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Abstract—Control of gene regulatory networks (GRNs) to shift
gene expression from undesirable states to desirable ones has
received much attention in recent years. Most of the existing
methods assume that the cost of intervention at each state
and time point, referred to as the immediate cost function, is
fully known. In this paper, we employ the Partially-Observed
Boolean Dynamical System (POBDS) signal model for a time
sequence of noisy expression measurement from a Boolean GRN
and develop a Bayesian Inverse Reinforcement Learning (BIRL)
approach to address the realistic case in which the only available
knowledge regarding the immediate cost function is provided
by the sequence of measurements and interventions recorded
in an experimental setting by an expert. The Boolean Kalman
Smoother (BKS) algorithm is used for optimally mapping the
available gene-expression data into a sequence of Boolean states,
and then the BIRL method is efficiently combined with the
Q-learning algorithm for quantification of the immediate cost
function. The performance of the proposed methodology is
investigated by applying a state-feedback controller to two GRN
models: a melanoma WNTSA Boolean network and a pS3-MDM2
negative feedback loop Boolean network, when the cost of the
undesirable states, and thus the identity of the undesirable genes,
is learned using the proposed methodology.

Index Terms—Gene Regulatory Networks, Partially-Observed
Boolean Dynamical System, Boolean Kalman Smoother, Bayesian
Inverse Reinforcement Learning, Q-Learning, Melanoma, p53-
MDM2.

I. INTRODUCTION

Developing therapeutic intervention strategies for control of
gene regulatory networks (GRNs) is a problem of great current
interest in system biology. The interventions are usually taken
to avoid undesirable states associated with cancer, such as cell
proliferation and metastasis-implicated states. Several mathe-
matical models have been developed for modeling GRNs, such
as Boolean networks [1[]-[3]], ordinary differential equations
(OED) [4], [S]l, S-systems [6], [7], and Bayesian networks [8]],
[9. Methods for inference of gene regulatory networks for
discovery of cellular identity and their functionalities have
been proposed in [[10]-[17].

Boolean networks, in particular, have been widely used for
studying GRNs [18]]-[21]]. In the Boolean network model, the
transcriptional state of each gene is represented by 0 (OFF)
or 1 (ON), and the relationship among genes is described by
logical gates updated at discrete time intervals [22]. Boolean
networks were first introduced as a completely-observable, de-
terministic model by Kauffman and collaborators [1]]. Several
variations of the original Boolean network model have been
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introduced in the literature to account for the stochasticity
in the behavior of gene regulatory networks. These models
include Random Boolean Networks [1]], Boolean Networks
with perturbation (BNp) [23]], Probabilistic Boolean Networks
(PBN) [2], and Boolean Control Networks (BCN) [24]. All
aforementioned methods assume that the transcriptional states
of genes are directly observable. However, in practice, the
Boolean gene states are never observed directly, but only
indirectly and incompletely through noisy measurements based
on expression technologies such as cDNA microarrays [25],
RNA-Seq [26], and cell imaging-based assays [27].

The partially-observed Boolean dynamical systems
(POBDS) signal model [3]], [28] generalizes and unifies the
existing Boolean network models by allowing stochasticity
in both state and measurement processes. Several tools
have been developed in recent years for this signal model,
including the optimal minimum mean-square error (MMSE)
state estimators called the Boolean Kalman filter (BKF) [3]],
[28] and Boolean Kalman smoother (BKS) [29], particle
filters for state and parameter estimation [30], adaptive
filters for simultaneous estimation of state and parameters of
POBDS [3]], network inference [31]], sensor selection [32] and
optimal filter with correlated observation noise [33]. Most
of these tools are freely available through an open-source R
package called “BoolFilter” [34], [35]].

Several strategies have been developed for control of
gene regulatory networks [[14], [23]], [24], [36]—[38]. Infinite-
horizon controllers for the POBDS model under various con-
straints have been introduced in [39[]-[42]]. All aforementioned
methods assume that the undesirable conditions (e.g., identity
of genes associated with tumor growth) and the cost of
intervention (e.g., the severity of side effects and amount of
financial cost) are fully known. For instance, in the case of
the melanoma regulatory network discussed in Section [IV]
this information includes the undesirability of activation of
the WNTSA gene, which has been known to be associated
with metastasis. Given this information, which is referred to
as immediate cost function, one seeks to obtain an interven-
tion strategy to avoid states where WNTSA is upregulated.
However, in practice, the immediate cost function might be
unknown or partially-known, and one needs to estimate this
cost function before deriving an intervention strategy. In this
paper, we consider a realistic scenario in which a sequence
of interventions performed by an expert (e.g., a physician
or biologist) and associated gene-expression data is available.
This sequence is assumed to convey the near-optimal behavior
of the expert in an experimental setting. Given this informa-
tion, the objective is estimating the immediate cost function



reflecting the undesirability of transcriptional states vis-a-vis
the cost of the intervention itself.

In this paper, we employ inverse reinforcement learning
(IRL) [44] to achieve that objective. There exist many vari-
ations of basic IRL [45]-[48]]. Our proposed methodology is
based on Bayesian inverse reinforcement learning (BIRL), due
to its flexibility and accuracy [45]]. However, there are two
main issues that need to be overcome in order to apply BIRL
for finding the immediate cost function of partially-observed
GRNS:

« The transcriptional states of the genes are not observed di-
rectly, but only indirectly through noisy gene-expression
data.

