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Abstract

This paper proposes an approach for finite-horizon control of partially-observed Boolean dynamical systems (POBDS) with
uncertain continuous control input and infinite observation space. To cope with the partial observabiity of states, the proposed
method first maps the POBDS to an unnormalized belief space. The nonlinear dynamics in this continuous belief space are
linearized over a nominal trajectory. Then, the optimal feedback controller is derived, based on the well-known linear quadratic
regulator (LQR), to push the system to follow the nominal trajectory. This nominal trajectory is computed in a planning stage
before starting execution, and updated efficiently during execution, whenever the system is found to deviate from the nominal
trajectory. We prove that, under mild regularization conditions, the proposed controller approaches the cost of the nominal
trajectory as the linearization error approaches zero. The performance of the proposed controller is demonstrated by numerical

experiments with a Melanoma gene regulatory network observed through noisy gene expression measurements.
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1 Introduction

Partially-Observed Boolean Dynamical Systems (POBDS)
are nonlinear, derivativeless dynamical systems that con-
sist of a finite Boolean state process observed through an
arbitrary noisy mapping to a possibly infinite measure-
ment space [1,2,3,4,5]. Instances of POBDS abound in
fields such as genomics [6], robotics [7], digital communi-
cation systems [8], and more. The POBDS model extends
other well-known models for Boolean dynamical systems,
such as Boolean Networks [6] and Probabilitistic Boolean
Networks (PBN) [9], by allowing noisy and incomplete
observations of the Boolean system state.

A POBDS with external inputs is a partially-observed
Markov decision process (POMDP). Existing infinite-
horizon controllers for general POMDPs include the
Q-MDP method [10], approximate dynamic program-
ming (ADP) techniques [11], Gaussian processes (GP)
and reinforcement learning (RL) [12], and point-based
methodologies [13,14]. An infinite-horizon state-feedback
controller for POBDS, called V_BKF, has been proposed
n [15]. This method is similar to the Q_-MDP method in
that the control policies by both Q_MDP and V_BKF are
not computed in belief space, thus, they perform poorly
in domains where repeated information gathering is nec-
essary [14]. In addition, the combination of the GP and
SARSA methods has been employed in [4] for control of
POBDSs with uncertain control inputs. Finally, a point-
based controller was proposed in [16] for POBDSs with
infinite observation spaces.
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All previously mentioned methodologies have been de-
signed for infinite-horizon problems and cannot be used
to find a finite-horizon control policy. In this paper, we
propose an efficient finite-horizon feedback controller for
POBDSs with continuous control input and infinite mea-
surement space. Our method resembles the optimal Linear
Quadratic Gaussian (LQG) estimator and controller for
linear systems with Gaussian noise [17]. The LQG method
has been extended to general POMDPs with continuous
state spaces in [18,19]. These methods require lineariza-
tion of state and observation models over a nominal tra-
jectory and approximating the uncertainty of the state
and observation process with Gaussian distributions. How-
ever, POBDSs are nonlinear, derivativeless dynamical sys-
tems which cannot be linearized. To overcome this diffi-
culty, in this paper first the POBDS is mapped to a fully-
observable and differentiable space, known as unnormal-
1zed belief space, where the system can be linearized around
a nominal trajectory computed by dynamic programming,
after which a linear quadratic regulator (LQR) [20] is de-
signed to keep the system close to the nominal trajectory
during the execution process. An efficient way of updat-
ing the nominal trajectory during the execution process is
proposed using the principle of optimality of dynamic pro-
gramming. A similar approach has been proposed in [21],
in the more restricted case of directly-observable systems
with differentiable transition functions.

The proposed methodology is illustrated by applying it to
the control of gene regulatory networks (GRN). Most of the
existing techniques for control of GRN, both in the finite
and infinite horizon cases, are based on PBNs [22,23,24,25].
However, the unrealistic assumptions of direct observabil-
ity of the Boolean states and finiteness of the control space



limit the practical application of these methods. By con-
trast, the methodology proposed here allows indirect state
observability and infinite measurement and control spaces.

The article is organized as follows. In Section 2, the
POBDS model considered in this paper is introduced. The
finite-horizon control problem for POBDS is formulated
in Section 3. Then, in Section 4, the computation of a
nominal trajectory is discussed. The proposed LQR-based
controller, including linearization of the system over the
nominal trajectory, replaning, and performance analysis,
is introduced in Section 5. A numerical analysis of the
performance of the proposed controller is performed in
Section 6, using a Melanoma gene regulatory network.
Finally, Section 7 contains concluding remarks.

