Optimistic Hybrid Analysis: Accelerating Dynamic
Analysis through Predicated Static Analysis

David Devecsery
University of Michigan
ddevec@umich.edu

Jason Flinn
University of Michigan
jflinn@umich.edu

CCS Concepts «Theory of computation — Program anal-
ysis; « Software and its engineering — Dynamic analysis;
Software reliability; Software safety; Software testing and de-
bugging;

ACM Reference Format:

David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2018. Optimistic Hybrid Analysis: Accelerating Dynamic Analysis
through Predicated Static Analysis. In ASPLOS ’18: 2018 Architec-
tural Support for Programming Languages and Operating Systems,
March 24-28, 2018, Williamsburg, VA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3173162.3177153

Abstract

Dynamic analysis tools, such as those that detect data-races,
verify memory safety, and identify information flow, have be-
come a vital part of testing and debugging complex software
systems. While these tools are powerful, their slow speed
often limits how effectively they can be deployed in practice.
Hybrid analysis speeds up these tools by using static analysis
to decrease the work performed during dynamic analysis.
In this paper we argue that current hybrid analysis is need-
lessly hampered by an incorrect assumption that preserving
the soundness of dynamic analysis requires an underlying
sound static analysis. We observe that, even with unsound
static analysis, it is possible to achieve sound dynamic anal-
ysis for the executions which fall within the set of states
statically considered. This leads us to a new approach, called
optimistic hybrid analysis. We first profile a small set of exe-
cutions and generate a set of likely invariants that hold true
during most, but not necessarily all, executions. Next, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03...$15.00
https://doi.org/10.1145/3173162.3177153

Peter M. Chen
University of Michigan
pmchen@umich.edu

Satish Narayanasamy
University of Michigan
nsatish@umich.edu

apply a much more precise, but unsound, static analysis that
assumes these invariants hold true. Finally, we run the result-
ing dynamic analysis speculatively while verifying whether
the assumed invariants hold true during that particular exe-
cution; if not, the program is reexecuted with a traditional
hybrid analysis.

Optimistic hybrid analysis is as precise and sound as tradi-
tional dynamic analysis, but is typically much faster because
(1) unsound static analysis can speed up dynamic analysis
much more than sound static analysis can and (2) verifi-
cations rarely fail. We apply optimistic hybrid analysis to
race detection and program slicing and achieve 1.8x over
a state-of-the-art race detector (FastTrack) optimized with
traditional hybrid analysis and 8.3x over a hybrid backward
slicer (Giri).

1 Introduction

Dynamic analysis tools, such as those that detect data-races [23,
46], verify memory safety [41, 42], and identify information
flow [16, 20, 31], have become a vital part of testing and
debugging complex software systems. However, their sub-
stantial runtime overhead (often an order of magnitude or
more) currently limits their effectiveness. This runtime over-
head requires that substantial compute resources be used to
support such analysis, and it hampers testing and debugging
by requiring developers to wait longer for analysis results.

These costs are amplified at scale. Many uses of dynamic
analysis are most effective when analyzing large and di-
verse sets of executions. For instance, nightly regression
tests should run always-on analyses, such as data-race de-
tection and memory safety checks, over large test suites. De-
bugging tools, such as slicing, have been shown to be more
informative when combining multiple executions, e.g. when
contrasting failing and successful executions [4, 25]. Forensic
analyses often analyze weeks, months, or even years of com-
putation [16, 31]. Any substantial reduction in dynamic anal-
ysis time makes these use cases cheaper to run and quicker
to finish, so performance has been a major research focus in
this area.

Hybrid analysis is a well-known method for speeding up
dynamic analysis tools. This method statically analyzes the



program source code to prove properties about its execution.
It uses these properties to prune some runtime checks dur-
ing dynamic analysis [13, 14, 33, 41]. Conventionally, hybrid
analysis requires sound ! (no false negatives) static analysis,
so as to guarantee that any removed checks do not com-
promise the accuracy of the subsequent dynamic analysis.
However, soundness comes at a cost: a lack of precision
(i.e., false positives) that substantially reduces the number of
checks that can be removed and limits the performance im-
provement for dynamic analysis tools such as race detectors
and slicers.

The key insight in this paper is that hybrid analysis
can benefit from carefully adding unsoundness to the
static analysis, and preserve the soundness of the fi-
nal dynamic analysis by executing the final dynamic
analysis speculatively. Allowing the static analysis to be
unsound can improve its precision and scalability (Figure 1),
allowing it to dramatically speed up dynamic analyses such
as race detection (even after accounting for the extra cost of
detecting and recovering from errors introduced by unsound
static analysis).

Optimistic hybrid analysis is a hybrid analysis based on
this insight. It combines unsound static analysis and specula-
tive execution to create a dynamic analysis that is as precise
and sound as traditional hybrid analysis, but is much faster.
Optimistic hybrid analysis consists of three phases. First, it
profiles a set of executions to derive optimistic assumptions
about program behavior; we call these assumptions likely
invariants. Second, it performs a static analysis that assumes
these likely invariants hold true, we call this predicated static
analysis. The assumptions enable a much more precise anal-
ysis, but require the runtime system to compensate when
they are violated. Finally, it speculatively runs the target
dynamic analysis, verifying that all likely invariants hold
during the analyzed execution. If so, both predicated static
analysis and the dynamic analysis are sound. In the rare
case where verification fails, optimistic hybrid analysis rolls
back and re-executes the program with a traditional hybrid
analysis.

We demonstrate the effectiveness of optimistic hybrid
analysis by applying it to two popular analyses on two dif-
ferent programming languages: OptFT, an optimistic hybrid
data-race detection tool built on top of a state-of-the-art dy-
namic race detector (FastTrack) [23] for Java, and OptSlice,
a optimistic hybrid backward slicer, built on the Giri dy-
namic slicer [45] for C. Our results show that OptFT provides
speedups of 3.5x compared to FastTrack, and 1.8x compared
to a hybrid-analysis-optimized version of FastTrack. Further,
OptSlice analyzes complex programs for which Giri cannot
run without exhausting computational resources, and it pro-

Following convention, we classify an analysis as sound even if it is only
“soundy” [34]. For example, most “sound” static analysis tools ignore some
difficult-to-model language features.

Figure 1. Sound static analysis not only considers all valid
program states P, but due to sound over-approximation, it
also considers a much larger S. Using likely invariants, predi-
cated static analysis considers a much smaller set of program
states O that are commonly reached (dotted space in P).

vides speedups of 8.3x over a hybrid-analysis-optimized ver-
sion of Giri. We then show how predicated static analysis can
improve foundational static analyses, such as points-to anal-
ysis, indicating that optimistic hybrid analysis techniques
will benefit many more dynamic analyses.

The primary contributions of this paper are as follows:

e We present optimistic hybrid analysis, a method of
dramatically reducing runtimes of dynamic analysis
without sacrificing soundness by first optimizing with
a predicated static analysis and recovering from any
potential unsoundness through speculative execution.

e We identify properties fundamental to selecting effec-
tive likely invariants, and we identify several effective
likely invariants: unused call contexts, callee sets, un-
reachable code, guarding locks, singleton threads, and
no custom synchronizations.

e We demonstrate the power of optimistic hybrid anal-
ysis by applying the technique to data-race detection
and slicing analyses. We show optimistic hybrid anal-
ysis dramatically accelerates these analyses, without
changing the results of the analysis. To the best of
our knowledge, OptFT is currently the fastest dynamic
happens-before data-race detector for Java that is sound.