« BIRL requires multiple applications of computationally-
expensive dynamical programming algorithms, such as
value iteration or policy iteration [49], to large state
spaces common in GRNs.

To overcome the first issue, the Boolean Kalman smoother
(BKS) [29] is used for optimally mapping the available gene-
expression data into a Boolean state trajectory to be used by
the BIRL. To address the computational issue, we proposed the
use of the Q-learning algorithm [50]] as an approximation of
the optimal dynamic programming solution. We demonstrate
the application of the proposed method with numerical exper-
iments using synthetic expert interventions given a sequence
of transcriptional data generated from two GRN models: a
melanoma WNT5A Boolean network [37]] and a p53-MDM2
negative feedback loop Boolean network [S1]]. The immediate
cost function is learned under two different partial knowledge
cases, and the effectiveness of the proposed methodology is
demonstrated by using it in the design of a simple state-
feedback controller to shift the dynamics of the network away
from states associated with metastasis.

The article is organized as follows. In Section [} the infinite-
horizon control problem and the POBDS state and observa-
tional models are briefly introduced, after which the Boolean
Kalman smoother (BKS) algorithm is reviewed. In Section
the proposed Bayesian inverse reinforcement learning for
quantification of the immediate cost function is presented
in detail. Numerical experiments using the melanoma gene
regulatory network are reported and discussed in Section
Finally, Section [V] contains concluding remarks.

II. MATHEMATICAL PRELIMINARIES
A. Infinite-Horizon Control

A gene regulatory network containing d genes is described
by a state process {X;;k = 0,1,...}, where X; € {0,1}¢
represents the activation/inactivation state of the genes at
time k. The state of the genes is affected by a sequence of
control inputs {ug;k = 0,1,...}, where uy, takes values in
a finite set U. Let ¢(X,ux) be a bounded immediate cost
of applying control input u; when the state of the system is
Xj. The infinite-horizon cost associated with an initial state
x € {0,1}¢ is defined as:

J(x) = E kac<ka<xk>>|xo=xl, (1)
k=0

where 7 : {0,1}% — U is a (stationary) control policy that
prescribes a control input for each Boolean state, 1I is the
space of all possible control policies, and the discount factor
places a premium on minimizing the cost of early interventions
as opposed to later ones, which is sensible from a medical
perspective [36]. Given an initial state x € {0, 1}, the goal
of infinite-horizon control is to find an optimal policy 7* such
that J*(x) %' J™" (x) < J™(x), for all 7 € II.

According to the theory of dynamic programming [49],
the optimal value function satisfies the following Bellman
equation:

JH(x) = 15161%1 [e(x,0) + 7 Expeu [T5(X)]] ()
where the expectation Ey/|y,, is taken over all successor
Boolean states x’ € {0, 1}¢ if the current state is x € {0,1}¢
and control input u € U is taken.

An equivalent convenient way of representing the cost
function under policy 7 is to use the joint Boolean state and
intervention spaces:

Q" (x,u)

= FE |¢(Xo,u9) + Z'yrc(Xr,Tr(XT)) )Xo =xX,ug = u] ;

r=1
3)
for x € {0,1}¢ and u € U. The Q-function Q7 (x,u) is
the expected return when starting from state x, applying u,
and following 7 thereafter. This cost function satisfies the
following Bellman equation:

Q" (X7 u) = C(Xa u) + Ex/lx,u [Qﬂ (le W(X/))] ;@

where Ey/ x4 and x’ are as before.
The optimal Q-function can be computed by searching over
the set of all possible policies II as:

Q"(x,u) = minQ"(x,u), )
which will lead to the following optimal policy:
(%) = argmin Q" (x,u), (©6)
uclU

for x € {0, 1}<.

B. POBDS State Model

The state process {Xy;k =0,1,...} is assumed to satisfy
the following nonlinear first-order Markov signal model:

X; = f(kal) @© up—1 O ng, )

fork =1,2,..., where f : {0,1}¢xU — {0,1}¢ is a Boolean
function, called the network function, n;, € {0,1}% is Boolean
transition noise, and “@®” indicates componentwise modulo-2
addition, which acts as a componentwise XOR operator. For
example,

0 0 0
Ofe |1] = 1. (8
1 1 0

Hence, the manner in which the control input influences
state evolution is that if ug_1(i) is one, it flips the value



of the ith bit of the Boolean state Xj. In practice, control
would be accomplished by means of drugs targeted at those
genes. The noise process {ny;k = 1,2,...} is assumed to be
“white” in the sense that the noises at distinct time points are
independent random variables. We also assume that the noise
process is independent of the initial state X,. We assume
that the components of the vector nj; are i.i.d. (the general
non i.i.d. case can be similarly handled, at the expense of
introducing more parameters), with P (ng(i) = 1) = p, for
i = 1,...,d. Parameter 0 < p < 1/2 corresponds to the
amount of “perturbation” to the Boolean state process; the
case p = 1/2 corresponds to maximum uncertainty.

