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Abstract Emerging wearable and environmental sensor technologies provide health
professionals with unprecedented capacity to continuously collect human behavioral
data for health monitoring and management. This enables new solutions to mitigate
globally emerging health problems such as obesity. With such outburst of dynamic
sensor data, it is critical that appropriate mathematical models and computational
methods are developed to translate the collected data into accurate characterization of
the underlying health dynamics, enabling more reliable personalized monitoring,
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prediction, and intervention of health status changes. In addition to addressing common
analytic challenges in analyzing sensor behavioral data, such as missing values and
outliers, we focus on modeling heterogeneous dynamics to better capture health status
changes under different conditions, which may lead to more effective state-dependent
intervention strategies. We implement switching-state dynamic system models with
different complexity levels on real-world daily behavioral data. Evaluation experiments
of these models are conducted to demonstrate the importance of modeling the dynamic
heterogeneity, as well as simultaneously conducting missing value imputation and
outlier detection in achieving interpretable health dynamic models with better predic-
tion of health status changes.

Keywords Switching-state dynamic systems - Daily behavioral data analysis - Mobile
health - Longitudinal patient health modeling - Missing data and outlier treatment

1 Introduction

Currently, obesity is considered a public health issue as over one third of the US adult
population is classified as obese [1]. However, addressing obesity is believed to be
beyond the capacity of the healthcare industry [2], motivating the development of smart
and scalable health solutions that can automate personalized activity planning.

Smart health solutions are becoming ever more feasible with the rapid development
of sensors and mobile applications that can continuously collect human behavioral data
such as physical activity, food intake, and body mass index (BMI) [3]. However, with
such outburst of dynamic sensor data, several challenges arise in translating them into
personalized health monitoring and activity plans effectively. Besides common chal-
lenges in analyzing sensor behavioral data, such as missing values and outliers,
modeling the complex health dynamics with potential influence from human daily
behaviors also poses significant challenges.

We implement a switching-state auto-regressive (SAR) population model [4] to
capture the complex interactions of human daily behaviors. We have adopted this
model framework due to its capability to capture instantaneous changes in human
activity and to classify inherent health stages in a population. We compare our model to
a similar dynamic model that does not consider these factors, showing that considering
the switching-state behavior and population-wide effects improves the model’s predic-
tion performance significantly.

To handle missing values and outliers in daily behavioral data, we simultaneously
consider missing value imputation and outlier detection while conducting model
identification. We compare our simultaneous imputation and outlier detection method
with typical data preprocessing approaches, showing that integrating missing value
imputation and outlier detection with model identification significantly improves model
accuracy. The preprocessing methods we compare include off-the-shelf missing value
imputation and outlier detection methods, such as mean imputation and median filters,
as well as analytic methods based on functional data analysis methods, such as
functional principal component analysis (FPCA) [5, 6].

Finally, we conduct evaluation experiments to obtain the most parsimonious SAR
model with the learned model parameters based on a real-world daily behavioral data
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set, which shows improved prediction accuracy of BMI temporal changes with differ-
ent daily activity profiles.

2 Methods

In our presentation, we adopt the following notation: regular lowercase letters denote
scalars and boldface lowercase letters represent column vectors. When not explicitly
specified, subscripts index time while superscripts index subjects. We use a colon (:)
when we refer to a group of variables at different indices. For example, x] refers to the
variable x at time 1 to ¢ of subjects 1 through n.

2.1 Switching-State Auto-Regressive Population Model

We implement a population switching-state auto-regressive model in our analysis of the
daily behavioral dataset. To model the potential heterogeneous dynamic changes of
health status for each subject under study, we assume that the underlying dynamic
system can switch between different dynamic behaviors under different conditions at
different times. For the i subject (i € {1, ..., N}) at time ¢, we assume that there exists a
discrete latent health state s' determining the dynamics of a health indicator, represented
by x!, which is also influenced by p input variables capturing daily life behavior,
denoted by vi = [U;l Vs eees ) p} T. Specifically, in this paper, we are interested in
the observed health indicator BMI as the health status of interest, and its change across
time. The input variables include subjects’ daily behavioral data, such as calorie intake
(food), calories burned during workout or exercise, and workout time.

