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Abstract

Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear models with application in estimation
and control of Boolean processes based on noisy and incomplete measurements. The optimal minimum mean square error
(MMSE) algorithms for POBDS state estimation, namely, the Boolean Kalman filter (BKF) and Boolean Kalman smoother
(BKS), are intractable in the case of large systems, due to computational and memory requirements. To address this, we
introduce approximate MMSE filtering and smoothing algorithms based on the auxiliary particle filter (APF) method, which
are called APF-BKF and APF-BKS respectively. For joint state and parameter estimation, the APF-BKF is used jointly
with maximum-likelihood (ML) methods for simultaneous state and parameter estimation in POBDS models. In the case
the unknown parameters are discrete, the proposed ML adaptive filter consists of multiple APF-BKFs running in parallel,
in a manner reminiscent of the Multiple Model Adaptive Estimation (MMAE) method in classical linear filtering theory. In
the presence of continuous parameters, the proposed ML adaptive filter is based on an efficient particle-based expectation
maximization (EM) algorithm for the POBDS model, which is based on a modified Forward Filter Backward Simulation
(FFBSi) in combination with the APF-BKS. The performance of the proposed particle-based adaptive filters are assessed
through numerical experiments using a POBDS model of the well-known cell cycle gene regulatory network observed through
noisy RNA-Seq time series data.

Key words: Adaptive Filtering, Partially-Observed Boolean Dynamical Systems, Boolean Kalman Filter, Auxiliary
Particle-Filter, Fixed-Interval Smoother, Maximum-Likelihood Estimation, Expectation Maximization, Gene Regulatory
Networks, RNA-Seq data.

1 Introduction

Partially-observed Boolean dynamical systems consist
of a Boolean state process, also known as a Boolean
network, observed through an arbitrary noisy mapping
to a measurement space [1,2,3,4]. Instances of POBDSs
abound in fields such as genomics [5], robotics [6], digital
communication systems [7], and more. The optimal re-
cursive minimum mean-square error (MMSE) state esti-
mators for this model are called the Boolean Kalman Fil-
ter (BKF) [1] and the Boolean Kalman Smoother (BKS)
[3]. These filters have many desirable properties; in par-
ticular, it can be shown that the MMSE estimate of the
state vector provides both theMMSE and themaximum-
a-posteriori (MAP) estimates of each state vector com-
ponent.

Email addresses: m.imani88@tamu.edu (Mahdi Imani),
ulisses@ece.tamu.edu (Ulisses Braga-Neto).

The BKF and BKS are exact algorithms, which is un-
usual in the class of general partially-observable non-
linear dynamical systems, of which POBDS is a spe-
cial case. However, for large systems with large number
of state variables, exact computation of the BKF and
BKS becomes impractical due to large computational
and memory requirements. In the general case, various
approximations to the optimal estimator have been de-
veloped. The classical approach is to apply linearization
at each time point through a first-order Taylor series ex-
pansion, and then apply the traditional Kalman filter so-
lution; such an approach is called the Extended Kalman
Filter (EKF) [8]. The EKF cannot be applied to Boolean
dynamical systems, the reason bwing that the Boolean
transition functions are not differentiable. There is a
class of schemes that can be applied to system func-
tions without derivatives, collectively called derivative-
less filters [9], which include the Unscented Kalman Fil-
ter (UKF) [10], the Central Difference Filter (CDF) [11],
and the Divided Difference Filter (DDF) [12]. These
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derivativeless filters are special cases of the general class
of Sigma-Point Kalman Filters (SPKF) in [9]. However,
SPKF theory has not been developed for discrete dis-
tributions such as the ones involved in Boolean dynam-
ical systems. The only well-known approximation that
can also be applied to POBDS is the class of Sequen-
tial Monte-Carlo (SMC) methods [13,14]. In [15], an ap-
proximate sequential Monte-Carlo algorithm was pro-
posed to compute the BKF using sequential importance
resampling (SIR). By contrast, we propose here SMC
algorithms for both the BKF and fixed-interval BKS us-
ing the more efficient auxiliary particle filter (APF) al-
gorithm [16], which are called the APF-BKF and APF-
BKS algorithms, respectively.

The BKF and BKS require for their application that all
system parameters be known. In the case where noise in-
tensities, the network topology, or observational param-
eters are not known or only partially known, an adaptive
scheme to simultaneously estimate the state and param-
eters of the system is required. An exact adaptive fil-
tering framework to accomplish that task was proposed
recently in [17], which is based on the BKF and BKS in
conjunction with maximum-likelihood estimation of the
parameters. In this paper, we develop an accurate and
efficient particle filtering implementation of the adaptive
filtering framework in [17], which is suitable for large
systems.

Several exact and approximate adaptive filters for dual
and joint state and parameter estimation for general
Hidden Markov Models (HMM) [14,18,19] have been
proposed. However, these methods are quite sensitive to
initialization and do not necessarily result in maximum
likelihood estimates of the parameters. Another class
of methods are provided by gradient-based maximiza-
tion techniques [20,21,22], which try to directly max-
imize the log-likelihood function using particle-based
techniques. However, most of these methods suffer from
unreliable approximation of the likelihood function or
high computational complexity. The expectation maxi-
mization (EM) algorithm is a very popular alternative
procedure for likelihood maximization, originally intro-
duced by [23]. Applications of EM to linear/Gaussian
state space models [24], general nonlinear/non-Gaussian
state space models [25,26,27] and the POBDSmodel [17]
have been proposed. Gaussian smoothing and sigma-
point based approximations in an EM context have also
been discussed in [28]. Particle-based implementation
of EM filters have shown more numerical stability than
gradient-based techniques [14]. For more information
about inference methods of HMM, reader is referred
to [14].

For POBDS with discrete (finite) parameter space, the
adaptive filter we propose in this paper uses a bank of
particle filters (APF-BKFs) in parallel, which is rem-
iniscent of the Multiple Model Adaptive Estimation
(MMAE) procedure in classical linear filtering [29].

The log-likelihood approximated by the APF-BKFs is
used to obtain the ML estimate of the parameters, and
the approximated MMSE estimate of the state of the
selected filter yields the estimate of the state. On the
other hand, if the parameter space is continuous, the
available particle-based EM methods for general HMM
with continuous state-space do not result in efficient
estimation in POBDS models. To address this, we pro-
pose an efficient particle-based EM method for POBDS
based on a modified Forward Filter Backward Simula-
tion (FFBSi) algorithm [30]. The proposed filter yields
the following advantages in comparison to the original
EM method introduced in [17]:

(1) Smaller computational complexity of smoothing at
the E-step.

(2) Smaller memory requirement to store the required
matrices and vectors (e.g. the posterior probability
vectors) from the E-Step to the M-Step.

(3) Reduced complexity of each iteration in theM-step,
in which several function evaluations are required.

The application of interest in this paper is to model
Boolean gene regulatory networks [5,31] observed
through a single time series of RNA-seq data [32]. Using
the POBDS model, we employ the proposed approx-
imate adaptive ML algorithm to estimate the gene
expression state simultaneously to the inference of the
network topology and noise and expression parameters.
Performance is assessed through a series of numerical
experiments using the well-known cell-cycle gene regu-
latory model [33]. The influence of transition noise, ex-
pression parameters, and RNA-seq measurement noise
(data dispersion) on performance is studied, and the
consistency of the adaptive ML filter (i.e., convergence
to true parameter values) is empirically established.