2 Design

Optimistic hybrid analysis reduces the overhead of dynamic
analyses by combining a new form of unsound analysis,
known as predicated static analysis, with speculative exe-
cution. The use of speculative execution allows optimistic
hybrid analysis to provide correct results, even when en-
tering states not considered by predicated static analysis.
A predicated static analysis assumes dynamically-gathered
likely invariants hold true to reduce the state space it ex-
plores, creating a fundamentally more precise static analysis.

Figure 1 shows how the assumptions in a predicated static
analysis can dramatically reduce the state space considered.
A sound static analysis must make many overly-conservative



approximations that lead it to consider not just all possible
executions of a program (P), but also many impossible exe-
cutions (S).

Rather than paying the cost of this over-approximation, a
hybrid analysis can instead construct a static analysis based
only on the set of executions likely to actually be analyzed
dynamically. Speculative assumptions make the state space
(0) much smaller than not only S but also P, demonstrating
that by using a predicated static analysis, optimistic hybrid
analysis has the potential to optimize the common-case anal-
ysis more than even a perfect sound static analysis (whose
results are bounded by P). The set of states in P not in 0
represent the set of states in which predicated static analysis
is unsound. Optimistic hybrid analysis uses speculation and
runtime support to handle when these states are encoun-
tered. As long as the set of states commonly experienced at
runtime (denoted by the dotted area) resides in 0, optimistic
hybrid analysis rarely mis-speculates, resulting in an aver-
age runtime much faster than that of a traditional hybrid
analysis.

We apply these principles using our three-phase analysis.
First, we profile a set of executions of the target program
and generate optimistic assumptions from these executions
that might reduce the state space the static analysis needs to
explore. As these dynamically gathered assumptions are not
guaranteed to be true for all executions, we call them likely
invariants of the executions.

Second, we use these likely invariants to perform a predi-
cated static analysis on the program source. Leveraging the
likely invariants allows this static analysis to be far more
precise and scalable than traditional whole-program analysis,
ultimately allowing it to better optimize dynamic analyses.

Finally, we construct and run the final dynamic analy-
sis optimistically. Because predicated static analysis is not
sound, we insert extra checks in this optimistic dynamic
analysis to verify the likely invariants assumed hold true
for each analyzed execution. If the checks determine that
the likely invariants are in fact true for this execution, the
execution will produce a sound, precise, and relatively effi-
cient dynamic analysis. If the additional checks find that the
invariants do not hold, the analysis needs to compensate for
the unsoundness caused by predicated static analyses.

The rest of this section describes the three analysis steps,
and important design considerations.

2.1 Likely Invariant Profiling

A predicated static analysis is more precise and scalable than
traditional static analysis because it uses likely invariants to
reduce the program states it considers. Likely invariants are
learned though a dynamic profiling pass. We next discuss the
desirable properties of a likely invariant, and how optimistic
hybrid analysis learns the invariants by profiling executions.

Strong: By assuming the invariant, we should reduce the
state space searched by predicated static analyses. This is the

key property that enables invariants to help our static phase;
if the invariant does not reduce the state space considered
statically, the dynamic analyses will see no improvement.

Cheap: It should be inexpensive to check that a dynamic
execution obeys the likely invariants. For soundness, the final
dynamic analysis must check that each invariant holds dur-
ing an analyzed execution. The cost of such checks increase
the cost of the final dynamic analysis, so the net benefit of
optimistic hybrid analysis is the time saved by eliding dy-
namic runtime checks minus the cost of checking the likely
invariants. Note that the time spent in the profiling stage to
gather likely invariants is done exactly once, and is therefore
less important; only dynamically verifying the invariants
needs to be inexpensive.

Stable: A likely invariant should hold true in most or
all executions that will be analyzed dynamically. If not, the
system will declare a mis-speculation, and recovering from
such mis-speculations may be expensive for some analyses.

There is a trade-off between stability and strength of in-
variants. We find it sufficient to consider invariants that are
true for all profiled executions. However, we could aggres-
sively assume a property that is infrequently violated during
profiling as a likely invariant. This stronger, but less sta-
ble invariant may result in significant reduction in dynamic
checks, but increase the chance of invariant violations. If the
reduced checks outweigh the costs of additional invariant
violations this presents a beneficial trade-off.

2.2 Predicated Static Analysis

The second phase of optimistic hybrid analysis creates an
unsound static analysis used to elide runtime checks and
speed up the dynamic analysis. Traditional static analysis
can elide some runtime checks. However, to ensure sound-
ness, such static analysis conservatively analyzes not only
all states that may be reached in an execution, but also many
states that are not reachable in any legal execution. This
conservative analysis harms both accuracy and scalability
of static analysis.

A better approach would be for the static analysis to ex-
plore precisely the states that will be visited in dynamically
analyzed executions. A predicated static analysis tries to
achieve this goal by predicting these states through profil-
ing and characterizing constraints on the states as likely
invariants. By exploring only a constrained state space of
the program (the states predicted reachable in future exe-
cutions), predicated static analysis provides fundamentally
more precise analysis.

This reduction of state space also improves the scalability
of static analysis, which now need perform only a fraction
of the computation a traditional static analysis would. Static
analysis algorithms frequently trade-off accuracy for scalabil-
ity [27, 35, 50, 53]. In some instances this improved efficiency
allows the use of more sophisticated static analyses that are
more precise but often fail to scale to large programs.



2.3 Dynamic Analysis

The final phase of optimistic hybrid analysis produces a
sound, precise and relatively efficient dynamic analysis. Dy-
namic analysis is implemented by instrumenting a binary
with additional checks that verify a property such as data-
race freedom and then executing the instrumented binary
to see if the verification succeeds.

In our work, the instrumentation differs from traditional
dynamic analysis in two ways. First, we elide instrumenta-
tion for checks that static analysis has proven unnecessary;
this is done by hybrid analysis also, but we elide more in-
strumentation due to our unsound static analysis. Second,
we add checks that verify that all likely invariants hold true
during the execution and violation-handling code that is
executed when a verification fails.

To elide instrumentation, this phase consumes the set of
unneeded runtime checks from the predicated static analysis
phase. For instance, a data-race detector will instrument all
read/write memory accesses and synchronization operations.
The static analysis may prove that some of these read/write
or synchronization operations cannot contribute to any races,
allowing the instrumentation to be elided. Since the overhead
of dynamic analysis is roughly proportional to the amount
of instrumentation, eliding checks leads to a commensurate
improvement in dynamic analysis runtime.

The instrumentation also inserts the likely invariant checks.

By design, these invariants are cheap to check, so this code is
generally low-overhead and simple. For example, checking
likely unused code requires adding an invariant violation
call at the beginning of each assumed-unused basic block.
This call initiates rollback and re-execution if the check fails.