2 POBDS Model

We consider a state process {Xy;k = 0,1,...,T} defined
over a finite time interval of length 7"+ 1, where X €
{0,1}¢ represents the state of the system at time k. The
state is affected by a sequence of control inputs {ug; k =
0,1,...,T —1}, where u;, € U = [0, 1]¢. The value uy(7) is
the probability that the state of the ith Boolean variable
will be flipped at time k + 1, for = 1,...,d. The control
input action is therefore uncertain. Notice that the case
uy(i) = 0 corresponds to absence of control of the ith
Boolean variable at time k. The states are assumed to
be updated at each discrete time through the following
nonlinear signal model:

Xy = f(Xi—1) ® Br(up—1) © ny, (1)

fork =1,2,...,T,wheref : {0,1}¢ — {0, 1} is a Boolean
function, called the network function, “®” indicates com-
ponentwise modulo-2 addition, B, (uz_1) € {0,1}% is a
Boolean noisy input vector, such that P(83,(i) = 1) =
up_1(i), fori = 1,...,d, and n; € {0,1}¢ is a Boolean
transition noise vector, such that P(ng(i) = 1) = p, for
i = 1,...,d. The transition noise is assumed to be zero
mode, i.e., 0 < p < 0.5. The closer p is to 0.5, the more
chaotic the system will be, while a value of p close to zero
means that the state trajectories are nearly deterministic,
being governed tightly by the network function. For sim-
plicity, B, and ny, are assumed to have independent com-
ponents, and to be independent from the initial state Xg.
In addition, 3, and 3,;, and nj; and n;, are assumed to be
independent for k # [.

In this paper, we consider the observation model

Y, = X + wyg, (2)
fork =1,...,T, where Y is the observation at time k, and
{wi;k = 0,1,...,T} is zero-mean white Gaussian noise.

We assume that the components of wy are independent

and have the same variance 2.

3 Finite-Horizon Control Problem

All that is available for decision making at the current time
step k are the observations Y1.x = (Y1,...,Y}), and the

control inputs applied to the system up to previous time
step ug:x—1 = (uy,...,ux—1). Rather than storing these
values, we introduce the unnormalized belief state vector
pi. € R?" given by:

pi(i) = p(Yi, Xpe = x" | Yiip—1, Uoik—1) , (3)

fori =1,...,2% and k = 0,1,...,T, where (Xl,...,x2d)
is an arbitrary enumeration of the possible state vectors.
Note that, for k = 0, we have p,(i) = P(Xo = x'), i =
1,...,2% It is easy to verify that the unnormalized belief
state satisfies the following recursion:

Pr_
pr = T(Yy) M(u_1) m7 (4)

where ||v||; = Z‘ij:l |v(i)], for a vector v € R%, M (ug_1)
is the controlled transition matrix of the state process,
with entries

(M(up-1))ij = P(Xp =x" | Xpm1 =%/, uq),  (5)

for i,5 = 1,...,2% and the update matrix T(Y%) is a
diagonal matrix of size 2¢ x 2¢ with diagonal entries

d
(T(Yk>)ii = p(Yk | Xp = Xi) = H¢(Yk(]) - Xy(]))a
- (©
fori=1,...,2¢ with ¢(w) = (2762)" % exp (— w? )
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We desire to obtain a control policy to minimize the cost
function [20]:

T-1

J=F th(pk>uk)+hT(pT> ) (7)
k=0

with

_ lleroprlh

Cr(u [¢]
|| k( k) pk”l , hT(pT)
ozl

hk)(pk)?uk) - ||pk||1

)

where “0”

denotes the Hadamard (componentwise) prod-
uct of vectors, and ci(ug) = (cx(x',ug),. .. ,ck(x2d, u))

and cr = (cp(x1), ..., er(x2")) are cost vectors.

4 Nominal Trajectory

Finding the minimum of (7) using classical dynamic pro-
gramming techniques is an intractable problem due to the
infinite spaces for the control input and unnormalized be-
lief. In this paper, a solution is provided by finding a desir-
able trajectory and forcing the system to follow it during
the execution process.

First we compute a nominal state-feedback control policy



via the dynamical program:

T-1
/‘S:T—l = argmin E[Z Ck (Xk,,uk(Xk)) + cr (XT) s
Mo.r 1 €11 k=0

s.t.

