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Abstract—This paper is concerned with the problem of stochas-
tic control of gene regulatory networks (GRNs) observed indi-
rectly through noisy measurements and with uncertainty in the
intervention inputs. The partial observability of the gene states
and uncertainty in the intervention process are accounted for
by modeling GRNs using the partially-observed Boolean dynam-
ical system (POBDS) signal model with noisy gene expression
measurements. Obtaining the optimal infinite-horizon control
strategy for this problem is not attainable in general, and we
apply reinforcement learning and Gaussian process techniques to
find a near-optimal solution. The POBDS is first transformed to a
directly-observed Markov Decision Process in a continuous belief
space, and the Gaussian process is used for modeling the cost
function over the belief and intervention spaces. Reinforcement
learning then is used to learn the cost function from the available
gene expression data. In addition, we employ sparsification,
which enables the control of large partially-observed GRNs.
The performance of the resulting algorithm is studied through
a comprehensive set of numerical experiments using synthetic
gene expression data generated from a melanoma gene regulatory
network.

Index Terms—Infinite-Horizon Control, Gene Regulatory Net-
works, Partially-Observed Boolean Dynamical Systems, Rein-
forcement Learning, Gaussian Process.

I. INTRODUCTION

A key purpose of control of gene regulatory networks
(GRN:s) is to derive appropriate strategies to avoid undesirable
states, such as those associated with disease. GRNs play
a crucial role in every process of cellular life, including
cell differentiation, metabolism, the cell cycle and signal
transduction [1]]. Several models have been introduced in the
literature to mathematically capture the behavior of gene reg-
ulatory networks. These models include probabilistic Boolean
network (PBN) [2], Bayesian networks [3]], Boolean control
networks [4]] and ordinary differential equations (ODE) [5]—-
[8]]. Several intervention strategies have been also developed
for the control of GRNs; e.g. [9]-[11].

Most of the existing approaches assume that the Boolean
state of genes is directly observable. In the current paper, the
goal is to obtain appropriate intervention strategies to benefi-
cially alter network dynamics, while assuming that the GRN
is only indirectly observable through noisy gene expression
measurements. In addition, we assume that the intervention
input itself has uncertain effects. The signal model used in our
approach is the partially-observable Boolean dynamical system
(POBDS) model [12], [[13]]. Several tools for POBDSs have
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been developed in recent years, such as the optimal filter and
smoother based on the minimum mean square error (MMSE)
criterion, called the Boolean Kalman Filter (BKF) [[12]] and
Boolean Kalman Smoother (BKS) [14], respectively. In addi-
tion, particle filtering implementations of these filters, as well
as schemes for handling correlated noise, simultaneous state
and parameter estimation, and network inference for POBDSs
were developed [[13]], [[15]—[17].

In [18]], [19]], a state feedback controller for POBDSs is
proposed based on optimal infinite horizon control of the
Boolean state process, with the Boolean Kalman filter as state
observer. This method, which is called V_BKEF in this paper,
has similarities to the Q_MDP method introduced in [20] for
a general nonlinear state space model, which also does not
employ the belief space when obtaining the control policy.
Although this type of controller can be effective in some
domains, the obtained policies do not take informed control
action and might perform poorly in domains where repeated
information gathering is necessary [21f], [22]]. In addition,
the point-based value iteration method is used in [23] to
control POBDSs with finite observation spaces. However,
point-based techniques are only suitable for relatively small
state spaces [24]-[26].

In this paper, we transform the partially-observed Boolean
state space into belief space, which is a continuous observed
state space, and learn the optimal policy in this space. We use
the Gaussian process as a nonparametric technique to model
the cost function over both belief and intervention spaces,
and reinforcement learning is employed to learn the cost
function by collecting a finite set of sample points. It should
be noted that unlike parametric representation techniques in
which the uncertainty of the cost function is encoded in the
estimate of the parameters, nonparametric Gaussian processes
are Bayesian representation of the cost function, which yields
several benefits such as:

1) Prior knowledge about the cost in the belief and inter-
vention spaces can be easily used to increase the learning
rate.

2) The exploration/exploitation trade-off, which is a crucial
fact in the performance of any reinforcement learning
technique, can be easily addressed using the notion of
uncertainty that is provided by Gaussian process model.

3) The concept of risk can be taken into account in obtaining
a robust intervention strategy.

The above benefits will be discussed in detail throughout the
text.