C. POBDS Observation Model

The states are observed indirectly through noisy gene-
expression data. The latter constitute the observational layer
of the POBDS model. In this paper, we assume a Gaus-
sian observational model, which is an appropriate model for
many important gene-expression measurement technologies,
such as cDNA microarrays [25] and live cell imaging-based
assays [27], in which transcript measurements are continuous
and unimodal (within a single population of interest).

Let Yr = (Yi(1),...,Yg(d)), where Y (j) is the abun-
dance measurement corresponding to transcript j, for j =
1,...,d, at time k, for £k = 1,2,... We assume conditional
independence of the transcript measurements given the state:

p(Yr =y | Xg =x)

a , ‘ ‘ , )
= [1r(Yu() = y(5) | X () = x(5)) .
j=1

and adopt the Gaussian model:
p(Yi(5) =y(4) | Xi(5) = x(4))
- e (_(Y(j) - mj)2> . a0

2
27‘(0']2» 2 g;

where m; and o; > 0 are the mean and standard deviation of
abundance of transcript j, respectively, for j = 1,...,d, such

that ] ,
m; = mjo (1 —x(j)) + mj1x(j),

o; = o0 (1=x(j5)) + o;1x(j),

where the parameters (m;o,0j0 > 0) and (m; 1,051 > 0)
are the means and standard deviations of the abundance of
transcript j in the inactivated and activated states, respectively.

» X;_1(1) AND Xs_1(2)
@Z@ FXe) = |7 )

Fig. 1: Simple system with 2 genes.

(11)

D. POBDS Example

In this section we present a simple example of a POBDS
model and cost structure, which illustrates the concepts in-
troduced in the previous sections. Fig [I] depicts the state

model for a simple GRN containing 2 genes. In this case,
there are 4 possible Boolean states: x!' = (0,0)7,x? =
0,17, x3 = (1,0)7,x* = (1,1). The Boolean state X, at
time k£ can assume any of these 4 values. It is obtained from
the previous state Xj;_; (in the absence of an external input
uy, ) as follows: X (1) is equal to Xj_1(1) AND X;_1(2)
with probability 1 — p, or its complement, with probability
p, while X (2) is equal to X;_1(2) with probability 1 — p,
or its complement, with probability p. The observation on
the state are given by Y,(j) ~ N(mjo (1 —Xi(j)) +
mj1 Xp(5), 070 (L= Xi(5)) + o7, Xp(5), for j =
1,2,3,4; where N'(u,0?) represents a Gaussian distribution
with mean g and variance 2. The control input flips the
state value of a gene in the next time point. For instance,
to flip the value of first gene at time step k, one needs to
apply the control input u;_; = (1,0)7. If we assume that
at most one gene can have its value flipped at each time
point, the space of control is U = {u! = (1,0)7,u? =
(0,1)T,u® = (0,0)7'}. Assume that the activation of the first
gene is undesirable, with a unit cost incurred whenever it is
active. Assuming further that the cost of applying any control
input is zero, the immediate cost function in this case is given
by c¢(x!,u) = 0,¢(x%,u) = 0,¢(x3,u) = 1,c(x*,u) = 1,
for any u € U. It is easy to show that, for p < 0.5, the
optimal stationary policy for the various states is as follows:
(x!) = 7% (x?) = ud, 7" (x3) = wd, " (x?) = u In
other words, the optimal control input when the state of the
system is x* is u?, and for all other cases, it is u?.

E. Boolean Kalman Smoother

Given a sequence of control inputs ug.r and measurements
Y 1.7, the optimal (fixed-point) smoother is an estimator Xy
of the state X}, that minimizes the mean-square error (MSE):

MSE(XMT |110:T7 Yl:T)

o 9 (12)
=F [HXle — Xill3 | vor, Yir|

where ||.||2 is the usual Ly vector norm. It has been shown
that the optimal smoother is given by [3|:

Xl;l/‘[; = E[Xy |uor, Yir], (13)
where V(i) = I,(;y>1/2 for i = 1,...,d. This estimator is
called the Boolean Kalman smoother (BKS) [3], [29]. We
briefly outline an iterative algorithm for exact computation of
the BKS below.

Let (x!,...,x2") be an arbitrary enumeration of the possi-
ble state vectors, and define the state conditional probability
distribution vectors Iy, and Ay, of length 2¢ via:

Hk\r(i) =P (Xk =x' | Yl:rau0:r—1) ’

. Z. (14)
Ak‘,,n(l) =p (Yr+1:T ‘ Xy =x ,ur+1:T—1) )

fori=1,..,2¢% r=1,2,..,T, r<k.



Let the controlled transition matrix be a matrix of size 2% x
2¢ given by:

(My(n))ij = P(Xp =x"| X1 =x7,u4_1 = u)

= P(nk = f(xj)@u@xi) (15)

= plfH @uexh (1 _ p)d-llf) Sudx'|ly

)

for 4,5 =1,...,2% and a control input vector u € U.
Additionally, let the update matrix be a diagonal matrix of
size 2¢ x 27 with diagonal elements given by:

(Te(Y1)y; = p (Y | Xp =x")
ﬁ 1
d

& (YrG) = myo (1= X(5) —mya X))
Z 2 (0,0 (1 —x(j)) + 051 x(5))

j=1
(16)
for i = 1,...,2¢ and an observation vector y € R<.
Finally, let A be a matrix of size d x 2% containing all
Boolean states of the system as:

A= [x1~-~x2d}. (17)
It is easy to verify that E'[X} | ug.r, Y1.7] = AIlyp, so it
follows from (T3) that:

X7 = Az (18)

The complete procedure for computation of the BKS is given
in Algorithm Notice that “o” denotes the “Hadamard”
product.