The SAR model is an extension of the classical auto-regressive (AR) model, which

describes the time evolution of a variable that depends linearly on its past realizations,
defined as follows:

T

Xi=a'x, +bvi+c+ (1a)

n~N(0,07) (1b)

Here, a, b, ¢, and le are the system coefficients of the AR model and the white noise
variance respectively. Extending the above formulation, the SAR model allows these
model parameters to be determined by a latent state s, denoted explicitly as a(s), b(s),
c(s), and o7 (s). Specifically, SAR models the BMI dynamics by the following system
model:

X =a(s}) 5, +b(s)) Vi + c(s) +1f (2a)

N (0,07 (s1)) (2b)
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In general, the system in (2) can incorporate any order of time lags L, and L, to
model the potential high-order dependence relationships so that the model can be
extended as follows:

X = a(si)Txi,l + b(sﬁ)Tui +c(s)) + 1 (3a)

. . . . T
i i i i
X1 = |:xtflﬂxtf27 ~-->xt—Lx] (3b)

T

= ) ) e ()| (3

In this paper, we adopt a population SAR model assuming that the system coeffi-
cients a(s), b(s), and c(s) are shared between subjects while each subject has indepen-
dent measurement noise variance o2(s). This treatment of measurement noise is
reasonable, as each subject may have different levels of fluctuation in their daily
behavior changes. Additionally, the subjects may also log their daily behaviors differ-
ently, with varying degrees of noise intensity.

For the case with L, =L, =1, the population SAR model is illustrated in Fig. 1:

It has a finite Markov chain layer to model the health state changes along time and
an AR model layer to capture the “controlled” dynamic changes at different health
states, both assumed to be shared in the population under study. Clearly, introducing the
hidden layer increases the model flexibility to enable the potential of modeling abrupt
changes in human health status as well as daily activity. On the other hand, instead of
assuming different subjects have their own independent dynamic models, the popula-
tion model assumption controls the model complexity to avoid overfitting with the
observed measurements and borrows signal strengths across subjects, especially con-
sidering the potential missing values and outliers in daily behavioral data.

®

T

Fig. 1 First-order SAR model
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2.1.1 Learning the SAR Model

To learn such a population SAR model given the observed daily behavioral data and
BMI changes, we have the following auto-regressive coefficients as well as health
states to identify:

0 = {a(s),b(s),c(s),07(s),se{1, ..., S},ie{l, ..., N} }. (4)

As each subject’s time series measurements are independent of each other given the
population SAR model, we have the following likelihood function of the population
SAR model given observed data:

N L
p(Xl:N’Sl:N‘UI:N,Q) _ __1_[1pi<Xl’Sl‘Ul’9) (5a)

T;

pi(X', S'|U"0) = p(xifui, sy, 0)p(si) x [ (xilxy, w5, 0)p(silsiy)  (5b)

Here, X', U’, and §' are the health indicator (BMI), input covariates, and latent state
values of subject 7 at all time-points, while 7; is the last time index of subject i.

To derive the maximum likelihood estimates (MLE) for model identification,
expectation-maximization (EM) [4] is often adopted to find the set of system coeffi-
cients and variances a(s), b(s), c(s), and 012 (s) for all s€{l,...,S}. This method
alternates between estimating the state conditional probabilities p(sﬁ X, U ) and opti-
mizing the system coefficients based on the estimated state probabilities in the expec-
tation and maximization steps respectively.

a) E-step: The expectation step is done by the forward-backward algorithm [4], which
estimates the state probability p(si X\ U i) by combining partial solutions condi-
tioned on past and future observations with respect to 7. The partial solutions
conditioned on past observations are denoted by c(s?) = p(si,xi,|u},, 0), while
the partial solutions for future observations are denoted by 3(si )

N - iyl i
- p(xt:T! |xt,1,ut:T‘,sH,9). Given the model, we denote p(xi|xi_,ul,s!,6) by

Di (x; |S;) :
Pixlst) = N (a(si) "xiy + b(s)) ul -+ c(s0), 02 () (©)

Define the log-likelihood L(6) = log (Z pr(si)) with a(s}) = p(xi|ui,s!, 6)
i

p(s’i). This can be efficiently solved as a filtering problem by the a-recursion [7]:

a(s) = py(xlsi) X p(silsia)alsi)- (7)

ol
Si-1
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On the other hand, the partial solution conditioned on future observations can be
solved using the [-recursion:

Blsir) = Xailxls))p(silsi) B(st), (8)

and (s’T) = 1. By Bayes’ rule, combining these two partial results yields the desired
state probability:
a(s;) B(s1)
Zya(s)A(si)
Because each subject’s time series is conditionally independent with one another
given the model, the expectation step can be done independently on each subject.