Xp = £(Xp-1) @ Bp(p—1(Xp-1)) & myp,
Xo ~ P(Xo),

(9)
where p;, € U2 is the control policy at time k and II €
U2"%T is the space of all possible policies. This problem
can be solved using backward dynamic programming [20]
when the control input space is finite. Thus, we obtain an
approximate solution p,SfIT_l by quantizing the control in-
put space U into a finite set U? = (uf,...,ud,), and com-
puting the optimal policy using backward dynamic pro-
gramming.

Next, we construct a nominal trajectory in the Boolean
state space using the policy poo-_ . We consider the most
probable sequence of Boolean states and control inputs for
the nominal trajectory. Therefore, we take the state with
the largest initial probability to be the starting point of
the nominal trajectory:

Xb =

argmax  P(Xo =x'). (10)

xie{x!,...,x24}

In the case of a tie, the state with the smallest index is
chosen. Using this initial state and the obtained control
policy, the best control input at time 0 is u}) = py?(XF).
We choose the most likely state as the next state of the
nominal trajectory:

XD = argmax P(X; =x"|Xo=X},up=u}). (11)
xe{x!,... x2%}

Now, since the process noise is zero mode, i.e.,0 < p < 1/2,
(1) implies that

X? = £(X§) @ af, (12)

where ) is a Boolean vector, the ith component of which
is equal to 1 if uf) > 0.5, and equal to 0, otherwise. Repeat-
ing this process from time 1 to 7 results in the nominal
trajectory {X§.,,ub._;}.

Finally, we obtain a nominal trajectory in the unnormal-
ized belief space, by assuming that the most probable mea-
surements are observed over the entire Boolean state tra-
jectory, i.e., Y§ = X7 for k = 1,...,T. Letting p{(i) =
P(Xg = x%),i = 1,...,2% we can use (4) to obtain the
next unnormalized belief vector

pi = T(YT) M(ug)

(13)
Repeating this process from time 1 to 7' results in the
nominal trajectory {p{,} in unnormalized belief space.

The nominal trajectory {X§.,ub, YV, plp} is
uniquely specified and corresponds to the most probable

sequence of Boolean states, control inputs and measure-
ments. Its cost is near optimum, since it is based on the
underlying near-optimal state-feedback policy p;f‘T_ 1

5 Proposed LQR-based Controller

In this section, we derive an output-feedback control pol-
icy by forcing the system to be near the nominal trajec-
tory derived in the previous section. This is accomplished
by linearizing the dynamics around the nominal trajec-
tory and then applying in the classical closed-form Linear
Quadratic Regulator (LQR) solution [20] to a quadratic
performance index, as described below.

5.1 Linearization around Nominal Trajectory

First, notice that the distribution of each component of the
measurement vector Y, given all available information up
to time k — 1 is:

P(Y() | Yik-1,u0k-1) = p(Yr(j) [ P—1,uk-1)

= p(Y&(y) | Xx(4)=1)zx(4) (14)
+ p(Yk(4) | Xi(5)=0)(1 — zx(5))

where

z(j) = P(Xx(j) = 1| pp—1, ar-1), (15)

for 5 = 1,...,d. It is easy to verify that the vector z; =
(zr(1),...,2zk(d)) is given by

Pr—1

z, = AMup_1) —,
() T

(16)

where A = [x! .- ~x2d] is a d x 2% matrix with all possible

state vectors as columns.

Now, from (2), we have Yi(j) | Xi(j) =i ~ i+ wi(j).
Hence, (14) implies that

Yi(5) | o1 k=1 ~ (L+wi ()2 (5) + Wi (F)(1—2x(5))
= zx(j) + wi(4),

(17)
for j = 1,...,d. We thus generate a realization wy, of the
noise vector wy and define the approximation

Yk =2z, + W (18)

Notice the symmetry between (2) and (18). We now plug

the approximation Y}, into (6) to obtain the diagonal ma-
trix F(zy, Wy,) of size 2¢ x 2¢ with diagonal entries

F(z, Wi)i = pzi + Wi | Xj = x")
d

= [[otati) + o) - <Gy,



fori =1,...,2% By virtue of (4), we arrive finally at the
unnormalized belief state equation in pj:

Pr =~ g(pk—lvuk’—hwk)
. _ 2
— Pz, Wr) M(up_y) P21 (20)

o1l

Notice that (20) is valid in a neighborhood of the unnor-
malized belief state p;_; and control input ux_; at time
step k — 1. Thus, assuming that p,,_; and u,_; are close
enough to p}_, and u}_,, the system can be linearized as
follows. For k =1,...,T,