The article is organized as follows. In Section 2, the
POBDS signal model and the Boolean Kalman Filter
and Boolean Kalman Smoother are reviewed, while in
Section 3, a detailed description of the APF-based filter-
ing and smoothing algorithms proposed in this paper is
provided. In Section 4, the particle-based ML adaptive
filter is developed for discrete and continuous parameter
spaces. A POBDS model for gene regulatory networks
observed though RNA-seq measurements is reviewed in
Section 5. Results for the numerical experiments with
the cell-cycle network are presented in Section 6. Finally,
Section 7 contains concluding remarks.

2 Optimal State Estimators for POBDS

In this section, we review the POBDS model and exact
algorithms for computation of its optimal state estima-
tors. For more details see [1,15,34,35,36]. For a proof of
optimality of the BKF, see [17].

We assume that the system is described by a state
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process {Xk; k = 0, 1, . . .}, where Xk ∈ {0, 1}d is a
Boolean vector of size d. The sequence of states is
observed indirectly through the observation process
{Yk; k = 1, 2, . . .}, where Yk is a vector of (typically
non-Boolean) measurements. The size of vector Yk

depends on the number of sensors (or outputs) of the
system. The states are assumed to be updated and
observed at each discrete time through the following
nonlinear signal model:

Xk = fk (Xk−1) ⊕ nk (state model)

Yk = hk (Xk,vk) (observation model)
(1)

for k = 1, 2, . . .. Here, nk ∈ {0, 1}d is Boolean transi-
tion noise, “⊕” indicates componentwise modulo-2 ad-
dition, fk : {0, 1}d → {0, 1}d is a Boolean function,
called the network function, whereas hk is a general func-
tion mapping the current state and observation noise
vk (which can be discrete or continuous depending on
the distribution of observation model) into the mea-
surement space, for k = 1, 2, . . .. The noise processes
{nk,vk; k = 1, 2, . . .} are assumed to be “white” in the
sense that the noises at distinct time points are indepen-
dent random variables (i.e., nk and nl, and similarly vk

and vl, are indpendent for k ̸= l). It is also assumed that
the noise processes are independent from each other and
from the initial state X0; their distribution is otherwise
arbitrary.

We will assume further that the Boolean process noise
nk is zero-mode, i.e., nk = 0 is the most probable value
of the noise vector at each time k. This implies that the
most likely value ofXk at each time k is fk(Xk−1) — this
could be seen as the counterpart of the zero-mean noise
assumption in continuous state-space models. As is the
case with nonzero mean noise, nonzero mode noise intro-
duces a systematic error component, which can always
be removed by moving it into the function fk. Hence,
the state model in (1) is a general model for a first-
order Markov Boolean stochastic process. For a specific
example, which will be adopted in Section 6, one has
P (nk(i) = 1) = p, for i = 1, . . . , d, and k = 1, 2, . . . inde-
pendently for i ̸= j. In this case, nk is zero-mode if and
only if p ≤ 1/2. The systematic bias introduced in the
case p > 1/2 can be removed by considering the equiva-
lent state process with f ′k = 1− fk, where 1 is the vector
with all components equal to 1, and p′ = 1 − p, i.e., by
moving the systematic bias into the model. Therefore,
one effectively needs only to consider the case p ≤ 1/2.

A Boolean estimator X̂k|r predicts the Boolean
state Xk based on the sequence of observations
Y1:r = (Y1, . . . ,Yr). The estimator X̂k|r is called a
filter or smoother according to whether k = r or k < r,
respectively. The set of all Boolean estimators for a
given k and r shall be denoted by Xk|r. The (condi-

tional) mean-square error (MSE) of X̂k|r given Y1:r is

the expected square L2-norm of the difference between
the estimated and true states at time k:

MSE(X̂k|r | Y1:r) = E
[
||X̂k|r −Xk||22 | Y1:r

]
. (2)

where ||v||22 =
∑d

i=1 |v(i)|2 (Note that using the L1-

norm ||v||1 =
∑d

i=1 |v(i)| would yield the same result,
since all vectors are Boolean.) We would like to obtain
the Boolean MMSE estimator, i.e., a Boolean estimator
X̂MS

k|r such that

X̂MS
k|r = arg min

X̂k|r∈Xk|r

MSE(X̂k|r | Y1:r) , (3)

at each value of Y1:r (so that it also minimizes the fre-
quentist expected MMSE over all possible realizations
of Y1:r). For a vector v ∈ [0, 1]d, define the binarized
vector v and the complement vector vc, via v(i) = 1 if
v(i) > 1/2 and v(i) = 0 otherwise, and vc(i) = 1−v(i),
for i = 1, . . . , d. It has been proved [17] that the solution
to (3) is given by

X̂MS
k|r = E

[
Xk | Y1:r

]
, (4)

with optimal MMSE

MSE(X̂MS
k|r | Y1:r)

=
⏐⏐⏐⏐min

{
E
[
Xk | Y1:k

]
, E
[
Xk | Y1:k

]c} ⏐⏐⏐⏐
1
,

(5)

where the minimum is computed componentwise. Here,
the L1 norm is a notational device to indicate that the
MMSE is equal to the sum of MMSEs of the individual
vector components.

The optimal Boolean MMSE estimator will be called
a Boolean Kalman Filter (BKF) or a Boolean Kalman
Smoother (BKS), according to whether k = r or k <
r, respectively. The name “Kalman” for the BKF and
BKS is used in agreement with the similar usage in the
Extend Kalman Filter (EKF), Unscented Kalman Filter
(UKF), and Sigma-Point Kalman Filter (SPKF), which
are all established in the literature, even though none
were designed for linear Gaussian dynamical systems.
All of these algorithms share with the classical Kalman
filter the property of being recursive MMSE filters for
nonstationary processes. Notice that the Maximum-A-
Posteriori (MAP) estimator is commonly used for state
estimation in discrete state-spaces, while the MMSE is
the criterion used by the BKF andBKS. Interestingly, we
can show that each component of the MMSE estimator
X̂MS

k|r (i) is both the MMSE and the MAP estimator of

the corresponding state variable Xk(i), for i = 1, . . . , d.

Perhaps surprisingly, the MAP estimator X̂MAP
k|r does

not enjoy in general the property that X̂MAP
k|r (i) is the

MAP estimator ofXk(i), for i = 1, . . . , d. In cases where
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optimal estimation performance for each component of
X̂k|r is required (e.g., estimating the state of each gene
in a gene regulatory network), then this could be an
important distinction.

Let (x1, . . . ,x2d) be an arbitrary enumeration of the pos-
sible state vectors, define the state conditional probabil-
ity distribution vector Πk|r of length 2d via

Πk|r(i) = P
(
Xk = xi | Y1:r

)
, i = 1, . . . , 2d, (6)

and let A =
[
x1 · · ·x2d

]
be a matrix of size d×2d. Then

it is clear that E
[
Xk | Y1:r

]
= AΠk|r, so it follows from

(4) and (5) that

X̂MS
k|r = AΠk|r , (7)

with optimal MSE

MSE(X̂MS
k|r | Y1:r) = ||min{AΠk|r, (AΠk|r)

c}||1. (8)

The distribution vector Πk|r can be computed by a re-
cursive matrix-based procedure, which is similar to the
well-known “forward-backward” algorithm [37]. Briefly,
let Mk of size 2d × 2d be the transition matrix of the
Markov chain defined by the state model:

(Mk)ij = P (Xk = xi | Xk−1 = xj)

= P
(
nk = f(xj)⊕ xi

)
, i, j = 1, . . . , 2d.