Roll-back is necessary as predicated static analysis may
optimize away prior metadata updates needed for sound ex-
ecution once an invariant is violated. Figure 2 shows how
a metadata update for variable a on line 2 is elided by op-
timistic hybrid analysis because of the likely-unused code
(LUC) invariant on line 4. If the invariant fails, then the meta-
data required to do the race check on line 5 is missing, and
will be recovered by rolling-back and executing line 2 with
conservative analysis.

We currently handle invariant violations with a catch-all
approach: roll-back the entire execution and re-analyze it
with traditional (non-optimistic) hybrid analysis. As we tar-
get retroactive analysis, this approach is practical for several
reasons. First, with sufficient profiling invariant violations
will be rare enough that even this simple approach has min-
imal impact on overall analysis time. Second, restarting a
deterministic replay, and guaranteeing equivalent execution
is trivial with record/replay systems, which are commonly
used in retroactive analyses. If the cost of rollback became
an issue or full record/replay systems were impractical, we
could reduce the costs of rollbacks through more profiling

or explore cheaper rollback mechanisms, such as partial roll-
back or partial re-analysis.

One appealing approach to reducing the cost of invariant
mis-speculation is to recover by rolling back to a predicated
static analysis analysis that doesn’t assume the invariant just
violated. However, doing so generally would require an anal-
ysis for each possible set of invariant violations (O(2") where
n is number of invariants), far too many static analyses to
reasonably run. It may be possible to reduce this number by
grouping invariants, but since we do not experience signifi-
cant slowdowns with our sound analysis recovery method,
we do not explore this approach further.

3 Static Analysis Background

OptFT and OptSlice are built using several data-flow analy-
ses, such as backward slicing, points-to, and may-happen-in-
parallel. Data-flow analysis approximate how some property
propagates though a program. To construct this approxi-
mation, a data-flow analysis builds a conservative model
of information flow through the program, usually using a
definition-use graph (DUG). The DUG is a directed graph
that creates a node per definition (def) analyzed. For example,
a slicing DUG would have a node per instruction, while a
points-to analysis would have nodes for pointer definitions.
Edges represent information flow in the program between
defs and the defs defined by uses. For example, an assign-
ment operation in a points-to analysis creates an edge from
the node representing the assignment’s source operand to
the node representing its destination. Once the DUG is con-
structed, the analysis propagates information through the
graph until a closure is reached. To create optimistic versions
of these data-flow analyses, we leverage likely invariants
to reduce the number of paths through which information
flows in the DUG.

There are many modeling decisions that an analysis makes
when constructing the DUG. One critical choice is that of
context-sensitivity. A call-site context-sensitive analysis log-
ically distinguishes different call-stacks, allowing more pre-
cise analysis. A context-insensitive analysis tracks informa-
tion flow between function calls, but does not distinguish
between different invocations of the same function.

Logically, a context-insensitive analysis simplifies and ap-
proximates a program by assuming a function will always
behave the same way, irrespective of calling context. To cre-
ate this abstraction, context-insensitive analyses construct
what we call local DUGs for each function by analyzing the
function independently and creating a single set of nodes in
the graph per function. The analysis DUG is then constructed
by connecting the nodes of the local DUGs at inter-function
communication points (e.g. calls and returns).

A context-sensitive analysis differs from a context-insensitive
analysis by distinguishing all possible calling contexts of
all functions, even those which will never likely occur in



Traditional Hybrid Optimistic Hybrid Invariant Mis-Speculation
T1 ) T1 T2 T T2
. 1. lock(l);
1. lock(l); 1. lock(l); 2 _ (,) Invariant
_ 7. 2. a=7; .a=7, )
2. a=7; ’ // elid dat Fails
// Update meta, 3 I ell le.up ate
3. unlock(l); if (X) { 3. unlock(l); if (X) { . unloc ( )l if (X) {
LUC_Check(); LUC_Check();
4. i . 4. print(a); . print(a);
print(a); 5 ’ Missing ’
> // check meta, ’ Dependency // check meta,?
} }

Figure 2. Example of how OptFT can require rollback on invariant violation. When the likely-unused code (LUC) invariant is
violated on rollback, the execution must rollback and re-execute line 2 to gather the metadata required for the check on line 5.

Source Code

Def-Use Graph (DUG)

main() { Context-Insensitive
1: a=my_malloc();

2: b =my_malloc();}

my_malloc() {
if (!g_init)
3: return do_init();
4:  return malloc(...);}

do_init() {

g_init = true;
5: // Long initialization code}

Context-Sensitive
+ Likely-Unused Call Contexts

Context-Sensitive

Figure 3. Demonstration of how context-sensitive and context-insensitive analysis parse a code segment to construct a DUG,

as well as the reductions from likely-unused call contexts

practice. To create this abstraction, the DUG of the analysis
replicates the nodes defined by a function each time a new
calling-context is discovered during the DUG construction.
One simple method of creating such a DUG is through what
is known as a bottom-up construction phase, in which the
analysis begins at main, and for each call in main it creates
a clone of the nodes and edges of the local DUG for the
callee function. It then connects the arguments and return
values to the call-site being processed. If that callee function
has any call-sites, the callee is then processed in the same
bottom-up manner. This recurses until all callees have been
processed, resulting in a context-sensitive DUG representing
the program. The context-sensitive expression of the DUG is
much larger than that of a context-insensitive analysis, but
it also allows for more precise analysis.

Figure 3 illustrates the differences between DUGs con-
structed by a context-sensitive and insensitive analysis. Nodes
3, 4, and 5 are replicated for each call to my_malloc(), allow-
ing the analysis to distinguish between the different call-
contexts, but replicating the large do_init() function.

Context-sensitive analyses tend to be precise, but not fully
scalable, while context-insensitive analyses are more scalable
at the cost of accuracy. We build both context-sensitive and
insensitive variants of several predicated static analyses.

4 OptFT

To show the effectiveness of optimistic hybrid analysis, we
design and implement two sample analyses: OptFT, an op-
timistic variant of the FastTrack race detector for Java, and
OptSlice, an optimistic dynamic slicer for C programs. This
section describes OptFT and Section 5 describes OptSlice.

OptFT is a dynamic data-race detection tool that provides
results equivalent to the FastTrack race detector [23]. Fast-
Track instruments load, store, and synchronization opera-
tions to keep vector clocks tracking the ordering among
memory operations. These vector clocks are used to identify
unordered read and write operations, or data-races.

OptFT uses the Chord analysis framework for static analy-
sis and profiling, building on Chord’s default context-insensitive
static data-race detector [40]. For dynamic analysis we use
the RoadRunner [24] analysis framework, optimizing their
default FastTrack implementation [23].

4.1 Analysis Overview

The Chord static data-race detector is a context-insensitive,
lockset-based detector. The analysis depends on two funda-
mental data-flow analyses, a may-happen-in-parallel (MHP)
analysis, which determines if memory accesses may hap-
pen in parallel, and a points-to analysis, which identifies the



memory locations to which each pointer in the program may
point.