III. BAYESIAN INVERSE REINFORCEMENT LEARNING FOR
QUANTIFICATION OF THE IMMEDIATE COST FUNCTION

In this paper, we consider the realistic case where the im-
mediate cost function ¢(x,u) is unknown or partially-known,
and must be learned from a sequence of noisy gene-expression
measurements and control inputs taken by an expert:

D = {ﬁO:TlezT} .

We assume the expert to be imperfect, which means we are
provided with a noisy sample of the ideal expert’s policy;
therefore, both the sample inputs and observations are random
variables (we do not capitalize 0. for conformity with the
notation for ordinary control inputs).

The main components of the proposed methodology are
described next.

19)

A. Bayesian Inverse Reinforcement Learning

The Inverse Reinforcement Learning (IRL) method was
introduced in [44], followed by several variations of it [45]—
[48]]. Due to the availability of prior biological knowledge, we
employ the Bayesian version of IRL proposed in [45].

Let the uncertainty in the immediate cost function be rep-
resented in a parametric form as c¢g(x, u), where 0 is a vector
of parameters in an arbitrary space O. It should be noted that

Algorithm 1 BKS (ug.7, Y1.7)

Forward Probabilities:
1: Initialization: (ILg0); = P (Xo =x'), fori=1,...
2: fork=1,...,7T do
3: Prediction: TIyj—1 = My (up—1)Ip_qp_1.
4: Update: 3, = Tr(Yr) Iyjp—1.
5: Normalization: Iy, = B, /||84][1-

6: end for

Backward Probabilities:

7. Arir = Laa.

8: for k=TT —1,...,1do

9: Update: Agjp—1 = Te(Yi) Ags -

10: Prediction: Ag_y5—1 = My (up—1)T Aplp—1-
11: end for

Optimal State Estimation:

12: Initial Smoothed Posterior Distribution:

Iy = (Tojo © Agjo)/[[Tojo © Agjoll1 -

13: Initial Smoothed Estimate of State: Xgﬁ = Allyr.
14: for k=1,...,T do
15: Smoothed Posterior Distribution:

Hk|T = (Hk|k71 o Ak\k—l)/HHk\kfl © Ak|k—1Hl-

16: Smoothed Estimate of State: Xl,:{& = Allyr .

17: end for

Return (XOM%T)

this parametric representation does not impose any limitation
on the form of the immediate cost function. For instance, if
no prior information on the immediate cost function exists, 6
will be a vector of size 2¢ x |U|, the elements of which are
the costs for all possible states and control inputs.

The optimal Q-function in (5) under the immediate cost
function specified by 6 will be denoted by Q0 (x, u). Assuming
the Boltzmann softmax policy [52], we have

P(u|x,0) oc exp(—nQp(x,u)) , (20)
for x € {0,1}¢ and u € U; where 7 > 0 represents our
confidence on the expert’s decision. The smaller the value of
7, the more “imperfect” the expert is expected to be.

Now, applying the Boolean Kalman smoother (BKS) in

Algorithm [I| to the expert’s sequence in (I9) produces a
sequence of estimated Boolean state vectors:

- - BKS = ~ S
D = {up.r,Yi.r} — D = {to.r,Xor}. (21
Assuming 1) a first-order Markovian structure for XO;T (as in

the POBDS model) and 2) that the input control U depends



only on Xk and not on previous states, for k£ =0, ...,7’; then
it is easy to verify that the data joint likelihood is given by:

T
P(D|6) = P(Xo.r) H P(a, | X,,0)
r=0
T  exp (—77 Qs (X, flr)) 22

= P(Xo.1) EO Sy exp (_77 QX u’)) :

We adopt the posterior mean 6 = E[f | D] as the estimator
of the parameter vector 6. It is shown in [45] that this provides
the best estimator in the sense of closeness of the estimated
immediate cost function and policy to the expert’s immediate
cost function and policy. Due to the Bayesian nature of the
estimation process and the fact that the closed-form expression
for computation of the likelihood in @ does not exist, we
approximate E[f | D] using a simple Markov chain Monte
Carlo (MCMC) technique [45]).

Given the current parameter vector ¢, in the rth iteration
of the MCMC method, a candidate 6 for the next iter~ation is
chosen from the neighbors of 6,., in such a way that 6 differs
from 6, only in a randomly selected element :

o fe.G) +
o) = {mi) _y

with prob. 0.5,

. (23)
with prob. 0.5,

where §; > 0 is the search step-length for the ith element of
0, and 0(5) = 0(j) for j # i.

The next MCMC sample is found using the Metropolis-
Hastings step:

6
er 1 =
A= {0

After discarding the first M samples, the posterior mean is
approximated as:

P(D|9) P(0) }

W-p- min{l’ P(DI0,) P(6,)

(24)
0.W.

