1

m

m∑
i=1

q̃2
i − E

(
q̃2
i

)∣∣∣∣∣
≤

(√
2β(m+ φ)

1−κ
2(1+κ)φ1/2

m1/2
+
β(m+ φ)

1
1+κ

m

)

≤
√

2β(1 + φ)
1−κ

2(1+κ)φ1/2 + β(1 + φ)
1

1+κ

m
κ

1+κ
,

which implies the first claim. To establish the second
claim, note that for any p ≥ 2,

E
∣∣∣q̃2(1+κ)
i − E

(
q̃

2(1+κ)
i

)∣∣∣p
≤C(p)

(
E
∣∣∣q̃2(1+κ)p
i

∣∣∣+
(
E
∣∣∣q2(1+κ)
i

∣∣∣)p)
≤C(p)

(
E
∣∣∣q̃2(1+κ)(p−1)
i q

2(1+κ)
i

∣∣∣+ φp
)

≤C(p)(mp−1φ+ φp) ≤ C(p)(m+ φ)p−2(m+ φ)φ,

where we used the fact that |q̃i| ≤ m1/2(1+κ) to obtain
the third inequality. Bernstein’s inequality implies that
with probability at least 1− 2e−β ,∣∣∣∣∣ 1

m

m∑
i=1

q̃
2(1+κ)
i − E

(
q̃

2(1+κ)
i

)∣∣∣∣∣
≤
√

2β(1 + φ)φ1/2 + β(1 + φ),

which yields the second part of the claim.

Proof of inequality (32) for the index set I2.
Combining Lemmas 10 and 11 with the inequality
(35), and setting u = 2l/2

√
β, we get that with

probability at least 1− 4 exp(−2lβ), for all l ∈ I2,

|Z(πl(t))− Z(πl−1(t))| ≤

C‖πl(t)− πl−1(t)‖2
2l/2
√
β

m

( m∑
i=1

q̃2
i

)1/2

+m
κ

2(1+κ)

(
m∑
i=1

q̃
2(1+κ)
i

) 1
2(1+κ)

 ,

for some constant C = C(κ, φ) > 0; note that the
factor 1/m appears due to equality (34). Next, we
apply a chaining argument similar to the one used in
Section VI-E1, we obtain that with probability at least
1− ce−β/2,

sup
t∈T

∣∣∣∣∣∑
l∈I2

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣ ≤ C γ2(T )
√
β

m
·( m∑

i=1

q̃2
i

)1/2

+m
κ

2(1+κ)

(
m∑
i=1

q̃
2(1+κ)
i

) 1
2(1+κ)

 ,

(39)

for a positive constant C = C(κ, φ) and an absolute
constant c > 0. In order to handle the remaining terms
involving q̃i in (39), we apply Lemma 12, which gives

sup
t∈T

∣∣∣∣∣∑
l∈I2

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣ ≤ C γ2(T )β√
m

,

with probability at least 1 − ce−β/2, where C =
C(κ, φ) and c > 0 are positive constants and β ≥ 8.
This completes the second part of the chaining argu-
ment.

3) The case l ∈ I3:

Proof of inequality (32) for the index set I3. Direct
application of Cauchy-Schwartz on (34) yields, for all
t ∈ T ,

|Z(πl(t))−Z(πl−1(t))| ≤

(
1

m

m∑
i=1

w2
i

)1/2(
1

m

m∑
i=1

q̃2
i

)1/2

,

where wi =
〈
Ũi, πl(t)− πl−1(t)

〉
are sub-Gaussian

random variables. Thus, by Lemma 14, ω2
i are sub-

exponential with norm bounded as in (36). Using
Bernstein’s inequality again, we deduce that

P

(∣∣∣∣∣ 1

m

m∑
i=1

(
w2
i − E

(
w2
i

))∣∣∣∣∣
≥ 2‖Ũi‖2ψ2

‖πl(t)− πl−1(t)‖22

(√
2u

m
+
u

m

))
≤ 2 exp(−u).