The analysis first runs its static MHP analysis to determine
which sets of loads and stores could dynamically happen in
parallel. Once those sets are known, the analysis combines
this information with a points-to analysis to construct pairs
of potentially racy memory accesses which may alias and
happen in parallel. Finally, the analysis uses its points-to
analysis to identify the lockset guarding each memory access,
and it uses these to exclude pairs of loads and stores guarded
by the same lock from its set of potentially racing accesses.

To optimize the dynamic analysis, OptFT elides instru-
mentation around any loads or stores that predicated static
analysis identifies as not racing. The analysis also elides in-
strumentation around some lock/unlock operations, as we
discuss in Section 4.2.4.

4.2 Invariants

OptFT is optimized with four likely invariants. OptFT first
gathers the invaraints with a set of per-invariant profiling
passes, and stores the invariant set for each profiling execu-
tion in a text file. This text file maps invariant sites to sets
of invariant data (e.g. a basic block to how many times its
visited, or an indirect callsite to the functions it may call).
Then, after all profiles are run, the individual run’s invariant
sets are merged, (by intersecting the sets of invariants, to
find invariants that hold true for all runs) to gather the in-
variant set for all of the profiling experiments. The individual
invariants gathered and used by OptFT are:

4.2.1 Likely Unreachable Code

The first, and simplest, invariant OptFT assumes is likely-
unreachable code. We define a basic block within the pro-
gram that is unlikely to be visited in an execution as a likely
unreachable code (LUC) block. To profile LUC, OptFT profiles
the inverse, that is used basic blocks. OptFT runs a basic
block counting profiling pass, which instruments each basic
block to create a count of times it was visited. OptFT uses this
information to create a mapping of basic blocks to execution
counts. The inverse of profiled blocks (set of basic blocks not
in our visited basic block set) is our likely unvisited set.

This invariant easily satisfies the three criteria of good
likely invariants. First, it is strong; the invariant reduces
the state space our data-flow analyses considers by pruning
nodes defined by likely unused code and any edges incident
upon them from our analysis DUGs. This reduction in con-
nectivity within the DUG can greatly reduce the amount
information that propagates within the analysis. Second, the
invariant is virtually free to check at runtime, requiring only
a mis-speculation call at the beginning of the likely-unused
code. Finally, we observe that unused code blocks are typi-
cally stable across executions.

4.2.2 Likely Guarding Locks

Chord’s race detector’s final phase prunes potentially racy
accesses by identifying aliasing locksets. Unfortunately, this
optimization is unsound. To soundly identify if two locksites
guard a load or store, Chord needs to prove that the two sites
must hold the same lock when executing. However, the alias
analysis Chord uses only identifies may alias relations. To
get sound results from Chord we must either forego this lock-
based pruning or use a (typically unscalable and inaccurate)
must analysis. In the past, hybrid analyses that use Chord
have opted to remove this pruning phase for soundness [47].

Likely guarding locks attempt to overcome Chord’s may-
alias lockset issue by dynamically identifying must-alias lock
pairs. The profiling pass instruments each lock site and tracks
the objects locked, creating a set of dynamic objects locked at
each lock site. If it identifies that two sites always only lock
the same dynamic object, it assumes a must-alias invariant
for the lock pairs. The output of this profiling execution is
a set of these “must-alias” relations, these pairs can then be
directly consumed by chord’s lockset pruning pass.

The invariant is strong. By assuming the invariant, the
Chord race detection algorithm can add in some of the lockset-
based pruning discarded due to its weaker may alias analysis.
Additionally, the invariant is cheap to check at runtime. The
dynamic analysis need only instrument the assumed aliasing
lock-sites and verify the sites are locking the same object,
a check far less expensive than the lock operation itself. Fi-
nally, executions do not vary the objects locked frequently,
so this invariant remains stable across executions.

4.2.3 Likely Singleton Thread

Likely singleton thread invariants aid Chord’s MHP analysis.
If a thread start location creates only a single instance of a
thread, all memory accesses within that thread are ordered.
If the start location spawns multiple threads (e.g. its executed
within a loop), then the memory accesses in different threads
associated with that start location may race. We call this
single-thread start call a singleton-thread instance.

The knowledge of singleton-thread instances is easy to
gather dynamically by monitoring thread start sites. On the
other hand, statically reasoning about this information is
hard, requiring understanding of complex program prop-
erties such as loop bounds, reflection, and even possible
user inputs. The likely singleton thread invariant eliminates
the need for this static reasoning by dynamically identify-
ing singleton-thread sites. When profiling for this invariant,
OptFT instruments each thread creation site, identifying and
outputting the set of threads created exactly once. This set
of singleton-threads allows the static MHP analysis to prune
many memory access pairs for singleton thread instances
that it would otherwise miss.

The invariant easily meets the properties of a good likely
invariant. First, the invariant can greatly aid the MHP analy-



Traditional FastTrack w/ Lock Instr. Elision

Thread 1 Thread 2 Thread 1 Thread 2

x=5 x=5
ftWrite(x) ftWrite(x)
lock(a) lock(a)
ftinstrLock(a) f“rLock(a)
b =True b =True
1: ftinstrUnlock(a) 1: fP&runlock(a)
unlock(a) lock(a) unlock(a) lock(a)

2: ftinstrLock(a) | 2: f@pgrLock(a)
while(!b) {} while(!b) {}
ftinstrUnlock(a) f@€runlock(a)
unlock(a) unlock(a)

// No race by:

/] 1->2 // False Race
y=Xx y=Xx
ftRead(x) ftRead(x)

Figure 4. An example of how lock instrumentation elision
may cause missed happens-before relations in the presence of
custom synchronizations. The left hand side catches custom
synchronizations, but with the elision of locking instrumen-
tation, the necessary happens before relation (represented
by an arrow) may be lost.

sis, which is foundational to our race detector. Second, the
invariant is inexpensive to check, only requiring monitor-
ing of predicted singleton thread start locations. Finally, the
invariant is generally stable across runs.

4.2.4 No Custom Synchronizations

Ideally, static analysis would enable OptFT to elide instru-
mentation for lock and unlock operations. However, the pos-
sibility of custom synchronizations stops a sound analysis
from enabling this optimization. Figure 4 shows how eliding
lock/unlock instrumentation, even when there are no racy
accesses within the critical section, can cause a false race
report. This problem is caused by custom synchronization
(e.g. waiting on b in Figure 4).

To enable elision of lock and unlock instrumentation, we
propose the no custom synchronization invariant. Using
this invariant, OptFT optimistically elides instrumentation
around lock/unlock operations whose critical sections do not
contain any read or write checks. To profile this invariant,
we run the dynamic detector with lock/unlock operations
not guarding any dynamic read/write checks elided. If this
elision causes the dynamic race detector to report false races
(false races are detected by comparing the output with that
of a sound race detector), we know that an elided lock is
guarding a custom synchronization. If so, we return the
lock/unlock instrumentation to the offending locks until the
false races are removed.

The drawback to this approach is that race reports must
be considered as potential mis-speculations. This could be
an undue burden if analysis frequently reports data-races;

however, if a program has frequent data-races, there is little
need for a highly optimized race detector.