(9)

Additionally, given a value of the observation vector Yk

at time k, let Tk(Yk) be a diagonal matrix of size 2d×2d
defined by:

(
Tk(Yk)

)
ii

= p
(
Yk | Xk = xi

)
, i = 1, . . . , 2d , (10)

where p is either a probability density or a mass function,
according to the nature of the measurementYk. Then it
is easy to show that Πk|k ∝ Tk(Yk)Mk Πk−1|k−1. This
relation forms the basis for the iterative computation of
Πk|r, and therefore of the BKF and BKS. We need to
distinguish two cases. The first is a recursive implemen-
tation of the Boolean Kalman Filter (BKF), which does
not need a backward iteration, and can be iterated for-
ward as new observations arrive, for as long as desired.
In this case, we use (7) and (8) with r = k to get the op-
timal filter estimator and its minimum MSE [1,17]. The
entire procedure is given in Algorithm 1.

The second case is a fixed-interval Boolean Kalman
Smoother, where a fixed batch of observations Y1:T =
(Y1, . . . ,YT ) of length T is available, and it is desired

Algorithm 1 BKF: Boolean Kalman Filter

1: Initialization: (Π0|0)i = P
(
X0 = xi

)
, for i = 1, . . . , 2d.

For k = 1, 2, . . ., do:

2: Prediction: Πk|k−1 = Mk Πk−1|k−1.

3: Update: βk = Tk(Yk)Πk|k−1.

4: Normalization: Πk|k = βk/||βk||1.

5: MMSE Estimator Computation: X̂MS
k|k = AΠk|k .

6: MSE(X̂MS
k|k | Y1:k) = ||min{AΠk|k, (AΠk|k)

c}||1.

to obtain estimates of the state at all points in the in-
terval k = 1, . . . , T . In this case, a backward iteration
will be needed (unless k = T ). Define the probability
distribution vector ∆k|s of length 2d via

∆k|s(i) = p
(
Ys+1, . . . ,YT | Xk = xi

)
, i = 1, . . . , 2d,

(11)
for s = 0, . . . , T , where ∆T |T is defined to be 1d×1, the
vector with all components equal to 1. It can be shown
that

Πk|T =
Πk|k−1 ◦ ∆k|k−1

||Πk|k−1 ◦ ∆k|k−1||1
, (12)

where “ ◦ ” denotes the “Hadamard” product. We then
use (7) and (8) with r = T to get the optimal smoothed
estimator and its minimum MSE [3]. The entire proce-
dure is given in Algorithm 2.

Algorithm 2 BKS: Fixed-Interval Boolean Kalman
Smoother

1: Initialization: (Π0|0)i = P
(
X0 = xi

)
, for i = 1, . . . , 2d.

Forward Probabilities: For s = 1, . . . , T , do:

2: Prediction: Πs|s−1 = Ms Πs−1|s−1.

3: Update: βs = Ts(Ys)Πs|s−1.

4: Normalization: Πs|s = βs/||βs||1.

Backward Probabilities: For s = T, T − 1, . . . , 1, do:

5: Update: ∆s|s−1 = Ts(Ys)∆s|s (with ∆T |T = 1).

6: Prediction: ∆s−1|s−1 = Ms
T ∆s|s−1.

MMSE Estimator Computation: For k = 1, . . . , T , do:

7: Πk|T = (Πk|k−1 ◦ ∆k|k−1)/||Πk|k−1 ◦ ∆k|k−1||1 .

8: X̂MS
k|T = AΠk|T .

9: MSE(X̂MS
k|T | Y1:T ) = ||min{AΠk|T , (AΠk|T )

c}||1.

3 Particle Filters for State Estimation

When the number of states is large, the exact computa-
tion of the BKF and the BKS becomes intractable, due
to the large size of the matrices involved, which each
contain 22d elements, and approximate methods must
be used, such as sequential Monte-Carlo methods, also
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known as particle filter algorithms. In the next subsec-
tions, we describe particle filter implementations of the
BKF and BKS.

3.1 Auxiliary Particle Filter Implementation of the
BKF (APF-BKF)

The basic algorithm to perform particle filtering is
called sequential importance resampling (SIR). Impor-
tance sampling is used when direct sampling of the
target distribution is difficult. The idea is to approxi-
mate the target distribution p(x) using sample points
(“particles”) {xi}Ni=1 drawn from a proposal distribu-
tion q(x), which is easier to sample than the target
distribution. The discrepancy created by sampling from
q(x) instead of p(x) is compensated by weighting each
particle. After a few iterations of the algorithm, a con-
dition in usually reached where only few of the particles
have significant weights, whereas most particles have
negligible weight. To address this degeneracy problem,
SIR performs resampling of the particles, whereby a
fresh set of particles is drawn (with replacement) from
the approximate current posterior distribution.

The original particle filtering implementation of the
BKF in [15] was based on the SIR algorithm; we there-
fore call it the SIR-BKF algorithm. We present here a
more sophisticated implementation based on the Auxil-
iary Particle Filter (APF) of [16]. The APF algorithm
can be seen as a variation of SIR, and is thus also known
as auxiliary SIR (ASIR). Basically, APF is a look-ahead
method that at time step k − 1 tries to predict the lo-
cation of particles with high probability at time k, with
the purpose of making the subsequent resampling step
more efficient. Without the look-ahead, the basic SIR
algorithm blindly propagates all particles, even those in
low probability regions. As put in [38], “it is natural to
ask whether it is possible to employ knowledge about
the next observation before resampling to ensure that
particles which are likely to be compatible with that
observation have a good chance of surviving.”

The APF algorithm augments the state vector to
(Xk, ζk), where ζk is an auxiliary variable. Particles are
drawn from the filtering distribution P (Xk, ζk | Y1:k)
(to be specified below), and the auxiliary variable is
simply dropped to obtain particles from P (Xk | Y1:k).
Given particles {xk−1,i}Ni=1 at time k − 1, with associ-
ated weights {Wk−1,i}Ni=1, the APF algorithm defines

P (Xk, ζk |Y1:k)

∝ p(Yk |Xk)P (Xk |Xk−1, ζk)P (Xk−1, ζk | Y1:k−1)

∝ p(Yk |Xk)P (Xk |xk−1,ζk)Wk−1,ζk ,
(13)

for ζk = 1, . . . , N . The auxiliary variable functions thus
as an index for the particles at the previous time point.
As will be seen below, sampling from (13) will have the

effect of “selecting” the particles that are compatible
with the observation at time k.

One can sample from (13) by using SIR on the following
approximation:

P (Xk, ζk |Y1:k) ∝ p(Yk |µk,ζk)P (Xk |xk−1,ζk)Wk−1,ζk ,
(14)

for ζk = 1, . . . , N , where µk,i is a characteristic of Xk

given xk−1,i, which can be the mean, the mode or even
a sample from P (Xk | xk,i) [16]. In our implementation,
we use the mode:

µk,i = Mode[Xk | xk−1,i]

= Mode[f(xk−1,i)⊕ nk,i] = f(xk−1,i) ,
(15)

for i = 1, . . . , N , where we used (1) and the fact that the
noise is zero-mode. Notice that the subscript i in nk,i

denotes that the process noise can be different for the
various particles.