~ AP 3 P = J -
P~ A1 Ppy T By + Gy Wi, (21)
< Do~ Pofw _ -
where p,, = p,. — ph, U = up —up, {Wy,k=1,...,T}is
a zero mean i.i.d. Gaussian noise sequence, and matrices

d d d d
AP eR¥ X B e R**?and GY_, € R*" %4 are

ag(pkflv Ug—1, VAVk)

p _
Ak—l - 6pk L ‘Pk71=P£,17Uk—1=u§,1,\7\’k=07
(22)
B? . — 0g(py—1,Uk—1, W)
k—1 Aup_q ‘Pkﬂzpi,l7Uk—1:uz,1,‘7\/k:0’
(23)
Gp o 8g(pk—17uk‘—1awk)
k-1 — |Pk—1:P£,1,uk—lzui,l.v?lkzo'

Wy,
(24)

5.2 Linear Quadratic Regulator (LQR)

The goal is to select control inputs to force the system to
follow the nominal trajectory during the execution pro-
cess. To reach this goal, the errors p; and uy, should be as
small as possible over the interval £ = 1,...,T. This can
be achieved by minimizing the following quadratic cost
function:

T
7= B (B Wa + ol Wi )| (25)
k=1

where W% ., W1 are positive definite weight matrices.
Here, we use the values W% = I,a/||p}||? and W} = I,.

The LQR provides the optimal solution for linear stochas-
tic systems with quadratic cost function, such as the one

defined by (21) and (25), through the following linear feed-
back form

u, = —Lip, = —Li(py — p}) (26)

where the linear feedback gain L is given by

—1
Ly = (Wi + (B)"S!B}) (BL,)" S} AL . (27)

The matrix S} in (29) can be obtained using backward
iteration of the dynamic Riccati equation,

St = (D)7 (st - st B
T -1 T (28)
(Wi -+ (BL)7SIBY) (BY)TSL) AL+ W,

with an initial condition S5 = W¥.. The proposed control
policy is then given by:

uf =l + 1, =ul - L(p, —ph),  (29)

for K = 0,...,T. Note that this control policy is in the
traditional form of prediction plus gain times update.

5.3  Replanning Process

The performance of the feedback controller in (29) strongly
depends on the accuracy of the linearized model. The latter
is a good approximation of the nonlinear system as long as
the system is close enough to the nominal trajectory during
the execution process. However, the stochasticity of state,
measurement, and control processes precludes the possi-
bility of seeing the nominal trajectory during execution,
and the accumulation of linearization errors may push the
system unnormalized belief state and control input from
the nominal trajectory, rendering the linearized model in-
accurate. In this case, fast recomputation of a new nominal
trajectory, and pushing the system toward it are essential.

We build the replanning process based on the principle of
optimality, which states that segments of the dynamic pro-
gramming solution are themselves optimal for their sub-
problems [20]. This principle allows the use of the previ-
ously obtained dynamic programming solution up to the
current time. Replanning to obtain a new nominal trajec-
tory for the remaining horizon is triggered whenever the
deviations

LI Pk Pi1
£ == — , (30)
P 2|l ekl
and
€, = 1 up_1 —ul (31)
k—1 d k—1 k—=1]|,

u

exceed prespecified values 0 < AP, 4" < 1, respectively.
Since the replanning process is a forward-backward process
and its computation depends on the remaining horizon,
a good strategy for values of v and " is to make them
large at early iterations, and reduce them as the end of the
horizon approaches. The rate of reduction depends on the
available computational resources and time constraints, as
small values trigger replanning more often.

The detailed procedure of the proposed replanning
methodology is presented in Algorithm 1. Notice that
the original nominal trajectory is obtained by calling this
subroutine with k = 1.

Notice that, as a fixed input to Algorithm 1, g% | needs
to be computed only once, before the execution process,



Algorithm 1 PLANNER (u;" 1.7 1, pu_1)

1: Initialization:
e Initial State: XY | = argmaxyi. ;e (1, . 2d} Pr—1(1)-
e Initial Unnormalized belief: pf | =p ;.
For r =k,...,T, do:
e Control Input: uf71 = M:gl(xffl)-
e Compute AP | and BY_, from (?7)-(77).
e Predicted State: X? = f(XE_ )@ B.(ul_,).
e Unnormalized Belief:

P
Pr_1
PP _1 111

pr = T(X7) M(uy_,)

2: Set W =L,a/||pt||? and WP =1,
3: Set Sb. = W#, .
4: Forr=1T,...,k+1, do:

s, = (ap7 (st - sy

u T arpr) "t (BP\T gp p p
(W + (BpTS2BE) " (BYTSE) A7+ W2

5: OUTPUT:

P P P p p p u
A1 B 1 Skr— 1P We—1r— 1 Wi Weer

and can be reused for computation of a new nominal tra-
jectory, Hence, the replanning process is fast, making the
proposed methodology suitable for real-time applications.