Finally, we can derive the joint state transition probability for the hidden Markov chain
layer by normalization with

7(s§) :p(sﬁ|Xi,Ui,9) = 9)

P( z+1|Xl U' 9)“0¢( i)ﬁi(x§+1|si+1) XP(S£+1‘S§)5(S£+1) (10)

b) M-step: The maximization step uses the state distributions calculated in the
expectation step to optimize the system coefficients by maximizing the likelihood:

E = ZZ{: <10gpi (‘xi|si)>pold(sﬂX[7U[) + ZZt: <10gp(S£|S£*1)>p01d(s;,s;;l) (1 1)

Rewrite the system coefficients and variables as follows:
i _ i P X 12
a() = | b(s) = 12)
t

The Karush-Kuhn-Tucker (KKT) conditions [8] to maximize the likelihood with
respect to d(s) lead to solving the following linear system by plugging (6) into (11):

a2 (s oz (s)

Zzpold(s = s|X', U') z(z;: [zzpold(s = s|x°, Ut)’_(zil)]d(s) (13)

Similarly, o7 may be solved by the following equation:

alg(S) B Z’p()ld( St 1—SXi’ Uf) g Zt:pmd(Si :S‘Xi’ Ui)[ _d( ) Vie 1}2 (14)
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2.1.2 Simultaneous System Identification, Missing Value Imputation, and Outlier
Detection for SAR

One of the critical challenges to learn the SAR model parameters arise from the large
number of missing values and frequent outlier points in the data set. This is
illustrated in a fragment of real-world time series BMI measurements in Fig. 2.
Inappropriate handling of missing values and outliers may lead to computational
difficulties from the holes in the data set, as well as the bias and loss of precision due
to distortion of the data distribution [9]. For example, among the approaches that
handle missing values [10], the mean imputation method ignores the context as it
fails to utilize the underlying dynamics of the variables. The last-value-carried-
forward method takes a conservative approach, underestimating the changes over
time. Thus, neither of them is suitable for imputing missing values in the dynamic
modeling context for human daily behavioral data.

Extending the SAR population model, we develop a method that can simultaneously
remove outliers and impute missing values while conducting SAR model identification.
We achieve this by modifying the maximization step of the previously introduced EM
algorithm. For clarity of presentation, we firstly assume that there is only one input
variable, so that v} = v} ; = vj. We will remove this restriction accordingly, as we shall
see that in our method, each input variable can be handled separately.

The missing value imputation and outlier detection is formulated as follows: denote

the state observations and input actions for subject i as X' = {x’l ,Xh, ...J’}J and U’

= v}, v, ..., UiT,] respectively. Let 2y, and 2y, be the index set of observed elements
of X' and U’ respectively. We estimate X = [)Ac’i,)%é, ,fc’T} and U' = {@’l, @é, e @’T}

for system identification by solving the following optimization problem:

min % TZJ

. . . . . . 2
S 3 [als) s bl u +e(s)] | (152)
xo T

35 T T T T T
4oy 1

33 .

_:- %W"%MW»

@g3of Missing Value y

29 .

28 .
o7k o < Outlier .

26 1 1 : | 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Days

Fig. 2 A typical example of life behavioral data from mobile sensors
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<Ny (15b)
0

577)(,
0

N
s.t. (X X’)
QX,.

(¢-2)
QU‘.

The objective function (15a) is a squared loss function to evaluate the
goodness-of-fit of the missing values and outlier estimates of the entire data

set X and U. Meanwhile, the constraints (15b) serve to limit the maximum
number of outliers to be detected in X and U. The values of 7y and 7y can be
estimated by the upper bound of the percentage of outliers.