Sampling from (13) is done in two steps. In the first step,
{µk,i}Ni=1 is obtained from the particles {xk−1,i}Ni=1 us-
ing (15) and the first-stage weights {Vk,i}Ni=1 are com-
puted as:

Vk,i = p(Yk | µk,i)Wk−1,i , (16)

for i = 1, . . . , N . In the second step, the auxiliary vari-
ables {ζk,i}Ni=1 (i.e., the indices of the selected particles)
are obtained as a sample from the discrete distribution
defined by {Vk,i}Ni=1 (after proper normalization). For
example, if N = 4 and Vk,1 = Vk,2, Vk,3 = Vk,4, and
Vk,1 = 2Vk,3, then the indices ζk,0, . . . , ζk,4 will be inde-
pendent and each will be twice as likely to be 1 or 2 than
3 or 4. We denote this by {ζk,i}Ni=1 ∼ Cat({Vk,i}Ni=1),
where “Cat” stands for the categorical (discrete) distri-
bution.

Finally, the new particles {xk,i}Ni=1 and associated

second-stage weights {W̃k,i}Ni=1 can be obtained as fol-
lows:

xk,i = µk,ζk,i
⊕ nk,i ∼ P (Xk | xk−1,ζk,i

) , (17)

W̃k,i =
p(Yk | xk,i)

p(Yk | µk,ζk,i
)
. (18)

It can be shown that the unbiased estimator of the un-
normalized posterior probability at each time step can
be obtained by [39]

||β̂k||1 =

⎛⎝ 1

N

N∑
i=1

Vk,i

⎞⎠ ⎛⎝ 1

N

N∑
i=1

W̃k,i

⎞⎠ . (19)
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This quantity will be needed in Section 4 when the par-
ticle filter for maximum-likelihood adaptive estimation
is discussed.

Given the normalized second-stage weights Wk,i =

W̃k,i/
∑N

j=1 W̃k,j , i = 1, . . . , N , one can write

E[Xk | Y1:k] ≈ zk =

N∑
i=1

Wk,i xk,i . (20)

From (4) and (5), it follows that the MMSE state esti-
mate and conditional MSE at time step k are approxi-
mated as:

X̂MS
k|k = zk , (21)

with optimal MMSE

MSE(X̂MS
k|k | Y1:k) = ||min{zk, zck}||1. (22)

The entire procedure of APF-BKF is summarized in Al-
gorithm 3. Notice that the computational complexity of
this algorithm at each time point is O(N) which can be
much smaller than O(22d) that is the complexity of the
BKF.

Algorithm 3 APF-BKF: Auxiliary Particle Filter im-
plementation of the Boolean Kalman Filter

1: x0,i ∼ Π0|0,W0,i = 1/N , for i = 1, . . . , N .

2: for k = 1, 2, . . . , do

3: for i = 1 to N do

4: µk,i = f(xk−1,i).

5: Vk,i = p(Yk | µk,i)Wk−1,i.

6: end for

7: {ζk,i}Ni=1 ∼ Cat({Vk,i}Ni=1).

8: for i = 1 to N do

9: xk,i = µk,ζk,i
⊕ nk,i.

10: W̃k,i =
p(Yk|xk,i)

p(Yk|µk,ζk,i
) .

11: end for

12: ∥β̂k∥1 =
(

1
N

∑N
i=1 Vk,i

) (
1
N

∑N
i=1 W̃k,i

)
.

13: Wk,i = W̃k,i/
∑N

j=1 W̃k,j , i = 1, . . . , N .

14: zk =
∑N

i=1 Wk,i xk,i.

15: X̂MS
k|k = zk.

16: MSE(X̂MS
k|k | Y1:k) = ||min{zk, zck}||1.

17: end for

3.2 Auxiliary Particle Filter Implementation of the
BKS (APF-BKS)

There are a few different approximate Monte-Carlo
smoothing methods in the literature of nonlinear and

non-Gaussian systems [40,41,42,30]. It should be noted
that some of these particle smoother methods suffer
from degeneracy problems or can only be applied in a
few special conditions (such as MC with good forgetting
properties). We follow an approach similar to the well-
known fixed-interval smoother of [43] to approximate
the Boolean Kalman Smoother.

As described in Section 2, a fixed-interval smoother is
a forward-backward method, such that the filtering dis-
tributions Πk|k, for k = 0, 1, . . . , T , are computed in the
forward step, and the smoothed distributions Πk|T are
found in a backward step. The forward process is ob-
tained here by running the APF-BKF algorithm of Sec-
tion 3.1, while the backward process is performed by cor-
recting the filtering weights in the backward iteration.
We explain next how the backward step is applied effi-
ciently.

First, assume {xk,i,Wk,i}, k = 0, . . . , T are the forward
particles and weights obtained by the APF-BKF algo-
rithm for the sequence of measurementsY1:T . Due to the
finite number of states in the POBDS, one can compute
unique particles and their associated weights at different
time steps as:

{xu
k,i,W

u
k,i}

Fk
i=1

Unique←−−−− {xk,i,Wk,i}Ni=1 , k = 0, . . . , T.
(23)

where Fk is the number of unique forward particles, and
xu
k,i is the ith unique particle with aggregated weight

Wu
k,i, both at time step k.

The backward process is based on the following equation:

P (Xs,Xs+1 | Y1:T )

=P (Xs | Xs+1,Y1:T )P (Xs+1 | Y1:T )

=P (Xs | Xs+1,Y1:s)P (Xs+1 | Y1:T )

=
P (Xs+1 | Xs)P (Xs | Y1:s)P (Xs+1 | Y1:T )

P (Xs+1 | Y1:s)
,

(24)
where s < T and P (Xs+1 | Y1:T ) is the smoothed dis-
tribution at time step s+ 1. The summation over Xs+1

in both sides of equation (24) results in

P (Xs |Y1:T ) = P (Xs | Y1:s)

×
∑
Xs+1

P (Xs+1 | Xs)P (Xs+1 | Y1:T )

P (Xs+1 | Y1:s)
. (25)

As wementioned before, the filter and smoother estimate
at final time T are the same. Therefore, the smoothed
weights WT |T,i are defined in the same way as the for-
ward unique weights Wu

T,i, so that

P (XT | Y1:T ) ≈
FT∑
i=1

WT |T,i δxu
T,i

. (26)
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Now, using equation (25), the the smoothed weights at
time s < T can be obtained as:

Ws|T,j = Wu
s,j

Fs+1∑
i=1

P (xu
s+1,i | xu

s,j)Ws+1|T,i∑Fs

l P (xu
s+1,i | xu

s,l)W
u
s,l

. (27)

The smoothed weights are obtained by solving equa-
tion (27) in a backward fashion using the terminal con-
dition WT |T,j = Wu

T,j , j = 1, . . . , FT . The computa-

tional complexities of finding unique particles in (23)
and computation of weights in (27) are from the or-
der O(N log(N)) and O(FsFs+1) respectively. Thus, the
complexity of the developed smoother at time point s
is max{O(N log(N)), O(FsFs+1)} which can be much
smaller than O(N2) in practice.

Using the smoothed weights, we can write

E[Xs | Y1:T ] ≈ zs =

Fs∑
i=1

Ws|T,i x
u
s,i . (28)

From (4) and (5), it follows that the MMSE state esti-
mate and conditional MSE at time step k are approxi-
mated as:

X̂MS
s|T = zs , (29)

with optimal conditional MSE

MSE(X̂MS
s|T | Y1:T ) = ||min{zs, zcs}||1. (30)

The entire procedure is summarized in Algorithm 4.

Algorithm 4 APF-BKS: Auxiliary Particle Filter im-
plementation of the fixed-interval Boolean Kalman
Smoother

1: Run the APF-BKF for the sequence of measurements
Y1:T to obtain {xk,i,Wk,i}Ni=1, k = 0, . . . , T .