This invariant is highly useful. First, it helps the static
analysis eliminate work by reducing the instrumentation
around locks. Second, it is easy to check, our race detector
already detects races. Finally, custom synchronizations rarely
change between executions, so it is stable.

5 OptSlice

OptSlice is our optimistic dynamic backward slicing tool. A
backward slice is the set of program statements that may
affect a target (or slice point) Program slices are important
debugging tools, as they simplify complex programs and
help developers locate the sources (i.e., root causes) of errors
more easily. Backward slicing is particularly powerful when
analyzing multiple executions to find differences between
failing and non-failing executions [4, 25].

OptSlice optimizes the Giri dynamic slicer [45] with an op-
timistic variant of Weiser’s classic static slicing algorithm [52].
OptSlice collects data-flow slices. Data-flow slices do not con-
sider control dependencies and are often used when control
dependencies cause a slicer to output so much information
the slice is no longer useful.

5.1 Static Analysis

OptSlice uses a backward slicing analysis that builds on the
results of a separate points-to analysis; we next describe
these two analyses.

5.1.1 Backward Slicing

The static slicer used by OptSlice first constructs a DUG of
the program. We have implemented two versions of this algo-
rithm: a context-sensitive and a context-insensitive variant.
The DUG contains a node for every instruction in the pro-
gram and edges representing the reverse information flow
through the program (i.e., from any defs which use instruc-
tions to the defs providing those uses). The slicing analysis
resolves indirect def-use edges (e.g., loads and stores) by us-
ing a points-to analysis to determine aliases. As slicing is a
flow-sensitive analysis, when resolving these indirect edges,
the slicer only considers stores in basic blocks that may pre-
cede the load being analyzed according to the program’s
control-flow graph.

Once the DUG is constructed, our static analysis computes
the conservative slice by calculating the closure of the graph,
starting from any user-defined slice endpoints. The final slice
is composed of any instructions whose defs are represented
by the nodes within this closure.

Our optimistic backward slicer implements several opti-
mizations. First, it lazily constructs the DUG, creating nodes
only when required. Second, it uses binary decision diagrams
(BDDs) [9] to keep track of the visited node set. This is similar
to how BDDs are used to track points-to sets [6].



5.1.2 Points-To

Our Andersen’s-based points-to analysis [5] constructs a
DUG with a node for each statement in the program that
defines a pointer. Edges represent the information flow by
pointer uses. Unlike the slicing DUG, not all nodes and edges
can be resolved at graph creation time. These nodes and
edges are dynamically added as points-to sets are discovered
during the next analysis phase.

After constructing the DUG, the analysis associates an
empty points-to set with each node and initializes the points-
to sets of any nodes which define a pointer location (e.g.
malloc calls). The algorithm then propagates points-to in-
formation along the edges defined by the graph. Addition-
ally, the algorithm may add edges to the graph as indirect
def-use pairs are discovered; e.g., if a load-source and store-
destination are found to alias, the analysis makes an edge
between the two nodes. After all information has finished
propagating through the DUG, each node has its conserva-
tive set of potential pointers.

Indirect function calls are handled in a special manner. For
context-insensitive analyses, a pointer used in an indirect
function call is resolved, the arguments and return values are
connected to the existing nodes for the resolved function(s)
in the graph. Context-sensitive analyses, however, require
distinct information pathways for different static call stacks.
In a context-sensitive analysis, nodes may have to be added
to the graph. When an indirect function call is resolved in a
context-sensitive analysis, the analysis scans the call stack to
check for recursive calls. If the new callee creates a recursive
call, the call is connected to the prior nodes in the DUG
representing that callee. If the function call is not recursive,
a new set of nodes must be added for the call in the same
manner as for the bottom-up DUG construction phase.

The analysis is complete once the graph reaches transitive
closure. Each def’s points-to set is the union of the points-to
sets of all nodes representing that def.

Our algorithm uses heap cloning and is structure-field
sensitive. We also use several well-known optimizations, in-
cluding offline graph optimizations (HVN/HRU) [30], and
cycle detection (LCD and HCD) [29], and BDDs to track
points-to sets [6]. These optimizations contribute to the scal-
ability and accuracy of the analysis, but they do not impact
how we apply likely invariants, so we do not discuss them
further.

5.2 Invariants

OptSlice uses several general invariants, aimed at increasing
overall analysis accuracy. After the invariants are profiled,
we use them to reduce the set of states our static analysis
considers. As with OptFT, OptSlice first gathers the invari-
ants by profiling individual executions, storing them in a text
file, and then intersects or unions the sets (depending on the

invariant) of invariants together to gather its final set. Below,
we discuss how each invariant affects DUG construction.

5.2.1 Likely Unreachable Code
OptSlice uses likely unreachable code identically to OptFT.

5.2.2 Likely Callee Sets

Our points-to analysis’s indirect function call resolution pro-
cess can lead to considerable slowdowns, increased memory
consumption, and analysis inaccuracies. If the analysis is un-
able to resolve the destination pointer of an indirect function
call, it may have to conservatively assume that the callee
may be any function in the program, connecting the call-site
arguments of this function to all functions. On its own, this
is a major source of inaccuracy. It also can lead to propagat-
ing inaccuracies if a function argument is used later as an
indirect call. This issue is compounded in context-sensitive
analyses, where the nodes in the local DUGs for all functions
are replicated, dramatically increasing the analysis time. This
problem is particularly impactful in programs like Perl (Perl
is an interpreter that has a generic variable structure type
that holds all types of variables, including ints, floats, struc-
tures, and function pointers).

Likely callee sets are the dynamically-gathered likely des-
tinations of indirect function calls. The profiling pass instru-
ments each indirect callsite, and identifies and maintains the
mapping from callsite to dynamically observed callee desti-
nation. This invariant helps resolve many of the inaccuracies
and inefficiencies that unknown indirect calls can add to our
points-to analysis. Because likely callee-sets is a reachable
invariant (as opposed to unreachable invariants unreach-
able code, and unused call contexts), individual profile run’s
results are unioned together instead of intersected.

This invariant converts all indirect calls in the DUG to
direct calls to the assumed callee functions. The invariant is
relatively inexpensive to check at runtime, requiring only a
relatively small (usually singleton) set inclusion check on a
function pointer update (a relatively rare operation). Most
indirect function calls have very small sets of destinations,
and they don’t vary from execution to execution, making
this invariant stable across executions.

5.2.3 Likely Unused Call Contexts

Context-sensitive analyses can suffer significant scalabil-
ity problems due to excessive local DUG cloning, as dis-
cussed in Section 3. Likely callee set invariants minimize
local DUG cloning by stopping the context-sensitive analy-
sis from cloning DUGs for call contexts, or call stacks, that
are unlikely to occur. This invariant is profiled by logically
constructing the call stack for each thread. The profiling
pass instruments each callsite and appends the destination
to a thread-local “call-stack”. If the newly created callstack
is unique, it is added to a set of observed callstacks. Once
the profile has completed, the set of all observed callstacks is



written out. This caller stack is then used by the context sen-
sitive analysis to limit local DUG cloning around unrealized
call chains. This effect is demonstrated in Figure 3, removing
the likely-unrealized second call to do_init().