2.1.3 Solution Strategy

To simultaneously learn the system coefficients, estimate the state probabilities, as
well as impute missing values and remove outliers, we alternatively optimize three

groups of variables: the state distributions p(s§|X | Ui), the system coefficients
6 = {d(s), o7(s)}, and the missing value and outlier estimates {X l, U’} for all

ie{l,...,N} [11]. Calculating the state distributions and optimizing € can be done
based on the EM algorithm. On the other hand, the missing values and outliers for
each subject i are estimated using the projected gradient descent method as

follows:
S.t. <)A(1—X">
Qx,

i

2
SNy
0
(16)

X(k+1) = arg min HX—(XJ(,()—AgJ )

e X

F

Here, g, is the partial derivative of the objective function with respect to X l( k) Ads
(k)

the step size that could be chosen to be a sufficiently small constant, while ||ll7

denotes the Frobenius norm. The optimization procedure is done as follows:

First, select 7y elements in (X l(k>—f( I—Ag)g ) with the largest magnitudes as
®/ oy,

the outliers at the current iteration, forming a set Zy,. Second, assign the set of

missing values Qy, and the set of detected outliers Zy, with new estimates as

(X<k+1) Noguz, = <)A(€k)—Ag5{, > . The remaining elements in )}'(k+1) " are
o ® Qy,UZy,

set to the same values as X l(,c>. The update for U' follows a similar procedure.

Here, note that additional input variables can be separately handled by opti-

mizing them with a similar procedure. The entire model identification, missing
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value imputation, and outlier detection procedure is summarized in Algorithm 1.

Algorithm 1 Population SAR Model Identification,
Missing Value Imputation, and Outlier Detection

Input: X§ , U, . Nx, Ny Vi € {1,..., N}

Output: a(s), b(s), c(s), o2(s), X', T,
vie {1,..,N},vs €{1, ..., S}

Randomly initialize a(s), b(s), c(s), ¢?(s), and
p(s”sg_l) vie {1,..,N}

Initialize (Xl)ﬁxi and (U‘)EUi Vi € {1,..., N} to the mean

of Xfilxl- and Ufilul- respectively.
k<0
While ||Lger1)(0) — Loy (0| > €
E-step: Estimate y(sf) by (9), and p(sf|si_,) by (10)
vie {1,..,N},vte {1,..,T}.
M-step: Optimize a(s), b(s), c(s) by (13), and 6(s)
by (14).
Forie {1,..,N}
Optimize X': Select top 1y elements in
(Xi-xt-— Ag)?i)nx forming the index set Zy,.

(XL)EXL-UZXL- < (Xl - Ag)?i)ﬁxiuzxi
Optimize U': Select top 1, elements in
(T -vt - Agﬁi)ﬂ forming the index set Zy,.
Ui

(05, 00, = O =390, 01

End
k<k+1

End

Return a(s), b(s), c(s), a?(s), X%, U', Vi € {1,...,N},
vs €{1,...,5}

2.2 Functional Data Analysis-Based Imputation and Outlier Detection

We compare our simultancous missing value imputation and outlier detection
method with methods that initially preprocess these data defects, instead of
solving them together with model identification as formulated in (15). Specifi-
cally, in addition to other off-the-shelf simple missing value imputation and
outlier detection methods, we are interested in functional data analysis (FDA)
methods [5] for studying time series data in our application.
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2.2.1 Functional Principal Component Analysis

In the FPCA framework, given a vector of observations y, we estimate the underlying
function x by the penalized least squares smoothing method that is formulated to
minimize the following loss function [5]:

PENSSE,, (y|¢) = (y—®c¢)" W(y—®c) (17a)

+A PEN,, (x) (17b)

Note that the underlying function x is expressed in a different basis system as x = ®c,
where ® is the basis matrix and ¢ contains the coefficients representing x, the
realizations of the function x in the basis system defined by ®. We can see that (17a)
is a weighted least squares estimation. The roughness penalty term (17b) is added to
enforce smoothness on the estimation of x, with A being a penalty coefficient and
PEN,,(x) as the square integration of the m™ derivative, a measure of a function’s
roughness, defined as PEN,,(x) = ) [D’”x(s)]zds. The order of derivative penalized here
is the second or fourth order derivative [5]. We can subsequently substitute ®¢ for x and
express this roughness penalty in matrix form as follows: PEN,,(x) = ¢Re, in which
R= [ D"¢(s)D"p(s) ds.

The loss function (17) is convex and solving this model leads to closed-form
solutions by the KKT conditions, similar as classic ordinary or weighted least squares
problems [5]. The weighting for the smoothness penalty can be determined by cross
validation, using the penalty parameter that produces the best estimation accuracy by
the cross-validation testing.