Let u = 2lβ. Using the fact that 2lβ/m ≥ 1 as well
as E

(
w2
i

)
= ‖πl(t) − πl−1(t)‖22, we see that the term

u/m dominates the right hand side and

P

( 1

m

m∑
i=1

w2
i

)1/2

≥ C‖πl(t)− πl−1(t)‖2
2l/2
√
β√

m


≤ 2 exp(−2lβ),

for some absolute constant C > 0. Thus, repeating
a chaining argument of section VI-E1 (namely, the
argument following (33)), we obtain

sup
t∈T

∣∣∣∣∣∑
l∈I3

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣
≤ C γ2(T )

√
β√

m

(
1

m

m∑
i=1

q̃2
i

)1/2

with probability at least 1− ce−β/2 for some absolute
constants C, c > 0. Combining this inequality with the
first claim of Lemma 12 gives

sup
t∈T

∣∣∣∣∣∑
l∈I3

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣ ≤ C γ2(T )β√
m

,
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with probability at least 1− ce−β/2 for absolute con-
stants C, c > 0 and any β ≥ 8. This finishes the bound
for the third (and final) segment of the “chain”.

4) Finishing the proof of Lemma 8:

Proof. So far, we have shown that

sup
t∈T
|Z(t)− Z(t0)|

= sup
t∈T

∣∣∣∣∣∣
∑
l≥1

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣∣
≤

∑
j∈{1,2,3}

sup
t∈T

∣∣∣∣∣∣
∑
l∈Ij

(Z(πl(t))− Z(πl−1(t)))

∣∣∣∣∣∣
≤C γ2(T )β√

m
, (40)

with probability at least 1− ce−β/2 for some positive
constants C = C(κ, φ) and c, and any β ≥ 8.
To finish the proof, it remains to bound |Z(t0)| =∣∣∣ 1
m

∑m
i=1 εiq̃i

〈
Ũi, t0

〉∣∣∣. With ∆d(T ) defined in (29),
and since t0 is an arbitrary point in T , we trivially have
‖t0‖2 ≤ ∆d(T ). Applying Bernstein’s inequality in a
way similar to Section VI-E1 yields

P

(∣∣∣∣∣ 1

m

m∑
i=1

εiq̃i

〈
Ũi, t0

〉∣∣∣∣∣
≥

(
C ′
√

2u√
m

+
C ′′u

m1− 1
2(1+κ)

)
∆d(T )

)
≤ 2e−u,

for some constants C ′ = C ′(κ, φ), C ′′ = C ′′(κ, φ) >
0 and any u > 0. Choosing u = β gives

P

(∣∣∣∣∣ 1

m

m∑
i=1

εiq̃i

〈
Ũi, t0

〉∣∣∣∣∣ ≥ C∆d(T )β√
m

)
≤ 2e−β ,

for a constant C = C(κ, φ) > 0 and any β ≥ 0. Com-
bining this bound with (40) shows that with probability
at least 1− ce−β/2,

sup
t∈T

∣∣∣∣∣ 1

m

m∑
i=1

εi〈Ũi, t〉q̃i

∣∣∣∣∣ ≤ C (γ2(T ) + ∆d(T ))β√
m

≤ C (Lω(T ) + ∆d(T ))β√
m

,

for C = C(κ, φ), an absolute constant L > 0 and
all β ≥ 8; note that the last inequality follows from
Lemma 2. We have established (30), thus completing
the proof.
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APPENDIX

Lemma 13. For any nonnegative random variable X ,
if P (X > Kβ) ≤ ce−β/2 for some constants K, c > 0
and all β ≥ β0 ≥ 0, then,

E(X) ≤ K
(
β0 + 2ce−β0/2

)
.

Proof. Using a well known identity for the expectation

of non-negative random variables,

E(X) =

∫ ∞
0

P (X > u) du = K

∫ ∞
0

P (X > Kβ) dβ

≤K
(
β0 +

∫ ∞
β0

P (X > Kβ) dβ

)
≤K

(
β0 +

∫ ∞
β0

ce−β/2dβ

)
=K

(
β0 + 2ce−β0/2

)
.

Lemma 14. If X and Y are sub-Gaussian random
variables, then the product XY is a subexponential
random variable, and

‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 .

Proof. See [41].

Lemma 15. Let k = b2lβ/ log(em/2lβ)c and l ∈ I2,
then,

(
em
k

)k ≤ exp(3 · 2lβ).