M+N

s 1

i=M+1

(25)

For a good approximation, both M and N need to be
sufficiently large, and computation of each MCMC sample
requires dynamic programming for evaluation of the optimal
Q-function in (22)). This makes the MCMC process intractable.
In the next section, a procedure to address this using the Q-
learning algorithm is described.

B. Q-learning

Q-learning [50] is a model-free reinforcement learning
technique, which is used here to speed up the computation
of the MCMC step in the previous section by obtaining an
approximation of the optimal Q-function. The latter is learned
based on the simulated data generated from the state model:
assume that in the nth step of the Q-learning algorithm, the
system is in state x, and by applying a control input u, the
system moves to state x’ in step n + 1. All elements of Q-
function at time n + 1 will be the same as time n, except the

element corresponding to state x and control input u which
is updated as:

Al g (x,a)

x,u) = (1 — a,(x,u))
+ aniu) () +9 min Q3w )

(26)
where 0 < a,(x,u) < 1 is the learning rate for state x at
episode n when control input u is applied to the system. It
has been shown that for proper choices of the learning rate,
the solution of the Q-learning method converges to the optimal
solution @3 as n — oo [50].

Several methods to select the learning rate for Q-learning
have been proposed in literature. Here, we follow [38], in
which the learning rate is assumed to be a function of a
parameter 0 < C' < 1 and the number of visits to each state
and control input during the learning process. The complete
procedure is presented in Algorithm 2] The only parameters
which need to be set are the maximum number of iterations
n™2* and the parameter C.

Algorithm 2 Q-learning (6)

1: Initialization Step: Set 0 < C < 1, n™, and initialize
Qo(x?,u) =0, v(x?,u) =0, for j =1,...,2% and u € U.

2: Select an arbitrary initial state x”.

3: for n =0,...,n"* do

4: Select randomly u from U.

5: Find successor state: x° = f(x?) ® u ® n,,.

6: Update visiting counter: v(x?,u) = v(x’,u) + 1.
7: Update learning rate: o = ﬁ

8: Update Qo (x7, u):
Qg(xj,u) =(1-w Qg(xj,u)
(ot gyt
u'e
9: J 1.
10: end for
Return (Qq(x*,u),i =1,...,2¢,u € U)

C. The Proposed Algorithm

A schematic diagram of the proposed Bayesian inverse
reinforcement learning (BIRL) method is presented in Fig. [2]
First, the noisy expert’s sequence D = {ﬁo;T,Yl;T} is
mapped to a sequence D = {i1g.7, Xo.7} using the Boolean
Kalman smoother (BKS). Then, the MCMC iteration starts
by first drawing an initial sample from the prior distribution,
0o ~ p(0), the Q-learning algorithm is run for approximation
of the optimal Q-function Q;o, and the unnormalized posterior
po = P(D | 6y) p(6) is computed. The iteration proceeds as
follows: at the (r 4 1)th step, the next candidate parameter
vector 0 is generated randomly around the previous sample
6, using the process presented in (23). The unnormalized
posterior probability p® is computed using the results of the
Q-learning algorithm tuned to 6. Finally, the unnormalized

posterior probability for 6 and the previous unnormalized
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Fig. 2: The schematic diagram of the proposed Bayesian
inverse reinforcement learning (BIRL) for quantification of the
immediate cost function.

posterior probability specify the next MCMC sample based
on (24). The process continues for N 4+ M steps, where the
first M steps yield the discarded burn-in samples, and the
parameter estimator 0 is computed by the sample mean in
(25). The complete procedure is displayed in Algorithm [3]

IV. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed method-
ology is investigated by applying a state-feedback controller
to two important Boolean models of GRNs: a Melanoma
WNTS5A Boolean network [37] and a p53-MDM2 negative
feedback loop Boolean network [51]]. To the best of authors’
knowledge, this paper is the first paper discussing estimation
of the immediate cost function for GRNs and as a result no
comparison have been made in the numerical experiments.

A. Performance Evaluation Based on a Melanoma Network

In this section, we demonstrate the performance of the pro-
posed Bayesian inverse reinforcement learning methodology
by simulating the expert’s sequence D = {ﬁo;T,YLT} from
a Boolean model for a gene regulatory network implicated
in metastatic melanoma [37]] and learning the immediate cost
function under two different partial knowledge cases. We also
demonstrate the effectiveness of the proposed methodology by
using it in the design of a simple state-feedback controller to
shift the dynamics of the network away from states associated
with metastasis.

The network contains 7 genes: WNTSA, pirin, S100P,
RET1, MART1, HADHB and STC2. The regulatory
relationship for this network is presented in Table |l The ith
output binary string specifies the output value for the ith
input gene(s) in binary representation. For example, the last

Algorithm 3 BIRL: Bayesian Inverse Reinforcement Learning
for Quantification of the Immediate Cost Function

1: Set step-length parameters J;, for i = 1, ..., |6)].
Sequence Mapping:

2: Map the noisy expert’s sequence D = {910.7, Y1.7} to a se-
quence D = {uo.7, Xo.7} using the Boolean Kalman smoother
(Algorithm [T):

D= {flO:T,\?l:T} B8 D= {ﬁO:T,XO:T}~

Initial Sampling:
3: Draw a sample from prior 6y ~ p(6).
Q-Learning:
4: Run Q-learning tuned to the initial parameter vector 6o:
Qp, + Q-Learning(6o)

Posterior Computation:
5: Find the initial unnormalized posterior probability:

o T (-n@s, (X 0,)
) r=0 Zu ey €XP (*"7 Q;O (Xm u’)) .