The smoothness assumptions of the estimated behavioral data may change as
different variables have varying degrees of smoothness, such as BMI vs. the number
of calories burned in a day. To comprehensively evaluate the performance, two different
basis systems were explored with this method, the B-spline bases and Haar wavelet
bases. These basis systems were chosen due to their stark contrasts, with the B-spline
basis offering the smoothest estimation while the Haar basis can capture abrupt changes
in the data.

a) B-spline basis: The B-spline basis system represents functional data as a combi-
nation of piecewise spline functions of a certain degree d, with the corresponding
polynomials approximating the function along with their derivatives up to d—1 are
constrained to be equal at these breakpoints or knots. This produces a smooth repre-
sentation of the behavioral data. To accommodate for abrupt changes that may happen
in behavioral data, multiple knots may be placed in a single time point. The equation
for a spline function is as follows. Let B(f, 7) be a piecewise polynomial function
defined by the breakpoint sequence 7, with & being the number of the largest knot
positioned less than or equal to 7. Let K be the total number of subintervals used. Then,
the spline function S(?) is defined as

S(t)= Y caBi(t,T) (18)
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When estimating user behavioral data, we found that the best estimation was
estimated when 4th order spline is used while imposing a second derivative roughness
penalty.

b) Haar wavelet basis: The Haar wavelet basis system is formed by a sequence of
square-shaped functions [12]. Its mother wavelet ¢(f) and scale function ¢(¢) are as
follows:

1 05t<%
s =4 | 1 (192)

551 <1
0 otherwise

I 0<r<1

o) = { 0 otherwise (195)

The mother wavelet and scale function represent the basis system by different
dilations and translations » and k respectively, as defined by the following equation:

Yui(6) = 2"9(2" k) (20)

This function is put into the basis matrix ®, with the columns being a basis formed
by certain nonnegative integer n and 0 <k <2X—1, with K determining the number of
approximating functions used. This basis system is utilized with no roughness penalty
term, reducing the estimation problem into a weighted least squares problem.

Two examples comparing the missing value imputation and outlier detection per-
formance of our simultaneous system identification, missing value imputation, and
outlier detection (SSMO) formulation (15) against FPCA using the two different basis
systems are shown in Fig. 3. On the top panel, we see that with abundant and smooth
data, the FPCA-based methods perform similarly to ours. However, with sparsely
observed data containing suspicious outliers, our method can better capture the overall
trend of BMI changes, as shown on the bottom panel of Fig. 3.

2.2.2 Principal Component Analysis Through Conditional Expectation

Designed for analyzing sparse data, the principal component analysis through condi-
tional expectation (PACE) model is a non-parametric model that gives the best approx-
imation of the functional data for an individual subject by a linear combination of k&
functional curves by borrowing information from the entire collection of subjects.
Formulated similarly to FPCA methods, PACE models the data for the i subject
X'(#) as noisy sampled points from a collection of trajectories. These trajectories are
assumed to be independent realizations of a smooth random function, with unknown
mean function E[X'()] = (¢) and covariance function cov(X'(s), X'(f)) = G(s, £). The
domain of X/(7) is bounded on a closed time interval 7. Assuming an L* orthogonal
expansion of G exists in terms of eigenfunctions ¢, and eigenvalues A\, with G(s,
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28.6 ... T
284+ X
_ 282"
=
0 28t A
* Original
27.8 —S8SMO
o750 = -—Bspline | |
6 . ‘ ‘ - - Haar
20 40 60 80

Time (Days)

+ Original
18 —SSMO
L ---Bspline
1
g . - - Haar
20 40 60 80 100

Time (Days)

Fig. 3 Missing value estimation and outlier detection using FPCA with B-spline and Haar wavelet basis

1) =Y Mbi($)pi(f),  the i subject’s trajectory can be represented as
X'(t) = p(t) + X, &0 (t), t€T, where & are uncorrelated random variables with
zero mean. By also incorporating uncorrelated measurement errors, the PACE model
can be formulated as follows:

v =X(1) w6 = n(7)) + 3 Gan(T) + € TheT, (21)

where ei are uncorrelated measurement errors with mean zero and constant variance
o’ and Y ’/ is the /™ observable data point of the i subject.