Likely unused call contexts meet two of the criteria for
good likely invariants. First, they are strong, as they can
dramatically reduce the size of the DUG and the amount of
space the data-flow analysis explores. Second, the invariant
tends to be stable across executions.

Cheap checking of likely unused call contexts is a slightly
more complex matter. Logically, the check needs to ensure
that unused call contexts are never reached, requiring a call-
stack set inclusion check at many call-sites. We found that a
naive implementation of this functionality was too inefficient
for some programs. To accelerate it, we use a Bloom filter to
elide the majority of our relatively expensive set inclusion
tests. We find that this methodology makes the dynamic cost
of the invariant check acceptable.

6 Evaluation

In this section, we show that optimistic hybrid analysis can
dramatically accelerate dynamic analyses by evaluating our
two sample analyses, OptFT and OptSlice, over a wide range
of applications.

6.1 Experimental Setup
6.1.1 OptFT

We evaluate the effectiveness of OptFT on the Dacapo [7]
and JavaGrande [48] benchmark suites. Our test suite is com-
posed of all multi-threaded benchmarks from these suites
which are compatible with our underlying Chord [40], and
RoadRunner [24] frameworks.

Optimistic hybrid analysis requires considerable profiling,
more than the single profile set provided by these benchmark
suites. To test these applications we construct large profiling
and testing sets for each benchmark. For several benchmarks
we use large, readily-available input sets:

e lusearch - Search novels from Project Gutenberg [2].
e pmd - Run the pmd source code analysis tool across
source files in our benchmarks.

e montecarlo — Analyze 10 years of S&P 500 stock data.
e batik - Render svg files from svgcuts.com [3].

e xalan - Convert xhtml versions of pydoc 2.7 Web
pages to XSL-FO files.

e luindex - Index novels from Project Gutenberg [2].
The remainder of our benchmarks (sunflow, raytracer, sor,
moldyn, lufact, crypt, series, and sparse) benchmarks do not
have large, freely available input sets, so we generated large
sets by sweeping parameters across the input sets (e.g. input
size, number of threads, pseudo-random seed).

To profile OptFT, we generate two sets of 64 inputs for
each test. One set is our candidate profiling runs; the other
is our testing corpus.

We run OptFT as a programmer would on a large set
of regression tests. We first profile increasing numbers of
profiling executions, until the number of learned dynamic
invariants stabilize. Then, we run OptFT over all tests in our
testing set. We run all data race detection experiments using
8 cores of an Intel Xeon E5-2687W v3 3.1 GHz processor.

6.1.2 OptSlice

OptSlice is implemented in the LLVM-3.1 compiler infrastruc-
ture. We accelerate the Giri dynamic backward slicer [45].
We evaluate the effectiveness of our analysis over a suite of
common desktop and server applications.
Our test suite workloads consist of:
e nginx — Serve a clone of the pydoc 2.7 documentation,
and load random pages.
e redis - Redis-benchmark application with varying
data-size, client, and number of requests.
e perl — The SPEC2006 diffmail application with differ-
ent inbox configurations.

e vim - Problem solutions from vimgolf.com [1].
e sphinx - Process a large database of voice samples.

e go — Predict the next best move from random points
in an archive of professional go games.

e zIlib - Compress files with a gzip-like utility. Input files
are sampled from our sphinx input files.

For perl we analyze the SPEC2006 diffmail application.
This represents the scenario of optimizing the interpreter to
run a repeated analysis over a single script (e.g. running a
single web content-generation script repeatedly on different
requests), not the scenario of a single interpreter being run
over many different perl programs.

Much as we did for OptFT, we generate profile and testing
sets (512 files each for redis, zlib, sphinx, perl, and nginx;
2048 for go and vim). We profile each program, growing the
input set until the number of dynamic invariants stabilizes.
We then test on our testing set of inputs. This methodology
is consistent with how we imagine OptSlice may be used
for debugging, such as when comparing good and failing
executions of a program.

We select static slices from several random locations within
our benchmarks, using the most accurate static analysis that
will complete on that benchmark without exhausting avail-
able computational resources.

Once we have gathered our set of slices, we generate dy-
namic slicing instrumentation. To determine statistical signif-
icance between good and bad runs of a program, a developer
would start at a suspect instruction and calculate the back-
ward slice over many executions (both failing and successful).
We therefore select non-trivial endpoints for calculating such
slices and calculate the slice from each endpoint for each



execution in the testing set. We define a non-trivial endpoint
to be an instruction with a sound static slice containing at
least 500 instructions. We use non-trivial endpoints because
they tend to be far more time consuming to compute slices
(there is little use optimizing a trivial analysis), and they are
common; on average, 55% of the endpoints from our sound
static slicer are non-trivial.

We slice each endpoint with the most accurate predicated
static slicer that will run on that program. Once we have our
predicated static slices, we optimize our dynamic instrumen-
tation, and dynamically slice all tests in our testing set with
our dynamic slicer. We repeat this process until we analyze
five different program endpoints; this provides a sufficient
set of endpoints to gain confidence in OptSlice’s ability to
optimize slicing for a general program point.

All experiments are run using a single core of our Xeon
processor, and each is allocated 16 GB of RAM. Table 2 gives
an overview of our benchmarks, their relative sizes, static
analysis times, and which static analysis we use.

6.2 Dynamic Overhead Reduction

Figure 5 shows how optimistic hybrid analysis improves per-
formance for race detection. Although we show all bench-
marks for completeness, 5 benchmarks (those to the right
of the vertical line in Figure 5) are quite simple and can be
statically proven to be race-free. Thus, there is no need for
any dynamic race analysis in these cases. For the remaining
9 benchmarks, OptFT shows average speedups of 3.5x versus
traditional FastTrack, and 1.8x versus hybrid FastTrack. Im-
pressively, for many of the benchmarks analyzed, the costs of
OptFT approach those of the underlying RoadRunner instru-
mentation framework; this presents a near-optimal reduction
in work due to the OptFT algorithm.

There are two remaining benchmarks for which OptFT
sees limited speedups: sunflow and montecarlo. These bench-
marks both make considerable use of fork-join and barrier
based parallelism. Consequently, the lockset based Chord de-
tector is algorithmically unequipped to optimize their mem-
ory operations, even with optimistic invariants. A static anal-
ysis algorithm better equipped to deal with barrier based
parallelism would likely see more profound speedups from
optimistic hybrid analysis.

Figure 5 additionally shows that the invariant checking
and mis-speculation overheads associated with OptFT are
negligible for nearly all benchmarks. Overall, invariant check-
ing overheads have little effect on the runtime of our race
detector, averaging 4.3% relative to a baseline execution. Ad-
ditionally roll-backs are infrequent and cause little overhead,
ranging from 0.0% to 21.9% and averaging 5.7%.