MCMC Process:
6: fori=1,.... N+ M do
7: Select a random index [ € {1, ...,
~ 9i71(l) + & Ww.p. 0.5
8: Set 0(1) =
N ( ) {911(1) — (51 0.W.

9: Run Q-learning tuned to the candidate of parameter 6:

101}
L 0() = 0i-1(5), J#L

Q% + Q-Learning(9)
10: Find the unnormalized posterior probability of parameter o:
5 ﬁ exp (*nQE(Xmﬁr))
_— D E[UeXp( Q5 (X, ))

(0,0")
(Qi—l,pz‘—ﬂ

o)

11: Set (0, pi) = wp- mln{

12: end for

Immediate Cost Function Estimation:

—

3: The BIRL estimate of parameter:

M+N

row of Table [I] specifies the value of STC2 at current time
step k from different pairs of (pirin, STC2) values at previous
time step k — 1:

(pirin=0, STC2=0);,_; — STC2;,=1
(pirin=0, STC2=1),_; — STC2;,=1
(pirin=1, STC2=0);,_; — STC2;,=0
(pirin=1, STC2=1),_; — STC2,=1

In the study conducted in [53]], the expression of WNTSA
was found to be highly discriminatory between cells with prop-
erties typically associated with high metastatic competence



TABLE I: Boolean functions for the melanoma WNT5A gene
regulatory network.

Genes Input Gene(s) Output
WNT5A  HADHB 10

pirin pirin, RET1, HADHB 00010111
S100P S100P, RET1, STC2 10101010
RET1 RET1, HADHB, STC2 00001111
MART1  pirin, MART1, STC2 10101111
HADHB  pirin, S100P, RET1 01110111
STC2 pirin, STC2 1101

versus those with low metastatic competence. Furthermore,
[54] suggests that WNTSA activation be reduced indirectly
through control of other genes’ activities. The reason is that an
intervention that blocked the WNTSA protein from activating
its receptor, could substantially reduce WNTSA’s ability to
induce a metastatic phenotype. For more information about
the biological rationale for this, the reader is referred to [37].

Fig. 3: Melanoma WNTS5A gene regulatory network

In our numerical experiments, the intervention is applied to
either RET1 or HADHB. As the goal of control is to prevent
WNTS5A to be upregulated, we assume the following reference
immediate cost function:

5+ [ully
C(X’“){ T

if WNT5A is 1 in state x, @7
if WNT5A is 0 in state x.
The observed data D = {ﬁO:TaYl:T} is simulated by 1)
obtaining a realization {Xq.r, 0.7} according to the state
process (7), corresponding to the melanoma gene regulatory
network, with the following expert’s intervention policy:
@, = argmin exp (—" Q" (Xs, 1)) | (28)
uclU
for £k = 0,...,T, where n* = 15 and @Q* is the optimal
Q-function computed based on the immediate cost function
in (27), and the control input space is either

URETL — £(0,0,0,1,0,0,0),(0,0,0,0,0,0,0)},  (29)
or

UHAPHE — £(0,0,0,0,0,1,0),(0,0,0,0,0,0,0)}, (30)

TABLE II: Parameter values used in all experiments with the
melanoma WNTS5A network.

Parameter Value
Number of genes d 7
Transition noise intensity p 0.01, 0.05
Initial belief ITg|o(é), 4 = 1,...,128 1/128
Expression mean m?, m;,j =1,...,7 40, 60
Expression standard deviation og = crjl., j=1,...,7 10, 20
Discount factor ~y 0.95
MCMC iteration N 100,000
MCMC burn-in sample size M 1,000
Expert confidence 7 0.1, 1, 10
‘ nmax = 106
Q-Learning parameters C—08

depending on whether the control gene is RET1 or HADHB,
respectively; and 2) generating Y..r from Xo.r using the
POBDS observation model in (9)—(I0). It should be empha-
sized that (28) is only a simulation of the expert’s intervention,
since in practice the expert would not have access to the true
state process. In this simulation, the accuracy of the expert’s
policy can be controlled by varying the parameter n*, with
larger values rendering more accurate policies.

In all the numerical experiments, we assume the same
fixed set of values for the system parameters, summarized
in Table [l All average results presented in the numerical
experiments are computed over 1000 independent runs.

In the sequel, we consider different scenarios for the avail-
ability of prior knowledge about the immediate cost function,
and apply the proposed cost function estimation method using
the expert’s sequence.

1) Case 1: Known Undesirable Gene with Unknown Sever-
ity: Here, we assume that the undesirable gene WNTSA is
known. However, the cost (severity) of activation of WNTS5A
versus the cost of intervention is not known. Therefore, the
immediate cost function is modeled as:

0+ [[ull1
[[al[;

if WNT5A is 1 in state x,

if WNTS5A is O in state x, (3D

co(x,u) = {
where the parameter 6 denotes the unknown cost of activation
of WNT5A; contrast to (27).