The article is organized as follows. In Section the
POBDS model used in this paper is introduced. Then, the
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infinite-horizon control problem is formulated in Section[[II} In
Section [LV] reinforcement learning and Gaussian processes are
used for control of partially-observed GRNs. The sparsification
technique for control of large GRNS is discussed in Section [V]
Results of a numerical experiment using a melanoma gene reg-
ulatory network observed through synthetic gene expression
time series are reported and discussed in Section Finally,
Section contains concluding remarks.

II. POBDS MODEL

In this section, the POBDS model is briefly introduced. It
consists of a state model that describes the evolution of the
Boolean dynamical system, which includes the system input,
and an observation model that relates the state to the system
output (measurements). More details can be found in [12],
[13].

A. POBDS State Model

Assume that the system is described by a state process
{Xi;k = 0,1,...}, where X;, € {0,1}¢ represents the
activation/inactivation state of the genes at time k. The state
of the genes is affected by a sequence of control inputs
{ug;k = 0,1,...}, where u, € U = {0,1}", r < d,
represents a purposeful control input. The states are assumed
to be updated at each discrete time through the following
nonlinear signal model:

X = f (Xp—1,0p-1 B Vi—1) ® Ny, (1)

for k = 1,2,..., where f : {0,1}¢ x {0,1}" — {0,1}? is a
Boolean function called the network function, “®” indicates
componentwise modulo-2 addition, n; € {0,1}¢ is Boolean
transition noise, and v, is Boolean noise that makes the control
input uncertain. The noise processes {ny;k = 1,2,...} and
{vik;k = 0,1,...} are assumed to be “white” in the sense
that the noise at distinct time points are independent random
variables. We also assume that noise processes are independent
of each other and independent of the initial state X. The way
that the input influences state evolution is part of the function
f; typically, as will be the case here, each bit in the input ug_1,
if it is one, flips the value of a specified bit of the Boolean
state X. Note that, in some cases, an input bit will not have
any effect, since it may be reset by the corresponding bit in
the noise vj_1.

We assume a noise distribution where the bits in n; and
vy are ii.d. (the general non-i.i.d. case can be similarly
handled, at the expense of introducing more parameters),
with P(ng(i) = 1) = p and P(vi(j) = 1) = ¢, for
t = 1,...,d,j = 1,...,r. Parameters 0 < p,q < 1/2
correspond to the amount of “perturbation” to the Boolean
state and intervention processes, respectively — the cases
p=1/2 and ¢ = 1/2 correspond to maximum uncertainty.

Let (x!,...,x2") and (v!,...,v?") be arbitrary enumera-
tion of the possible state and intervention noise vectors. The

prediction matrix is the transition matrix of the underlying
controlled Markov chain, given by:

(Mg (u))i; = P(Xp =x"| Xpo1 =%, up_y = u)

2T
= Z PXp=x"|Xp_1=x),up_1=u,vjp_1 = v¥)
s=1

X P(vk—l = VS) (2)
2"
= Zql\u@v"*‘lh(1_q)rfuu@vsulpuf(xj,u@VS)@xinl
=1 ) )
’ X (1—p)d-lEudv) & x|k

)

fori,j=1,...,2% and given u € U.

B. POBDS Observation Model

In this paper, we assume a POBDS observation model
that corresponds to Gaussian gene expression measurements
at each time point. This is an appropriate model for many
important gene-expression measurement technologies, such as
cDNA microarrays [27] and live cell imaging-based assays
[28], in which gene expression measurements are continuous
and unimodal (within a single population of interest).

Let Yi = (Ygr(1),...,Yg(d)) be a vector containing the

measurements at time k, for £ = 1,2,.... The component
Y:(j) € R is the abundance measurement corresponding
to transcript j, for j = 1,...,d. We assume conditional

independency of the measurements given the state as:
P(Yk:y|Xk-:X)

d ) ) : , 3)
— H P(Y(5) = y(j) | Xk(§) = x(4)),

and adopt a Gaussian model,
P(Y(j) =y(J) | Xk(j) = x(j))

; 2
I S (_ (y(4) 2#;) > G
2m 07 20;
where p; and o; > 0 are the mean and standard deviation of
the abundance of transcript j, respectively, for j = 1,...,d.
According to the Boolean state model, there are two possible
states for the abundance of transcript j: high, if x(j) = 1, and

low, if x(j) = 0. Accordingly, we model y; and o; as:

pi = 1y (1=x() + p5x(5),
g = o (L=x(j)) + ojx(j),
where the parameters (1,09 > 0) and (u}, 0} > 0) specify
the means and standard deviations of the abundance of tran-
script j in the inactivated and activated states, respectively.
Based on equations (3), @) and (§), the update matrix,
which is a diagonal matrix of size 2¢ x 29, is given by:

(T(y))y = P (Yk =y | Xk = Xi)

(&)

d
1
=11
=12 (0 (L= xi(j) + ot xi(5))’ (6)
d . i/ 1oi/\\2
- Z(Y(J)( P =x'(j)) = ujx'(4))

2 (91 - x(5) + olxi(j)
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for i = 1,...,27 and observed y € R“. Typical values for
the parameters are given in Section when we discuss the
numerical experiments performed to evaluate the proposed
approach.