Figure 6 shows the online overheads for OptSlice versus
a traditional hybrid slicer. We do not compare to purely dy-
namic Giri, as it exhausts system resources even on modest
executions. OptSlice dramatically reduces the runtime of dy-
namic slicing, with speedups ranging from 1.2x to 78.5x, with

an average speedup of 8.3x. Our worst absolute speedups are
from perl and nginx. Perl’s state is divided largely into two
subsets, the interpreter state and the script state. Without
knowledge of the script running in the interpreter, static
analysis cannot precisely determine how information flows
through the script state. Perl scripts would be better analyzed
at the script level. Nginx is largely I/O bound, but OptSlice
decreases its overhead from 20% to a statistically insignifi-
cant overhead. This reduction is relatively significant, even
though it is not absolutely large.

We also look at the invariant-checking and mis-speculation
costs of OptSlice. The overheads of ensuring executions do
not violate likely-invariants are generally inconsequential,
showing no measurable overhead for zlib, go, nginx, and vim.
Perl and sphinx have overheads of 26% and 127% respectively,
largely due to likely-unrealized call-context checking. These
overheads are low enough for optimistic hybrid analysis to
improve slicing performance, but could be optimized further
if lower overheads are needed [8]. Overall mis-speculation
rates are low for all benchmarks, with go and vim being the
only benchmarks to see even modest overheads.

So far, we have looked at speedups of using optimistic
hybrid analysis when the profiling and static analysis costs
are inconsequential. This is typical when static analysis can
be done offline (e.g., after code is released but before the first
bug is reported), or for very large analysis bases, such as
analyzing months or years of prior executions in forensic
queries. We next look at how much execution time must be
analyzed for the dynamic savings of an optimistic hybrid
analysis to overcome its analysis and profiling startup costs
for smaller execution bases, which might occur when run-
ning nightly regression tests or when using delta debugging
for moderate sets of inputs immediately after recompilation.

Table 1 shows break-even times for benchmarks not stat-
ically proven race-free. OptFT begins to out-perform both
traditional and hybrid FastTrack within a few minutes of
test time for most benchmarks. There are exceptions, such
as montecarlo, sunflow, batik, and xalan, for which OptFT
does not speed up dynamic analysis and therefore should
not be used.

OptSlice shows a similar breakdown in Table 2, which
compares OptSlice to a traditional hybrid slicer. This chart
shows similar static analysis and profiling times as OptFT;
however, due to the both the larger dynamic speedup of Opt-
Slice and the reduction in static analysis state from the likely
invariants, the break-even times are generally much lower.
In three cases (vim, redis, and nginx), it is on average better
to run a hybrid slicer when analyzing any execution length.
In all cases, with under 3 minutes of execution time analyzed,
OptSlice saves work versus traditional hybrid analysis.

We now analyze how profiling effects the trade-off be-
tween accuracy and correctness of predicated static analysis
for a given execution. Figures 7 and 8 show the trade-offs
between profiling, mis-speculation rate and static slice size



N
o
T

o o~ Framework Overhead

35 I g Invariant Checks avavally
] FastTrack Checks | —]
Rollbacks —

wW
o
I

n
6]
I

Normalized Runtime
o 38
I I

Exe) O,

A
%%

226 %% 2% %P 0P 2P %% 0 S 2 L0 LN A0 TN o Ny HON
Do ool N T I S0 SIS Do Tl N e
%o S s 0; A s AN %o S s % S CIGS £G5S %p of YOS EGS
raytracer moldyn lusearch pmd sunflow luindex batik  xalan montecarlo quacf crypt  series sparse sor
(3.6s) (1.5s) (2.2s) (.77s) (6.7s) (11.9s) (9.9s) (1.9s) (7.3s) (1.8s) (4.1s) (24.1s) (2.2s) (1.1s)

540 40

Figure 5. Normalized runtimes for OptFT. Baseline runtimes for each benchmark are shown in parentheses. Tests right of the
red line are proven race-free by sound static race detection, but included here for completeness.

Testname Trad. Hybrid Opt. Hybrid Break-even w/ respect to || Opt. Speedup w/ respect to

Static Time | Profile | Static Time || Hybrid FT Trad. FT || Hybrid FT Trad. FT
lusearch 1m 15s | 1m 12s 1m 47s 24s 16s 3.0x 6.3x
pmd 1m 6s 20s 2m 17s 2m 0Os 1m 34s 1.3x 1.6x
raytracer 31s | 14m 52s 49s 1m 39s 30s 3.6x 9.8x
moldyn 29s | 51m 46s 49s 7m 53s 3m 29s 3.5x 6.7x
sunflow 3m Os | 22m 40s 4m 10s 58m 55s 2m 37s 1.1x 2.6x
montecarlo 59s | 1m 36s 51s - 2m 25s 0.99x 1.3x
batik 3m 25s | 15m 15s 10m 9s 60m 57s 2m 26s 1.2x 7.6x
xalan 558 51s 1m 26s 363m 44s 60m 23s 1.0x 1.0x
luindex 1m 7s | 17m 22s 1m 57s 1m 59s 1m 28s 3.6x 4.8x

Table 1. Comparing FastTrack benchmark end-to-end analysis times for pure dynamic as well as traditional and optimistic
hybrid analyses. Break-even Time is the amount of baseline execution time at which optimistic analysis begins to use less
computational resources (profiling + static + dynamic) than a traditional analysis. Optimistic Speedup is the ratio of runtimes
for OptFT versus a traditional or hybrid FastTrack implementation.

Testname Traditional Optimistic Break- || Dynamic
(LOC) Points-to Slice Profiling Points-to Slice even || Speedup
AT Time | AT Time Time | AT Time | AT Time Time
nginx (119K) || CI 17s | CI | 24m 33s 1m4s | CS 8s | CS 3s 0Os 1.2x
redis (80K) CI | 1m46s | CI | 170m 46s 1m4s | CI 6s | CS 48s 0s 13.1x
perl (128K) CI 24s | CS 55m 0s 10m 29s | CS | 160m 33s | CS | 9m 11s || 2m 29s 1.4x
vim (306K) CI 27s | CI| 77m55s 11m 8s | CS 1m 20s | CS 21s 0s 9.9x
sphinx (13K) || CS 7s | CS 1s 11m 24s | CS 6s | CS 0.2s || 1m 44s 3.9x
go (158K) CI 6s | CI 59s || 133m 54s | CI 8s | CI 9s || 1m 41s 6.5x
zlib (21K) CS 14s | CS 33s 1m 59s | CS 5s | CS 0.4s 1s 81.2x

Table 2. Comparing slicing benchmark end-to-end analysis times for traditional hybrid and optimistic hybrid analyses. Shown
are a breakdown of offline analysis costs for static points-to and slicing analyses and the most accurate Analysis Type (AT),
either Context-Sensitive (CS) or Context-Insensitive (CI) that will run on a given benchmark. Break-even Time is the minimum
amount of baseline execution time where an optimistic analysis uses less total computational resources (profiling + static +
dynamic) than a traditional hybrid analysis. Dynamic Speedup is the ratio of run-times for OptSlice versus traditional hybrid.