2: {xu
k,i,W

u
k,i}

Fk
i=1

Unique←−−−− {xk,i,Wk,i}Ni=1, k = 0, ..., T .

3: Set WT |T,i = Wu
T,i, for i = 1, . . . , FT .

4: for s = T − 1 to 0 do

5: for j = 1 to Fs do

6:
Ws|T,j = Wu

s,j

Fs+1∑
i=1

P (xu
s+1,i | xu

s,j)Ws+1|T,i∑Fs
l P (xu

s+1,i | xu
s,l)W

u
s,l

7: end for

8: zs =
∑Fs

i=1 Ws|T,i x
u
s,i .

9: X̂MS
s|T = zs.

10: MSE(X̂MS
s|T | Y1:T ) = ||min{zs, zcs}||1.

11: end for

This particle smoother is an efficient method for state
estimation, as will be shown in Section 6, but it is not
appropriate for parameter estimation, as we will argue
in the next section. A different particle smoother will be
used in the next section to perform continuous parameter
estimation.

4 Particle Filters For Maximum-Likelihood
Adaptive Estimation

Suppose that the nonlinear signal model in (1) is incom-
pletely specified. For example, the deterministic func-
tions fk and hk may be only partially known, or the
statistics of the noise processes nk and vk may need to
be estimated. By assuming that the missing information
can be coded into a finite-dimensional vector parameter
θ ∈ Θ, where Θ is the parameter space, we propose next
particle filtering approaches for simultaneous state and
parameter estimation for POBDS. For simplicity and
conciseness, we consider two cases: a Boolean Kalman
Filter algorithm with discrete (finite) Θ and a Boolean
Kalman Smoother algorithm with Θ ⊆ Rm, but the al-
gorithms can be modified and even combined to perform
other estimation tasks. Exact algorithms for such filters
can be found in [17].

4.1 APF Implementation of the Discrete-Parameter
ML Adaptive BKF (APF-DPMLA-BKF)

Discrete (finite) parameter spaces are common in ap-
plications of the POBDS model; e.g., the topology of
gene regulatory networks, c.f. Section 5, is specified by
the presence or absence of interactions (edges) between
pairs of genes, so that the total number of possibilities
is finite. In this case, Θ = {θ1, θ2, . . . , θM}. Given the
observationsY1:k = {Y1, . . . ,Yk} up to time k, the log-
likelihood function can be written as

Lk(θi) = log pθi(Y1:k)

= log pθi(Yk | Y1:k−1) + log pθi(Y1:k−1)

= log pθi(Yk | Y1:k−1) + Lk−1(θi) ,
(31)

for i = 1, . . . ,M , where ∥βθi
k ∥1 = pθi(Yk | Y1:k−1) can

be approximated by running the APF-BKF algorithms
discussed in the previous section tuned to parameter
vector θi.

The approximate log-likelihood is updated via

L̂k(θi) = L̂k−1(θi) + log ∥β̂
θi
k ∥1 , i = 1, . . . ,M , (32)

with L̂0(θi) = 0, for i = 1, . . . ,M , and the ML estimator
for both parameter and state at time k can be directly
obtained by running M particle filters in parallel, each
tuned to a candidate parameter θi, for i = 1, . . . ,M :

θ̂ML
k = argmax

θ∈{θ1,...,θM}
L̂k(θ) , (33)

X̂ML
k|k = X̂MS

k|k(θ̂
ML
k ) , (34)

for k = 1, 2, . . ..

The computation in (32)–(34) is parallelized, on-line,
and entirely recursive: as a new observation at time k+1
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arrives, the ML estimator can be updated easily with-
out restarting the computation from the beginning. The
procedure is summarized in Fig. 1 and Algorithm 5.

Algorithm 5 APF-DPMLA-BKF: APF implementa-
tion of the discrete-parameter ML Adaptive BKF

1: L̂0(θi) = 0, for i = 1, . . . ,M .

2: for k = 1, 2, . . . , do
3: Run M APF-BKFs tuned to θ1, . . . θM .

4: L̂k(θi) = L̂k−1(θi) + log ∥β̂
θi
k ∥1 , i = 1, . . . ,M .

5: θ̂ML
k = argmaxθ1,...,θM L̂k(θi).

6: X̂ML
k|k = X̂MS

k|k(θ̂
ML
k ).

7: end for

4.2 APF Implementation of the Continuous-Parameter
ML Adaptive BKS (APF-CPMLA-BKS)

Here, Θ ⊆ Rm, and the approach developed in the last
subsection for discrete parameter spaces is not directly
applicable. There are two options: 1) discretize the pa-
rameters using a suitable quantization grid and apply
an approach similar to the one in the last section; 2) at-
tempt to obtain a good approximation of the MLE in the
continuous parameter space directly. In this section, we
describe how to implement the second option using the
expectation-maximization (EM) algorithm for a particle
filter implementation of a fixed-interval Boolean Kalman
Smoother.

In our case, maximum likelihood estimation attempts
to find the value of θ that maximizes the “incomplete”
log-likelihood function Lk(θ) = log pθ(Y1:T ). The
EM algorithm considers instead the “complete” log-
likelihood function log pθ(X0:T ,Y1:T ), which includes
the unknown state sequence, the assumption being that
maximising the complete log-likelihood is easier than
maximising the incomplete one (the reader is referred
to [17] for more information on the EM algorithm for
POBDS).

The EM algorithm obtains a sequence of parameter es-
timates {θ(n);n = 0, 1, . . .}. Given the current estimate
θ(n), the algorithm obtain the next estimate θ(n+1) in the
sequence by computing (E-step) the function (see [17]):

Q(θ, θ(n)) =
∑
X0:T

log pθ(X0:T ,Y1:T ) pθ(n)(X0:T | Y1:T )

= I1(θ, θ
(n)) + I2(θ, θ

(n)) + I3(θ, θ
(n)) ,

(35)
where

I1(θ, θ
(n)) =

2d∑
i=1

logPθ(X0 = xi)Pθ(n)(X0 = xi | Y1:T ),

(36)

I2(θ, θ
(n)) =

T∑
s=1

2d∑
i=1

2d∑
j=1

logPθ(Xs = xi | Xs−1 = xj)

× Pθ(n)(Xs = xi,Xs−1 = xj | Y1:T ) ,
(37)

I3(θ, θ
(n)) =

T∑
s=1

2d∑
i=1

log pθ(Ys | Xs = xi)

× Pθ(n)(Xs = xi | Y1:T ) ,
(38)

and then maximizing (M-step) this function:

θ(n+1) = argmax
θ

Q(θ, θ(n)) . (39)

In [17] this computation is carried out exactly. For large
systems, this is impractical, for the following reasons:

(1) The E-Step (computing the Q function) requires
performing a Boolean Kalman Smoother, which is
too expensive computationally.

(2) The transition matrix and filtered and smoothed
posterior probability vectors at all time steps must
be stored, demanding large amounts of memory.

(3) In certain cases, such as when fk and hk are linear
in the parameter vector θ, it is possible to maximize
Q(θ, θ(n)) using closed-form expressions (e.g. [42]).
However, in general, one needs to resort to gradient-
based optimization methods in the M-step. This
requires evaluating Q(θ, θ(n)) and computing its
derivatives, which is analytically intractable.

Several particle-based EM methodologies were devel-
oped in recent years (e.g. [25,26,27]). However, due to
the fact that these methods were designed for HMMs
with continuous state-spaces, direct application of these
methods to the POBDS model results in computation-
ally expensive algorithms.