III. INFINITE-HORIZON CONTROL

In this section, the infinite-horizon control problem for the
POBDS model is formulated. The goal of control in this paper
is to select the appropriate external input u € U at each time
k to make the network spend the least amount of time, on
average, in undesirable states (e.g., states corresponding to cell
proliferation, which are undesirable, as they may be associated
with cancer [29]).

For the infinite-horizon control problem, we assume that
the system prediction matrix My (u) and update matrix T} (y)
can only depend on time through the control input u € U
and measurement y € R?, respectively. We will thus drop the
index k and write simply M (u) and T'(y).

Since the state of the system is not observed directly,
all available for decision making at each time step are the
observations up to current time yi.x = (y1,...,¥k), and the
control input applied to the system up to previous time step
ug.x—1 = (ug,...,ug—1). Rather than storing the history of
observations and control inputs, we record the probability of
states given that information at each time step. This probability
distribution is known as the belief state at time k, given by:

by (i) = P(Xy =x" | y1:k, Wok—1) 5 @)
for i = 1,...,2% The initial belief state is simply the initial
state distribution, bg(i) = P(Xy = x), for i = 1,...,29
Since 0 < b(i) < 1 and Zfil b(i) = 1, a belief vector by, is
a point in a (2¢ — 1)-dimensional simplex B, called the belief
space.

Assuming b is the current belief state of the system, if the
control input u is applied and observation y is made, the new
belief can be obtained by using Bayes’ rule as:

T(y) M(u)b
puy — L) MWwb ®)
IT'(y) M (u) bl|y
where || - ||; denotes the L;-norm of a vector. Thus, by using

the concept of belief state, a POBDS can be transformed
into a Markov decision process (MDP) with a state transition
probability in the belief space B, given by:

p(b | byu) = / IT(y) M(w) blls Tyr—pes dy,  (9)
yERd

where I/—puy is an indicator function which returns 1 if
b’ = b"¥ and 0 otherwise.

Now, let ¢(x%,u) be a bounded cost of control for state x*
and control input u, for i = 1,...,2% and u € U. The cost
can be transformed to belief space as follows:

2(1

g(b,u) =) c(x',u)b(i).

=1

(10)

The goal of infinite-horizon control is to minimize the follow-
ing cost function by choosing the appropriate control input at
each time step:

b0‘| )

where bg is the known initial belief state, and the discount
factor v places a premium on minimizing the costs of early
interventions as opposed to later ones, which is sensible from a
medical perspective [10]. The classical results proved in [30]]
for MDPs can be used here. For an infinite-horizon control
problem with discount factor «, the Bellman operator for the
belief space B can be written as follows:

Joo = E|> 7" g(br,ux) (11)

k=1

T13)(6) = miy oo 9 [ pb! [, 306

'eB
T Ml Iy .

(12)
Equation (12) denotes the Bellman operator required for
performing the dynamic programming technique for partially-
observed GRNs. However, since the belief b is in the (29 —1)-
dimensional simplex B, computing the Bellman operator
in (I2) for all belief points is not possible. It should be
noted that in the case of directly observed GRNS, the optimal
stationary control policy can be obtained by finding the fixed-
point solution of the Bellman operator in a finite state space
without the challenges presented by a continuous state space.
For more information see [10], [18]].

= min [g(b, u) + v/

yeR

IV. CONTROL USING REINFORCEMENT LEARNING AND
GAUSSIAN PROCESS

A. Q-function as a Gaussian Process

In this section, the cost function over belief and intervention
spaces is modeled using a Gaussian process. A policy is a
function 7 : B — U, which associates a control input to each
belief state. Given a policy 7, the discounted return for time
step k can be defined as:

o
Cy = Z V" 9Okttt Wptmt1)

m=0

13)

where C] is the total accumulated cost obtained over time
following policy 7. Note that C] can be written in a recursive
fashion as:

Cp = g(bry1,upt1) +vCpiq - (14)

Due to the stochasticity in belief transition, which arises from
stochasticity of state, observation and intervention processes,
the discounted return is a random variable which can be
decomposed into a mean Q™ (b, u) and a residual AQ™ (b, u),
for u € U, as:

CF(br = b,w, =u) = Q7(b,u) + AQ™(b,w), (15
where

Q"(b,u) = Ex[Cf [ by = b,u;, = u], (16)
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where the expectation is taken over all possible successor
belief state sequences that can be observed. Notice that the
mean and residual of the return are assumed to be independent
of k.