The RET1 gene is used as the control gene and the process
and measurement noises are assumed to be p = 0.01 and
0'.(7-) = le- =5, j =1,...,d, respectively. The average absolute
difference between the estimated parameter 6 computed by
the proposed IBRL method (Algorithm [3) and the reference
parameter 6* = 5 for various choices of 7 and different
lengths of expert’s sequence 7" is displayed in Fig. 4 The
prior probability for 6 is: 1) uniformly distributed between 0
and 7 in Fig. f{a), 2) normally distributed with mean 4 and

standard deviation 1 in Fig. f[b). One can see that the average
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Fig. 4: Average absolute difference between the estimated parameter 0 and the reference value 0% = 5 for (a) 6 ~ uniform[0, 7],

and (b) 6 ~ N (4,1), for the melanoma WNT5A network.

difference is converging to zero as the length of the expert’s
sequence increases. Since the expert policy is modeled using
n* = 15 in (28), the average difference is smallest for the
closest value of 7 to that, namely, = 10. One can also see
that performance is better with a Gaussian prior in comparison
to the uniform one. The reason is that the thin Gaussian prior
makes the MCMC iteration more efficient than the uniform
prior.

2) Case 2: Unknown Undesirable Gene and Severity: In
this case, we assume that both the undesirable gene (WNT5A)
and cost of activation are unknown. The immediate cost
function is thus modeled as:

co(x9,u) = 01%7 (1) + Oox7 (2) 4 03x7 (3) + 04%7 (4) + |[u]1,

(32)
where 0 = (01, 02,05,60,). From , the reference value is
6* = (5,0,0,0).

The noise intensities are set to p = 0.01 and 0§ = o} = 5,
and the prior for all components of 6 is uniform between 0 and
6, independent of each other. The average absolute difference
between the estimated parameter vector and the reference
vector is displayed in Fig. [5] As expected, the performance
of the proposed BIRL method improves steadily as the length
of expert’s sequence and the parameter 7) increase.

3) State-Feedback Controller with Unknown Immediate
Cost: In this section, we demonstrate the application of the
proposed method in the design of a simple state-feedback
controller, namely the V_BKF controller [39], [42], to shift
the dynamics of the melanoma network away from states
associated with metastasis.

In fact, after quantification of the parameters of the imme-
diate cost function using the proposed method, any controller
can be designed for either finite or infinite horizon control of
the partially-observed GRN. We select the V_BKF controller
here for its simplicity.

The V_BKF is based on the Boolean Kalman filter (BKF)
and the stationary policy of the underlying Boolean dynamical
system. During the execution process, the BKF computes
the optimal MMSE estimation of the Boolean state using all
available control inputs and measurements. The estimated state
is then treated as the true Boolean state for choosing the
control input based on the computed control policy for the
underlying Boolean dynamical system. For more information
about this method, the reader is referred to [39], [42].

The cost parametrization in (31)) is used in this experiment.
The performance of the state feedback controller (V_BKF)
with unknown and known immediate cost function as well as
the system without control are compared. Table [l1I| shows the
average cost per step over 10,000 time steps achieved by the
various methods. Three different expert’s sequence lengths are
considered here: T' = 10,7 = 50, and T = 100, and RET1
and HADHB are both considered as the control genes.

We can observe that the performance of the V_BKF with
unknown immediate cost function is better for larger expert’s
sequence lengths, since the parameters of the immediate cost
function can be estimated more accurately, leading to better
controller performance. For large process and measurement
noise intensities, the performance decreases in all cases. This
reduction is more obvious for a system with unknown cost
function and particularly small expert’s sequence length. This
can be justified based on two main facts: 1) the error of
the Boolean Kalman smoother (BKS) for mapping the noisy
gene-expression data to Boolean state trajectory for estimating
the immediate cost function decreases under large process
or measurement noise; 2) the V_BKF is a state-feedback
controller, the performance of which strongly depends on
the accuracy of estimation by the Boolean Kalman filter.
The underlying Boolean dynamical system is less identifiable
in the presence of large measurement noise, which makes
the estimation task more challenging as well. Therefore, the
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TABLE III: Average results for state-feedback controller with both known and unknown immediate cost functions, for the

melanoma WNTS5A network.

V_BKF with Unknown Cost

Control p o)=oj T=10 T=5 T=100 V_BKF No-Control

10 0.57 0.21 0.18 0.15
0.01 2.28

20 0.98 0.32 0.29 0.25

RET1 10 1.12 0.83 0.79 0.73
0.05 2.33

20 1.71 1.17 1.10 0.99

10 0.97 0.56 0.49 0.45
0.01 228

20 1.33 0.99 0.91 0.83

HADHB 10 1.82 1.38 1.29 1.20
0.05 2.33

20 2.09 1.75 1.62 1.48

policies obtained by V_BKF become less accurate under large
noise conditions.

Moreover, from the results of Table [III, one can see that the

RET1 gene seems to be a better control input than HDHAB for
reducing the activation of WNTSA, in terms of lower achieved
cost.
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Fig. 6: Normalized histogram plots of observed states for the V_BKF method with unknown cost function and for the system

without control, for the melanoma WNT5A GRN.