To accommodate for the sparsity of daily behavioral data, local linear smoothers are
used to estimate the mean function pu(7), instead of traditionally taking the average at
each time point. This is because, in addition to being sparse, the time points of each
user data may also not align with each other, causing bias in estimating the mean
function through averaging. Estimation of the variance o7 is done through estimation of

the covariance surface cov(X (T ;),X (T ;)) A linear fit is used to estimate the

diagonal elements of the covariance matrix, while a local quadratic fit is used for the
oft-diagonal elements, as the covariance matrix is maximal along its diagonal. The
eigenfunctions can be subsequently found by discretizing the smoothed covariance
surface. In these steps, we utilized the Gaussian kernel to perform the implicit feature
mapping of the smooth surface estimation.

As a novelty introduced in the PACE formulation, the principal component scores
are estimated by conditioning over the observations ¥, rather than through numeric
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integration of the FPCA integral transform commonly used in traditional FPCA [13].
Compared to traditional FPCA, this is more suitable for sparse data since there are not
enough points available to perform a numeric integration. This is estimated by the
following equation:

i o . . N TA* . i
& =E[G|Y] =N (¢k> EYI“ <Yl_ﬂ> (22)

N ~—1 . . . _ X
Here, A\, (b;, f', and 3, are the estimates of ), (o7 'y and EY%, the covariance

matrix of ¥, respectively [6, 13]. We apply this formulation for each measured variable
separately, estimating the model described above for each type of measured data in our
collection of sensor behavioral data (calories burned, calories consumed, number of
steps taken, workout time, and BMI). To select the number of eigenfunctions used in
our model, we measure the fraction of variance explained (FVE) and pick the model
that explains at least 95% of the total variation.

Figure 4 illustrates the comparison of imputed trajectories by SSMO and PACE for
the same two subjects as in Fig. 3. Similar to the previous comparison with B-spline
and wavelet based FPCA methods, our method performs comparably to PACE when
we have abundant and smooth measurements. For cases with significant missing values
and outliers, although PACE can be more robust compared to the previous FPCA
methods, our SSMO method again captures the BMI changes more faithfully.

28.61 % .

28.4+
_ 282
=
[}
287
27.8*° + Original

‘ . —SSMO
27.61 PACE

20 40 60 80
Time (Days)

18

+ Original
—S8SMO

16 - J

6 . PACE

20 40 60 80 100
Time (Days)

Fig. 4 Missing value estimation and outlier detection using PACE
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3 Results

We have implemented the population SAR model with the SSMO solution strategy on
a real-world daily behavioral dataset that we collected. This dataset consists of daily
fitness behaviors of 25 different users. The dataset includes diet, exercise information,
and BMI collected from various sensor devices. In this dataset, almost all users show
significant missing values and outliers, with patterns similar to Fig. 2. In our experi-
ments, we take four types of recorded daily activity measurements, including calorie
intake (food), calories burned during workout or exercise, and workout time.

In our evaluation experiments, we first illustrate that integrating missing value
imputation and outlier detection with model identification outperforms the common
two-step procedure of data preprocessing and model identification. We then evaluate
the SAR models with different complexity levels and identify an appropriate model for
the population dynamics in the given data set. We finally conduct a feature selection
analysis to increase our model’s robustness by removing potentially redundant covar-
iates. We benchmark different models and methods by conducting one-step ahead
prediction of future BMI trajectory.

3.1 Missing Value and Outlier Detection Evaluation

The simultaneous missing value and outlier detection of our method have been tested
against several analytic and off-the-shelf imputation and outlier detection methods. The
methods we have compared include the mean value imputation, last value-carried-
forward imputation, functional principal component analysis (FPCA) with B-spline
bases [5], and PACE for sparse data [6]. In addition, the commonly adopted simple
mean value imputation and last value-carried-forward imputation methods are aug-
mented with a median filter for outlier removal.

In our tests, the population SAR model with simultaneous imputation and outlier
detection performs better than all the other methods we have benchmarked. As shown
in Table 1, our population SAR model with the SSMO solution gives the best
prediction accuracy overall. The functional data analysis methods PACE and FPCA
with B-spline bases for two-step missing value imputation and outlier detection
perform better than naive off-the-shelf methods, but our unified simultaneous imputa-
tion and outlier detection method in the population SAR model clearly outperforms
them. A comparison of our method and the other functional data analysis methods
benchmarked for imputation and outlier detection is shown in Fig. 5.