Replacing (I3)) into (I4)), the immediate cost can be written
as:

g(bpr1,up1) = Q" (bg,ur) — 7 Q(bry1, upy1)
+ AQ™ (by, ug) =y AQ™ (bgy1, Ug 1) -

Let By = [(b%u?),...,(b* u*)]T be the sequence of
observed belief states and taken interventions between time
steps 0 and k, under policy 7, we have:

g(b1,u1) = Q" (bg,ug) —vQ" (b1, m)
+AQ" (bo,ug) — vy AQ" (b1, u1),
g(b2,u2) = Q" (b1, w) — 7 Q" (b2, u2)
+AQ" (b1,u1) — v AQ™ (b2, uz),

a7

(18)

g(br,ug) = Q" (bg_1,up—1) —7Q" (by,uy)
+AQ" (bi—1,up—1) —YAQ™ (bk, uy).

The above equation can be written in a more compact form
as [31]:

cr = Hy Qp + Hy AQy, (19)
where
Cp = [g(blaul)a"'7g(bk7uk)]T7
2 = [Qﬂ(bOauo)a"'aQﬂ'(b/wuk))]Ta
AQZ = [AQﬂ(b(NuO)v"~7AQﬂ(bk7uk)]T7

1 —y ... 0 0 (20)
o 1 ... 0 O

H;, =
o 0 ... 1 —v

Due to the changes in the policy 7 during the learning
process, which will be addressed later in this section, @™ (b, u)
is a random variable. In order to specify a complete prob-
abilistic generative model connecting Q-function and costs,
one needs to define a prior distribution for the Q-function and
the distribution of AQ. A Gaussian process is a stochastic
process which allows the extension of multivariate Gaussians
to infinite-sized collections of real valued variables [32]. In this
paper, we use Gaussian processes for non-parametric Bayesian
representation of our cost function. The prior distribution of
the Q-function is defined as:

Qﬂ-(b’u) = gP (07k((b7u)7(b’u))) ) 21

where k(.,.) is a real-valued kernel function over both belief
and intervention spaces. In addition, we assume the residual
AQ is generated independently from a zero mean Gaussian
distribution as AQ™ (b, u) ~ N(0,07), where the variance o7
is to be determined.

The kernel function k(.,.) encodes our prior beliefs on
correlations between different points in belief and intervention

spaces. We consider kernels that decompose over the belief
state and intervention space as:

k((b,u), (b’ ,u')) = kg (b,b’) ky (u,u’) .  (22)

We employ the direct probabilistic representation of our
intervention process in defining the kernel function in the
intervention space as:

ko(uu) = M@l (1 grluewih 3

Notice that taking control input u consecutively affects the cost
function associated to all different u’ € U, forany 0 < ¢ < 0.5
where ¢ is the intensity of Bernoulli intervention process.

For the belief state kernel, we consider the well-known
exponential kernel function which has several features such
as being infinitely differentiable, which means that the GP
with this covariance function has mean square derivatives of
all orders, and contains a small number of parameters [32].
This kernel function can be represented as:

w12
kp(b,b’) = o} exp <—”bb”> , (24)

212
where aj% determines the prior variance and [ denotes the
correlation at different belief points (the large values of [
model more correlation of Q-function in the belief space). The
parameters U)2c and [ are to be determined.

It is worth mentioning that factorization in equation (22)
depends on the fact that the multiplication of two separate
kernels results in another kernel [33]].

Using the above assumptions, the posterior distribution of
Q7 (b, u) in equation can be obtained as [32]:

Qﬂ-(bv 11) | Ck, Bk ~ N (@(ba 11), cov ((b> u)v (bv u))) )
(25)
where

Q(b,u) = ky(b,w)"H} (H;K,H{ + o?H,H]) ' cx,
COV((ba ll), (b7 u)) = k‘l((ba u)> (b7 u)) - kk(b’ u)THg

(HK Hi + o;HH]) ™ 'Hykg(b,u),

(26)
with
ki (b,u) = [k((bg,ug), (b,u)),...,k((bg, u), (b,u))]%,
K(b,u) = [ki(bg,ug), ..., ki (b, u)]”.

27)

Using the above formulation, the Q-function before observ-
ing any data is a zero-mean Gaussian process with covariance
k((b,u), (b,u)), while at time step k, this posterior can be ob-
tained based on the sequence of costs ¢ and sequence of ob-
served beliefs and interventions By, = [(bg, ug), - . ., (bg, ux)]
using equation (25)). The uncertainty in the Q-function, which
is modeled by the covariance function in equation (23)), gets
small as more measurements are acquired.