Proof. If k ≥ 2, then, 2lβ/ log(em/2lβ) ≥ 2, which
implies 2lβ ≥ 2 log(em/2lβ). Thus,

(em
k

)k
≤2 exp

 2lβ

log em
2lβ

log

 em
2lβ

log em

2lβ

− 1


≤2 exp

(
2lβ

log em
2lβ

log

(
em

2lβ − log em
2lβ

log
em

2lβ

))

≤2 exp

(
2lβ

log em
2lβ

log

(
2em

2lβ
log

em

2lβ

))
≤ exp(3 · 2lβ),

where the second from last inequality follows from(
em
k

)k ≤ exp(3 · 2lβ), and the last inequality follows
from m ≥ 2lβ, thus, log(2em/2lβ)/ log(em/2lβ) ≤
2.

On the other hand, if k = 1, then, since log em ≤
2lβ,

(
em
k

)k
= em = exp(log em) ≤ exp(2lβ),

finishing the proof.

Lemma 16. With m ≥ 1, β ≥ 1, κ ∈ (1, 0) and l ∈
I2 = {l ≥ 1 : log em ≤ 2lβ < m}, the integer k =
b2lβ/ log(em/2lβ)c satisfies k ≥ 1, and(

2 + 4
κ

) 2+κ
2(1+κ)

e1/(1+κ)
m

κ
2(1+κ) k

2+κ
2(1+κ) ≥ 2lβ.

Proof. Since 2lβ ≥ log(em) ≥ 1, it follows that k ≥
1, and thus k ≥ 2lβ/2 log(em/2lβ). It is then enough
to show that(

1 + 2
κ

) 2+κ
2(1+κ)

e1/(1+κ)

(
m

2lβ

) κ
2(1+κ)

≥
(

log
em

2lβ

) 2+κ
2(1+κ)

.
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Raising both sides to the power of 2(1 + κ)/κ, equiv-
alently(

1 +
2

κ

) 2+κ
κ

/
e

2
κ ≥

(
log

em

2lβ

) 2+κ
κ

/
m

2lβ
.

Consider the function g(x) = (log ex)
2+κ
κ /x. Note

that as m > 2lβ, to prove the inequality above it
suffices to show that the supx≥1 g(x) is upper bounded
by the left hand side. Taking the derivative of g(x)
yields

g′(x) =
2+κ
κ (1 + log x)2/κ − (1 + log x)(2+κ)/κ

x2
.

Since x ≥ 1, the only critical point at which the
global maximum occurs is given by x = e2/κ. As
g
(
e2/κ

)
is exactly equal to the left hand side the proof

is complete.

Finally, we discuss some facts about decomposable
norms that have been introduced in [28].

Definition 8. Suppose that L ⊆ L1 are two subspace
of Rd, and let L⊥1 be the orthogonal complement of L1.
Norm ‖ · ‖K is said to be decomposable with respect
to (L, L⊥1 ) if for any θ ∈ Rd,

‖θ1 + θ2‖K = ‖ΠLθ1‖K + ‖ΠL⊥1 θ‖K,

where ΠL and ΠL⊥1 stand for the orthogonal projectors
onto L and L⊥1 respectively.

It is well known that many frequently used norms,
including the `1 norm of a vector and the nuclear
norm of a matrix, are decomposable with respect to the
appropriately chosen pair of subspaces. For instance,
the `1 norm is decomposable with respect to the pair
of subspaces (L(J),L(J)⊥), where

L(J) :=
{
v ∈ Rd : vj = 0 for all j /∈ J

}
(41)

consists of sparse vectors with non-zero coordinates
indexed by a set J ⊆ {1, . . . , d}.

Let W1 ⊆ Rd1 , W2 ⊆ Rd2 be two linear subspaces.
Then we define the subspace L(W1,W2) ⊆ Rd1×d2
via

L(W1,W2) :=
{
M ∈ Rd1×d2 :

row(M) ⊆W1, col(M) ⊆W2} ,

where row(M) and col(M) are the linear subspaces
spanned by the rows and columns of M respectively,
and

L⊥1 (W1,W2) :=
{
M ∈ Rd1×d2 :

row(M) ⊆W⊥1 , col(M) ⊆W⊥2
}
. (42)

Then the nuclear norm ‖ · ‖∗ is decomposable with
respect to

(
L(W1,W2),L⊥1 (W1,W2)

)
(see [28] for

details).