5.4 Proposed Controller

Before starting the execution process, the dynamic pro-
gramming solution for the underlying Boolean dynami-
cal system with the quantized control space is computed.
Then, the planner (Algorithm 1) computes the original
nominal trajectory, the parameters of the linearized model,
and the required parameters for the LQR controller. Dur-
ing the execution process, the LQR controller computes
the control input to make the system close to the nomi-
nal trajectory. When deviation of the unnormalized belief
state and control input from the nominal trajectory is de-
tected, the planner computes a new nominal trajectory and
the required parameters for the remaining horizon. The
procedure is summarized in Figure 1 and Algorithm 2.

The following theorem, the proof of which is in the Ap-
pendix, shows that the cost of the LQR-POBDS control
policy approaches the cost of the nominal policy when the
linearization approximation errors approach zero over a
long horizon T

Theorem 1 Let J be the expected cost of the proposed con-
trol policy in (29),

T-1

Jh =B Y hilproaf) + hrler)| s (32)
k=0

while JP is the cost of the nominal policy,

T-1

JP =Y hlpf,u}) + he(ph) (33)

k=0

Let ey € R2" be the linearization error at time step k,
er = P — (AL Pp_1 +BL_ Gs1 + G W), (34)

fork=1,...,T. Under mild regularity conditions,

T
JE= 07+ 0| Y lEelh | - (35)
k=1

In particular, if Eley] =~ 0, fork =0,...,T then J& ~ JP.

The previous theorem shows that the proposed policy
achieves the desired low cost of the nominal policy as the
linearization errors become negligible. Since these mainly
arise from deviations of the execution trajectory from the
nominal one, the replaning process is essential to keep the
system continually close to the nominal trajectory dur-
ing the execution process, especially in the case of longer
horizons. The regularity conditions to achieve the result
in Theorem 1 are mild; namely, it is required that the
cost function be smooth and that p, be a well-behaved
random vector with sufficiently short tails. This ensures
that the expectation of the higher order terms of the Tay-
lor series approximation of hg(py,uk) converge to zero.
A result similar to Theorem 1 appears in [21, Thm 3], for
the case of directly-observable systems with differentiable
transition functions.

Detour
from nominal
trajectory?

Ug—1
P P
Pr—1.7> U—1.7—1
LQR Planner
P
Uy, _q
y
Pr—1
System

Fig. 1. Proposed LQR-POBDS Controller.

6 Numerical Experiments

In this section, we demonstrate the performance of the
proposed controller via numerical experiments using a
Boolean gene regulatory network involved in metastatic
Melanoma [25]. The network contains 7 genes: WNT5A,
pirin, S100P, RET1, MART1, HADHB and STC2. The
regulatory relationship for this network is shown in Fig-
ure 2 and the Boolean function is presented in Table 1.
The ith output binary string specifies the output value for
ith input gene(s) in a binary representation. For example,
the last row of Table 1 specifies the value of STC2 at the
current time step k from different pairs of (pirin,STC2)
values at the previous time step k — 1:

(pirin =0, STC2 = O)k,1 — STC2k =1
(pirin = 0, STC2 = 1)1 — STC2;, =1
(pirin = 1, STC2 = 0)_1 — STC2;, =0
(pirin =1, STC2 = 1)]@,1 — STC2k =1



Algorithm 2 LQR-POBDS: Proposed Controller.

1: Initialization:
e Tnitial distribution: py(i) = P (Xo =x%),i=1,...,29
e Quantized Control Input: U = (uf,...,u?,).
2: Computation of optimal policy for underlying BDS.
e Terminal Cost: J;q = cr.
For k=T-1,...,0, do:

e Cost Computation: for j =1,...,2%, do:
od
JX9() = min [ck(xj w + S (M), T3
k uend ’ ot ij “k+1
i—
e Policy Computation: for j = 1,...,2% do:
2d
HE90) = argmin |60+ 3 (M), I3, ()
u

i=1
3: Compute the nominal trajectory:

‘Azljo—l7 B?:T—l’ SIIJ:T—PPS:T’US:T—I’W,I,:T’ Wlu:T—l
« PLANNER (3% . po)