The parameters of the Gaussian process such as the variance
o, and the kernel parameters o ¢ and [, can be updated at each
time point using maximum likelihood, given that the marginal
likelihood of the observed cost has the following distribution:

cr | Br ~ N (0,Hy (K, + 021HY)) (28)
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where I, is the identity matrix of size k x k. For more
information, the reader is referred to [32].

B. Learning the Q-function using GP-SARSA

The Gaussian Process Temporal Difference (GPTD) ap-
proach [34] is a modification of the well-known temporal
difference learning method, when the cost function over the
whole belief space is modeled by the Gaussian process and
the cost is learned based on samples of the discounted sums
of returns. A SARSA (State-Action-Reward-State-Action) type-
algorithm [35]], called GP-SARSA, estimates the Q function
using the GPTD method.

Defining appropriate exploration/exploitation strategies for
data collection has a major effect on the performance of re-
inforcement learning techniques. The exploration/exploitation
tradeoff specifies the balance between the need to explore
the space of all possible policies, and the necessity to focus
exploitation towards policies that yield lower cost. Several
policies are introduced in literature such as e-greedy and
Boltzmann [35]. In this paper, the following policy is used
for decision making [36]:

7(b) = argmin Q(b, u), (29)
uel
where Q(b,u) is a sample from

N(Q(b,u),cov((b,u),(b,u))), for u € U. Notice that
the exploration and exploitation trade-off of this policy
is fully-adaptive and no parameter should be tuned. The
GP-SARSA algorithm for control of partially-observed GRNs
is presented in Algorithm E} Here 0}, denotes a vertical
vector of the same size as vector v with all elements equal
to 0.

V. SPARSE APPROXIMATION OF GP-SARSA

The computational complexity of Algorithm [I] is of order
O(k3) at the time of observing the kth measurement. The
reason for this complexity is the need for computation of the
inverse matrix in the posterior update of GP in equation (25).
The growth of this computation over time can make the GP-
SARSA algorithm computationally infeasible, especially for
large POBDS, in which the need for more data for learning
Q-function seems essential.

Several techniques have been developed to limit the size of
the kernel during the learning process, such as kernel principal
component analysis (KPCA) [37]], novelty criterion (NC) [38]]
and the approximate linear dependence (ALD) method [34].
Here, we apply the ALD method, which constructs a dictionary
of representative pairs of beliefs and interventions online,
resulting from the approximate linear dependency condition
in the feature space [34].

A kernel function can be interpreted as an inner product of
a set of basis functions as:

k((bvu)a(bau)) = H(I)(bau) .(I)(bau)Hla (30)
where e denotes the dot product of two vectors and
<I>(b,u) = [¢1(b7u)7¢2(b7u)7~"]T' 3D

Algorithm 1 GP-SARSA: Control of POBDS

1: Initialization: ¢ < [].
2: for each episode do
3: b = bg.

4: if first episode then
S: Select u € U randomly.
6: B = (b,u), K + k((b,u), (b,u)), H=[1 —~].
7: else
8: Choose u « m(b) (Eq. 29)).
9: end if
10: for each step in episode do
11: b’:7‘|;%%$¥)H1,c’<—g(b’7u)7c<—[c,c’}.
12: if non-terminal step then
13: Choose new control u’ + m(b’) (Eq. 29)).
K k(b’,u’
14 I‘*"[k(bclﬂ)T k((b’,i@,(b27u®)}'
. ’oat _ H Ojj—1
15: B+ [B, (b,u),H= |:[0|7;|71 1 — }
16: else
) _ H
" oo ]
18: end if
19: Update Q-function Posterior Q™ | ¢, B (Eq. ).
20: if non-terminal step then
21: b+ b/ ,u<+ u.
22: end if
23: end for
24: end for
Given a set of observed beliefs and inputs
B = [(bg,up),...,(bg,ug)], any linear combination of
®(bg,up), ..., P(bk,ux) is referred to as a feature span.

The goal is to find the subset of points of minimum size that
approximates this kernel span. This set is called dictionary,
denoted by D = [(by,11),..., (b, @,,)] where D € B.