Assume that the norm ‖ · ‖K is decomposable with
respect to (L,L⊥1 ), and let θ ∈ L. It is clear that for
any v ∈ Sc0(θ)

‖θ + v‖K = ‖ΠLθ + ΠL1
v + ΠL⊥1 v‖K

≤ ‖ΠLθ‖K +
1

c0
‖ΠL1

v‖K + ‖ΠL⊥1 v‖K. (43)

Since θ ∈ L, decomposability and the triangle inequal-
ity imply that

‖ΠLθ + ΠL1v + ΠL⊥1 v‖K
= ‖ΠLθ + ΠL1v‖K + ‖ΠL⊥1 v‖K
≥ ‖ΠLθ‖K − ‖ΠL1v‖K + ‖ΠL⊥1 v‖K.

Substituting this bound into (43) gives

− ‖ΠL1
v‖K + ‖ΠL⊥1 v‖K

≤ 1

c0
‖ΠL1

v‖K +
1

c0
‖ΠL⊥1 v‖K,

which implies that for any v ∈ Sc0(θ)

‖ΠL⊥1 v‖K ≤
c0 + 1

c0 − 1
‖ΠL1v‖K.

It is easy to see that the set of all v satisfying the
inequality above is a convex cone, which we will
denote by Cc0 = Cc0(K). Since Sc0(θ) ⊆ Cc0 ,

Ψ (Sc0(θ)) ≤ Ψ (Cc0)

by definition of the restricted compatibility constant.
This inequality is useful due to the fact that it is often
easier to estimate Ψ (Cc0).

Finally, we make a remark that is useful when
dealing with non-isotropic measurements. Let Σ � 0
be a d× d matrix, and consider the norm correspond-
ing to the convex set Σ1/2K, so that ‖v‖Σ1/2K =
‖Σ−1/2v‖K. It is easy to see that Cc0(Σ1/2K) =
Σ1/2Cc0(K), hence

Ψ
(
Cc0(Σ1/2K); Σ1/2K

)
= sup

v∈Σ1/2K\{0}

‖v‖Σ1/2K
‖v‖2

= sup
u∈K\{0}

‖u‖K
‖Σ1/2u‖2

≤‖Σ−1/2‖Ψ (Cc0(K);K) .

Example 1: `1 norm. Let L(J) be as in (41) with
|J | = s ≤ d. If v ∈ Rd belongs to the corresponding
cone C(c0), then clearly ‖v‖1 ≤ 2c0

c0−1‖vJ‖1, where
vJ := ΠL(J)v. Hence

‖v‖1 ≤
2c0
c0 − 1

‖vJ‖1 ≤
2c0
c0 − 1

√
|J |‖v‖2,

and Ψ(Cc0) ≤ 2c0
c0−1

√
s.

Example 2: nuclear norm. Let L⊥1 (W1,W2) be as in
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(42). Note that for any v ∈ Rd1×d2 , ΠL⊥1 (W1,W2)v =
ΠW⊥2

vΠW⊥1
, where ΠW⊥1

and ΠW⊥2
are the orthogonal

projectors onto subspaces W1 ⊆ Rd1 and W2 ⊆ Rd2
respectively. Then for any v ∈ Cc0 , we have that

‖v‖∗ ≤ ‖ΠL⊥1 (W1,W2)v‖∗ + ‖ΠL1(W1,W2)v‖∗

≤ 2c0
c0 − 1

‖ΠL1(W1,W2)v‖∗. (44)

Note that

ΠL1(W1,W2)v = v −ΠW⊥2
vΠW⊥1

= ΠW⊥2
vΠW1

+ ΠW2
v,

hence

rank
(
ΠL1(W1,W2)v

)
≤ 2 max (dim(W1), dim(W2)) ,

which yields together with (44) that

‖v‖∗ ≤
2c0
c0 − 1

‖ΠL1(W1,W2)v‖∗

≤ 2c0
c0 − 1

√
2 max (dim(W1), dim(W2))‖v‖2,

and Ψ(Cc0) ≤ 2
√

2c0
c0−1

√
max (dim(W1), dim(W2)).
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