4: Execution Step:
e Initial control input: ug = ug.
For k=2,...,T, do:
e Update Step:
Pr—1 =T Y1) M(up—2) pr_o/llPr—2ll1
e Computation of the linear feedback gain Li_lz
-1
T
Li—l = <WE—1 + (Bi—l) Sifl Bi%)

(BY )"y 1AL,

e Control Input Selection:

L — p P »
uy_y = w_y — Ly (Pr—1 —P_y)

P
Pe—1 _ _Pr—a
lpr—1ll1 [leY _ 111

N €h_1 = %”ukfl —up_y -

b _ 1
€k—1= 3

If (6271 >qPorel_; > ’y“)
- Compute a new nominal trajectory:
A B

p P V4 P P u
k:T—-1° Sk:T—Ppk—l:T’ ukflszl’Wk:T’ Wk:Tfl

<+ PLANNER (u;? |+ ,Pp_1)

P
k:T—1°

- Control input: up_; = uf_,.

Fig. 2. Melanoma Gene Regulatory Network.

In the study conducted in [26], the expression of WNT5A
was found to be highly discriminatory between cells with
properties typically associated with high metastatic com-

Table 1
Boolean functions for the Melanoma Boolean network using a
binary string notation (see text).

Genes Input Gene(s) Output
WNT5A HADHB 10

pirin prin, RET1,HADHB 00010111
S100P S100P,RET1,STC2 10101010
RET1 RET1,HADHB,STC2 00001111
MART1  pirin,MART1,STC2 10101111
HADHB  pirin,S100P,RET1 01110111
STC2 pirin,STC2 1101

petence versus those with low metastatic competence.
Hence, an intervention that blocked the WNT5A protein
from activating its receptor could substantially reduce
WNT5As ability to induce a metastatic phenotype. The
study presented in [27] suggests that this can be achieved
indirectly through the control of the activity of other
genes. For more information, see [25].

In summary, the goal of control is to prevent the WNT5A
gene to be upregulated. This implies defining states in
which WNT5A is active as undesirable states. In the nu-
merical experiment below, either the RET1 or the HADHB
gene is used as the control gene to reduce the activation of
WNTS5A. Thus, the intervention space is one of:

Urer1 = 0x0x0x[01]x0x0x0

Upapue = 0x0x0x0x0x[01] x0. (36)
We have used the following cost function:
; 54+ |[ul]y ifx¥(1) =1,
¢ = 37
cx(x', 1) {||u||1 otherwise, (37)

fork=1,...,T — 1, with terminal cost

orlx) = {5 ifxi(1) = 1, (38)

0 otherwise,

where x*(1) is the transcriptional state of WNT5A in
state x, for i = 1,...,2% This cost function was selected
to penalize the application of control and the expression
of WNTB5A. Other cost functions could be used to accom-
plish the same objective; the choice in (37) and (38) was
made for its simplicity.

The cost reported during the numerical experiment is

= llex(ug) opll | ller o prlls
J=> + , (39)
2 oyl PRI

where p,, and uy are the unnormalized belief state and
control input at time step k, respectively.

The experiments were performed on a PC with an Intel
Core i7- 4790 CPU@3.60 GHz clock and 16 GB of RAM. In
all numerical experiments, we assume the same fixed set of
values for the system parameters, summarized in Table 2.



Table 2
Parameter values for numerical experiments using the
Malenoma gene regulatory network.

Parameter Value
Time horizon T' 50, 100
Number of genes d 7

Initial distribution P(Xp = x%),i=1,...,128 1/128

RET1, HADHB
Equation (36)

Control genes

Control space UrgT1, UHADHB

Quantization level of intervention space m 10

Cost functions Equations (37) and (38)
Transition noise intensity p 0.01, 0.05
Standard deviation o 0.3, 0.5
Replanning thresholds v, = 7vu 0.1, 0.25, 0.40
Value Tteration threshold V! 10~8

In the first experiment, the average performance of the
proposed LQR-POBDS controller is examined. Both
RET1 and HADHB genes are considered for the interven-
tion process using 500 different trajectories with length
T = 100. The results of the LQR-POBDS are compared
with four different controllers: Perseus-POBDS [16],
PBVI-POBDS [16], V_.BKF [15] and Q-MDP [10]. PBVI-
POBDS and Perseus-POBDS are output feedback con-
trollers designed for POBDS with infinite observation
spaces, and V_BKF and Q_MDP are state-feedback con-
trollers. The policies for all state and output feedback
controllers are obtained based on the quantized inter-
vention space. The stopping criterion threshold for the
output-feedback controllers is set to be 0.05 and the sam-
ple sizes for Perseus-POBDS and PBVI-POBDS are set
to be 50,000 and 2048 respectively (see [16]). Finally, the
replanning parameters for the LQR-POBDS controller
are set to yp, = 7y, = 0.1.