The ALD condition for a new feature vector ®(by, uy) is:
2

; Db 1) — <
min g 1 t; ©(b;,1;) — ®(bg,ug)|| <v (32)
1=
where (b, uy) is the current point, tx = [tr1,...,tem]” is

the vector of coefficients, v is the threshold to determine the
approximation accuracy and sparsity level, and m is the size
of the current dictionary, D = [(by, @), ..., (b, i,,)]. It is
shown in [39] that an equivalent minimization to that in (32))
can be written as:

min (k((br, wy), (bi, u)) = ki (b, u) ) < v, (33)

where
ki—1(bg, up) = [k((bg,ux), (bo, &), . . .,
k((bk7 uk)v (bm7 ﬁm))] .
The closed-form solution for minimization of equation (32) is
t, = Kl;ll ki—1(bg,ur) where Kj_1 is the Gram matrix of
the points in the current dictionary. If the threshold in equa-
tion exceeds v, then (bg, ug) is added to the dictionary,

otherwise the dictionary stays the same.
The exact Gram matrix can be represented by:

K = ®, ;.

(34)

(35)
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where @, = [®(bg,ug),...,P(bs,ur)]. The feature func-
tions are approximated as ®(b;,u;) ~ 371, t;;®(b;, u;),
for = 0,..., k. Defining the coefficients in a single matrix
as Ty = [to,...,tr]T, we have:

K, = of o), ~ T, K, TT,

N (36)
kk(bk, uk) ~ Tkkk(b, 11).

Using equation (36), equation (25) can be approximated as:

Qﬂ-(b7 u) | Ck, Bk ~ N (5(]3’ 11)7 C/B{/ ((b7 u)v (ba u))) 3
(37)
where

Q(b,u) = ky(b, w) B (AKH] +02H,HT) ey,
ﬁ/((b, Ll), (b7 u)) = k((bv 11), (ba u)) _l;k(bv u)TI:I’Ig1
(I:IkKk Izlg + O?I:Ikﬁ{)_lﬂkl;k(b, u),

) (38)
where H;, = H;T,. Using this sparsification approach allows
observations to be processed sequentially and reduces the
complexity of Algorithm || from O(k®) to O(km?) where m is
usually much smaller than £ in practice. The reader is referred
to [31] for more details. The full process of sparsification of
the GP-SARSA algorithm for learning the cost function of
POBDS is presented in Algorithm

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments using
a Boolean gene regulatory network involved in metastatic
melanoma [40]. The network contains 7 genes: WNTS5A,
pirin, S100P, RET1, MART1, HADHB and STC2. The
regulatory relationship for this network is shown in Fig. [I]
and Boolean function is presented in Table |I| The ith output
binary string specifies the output value for ¢th input gene(s)
in binary representation. For example, the last row of Table [[|
specifies the value of STC2 at the current time step k£ from
different pairs of (pirin,STC2) values at the previous time
step k£ — 1:

(pirin=0, STC2=0);,_; — STC2;=1
(pirin=0, STC2=1);,_; — STC2;=1
(pirin=1, STC2=0);_; — STC2,=0
(pirin=1, STC2=1);_; — STC2;=1

In the study conducted in [41]], the expression of WNTSA
was found to be a highly discriminating difference between
cells with properties typically associated with high metastatic
competence versus those with low metastatic competence. Fur-
thermore, the result of the study presented in [42] suggests to
reduce the activation of WNT5A indirectly through control of
other genes’ activities. The reason is that an intervention that
blocked the WNTS5A protein from activating its receptor, could
substantially reduce WNTS5A’s ability to induce a metastatic
phenotype. For more information about the biological rationale
for this, the reader is referred to [40].

In our experiments, the intervention is applied to either
RET1 or HADHB. Recall that the intervention has uncertainty
that is modeled by a Bernoulli distribution with parameter

Algorithm 2 SGP-SARSA: Sparse approximation of GP-SARSA
for control of POBDS
1: Initialize: o < [, R« [, £+ [, s < 0, L < 0.
2: for each episode do
3: if first episode then
Select u € U randomly.
D = {(b,w)}. K = 1/k((b,u), (b,u)).

Choose u < m(b) (Eq. 29)).
end if
: F=0,5<01«0
10: t « K~ 'k(b,u),§ + k((b,u), (b,u)) — k(b,u)Tt.
11: if § > v then