To address the aforementioned issues, we develop our
efficient EM algorithm based on the forward filter back-
ward simulation (FFBSi) [30]. The FFBSi method tries
to capture the most probable state trajectories and use
them to find the smoothing particles. The method con-
tains two main steps: 1) Forward Step: the APF-BKF
algorithm is employed to obtain the particles and their
weights from time 0 to T ({x1:T,i,W1:T,i}Ni=1). 2) Back-
ward Step: the backward simulation procedure, which is
explained in detail in the sequel, computes N trajecto-
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Fig. 1. Schematic diagram of particle-filter implementation of the discrete-parameter ML adaptive Boolean Kalman Filter.

ries {x̃0:T,i}Ni=1 ∼ P (X0:T | Y1:T ), where

P (X0:T | Y1:T )

= P (XT | Y1:T )

T−1∏
s=0

P (Xs | Xs+1:T ,Y1:T )

= P (XT | Y1:T )

T−1∏
s=0

P (Xs | Xs+1,Y1:s) .

(40)

Based on equation (40), smoothed particles can be ob-
tained using the FFBSi method, by means of the follow-
ing backward procedure:

x̃T,i ∼ P (XT | Y1:T ) ,

x̃s,i ∼ P (Xs | x̃s+1,i,Y1:T ) ,
(41)

for i = 1, . . . , N and s = T − 1, . . . , 0, where {x̃s,i}Ni=1
are the smoothed particles at time step s.

The backward process starts by resampling N particles
{x̃T,i}Ni=1 from the unique forward particles {xu

T,i}
FT
i=1 at

time step T using the forward weights {Wu
T,i}

FT
i=1 as:

{ηT (i)}Ni=1 ∼ Cat ({Wu
T,j}

FT
j=1) ,

x̃T,i = xu
T,ηT (i), i = 1, . . . , N .

(42)

Now, to obtainN smoothed particles at time step s < T ,
let {x̃s+1,i}Ni=1 be the smoothed particles at time s+ 1,
and let

{x̃u
s+1,j , ξ

j
s+1}

Ss+1

j=1

Unique←−−−− {x̃s+1,i}Ni=1 (43)

where Ss+1 specifies the number of unique smoothed

particles at time s + 1, and ξjs+1 is a vector containing

the indexes of the j-th unique smoothed particles before

shrinkage and reordering. Notice thatN =
∑Ss+1

j=1 |ξ
j
s+1|.

For the j-th unique smoothed particle at time step s +
1, one can use the fact that P (Xs | Xs+1,Y1:s) ∝
P (Xs+1 | Xs)P (Xs | Y1:s) to compute the following
weights;

Dj
s,i = Wu

s,i P (x̃u
s+1,j | xu

s,i) , (44)

for i = 1, . . . , Fs, and draw |ξjs+1| particles as:

{ηs(t)}
|ξj

s+1
|

t=1 ∼ Cat({Dj
s,i}

Fs
i=1) ,

x̃s,ξj
s+1

(t) = xu
s,ηs(t)

, for t = 1, . . . , |ξjs+1|.
(45)

Repeating the above process for j = 1, . . . , Ss+1 and
s = T − 1, . . . , 0 results in N trajectories from the
joint smoothed distribution {x̃0:T,i}Ni=1. Notice that the
computational complexity of finding unique particles
in equation (43) is of order O(N log(N)). Therefore,
the overall complexity of our proposed methodology is
max{O({N log(N)), O(SsFs)} at time step s, which can
be much smaller than the computational complexity of
the optimal smoother, which is O(N2).

Given the N trajectories {x̃0:T,i}Ni=1 obtained by run-
ning the forward filter backward simulation tuned to pa-
rameter θ(n), equations (36)-(38) can be approximated
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as:

Î1(θ, θ
(n)) =

1

N

N∑
i=1

logPθ(x̃0,i) , (46)

Î2(θ, θ
(n)) =

1

N

T∑
s=1

N∑
i=1

logPθ(x̃s,i | x̃s−1,i) , (47)

Î3(θ, θ
(n)) =

T∑
s=1

N∑
i=1

log pθ(Ys | x̃s,i) . (48)

Thus, one can approximate the Q function in equa-
tion (35) as:

Q̂(θ, θ(n)) =
1

N

N∑
i=1

[
logPθ(x̃0,i)

+
T∑

s=1

logPθ(x̃s,i | x̃s−1,i) +

T∑
s=1

log pθ(Ys | x̃s,i)

]
.

(49)

In [26], similar equations are derived for theHammerstein-
Wiener model structure. The computational complexity
of evaluating the Q̂ function in (49) is only of order
O(N × k), which results in large savings in the com-

putation of the gradient of Q̂ in the M-Step of the EM
algorithm. In Section 5, expressions for the gradients are
given in the special case where the observations consist
of RNA sequencing data. Finally, as regards to memory,
the only values that must be stored from the E-Step to
be used in the M-Step are the N smoothed trajectories
(storing filter weights or particles is not necessary). In
Section 6, the effect of the value of N on performance
will be discussed.

The steps of the EM adaptive filter are as follows. Ini-
tially, N smoothed trajectories are obtained using the
developed FFBSi method tuned to a initial parameter
guess θ(0) to compute Q̂(θ, θ(0)) (E-Step). The aforemen-
tioned gradient-descent procedure is applied to find the
best parameter θ(1) that maximizes Q̂(θ, θ(0)) with θ(0)

fixed (M-Step). The obtained parameter vector is set
as the parameter for the particle smoother for the next
run, and the process continues until there is no signifi-
cant change in parameter estimates between two consec-
utive steps, yielding the final parameter estimate θML.
Then the smoothed state estimates can be obtained by
performing an APF-BKS tuned to parameter θML. The
procedure is summarized in Fig. 2 and Algorithm 6.

5 Gene Regulatory Network and RNA-Seq
Measurement Models

The algorithms developed in the previous section apply
to the general POBDS signal model in (1). In this sec-
tion, we describe a specific instance of that model, which

Algorithm 6 APF-CPMLA-BKS: APF implementa-
tion of the continuous-parameter ML Adaptive BKS.

1: Specify θ(0) (initial guess) and tolerance ε > 0.

2: n← −1.
3: repeat

4: n← n+ 1.

5: {x0:T,i,W0:T,i}Ni=1 ←Run APF-BKF tuned to θ(n).

6: {xu
k,j ,W

u
k,j}

Fk
j=1

Unique←−−−−{xk,i,Wk,i}Ni=1, k = 0, . . . , T .

7: Sample {ηT (i)}Ni=1 ∼ Cat ({Wu
T,j}

FT
j=1).

8: Set x̃T,i = xu
T,ηT (i), for i = 1, . . . , N .

9: for s = T − 1 to 0 do

10: {x̃u
s+1,j , ξ

j
s+1}

Ss+1

j=1

Unique←−−−− {x̃s+1,i}Ni=1.

11: for j = 1 to Ss+1 do

12: Dj
s,i = Wu

s,i P (x̃u
s+1,j | xu

s,i), i = 1, . . . , Fs.

13: {ηs(t)}
|ξjs+1|
t=1 ∼ Cat ({Dj

s,i}
Fs
i=1).

14: x̃
s,ξ

j
s+1(t)

= xu
s,ηs(t)

, for t = 1, . . . , |ξjs+1|.

15: end for

16: end for

17: Find Q̂(θ, θ(n)) using equation (49).