The average cost and computational time of the various
controllers are presented in Table 3. It is clear that LQR-
POBDS has the minimum average cost among different
controllers. This can be justified by the fact that unlike the
other controllers, which are developed to find the infinite-
horizon control policy, LQR-POBDS is designed to deal
with the finite-horizon control problem. Furthermore, it
can be seen that the output-feedback controllers (Perseus-
POBDS and PBVI-POBDS) perform better than state-
feed back controllers (V_BKF and Q_MDP). This is due to
the fact that the policy obtained by the output-feedback
controllers take into account the uncertainty of the mea-
surement, as opposed to the policy obtained by the state-
feedback controllers.

Comparing computational time, it is clear that V_BKF
and Q_MDP are very fast, but do not perform well, spe-
cially in the presence of large noises. LQR-POBDS dis-
plays smaller running times than the output-feedback con-
trollers. The reason for the huge computational complexity
of Perseus-POBDS and PBVI-POBDS is that both meth-
ods are based on point-based techniques, which try to ap-
proximate the whole continuous belief space with a finite
number of samples.

As expected, the performance of all methods decreases
as the intensity of the noise increases. This reduction in
performance is lass visible for LQR-POBDS in compar-
ison to other controllers. The reason is that during the
execution process, the replanning process makes LQR-
POBDS capable of changing its trajectory adaptively and
efficiently. Comparing different control genes, it is clear
that RET1 has better performance in reducing the activa-
tion of WNT5A in all cases.

Figure 3 displays the average cost over time for the system
under control of RET1 and HADHB genes obtained by the
proposed LQR-POBDS method, for p = 0.01 and ¢ = 0.3.
It can be seen in Figure 3 that the minimum cost is ob-
tained for the system under control of RET1. The system
under control of HADHB also has lower cost on average in
comparison to the system without control. The high cost in
early iterations for the system under control is due to the
uniform prior distribution considered for the initial state
distribution, which makes the nominal trajectory more un-
reliable early, and as a result degrades the performance of
control. As time goes on and more measurements are ob-
served, the belief gets richer and as a result the decision in
the unnormalized belief state becomes more accurate.

o
S Control Gene: RET1
z = = = = Control Gene: HADHB
o R N IPPP PP No Control
o
[T
>
< R P

o

1 10 20 30 40 50

Fig. 3. Average cost under control of RET1 and HADHB genes
and without control.

The state transition and the activity of the RET1 control
gene, over one run of the simulation, are displayed in Fig-
ure 4. The states are numbered based on their order in Ta-
ble 1 from 1 to 128. The states 1 — 64 are states in which
WNT5A is 0 (OFF) and 65 — 128 are undesirable states
in which WNT5A is 1 (ON). These two sets are separated
by a horizontal line in top plot of Figure 4. The vertical
dash lines in Figure 4 specify the time steps at which the
replanning procedure has been performed. It can be seen
that only a few undesirable states are seen after 100 time
steps and, in all these occasions, the replanning procedure
is executed to regenerate a new nominal trajectory and
force the system to follow it. In addition, one can see more
activations of the control input in time steps in which the
system observes undesirables states.

The effect of having different replanning parameters on
the performance of our proposed LQR-POBDS controller
is examined next. Table 4 displays average results for the
system under control of RET1 gene over a T" = 50 time
horizon. It can be seen that the average cost of the sys-
tem increases as replanning rates grows. The reason is that
small replanning rates make the nominal trajectory closer
to the actual system behavior during execution process,
increasing the validity of linearization process, and helping
to achieve better performance of control. One can see that



Table 3
Average results for different methods.