4
5
6: else
7:
8
9

12: D« {(b,u)} UD, K~1 + 1 [5K jtj;ttT _1t
13: t<—[0T,1}T,a<—{‘g],R<—L§ g},fw—m.
14: end if
15: for each step in episode do
te: b = [rarasi ¢ < 9Bk
17: if non-terminal step then
18: Choose new control u’ + m(b’) (Eq. 29)).
19: t/ «— K~ 1k(b,u).
20: 5+ k((b/,u’), (b, u)) —k(b/,u)Tt.
21: Ak + k(b,u) — vk(b’,u’).
22: else
23: t/ < 0, 6 + 0, Ak + k(b,u).
24: end if
yo2 -
25: s —Ls+c — AkT a.
26: if 0 > v then
27: D+ {(b,u)}uUD.
28: K11 {M{ j,:; " ’1’“}
29: t' « [07,1]7 ,h « [tT, —]T.
30: Ak, — t7 (k(b,u) — 2vk(b’,u’))
+72k((b',u'), (b', u)).
- a2 [t RAK
31: o« qu [g] +h— |:R0Ak}.
2y 2 crs o 2008 -
32: v (1+v%)og + Akgr, — Ak™ RAk + TrAk
oy
5 v
33: ae[‘é},ﬁ(—[é} g}
34: else
2
35: ht—~t/, ¥ < Z9F + h— RAk.
36: if non-terminal step then
o qo? 254
37: v (14+92)02 + AKT (¥ + —2F) — —*2.
38: else
. 2 FT R 1% - 2o
39: v o+ AkT (' + 01) - — 2
40: end if
41: end if
42: acat+is ReR+ I f ¥, t t.
43: if non-terminal step then
44: b+ b',u<+ u.
45: end if
46: end for
47: end for

q. The cost of control is assumed to be 1 for any taken
intervention and 0 when there is no intervention. Since the
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TABLE I: Boolean functions for the melanoma Boolean net-
work.

Genes Input Gene(s) Output
WNT5A  HADHB 10

pirin prin, RET1,HADHB 00010111
S100P S100P,RET1,STC2 10101010
RET1 RET1,HADHB,STC2 00001111
MART1  pirin MART1,STC2 10101111
HADHB  pirin,S100P,RET1 01110111
STC2 pirin,STC2 1101

Fig. 1: Melanoma Gene Regulatory Network.

goal of control is preventing WNT5A gene to be upregulated,
the cost function can be defined as follows:

o(x/, 1) = {5 + [lul|s if WNT5A is 1 for state 7,

[lul|1 if WNT5A is O for state j.
Table [[T] displays the parameter values used in the experi-
ments. The reported results are taken over 10 different runs of
system during execution each with time series of length 1000.

(39)

A. Effect of GP Parameters on the Performance of the SGP-
SARSA Algorithm

In the experiments of Sections [VI-ZAHVI-C| RET1 is used
as the control gene and the parameters are set as follows:
p = 0.01,¢ = 001, v = 0.1, No, = 10, T" = 1000, O'JQ =
le. = 10,1 = 0.1, v = 0.1. Fig. 2| displays the average
cost of the system under control of SGP-SARSA for different
correlation parameters /. The horizontal axis shows the number
of training points used in the learning process before starting
execution. It is clear that [ = 0.1 has the lowest cost for
different number of training points. In addition, [ = 0.2 has
similar cost as { = 0.1, while [ = 0.01 behaves poorly for
small number of training points and converges to the others as
the number of training points increases. Overall, we conclude
that the correlation coefficient does not greatly affect the
resulting policy, and it only influences the speed of learning.

B. Effect of Sparsification Parameter on the Performance of
the SGP-SARSA Algorithm

Fig. [3] displays the effect of the sparsification parameter
v on the performance of control. The right plot shows the
increase in the average number of points kept in dictionary as
parameter v gets smaller. The effect of large dictionary size

TABLE II: Parameter values for numerical experiments.

Parameter Value
Number of genes d 7
Number of episodes Nep 1, 5, 10, 15, 20
Number of steps T 1000
Transition noise intensity p 0.01, 0.05
Scaling variance O'? 5
Correlation parameter [ 0.01, 0.1, 0.2
Noise residual o4 1

Intervention noise intensity g 0.01, 0.1, 0.2, 0.3, 0.4, 0.5

Initial belief bg (), ¢ = 1,...,128 1/128
Mean in inactivated state u?,j =1,...,7 40
Mean in activated state u} i=1,...,7 60
Standard deviations in inactivated state 172 10, 15
Standard deviations in activated state a; 10, 15
Discount factor ~y 0.95
Control genes RETI1, HADHB
Cost function Equation
Sparcification threshold v 0.1, 1
Value Iteration threshold 3 [18] 1078
o -
o~
—_— [ =0.2
. -_— [ =0.1
* -=-= /=0.01
% w0l .
o -« s
O
Q .
oo .
©
—
Lo
<< <1
v -
o
1000 5000 10000 15000 20000 25000

Number of Training Points

Fig. 2: Average cost per step achieved by SGP-SARSA as a
function of the correlation coefficient.

can be clearly seen in the average cost presented in left plot in
Fig.[3] in which lower cost is achieved on average for smaller
v for different training points.