18: Find θ(n+1) = argmaxθ Q̂
(
θ, θ(n)

)
.

19: until |θ(n+1) − θ(n)| > ε

20: θ̂ML = θ(n+1).

21: X̂MS
1:T |T (θ̂

ML) ←Run APF-BKS tuned to θ̂ML.

22: X̂ML
1:T |T = X̂MS

1:T |T (θ̂
ML).

allows the application of the methodology to Boolean
gene regulatory networks observed through noisy gene-
expression data. There are several gene-expression mea-
surement technologies currently in use, such as cDNA
microarrays [44] and live cell imaging-based assays [45],
in which gene expression measurements are continuous
and unimodal (within a single population of interest),
and next-generation sequencing measurements (RNA-
seq) which produce noisy integer-valued measurements
of bimodal gene expression, which is the case considered
in this paper.

5.1 Gene Regulatory Network Model

This model is motivated by gene pathway diagrams com-
monly encountered in biomedical research. The network
function in (1) is assumed to be time-invariant and ex-
pressed as f = (f1, . . . , fd), where each component fi :
{0, 1}d → {0, 1} is a Boolean function given by

fi(x) =

{
1,

∑d
j=1 aijx(j) + bi > 0 ,

0,
∑d

j=1 aijx(j) + bi ≤ 0 ,
(50)
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Fig. 2. Schematic diagram of particle-filter implementation of the continuous-parameter ML adaptive BKS.

where aij and bi are system parameters. The former can
take three values: aij = +1 if there is positive regulation
(activation) from gene j to gene i; aij = −1 if there is
negative regulation (inhibition) from gene j to gene i;
and aij = 0 if gene j is not an input to gene i. The latter
specifies regulation biases and can take two values: bi =
+1/2 or bi = −1/2. The network function is depicted in
Fig. 3, where the threshold units are step functions that
output 1 if the input is nonnegative, and 0, otherwise.

Fig. 3. Gene regulatory network model.

The process noise nk in (1) is assumed to have inde-
pendent components with P (nk(i) = 1) = p, for i =
1, . . . , d, and k = 1, 2, . . . The noise parameter 0 ≤ p ≤
0.5 gives the amount of “perturbation” to the Boolean
state process; the closer it is to p = 0.5, the more chaotic
the system will be, while a value of p close to zero means
that the state trajectories are nearly deterministic, be-
ing governed tightly by the network function.

5.2 RNA-Seq Measurement Model

Next-generation sequencing (NGS) technologies are able
to sequence millions of short DNA fragments in paral-
lel; the length and number of reads vary with the spe-
cific technology [46]. The application of NGS technol-
ogy to transcriptional profiling is called RNA-seq, which
records how frequently each transcript is represented in a
sequence sample [47]. RNA-seq is a probe-free approach

that can capture any relevant transcript present in a
sample, without the need of prior knowledge about the
target sequence.

Let Yk = (Yk(1), . . . ,Yk(d)) be a vector containing
the RNA-seq data at time k, for k = 1, 2, . . ., such that
Yk(j) is the read count corresponding to transcript j
in a single-lane platform, for j = 1, . . . , d. We assume
conditional independence of the transcript counts given
the state,

P
(
Yk = y | Xk = x

)
=

d∏
j=1

P (Yk(j) = y(j) | Xk(j) = x(j)) ,
(51)

and adopt the negative binomial model for each count,

P (Yk(j) = y(j) | Xk(j) = x(j)) =

Γ(y(j) + ϕj)

y(j)! Γ(ϕj)

(
λj

λj + ϕj

)y(j)(
ϕj

λj + ϕj

)ϕj

,
(52)

where Γ denotes the Gamma function, and ϕj , λj > 0 are
the real-valued inverse dispersion parameter and mean
read count of transcript j, respectively, for j = 1, . . . , d.
The inverse dispersion parameter models observation
noise; the smaller it is, the more variable the measure-
ments are.

Now, recall that, according to the Boolean state model,
there are two possible states for the abundance of tran-
script j: high, if x(j) = 1, and low, if x(j) = 0. Accord-
ingly, we model the parameter λj in log-space as:

log λj = log s + µ + δj x(j) , (53)

where the parameter s is the sequencing depth (which
is instrument-dependent), µ > 0 is the baseline level of
expression in the inactivated transcriptional state, and
δj > 0 expresses the effect on the observed RNA-seq
read count as gene j goes from the inactivated to the
activated state, for j = 1, . . . , d.
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Based on equations (51)–(53), given the particles x̃k,i,
one can compute P (Yk | Xk = x̃k,i) as :

P
(
Yk = y | Xk = x̃k,i

)
=

d∏
j=1

⎡⎣Γ(y(j) + ϕj)

y(j)! Γ(ϕj)

(
s exp(µ+ δj x̃k,i(j))

s exp(µ+ δj x̃k,i(j)) + ϕj

)y(j)

×

(
ϕj

s exp(µ+ δj x̃k,i(j)) + ϕj

)ϕj
⎤⎦ .

(54)

The RNA-seq measurement model parameters are thus
the sequencing depth s, the baseline expression level
µ, the transcript-dependent differential expression lev-
els δj , for j = 1, . . . , d, and the transcript-dependent in-
verse dispersion parameters ϕj , for j = 1, . . . , d. These
are all continuous parameters.

6 Numerical Experiments

In this section, we carry out detailed numerical ex-
periments to assess the performance of the developed
particle-based methods. We base our experiments on
the well-known Mammalian Cell-Cycle network [48].
The pathway diagram for this network is presented in
Fig. 4. The state vector is x = (CycD, Rb, p27, E2F,
CycE, CycA, Cdc20, Cdh1, UbcH10, CycB). The gene
interaction parameters aij can be read off Fig. 4 easily.
As an example, Rb is activated by p27, and is inacti-
vated by CycD, CycE, CycA, CycB. These interactions
can be expressed in terms of interaction parameters
as: a21 = −1, a22 = 0, a23 = +1, a24 = 0, a25 = −1,
a26 = −1, a27 = 0, a28 = 0, a29 = 0 and a2 10 = −1.

CycD

CycB

Rb

E2F

p27

Cdh1

Cdc20 UbcH10

CycA

CycE

Fig. 4. Pathway diagram for the cell-cycle network.

In all numerical experiments to follow, we assume the
same fixed set of “true” values for the system parame-
ters, summarized in Table 2.

6.1 Experiment 1: State Estimation

In this section, the state estimation performance of the
APF-BKF and APF-BKS is compared to that of the
exact BKF and BKS, respectively. Given that the cell-
cycle network comprises 10 genes, the size of the transi-
tion and update matrices required by both the BKF and
BKS is 210 × 210. As a result, the computational cost of
the BKF and BKS is high. Table 3 shows the average
rate of correct state estimation over 1000 independent
runs for a time series with length 100.

As expected, the performance of both the AFP-BKF
and APF-BKS is higher for large number of particles.
However, the improvement is significantly larger bymov-
ing from 200 to 1000 particles in comparison to moving
from 1000 to 5000 particles. One can also see the re-
duction in performance of all filters and smoothers as
process noise or dispersion in measurements increases,
which both make the estimation process more challeng-
ing. Also as expected, the BKS and APF-BKS outper-
form the BKF and APF-BKF, respectively, due to the
availability of more data for estimation.