Finally, Fig. [f] displays normalized histograms of observed
states using 10,000 time series with 1000 time steps each,
comparing the V_BKF and the system without control. For
this comparison, RET1 is used as a control gene and the
parameters are set to p = 0.01, 0 = 0j =5, j = 1,...,10,
T = 100. The histograms over desirable and undesirable states
are shown by blue and red colors respectively (recalling that
the undesirable states are those where WNTS5A is activated). It
is clear that the system under control of the proposed method
visited undesirable states less often than the system without
control.

B. Performance Evaluation Based on a p53-MDM?2 Network

In this section, we investigate the performance of the pro-
posed method on a Boolean model of the p53-MDM?2 negative
feedback loop gene regulatory network [51]. The p53 gene
codes for the tumor suppressor protein p53 in humans, and its
activation plays a critical role in cellular responses to various
stress signals that might cause genome instability [55]. The
gene regulatory network consists of four genes: ATM, p53,
Wipl, and MDM2, and the input “dna_dsb”, which indicates
the presence of DNA double strand breaks.

The pathway diagram for this network is presented in
the left plot of Fig. Normal arrows represent activating
regulations and blunt arrows represent suppressive regulations.
The Boolean function is represented by the following logic
functions:

ATM}, = WIP1,_; AND dna_dsb
p53, = ATMy_1 AND WIP1;_; AND MDM2;_,
WIP1; = p53,_,
MDM2; = (ATMy_; AND (p53,_, OR WIPl)_,))

OR (p53),_, AND WIP1;_1).

We can see that ATM is the transductor gene for the
DNA damage signal, which eventually activates p53, through
inactivation of MDM2. However, there is also a negative
feedback loop between p53 and ATM, through Wipl, so that

p53 is expected to display an oscillatory behavior under DNA
damage; on the other hand, under no stress, it is known that
all four proteins are inactivated in the steady state [S5].

The state transition diagram of the system under DNA
damage is shown in the right plot of Fig.[/| Five states are part
of the cyclic attractor of the system. When the system is in
the attractor, the process of DNA repair is in effect. However,
when the system gets out of attractor, the repairing process is
disturbed. Thus, in the DNA damage condition, the transient
states, which are the states not in the attractor, are all undesir-
able. Since the desirable states (the attractor states) are Ud®s =
{(1,0,0,0),(1,1,0,0),(1,1,1,0),(0,0,1,1),(0,0,0,1)}, we
assume the following reference immediate cost function:

c(x,u) = {5 +lully if x ¢ Ul

0.W.

(33)
[lully

for u € U and x € {0,1}%; where the control space U is
set to be U = {(0,0,0,0),(1,0,0,0),(0,1,0,0)}. The expert
sequence is created using equation with v* = 15.

In our experiment, we assume that the undesirable condition
(i.e. the identity of transient states) are known, but the intensity
of their undesirable outcomes is unknown. The immediate cost
function is thus modeled as:

) if des
ce(xﬁ,u):{9+|u|ll x ¢ U,

34
[|uf] if x € Udes | 4

where the reference value of 6 is 8* = 5. The parameters
are set to n = 10, v = 0.95, M = 1,000, N = 100, 000,
0'.(7-) = ajl» = 10, and the prior of # is assumed to be uniform
between 1 and 8.

The average percentage of time spent in desirable states
for the system under control of a state-feedback controller
with known and unknown immediate cost function, as well as
for the system without control, is presented in Table [[V] For
the system without control, the shortest average time spent in
desirable states is obtained in the presence of large process

noise, since in that case the system will transition out of its



Fig. 7: Activation/repression pathway diagram and state transition diagram corresponding to a constant input dna_dsb = 1
(DNA-damage) for the p53-MDM2 negative feedback loop Boolean network model.

attractor more often, leading to more undesirable transient
states being visited. As expected, the system spends more
time on average in desirable states under control with known
or partially-known immediate cost function, in comparison to
the system without control. In addition, as the length of the
expert’s sequence increases, the performance of the system
with unknown immediate cost function becomes closer to that
of the system with known immediate cost function.

TABLE 1IV: Average percentage of time spent in desirable
states (i.e. attractor states) for the p53-MDM2 GRN under
a state-feedback controller with both known and unknown
immediate cost functions.

V_BKF with Unknown Cost

D T=20 T=60 T=100 V_BKF No-Control
0.10 68 72 74 74 67
0.15 55 62 64 65 53
0.20 48 51 53 53 46

V. CONCLUSION

In this paper, a method for quantification of the expert
behavior required for control of partially-observed gene regu-
latory networks (GRNs) was proposed. The partially-observed
Boolean dynamical system (POBDS) signal model was used
for modeling the transcriptional data derived from the GRN.
Given a single timeline of interventions made by an expert and
the accompanying transcriptional data, the Boolean Kalman
smoother (BKS) was first employed to optimally map the
expert sequence to the smoothed Boolean trajectory. Then,
the Bayesian inverse reinforcement learning technique was
proposed in combination with the Q-learning method to ef-
ficiently estimate parameters of immediate cost function. The
ability of the proposed methodology to obtain a good control
policy was demonstrated by numerical experiments involving

models of important GRNs: a Melanoma WNTS5A Boolean
network and a p53-MDM2 negative feedback loop Boolean
network, observed through noisy gene expression data.
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