3.2 Model Selection

We evaluate several different model parameters on the order of time lags of the state
observations, L,, the order on the input variables, L, as well as the number of states in
the SAR model S. We find that the parsimonious setup that gives the best accuracy is
where L,=L,=1, while S=3. The prediction accuracy of different testing setups is
shown in Table 2. Increasing L,, L,, or S further did not yield any improvements in
prediction accuracy. This “peaking” phenomenon in prediction accuracy may be
caused by model overfitting of the training data. This causes the model to capture
spurious dynamics with increased number of model parameters. This is undesirable, as
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Fig. 5 Missing value estimation and outlier detection method comparison

the additional states would only over fit the training data noise, and not capture the true
health dynamics.

The corresponding system coefficients obtained for the parsimonious model with the
best prediction accuracy are shown in Table 3. In Table 3, the coefficients for each
variable are normalized such that each variable ranges from —1 to 1. With this
normalization, the effects of each variable towards BMI can be directly seen without
considering conversion factors.

For all three states, BMI would carry over to the next time point with very small
changes, as the coefficients for BMI is close to one for all the states. In the identified
model, the input variables that capture daily behavioral influence have less significant
contribution to current BMI when compared to the effect of previous BMI. This makes
intuitive sense: The inherent BMI change dynamics should be relatively stable, while
the input variables should only produce incremental changes to the previous BMI.

Table 2 Absolute one-step-ahead prediction error of the SAR population model under different model
parameters (S1 denotes one-state model reducing to the traditional AR model, S2 denotes the model with
two latent states, and S3 for the model with three latent states)

Ly
1 2 3
Ly 1 S1:0.045+0.030 S1:0.072+£0.027 S1: 0.084+0.030
S2:0.029+£0.013 S2:0.037+0.016 S2:0.052+0.024
S§3:0.024+0.012 S3: 0.059£0.056 S3:0.074+0.072
2 S1:0.049+£0.024 S1: 0.059 +£0.034 S1: 0.084+£0.032
S2:0.029+£0.012 S2:0.040+0.019 S2: 0.064 £0.042
S3:0.031+£0.013 S3:0.041£0.021 S3:0.051+0.033
3 S1:0.056+0.023 S1: 0.068 £0.026 S1: 0.096 £0.060
S2:0.041+£0.015 S2:0.040+£0.017 S2: 0.064 £0.044
S3:0.037+£0.026 S3:0.074+£0.072 S3:0.045+0.030

The italicized entries indicate the best performing setup in terms of prediction accuracy

@ Springer



J Healthc Inform Res

Table 3 Normalized SAR coefficients for different variables under different states

Variable State 1 State 2 State 3

BMI 1.0003 0.9824 0.9950
Exercise calories —0.0032 —0.0047 —0.0043
Food calories 0.0007 0.0187 0.0104
Workout calories 0.0031 —0.0080 0.0017
Workout time —0.0251 0.0261 0.0072

We conjecture that state 2 represents the most active state; state 1 represents the least
active state, while state 3 is an intermediary state in between these two. We speculate
this due to the following observations: First, note that the coefficient for BMI for state
2, denoted by a(2), is the smallest followed by a(3) and a(1). Furthermore, a(2) < 1 and
a(1)> 1. This means that without any external intervention as observable input vari-
ables, subjects in state 2 inherently lose weight the fastest while subjects in state 1
inherently gain weight. Second, we observe that with increasing workout time, subjects
in state 2 may have increasing BMI, but subjects in state 1 have decreasing BMI. We
speculate that subjects in state 2 are gaining muscle mass while subjects in state 1 can
better control their weight with more workout time.

The remaining coefficients also make sense intuitively. For example, for all the
states, consuming food increases BMI while exercise helps control BMI.

3.3 Covariate Selection Through Correlation Analysis

We further conduct a correlation analysis of daily activity variables to reduce the model
complexity by removing potentially redundant and/or strongly correlated covariates.
With this, we hope to increase our model’s robustness and better interpret the learned
dynamic models under different conditions (states). We first analyze the pairwise
correlation of four covariates, as shown in Table 4. We order the covariates based on
their aggregated correlation with the other covariates and then sequentially remove the
covariate and learn the corresponding population SAR models with the remaining
covariates. This is repeated until a large drop in prediction accuracy is seen.

In our case, we start by removing the highest correlated feature, workout calories.
Then, we removed exercise calories and workout time separately. We finally stopped
when workout calories, exercise calories, and workout time were all removed, causing
a great decrease in prediction error. The prediction errors for all the population SAR
models with the corresponding covariates are shown in Table 5.