The average time to run the various algorithms for time
series of length 100 and different number of particles is
displayed in Fig. 5. Here, p = 0.05 and ϕ = 5. Of course,
the exact average running time might vary depending
on the hardware and software setup used. However, we
are more interested in the relative comparisons than the
absolute values. For these results, we used the R pro-
gramming language on a PC with an Intel Core i7-4790
CPU@3.60 GHz clock and 16 GB of RAM. The results
show the large computational savings afforded by the
APF-BKF and APF-BKS in comparison to the exact al-
gorithms.
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Fig. 5. Experiment 1: Average computation time (in seconds)
for the exact and particle-based algorithms.

6.2 Experiment 2: Incomplete Network Topology

In this experiment, we assume that the interaction be-
tween genes Rb and E2F, or equivalently the gene inter-
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Table 1
Derivatives of Q(θ, θ(n)) with respect to different parameters needed in Numerical Experiment.

Parameter derivation

p
1

N

T∑
s=1

N∑
i=1

(
∥x̃s,i ⊕ f(x̃s−1,i)∥1 − d p

p (1− p)

)

s
1

Ns

T∑
s=1

N∑
i=1

d∑
j=1

(
ϕj

(
Ys(j)− s exp(µ+ δj x̃s,i(j))

)
ϕj + s exp(µ+ δj x̃s,i(j))

)

µ
1

N

T∑
s=1

N∑
i=1

d∑
j=1

(
ϕj

(
Ys(j)− s exp(µ+ δj x̃s,i(j))

)
ϕj + s exp(µ+ δj x̃s,i(j))

)

δj
1

N

T∑
s=1

N∑
i=1

(
x̃s,i(j)ϕj

(
Ys(j)− s exp(µ+ δj x̃s,i(j))

)
ϕj + s exp(µ+ δj x̃s,i(j))

)

ϕj
1

N

T∑
s=1

N∑
i=1

(
Γ′(Ys(j) + ϕj)

Γ(Ys(j)) + ϕj)
− Γ′(ϕj)

Γ(ϕj)
+

s exp(µ+ δj x̃s,i(j))−Ys(j)ϕj

ϕj(s exp(µ+ δj x̃s,i(j)) + ϕj)
+ log

ϕj

s exp(µ+ δj x̃s,i(j)) + ϕj

)

Table 2
Parameter values for numerical experiments using the Cell-
Cycle gene regulatory network.

Parameter Value

Length of time series T 50, 100

Number of genes d 10

Initial distribution P (X0 = xi), i = 1 : 210 1/210

Number of particles N 200, 1000, 5000

Bias bi, i = 1, . . . , 10 -1/2

Transition noise intensity p 0.01, 0.05

Sequencing depth s 1.02 (1K-50K reads)

Baseline expression µ 0.1

Differential expression δi, i = 1, . . . , 10 2

Inverse dispersion ϕi, i = 1, . . . , 10 1, 5

APF-CPMLA-BKS stopping criterion ε 10−4

action parameter a42, is unknown, and all other param-
eters are known. Since this is a discrete parameter esti-
mation problem, the APF-DPMLA-BKF is run, which
in this case consists of three APF-BKFs running in par-
allel — one for each possible kind of interaction (activa-
tion, inhibition, no interaction).

Table 4 displays the average accuracy rate in the estima-

Table 3
Experiment 1: Average rates of correct state estimation over
1000 independent runs for a time series with length 100.

p ϕ N BKF APF-BKF BKS APF-BKS

0.01

5

200

93.9

85.4

96.6

88.1

1000 92.1 95.0

5000 93.2 95.7

1

200

83.8

74.6

90.7

80.4

1000 80.6 88.3

5000 82.1 89.8

0.05

5

200

82.9

75.0

93.4

82.3

1000 80.3 91.3

5000 81.9 92.6

1

200

58.5

50.1

70.8

62.3

1000 55.1 68.2

5000 56.9 69.9

tion of the interaction type between Rb and E2F over
100 different runs. We can observe that performance in-
creases with longer time series and larger number of par-
ticles, as expected. The performance is better for larger
transition noise. The reason is that large transition noise
gets the system out of its attractors more often and, as
a result, helps the estimation process.

The evolution of estimated state and discrete-parameter
for a single sample run of the experiment, for transition
noise p = 0.05, ϕ = 5, and N = 5000 is displayed in
Fig. 6. We can observe that the discrete parameter a42
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Table 4
Experiment 2 results. Average accuracy rates for estimation
of the gene interaction parameter a42.

n p N High Disp. Low Disp.

ϕ = 1 ϕ = 5

30

0.01

200 0.45 0.62

1000 0.58 0.71

5000 0.59 0.73

0.05

200 0.52 0.71

1000 0.64 0.74

5000 0.67 0.75

60

0.01

200 0.82 0.86

1000 0.87 0.93

5000 0.89 0.93

0.05

200 0.86 0.91

1000 0.89 0.95

5000 0.92 0.96

is estimated correctly after less than 20 time step. In
addition, we can see that the state estimator of each gene
eventually converges to the true state value.

6.3 Experiment 3: Unknown Noise and Expression Pa-
rameters

In the final experiment, the Boolean network topology
(gene interaction parameters aij and biases bi) is as-
sumed to be completely known, whereas the transition
noise parameter p, the baseline expression µ, and dif-
ferential expression δi, i = 1, . . . , 10, are unknown. The
inverse dispersion parameters are assumed to be ϕi = 5,
i = 1, . . . , 10.

In order to assess continuous-parameter estimation ac-
curacy, we define the relative distance between estimated
and true parameter values as

Relative Distance(θ̂) =
|θ̂ − θ∗|
R(θ)

, (55)

where θ∗ is the true parameter value, and R(θ) is
the range of parameter θ assumed in the M-step of
the APF-CPMLA-BKS algorithm. Here, the range is
R(p) = [0, 0.5] for the transition noise p, R(µ) = [0, 2]
for the baseline expression µ, and R(δi) = [0.1, 10] for
the differential expression δi, i = 1, . . . , 10.

A new version of the “augmented Lagrange method” [49]
is used for optimization in the M-Step of the particle-

based EM algorithm. The gradient vector at each step is
computed based on Table 1. The procedure terminates
when the maximum of the absolute values of the changes
in the parameter estimates in two consecutive iterations
gets smaller than 10−4.

The average relative distance between estimated and
true parameter values over 100 independent runs for
different inverse dispersion parameters and time series
lengths are plotted in Fig. 7. As expected, the perfor-
mance of APF-CPMLA-BKS improves steadily as time
goes on. Performance improves by increasing the number
of particles; however, the curves get close to each other
as the length of the time series increases. All curves show
a decreasing trend, which indicates that the parameter
estimates become arbitrarily close to the true values for
sufficiently long time.

7 Conclusion

In this paper, we introduced approximate particle-based
algorithms for state and simultaneous state and param-
eter estimation for large partially-observed Boolean dy-
namical systems. For approximate state estimation, fil-
tering and smoothing methods based on auxiliary par-
ticle filtering (APF) were developed to approximate the
optimal BKF and BKS. These algorithms are called
APF-BKF andAPF-BKS, and are original contributions
of this work.

Moreover, we considered the case where some of the pa-
rameters may not be known. In the discrete parameter
case, an adaptive filter scheme is developed based on
APF-BKF algorithms running in parallel. For continu-
ous parameter problems, a particle-based EM algorithm
for POBDS was presented.

The methodology was applied to a model of Boolean
gene regulatory networks observed through RNA se-
quencing data. The numerical experiments with a cell-
cycle Boolean network demonstrated the ability of the
proposed methodologies to efficiently estimate the state
and also the parameters of the large Boolean regulatory
network observed through noisy measurements.
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