p=0.01 p=0.05
RET1 HADHB RET1 HADHB
Observation Noise = Method Cost Time Cost Time Cost Time Cost Time
LQR-POBDS 10.9 490.9 44.4 503.4 24.9 560.7 59.2 578.9
Perseus-POBDS 29.7 6993.29 67.5 7080.5 50.2 7019.4 83.4 7022.8
o =03 PBVI-POBDS 32.1 7385.6 69.3 7090.6 52.9 6927.8 88.7 6994.9
V_BKF 33.3 2.1 75.4 2.1 59.6 2.2 99.7 2.1
Q-MDP 33.2 2.1 75.8 2.1 61.3 2.1 101.0 2.1
LQR-POBDS 17.9 599.3 56.7 604.3 34.9 654.6 73.2 661.1
Perseus-POBDS 38.4 7120.4 78.9 7119.7 59.4 7277.9 97.9 7223.3
0.5 PBVI-POBDS 40.2 7230.2 82.9 7200.1 62.4 7211.0 100.3 7271.9
o = U.
V_BKF 57.3 2.1 96.1 2.1 78.6 2.1 111.7 2.1
Q-MDP 57.5 2.1 96.5 2.1 77.4 2.1 109.8 2.1
8 ; Table 4
% Average results for the LQR-POBDS controller under different
s : 2 replanning rates.
% 3 i lj'] > p 0 Y =Ty Time Nreplan Cost
(%] r '. %
- ! g 0.1 520 7.6 10.7
s 0.3 0.25 432 6.4 13.8
1 = = pn — 0.40 375 47 174
Ti .01
3 m 00 010 58 101 172
- 0.5 0.25 502 8.0 23.1
= 0.40 415 6.1 26.7
o
E 31 0.10 554 10.7 23.9
5 0.3 0.25 509 8.7 28.4
0.40 452 7.3 39.1
°3 R 0.05 0.10 669  13.8  34.6
Time
0.5 0.25 602 11.3 43.8
0.40 544 9.1 56.1

Fig. 4. State transition and the activity of the RET1 control
gene over one run of the simulation.

higher costs are obtained under larger process and mea-
surement noise. Large noise intensities increase the chance
of deviation from the nominal trajectory and make the
control process more challenging. This effect can also be
seen in the higher average number of replanning step exe-
cutions, specified by Ngeplan in Table 4. Finally, the close
relationship between the number of performed replanning
steps and the computational time of LQR-POBDS con-
troller can be observed in Table 4. This highlights the im-
portance of care in choosing appropriate replanning rates.

7 Conclusion

We proposed a methodology for finite-horizon control of
partially-observed Boolean dynamical systems (POBDS)
with uncertain continuous intervention and an infinite ob-
servation space. The POBDS is mapped to unnormalized
belief space and the system is linearized over a nominal
trajectory, which is obtained by dynamic programming
methods before starting the execution process and up-

dated efficiently afterward. The Linear Quadratic Regula-
tor (LQR) is employed to force the system to stay close
to the nominal trajectory during the execution process.
The proposed controller was applied to a Boolean net-
work model of Melanoma gene regulatory network ob-
served through noisy gene expression data. The results
demonstrate the ability of the proposed controller in re-
ducing the average number of observed undesirable states
of POBDS over a finite horizon.
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Appendix: Proof of Theorem 1

Expanding the cost function hy(p,, uk) around the nomi-
nal trajectory (p}, u}) using the multivariate Taylor’s the-



orem, and using the fact that u, = — L p;,, leads to
hi(pr,ug) = hi(p},up) + Cupy, +7(py),  (40)
where p;, = p, — p,

_ Ohy(py, up) _ Ol (py, k)

8pk PrL=pP), ouy
up=uj

Cy ><Lz7

PL=p;,
up=u}

(41)
and 7(p,) contains higher-order differentials of hy and
powers of p,.. Provided that hj is sufficiently smooth
and that the higher-order moments of p, are uniformly
bounded, then 7(p,,) vanishes faster than the first moment
of p;.. In particular, we have E[7(p;,)] = O(||E[p]|]1)-

Hence, taking expectations on both sides of (40) gives

Elhi(pr.ur)] = hi(p}, up) + Cr E[py] + E[7(py)] (42)
= hi(py, up) + OIIE[p,]l]1) -
Now, Notice that
P = AL _ 1 Pp_1 + B Up1 + G Wi + e (43)

= (A£71 - qu L£71)ﬁk—1 + GZ—1 Wi + eg.

Let Dy = I, D1 = Azq - BZA szl’ and Dy,.k, =
Dy, X -+ X Dy, for ko > ky. Iterating (43) yields

k k
i)k = Z Dy.r Gf_l w, + Z Dy.r e, (44)
r=1 r=1

where we used the fact that p, = p, — pf, = 0. Hence,

k
Epy] = ) Dy Ele], (45)
r=1
since the noise W, is zero-mean. Substituting this into (42),

k
Elhi(py, uf)] = he(pf,ul) + O Y ||Efe,][l1 | - (46)

r=1

Repeating this process for £k = 1,...,T and adding the
results yields (35).
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