Table 4 Pairwise covariate correlation

Exercise calories Food calories Workout calories Workout time
Exercise calories 1 0.1806 0.4042 0.1996
Food calories 0.1806 1 0.1143 0.1374
Workout calories 0.4042 0.1143 1 0.7160
Workout time 0.1996 0.1374 0.7160 1
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Table 5 Prediction accuracies of feature removal steps

Features removed

ABS

RMSE

None

Workout calories

Workout calories, exercise calories
Workout calories, workout time

Workout calories, workout time, exercise calories

0.0241 £0.0116
0.0311 £0.0107
0.0325 +0.0220
0.0375 +0.0369
0.0637 +0.1110

0.0321 £0.0166
0.0410 £ 0.0163
0.0414 +0.0288
0.0539 +0.0782
0.1406 + 0.4140

Based on the prediction accuracy, we finalize our population SAR model with two
covariates: calorie intake (food) and workout time. Its corresponding system coeffi-
cients are shown in Table 6. Here, we see that there are three clear modes for the
subject’s health dynamics. Subjects in state 1 tend to gain BMI more easily while
subjects in state 2 tend to lose BMI more easily, as shown by their larger and smaller
coefficients respectively. Finally, subjects in state 3 are resistant to BMI change due to
behavioral actions while having a steadily decreasing baseline BMI shown by the
state’s coefficient for BMI, denoted by a(3) < 1.

3.4 Prediction Accuracy Evaluation

We further compare our model with the linear dynamic system model without
switching states, denoted as SSMO. Unlike our model, this model does not consider
the potential heterogeneous dynamic changes in daily behavioral data and models each
subject’s dynamics with a different model instead of adopting a population model.

We benchmark the two models using both the L-1 norm absolute difference error
(ABS) and the residual mean squared error (RMSE) in conducting one-step ahead
prediction of future BMI trajectory. Our tests show that the SAR population model
performs significantly better than SSMO as shown in Fig. 6 and Table 7. Clearly, our
population SAR model captures the BMI changes more faithfully by allowing abrupt
changes and borrowing signal strengths across subjects.

4 Conclusions and Future Work
We have implemented and carried out comprehensive evaluation of population

switching-state auto-regressive (SAR) models together with missing value imputation
and outlier detection on real-world daily behavioral data. Different from the existing

Table 6 Normalized SAR coefficients for the final selected feature set

Variable State 1 State 2 State 3

BMI 1.0007 0.9946 0.9992
Food calories 0.0051 0.0017 0.0001
Workout time —0.0098 —0.0209 —-0.0013
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Fig. 6 Prediction trajectory comparisons of the final SAR model

common procedure of imputation and outlier detection as separated data preprocessing
step when analyzing behavioral sensor data, we handle missing data and outliers by
simultaneously considering them while conducting model identification. We have
conducted model selection to obtain the most accurate and parsimonious representation
of the given data set and have shown that the identified model makes intuitive sense.

From our evaluation experiments, conducting missing value imputation and outlier
detection while simultaneously identifying the model significantly improves model
accuracy when compared with methods that firstly preprocess the data. In addition, we
show that considering population-wide effects and dynamic heterogeneity significantly
improves prediction performance on our data set.

As the dynamics of human behavioral data has been largely an uncharted research
territory, characterizing the science of these unknown dynamics demands more in-
depth study of the principles and complex relationships among the health outcomes and
their control variables. By understanding these relationships, we plan to derive an
automatic health intervention framework using the learned daily behavioral health
model. Ultimately, integration of these highly analytic models in real-world clinical

Table 7 Prediction accuracy comparison

SSMO SAR
ABS 0.2235 £ 0.2873 0.0325+0.0220
RMSE 0.4032 +0.6140 0.414+0.0288

The bold/italicized entries indicate the best performing setup in terms of prediction accuracy
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implementation demands collaborations with systems engineering and health imple-
mentation science to ensure optimal patient treatment.

In addition to deriving personalized health management, the proposed system is
generally useful for dynamic modeling with big and low-quality data and their trans-
lation into healthcare decision making outside of clinical settings. With appropriate
infrastructure, it will have a profound impact on deriving effective smart and connected
health solutions using emerging mobile sensors and applications.
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