C. Effect of Transition and Intervention Noise on the Perfor-
mance of the SGP-SARSA Algorithm

Fig. [ displays the performance of control for various
process and intervention noise levels. It is clear that the
average cost increases as the uncertainty in transition and
intervention increases, as expected. For the system without
control, the average cost is almost 2.65. By comparing this
to the curves in Fig. f] we reach the interesting conclusion
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Fig. 3: Effect of the choice of sparsification parameter and dictionary size on the performance of SGP-SARSA.

Average Cost

0.10 0.20 0.30 0.40 0.50

Intervention Noise Intensity (q)

Fig. 4: Average cost per step achieved by SGP-SARSA as a
function of the transition and intervention noise level.

that high uncertainty in the intervention process can make the
situation worse than no control condition.

D. Distribution of Visited States for System under Control by
SGP-SARSA Algorithm and without Control

Here we assess the probability mass over visited states for
systems with and without control. Fig. 5] displays the long-run
relative frequencies of visited states under the control policy
obtained by SGP-SARSA and under no control. Desirable
(inactive WNTS5A) and undesirable (active WNTS5A) states are
indicated by black and red colors, respectively. We can observe
that the control policy obtained by SGP-SARSA is able to
shift the probability mass of visited states from undesirable to
desirable states.

Hl Desirable States B Undesirable States‘

o
=
oy
2 < System under Control of RET1 Gene ‘
85T
o
(9]
N
©
€ o |
s ©
=
g J l] [ ] J in J
1 20 40 64 80 100 128
© _ States
o
Z
(%]
éc’ S A System with no control
el
[
N
©
e
\o- o
=
8 A | X I. wl
1 20 40 64 80 100 128
States

Fig. 5: Relative frequency of visited states under the control
policy obtained by SGP-SARSA and under no control. De-
sirable (inactive WNT5A) and undesirable (active WNT5A)
states are indicated by black and red colors, respectively.

E. Comparison of Performance of V_BKF and Q_MDP Algo-
rithms against the SGP-SARSA Algorithm

Finally, we compare the performance of SGP-SARSA with
two state-feedback controllers V_BKF [18]] and Q_MDP [20].
The intensity of uncertainty of intervention process is set to be
q = 0.1. The average cost per step and the fraction of observed
desirable states in the long run for the three algorithms, for
different process and observation noise levels, are presented
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in Table

We can observe that SGP-SARSA obtains lower average
cost per step than Q_MDP and V_BKEF, especially in the
presence of high measurement noise. The reason is that the
underlying Boolean dynamical system is less identifiable in the
presence of noisy measurements, and therefore, the policies
obtained by Q_MDP and V_BKF, which are not based on
the belief space but solely on the results of estimation of the
underlying Boolean dynamical system, become less valid. In
addition, we observe that RET1 is a better control input in
comparison to HADHB for reducing the activation of WNT5A
in all cases.

TABLE III: Average cost per step and average fraction of
desirable states visited for different controllers and control
genes.

RETI HADHB
p 0‘? = 0]1 Method Cost  Fraction Cost  Fraction
GP-SARSA  0.85 0.84 1.59 0.69
10 Q_MDP 0.99 0.78 1.82 0.64
V_BKF 0.98 0.78 1.86 0.63
001 GP-SARSA  1.28 0.74 1.84 0.64
15 Q_MDP 1.64 0.67 2.19 0.56
V_BKF 1.62 0.67 2.17 0.57
GP-SARSA  1.79 0.64 2.18 0.58
10 Q_MDP 2.09 0.58 2.32 0.54
V_BKF 2.07 0.58 2.34 0.54
0.05 GP-SARSA  2.08 0.60 2.53 0.50
15 Q_MDP 2.35 0.54 2.73 0.46
V_BKF 2.37 0.53 2.75 0.47

VII. CONCLUSION

In this paper, The POBDS model was used in conjunction
with Gaussian process and reinforcement learning to achieve
near-optimal infinite-horizon control of gene regulatory net-
works with uncertainty in both the inputs (intervention) and
outputs (measurements). The cost function in the belief and
intervention spaces was modeled by Gaussian process and
learning was achieved using a sparsified version of the GP-
SARSA algorithm. The methodology was investigated thor-
oughly by a series of numerical experiments using synthetic
gene-expression data generated by a gene regulatory network
involved in melanoma metastasis. An interesting fact observed
in the expriments is that if the uncertainty in the control
input is large, the behavior of the controlled system is worse
than that of a free-evolving system evolving without control.
Future work will consider adaptive version of the controllers
described here.
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