2 Baseline Execution —
350 - Invariant Checks 7zzz]
° Slicing Instrumentation =
€300 Rollbacks [
5250 |
c o~
<
EZOO r g
‘T150 & @
g [— g f‘_‘
2100 - ® ©
3 <
50 Mg oo Ino TO' ]
o L [ T T
2.0 2 O 2 QO 2, QO Q. 2, Q. e
S Py, e Py e Py, e Py, R Ay, e Py, R g,
I T A S T P T A S
4 4 4 4 4 4 4
redis perl vim sphinx go nginx zlib
(0.19s) (0.79s) (0.11s) (1.72s) (0.95s) (0.34s) (0.19s)

Figure 6. Normalized runtimes for OptSlice. Baseline run-

Base Static —
Optimistic Static Zzz7)
o 0.8 =3
© ©
o <]
0.6
£
3 -
< 8 3
o - a3
£04 2 =1
(7] o l
8 - = ©
< Q S
02 S0 o N
‘IS8 88 8% s3 g8
= (=3 =] o o =} 3 S
S S o S o S S S
0 o, o == =]
<% S 9 2. pe) L ‘S
23 %, 0 (7 ), 0
4/,4 N 7 K %

Figure 9. Alias rates for points-to analyses, reported as a
chance that a store may alias with a load.

times for each benchmark are shown in parentheses.

1e+06 :
Base Static —
- 100000 Optimistic Static 77771
c
% 10000
B
£ 1000 g
(o}
® 100 g
%
@ 10 /

% % % B A

7

»

1 L
LY go ——
0.9 7 Zliby -wroeree
& 08 *\ sphinx -
o 0714 y nginx -
c \ vim -----e
.% 0.6 - 5 perl ---o--:
S 0.5 \.\‘ redis e -
8 04
® 0.3 y
L2 Y
S 02 |
A
0 : t .
10 100 1000 10000 100000

Profiling Time (Seconds)

Figure 7. The effect of profiling time has on mis-speculation
rates for OptSlice benchmarks.

14000
go ——

5 12000 | Zlib e
é SphInX ...... ennen
< 10000 - nginx ---e
< !
& 8000 -
§ 6000 | redis -
n
S 4000 -
©
#2000 R

\ .

0 —
100 1000 10000

Number of Profiling Runs

Figure 8. The effect of profiling on static slice sizes.

for OptSlice. Figure 7 shows that most benchmarks converge
to a nearly 0% mis-speculation rate very quickly, with the
exceptions being vim and go, which explore very large states
and consequently require more profiling. Figure 8 shows
that for most applications slice size remains consistent, even
as more profiling samples are added. The major exception
to this is go, which explores a very large state-space result-
ing in different slice sizes as more profiling input is added.
Not all experiments show monotonically increasing slice
sizes. This is caused by the variations between profiling runs

Figure 10. Static slice sizes, in number of instructions, as
reported by a sound and a predicated static slicer.

10406 | Base Static I
+ + Likely-Unreachable Code zzzz)
+ Likely Callee Sets [
z 100000 + Likely-Unrealized Call-Contexts == |
k]
S 10000 N
k7]
£
o 1000 H H
N
[72]
8 100 | g
7]
10 H E @ H
1 . "
% %y, % %, % % %y,

Z, 2
2

Figure 11. The effect of different likely invariants on slice
size. Vim and nginx begin using context-sensitive analyses
when adding likely-unrealized call-contexts.

of the experiments. Go is particularly notable for this, as
it uses timeouts to bound its execution time, resulting in
inconsistent code paths and profiled invariant sets.

6.3 Predicated Static Analysis

We next evaluate the effects of predicated static analysis on
our C-based points-to and slicing analyses. Both are general-
purpose analyses with many applications. In fact, alias anal-



ysis is foundational to most complex static analyses; any
improvement to it will have wide ranging effect on the many
analyses that depend on it.

Figure 9 shows how a predicated static analysis signifi-
cantly increases the accuracy of an alias analysis. Alias rates
are measured as the probability that any given load can alias
with any given store. For fairness, both baseline and opti-
mistic analyses consider only the set of loads and stores
present in the optimistic analysis (this is a subset of the base-
line set due to state reduction caused by likely invariants).
Figure 10 shows the reduction in overall slice sizes, with op-
timistic analysis providing one to two orders of magnitude
in slice reduction.

We next break down how the likely invariants individually
benefit static analyses. Figure 11 measures static slice size
when running a sound static analysis and incrementally adds
each likely invariant for three tests: vim, nginx, and zlib. The
introduction of the likely-unrealized call-context invariant
allows vim and nginx to scale to context-sensitive slicing and
points-to analysis, causing a large reduction in slice sizes.

7 Related Work

Optimistic hybrid analysis deliberately inserts unsoundness
in its static analysis without sacrificing the accuracy of dy-
namic analysis. Our work builds on the considerable prior
work done to combine static and dynamic analysis [21]. We
classify this prior work according to the order of these anal-
yses and their soundness properties.

Sound static then dynamic. Traditional hybrid analy-
ses use sound static analysis to accelerate some form of dy-
namic analysis [13, 14, 19, 38, 39, 41, 44]. The requirement of
soundness limits the precision and scalability of static anal-
ysis, ultimately resulting in a suboptimal dynamic analysis.
Optimistic hybrid analysis uses unsound static analysis to
optimize dynamic analysis, resulting in considerably faster
analyses (Figures 5 and 6).

Dynamic then (unsound) static. Some static analyses
use dynamic tools, such as Daikon [22], to gather information
about a program’s behaviors, then use this information to
guide static analysis [17, 18, 26, 32, 36, 43, 45, 51]. Like pred-
icated static analysis, these systems sacrifice the soundness
of their static analysis by including dynamic invariants, but
unlike optimistic hybrid analysis, they do not compensate
for the resulting unsoundness in a later stage. In addition,
because these invariants are never checked at runtime, they
are chosen without regard for the cost of invariant checking.
We propose and use invariants, such as likely unused call
contexts, that reduce the state space of the analysis but still
meet the criteria of cheapness and stability (2.1).

Dynamic then unsound static then unsound dynamic.
A few systems learn likely invariants, then use these invari-
ants in an unsound static analysis to produce a faster final dy-
namic analysis [15, 28]. However, these systems do not com-

pensate for the unsoundness introduced by their unsound
static analysis, so the final dynamic analysis is unsound. Con-
versely, optimistic hybrid analysis solves the unsoundness
introduced in the static phase with speculative execution,
and a carefully designed predicated static analysis.

In other related works, Lee et al. propose a deterministic
replay system which leverages profiling, static analysis, and
dynamic analysis[33]. Their system, however, uses profiling
to aid in applying a sound static analysis. They could likely
apply optimistic hybrid analysis techniques to leverage un-
sound static analysis for greater performance improvements.

Data-race detection is an important problem that many re-
searchers have tried to accelerate, including with hybrid anal-
ysis [14, 19, 33, 44]. These techniques all rely on sound static
analysis to retain dynamic accuracy, and could be further
improved with the application of optimistic hybrid analysis.

Work on profile-guided optimizations [11, 37, 49], includ-
ing those used in just-in-time compilers [10, 12], learn likely
invariants though profiling and use them for optimizing a
given program. Our work on optimistic hybrid analysis dif-
fers in two ways. First, profile-guided optimizations have fo-
cused on local analyses and optimizations (e.g., loop-invariant
code motion). In contrast, we use likely invariants in whole-
program analyses (e.g., pointer aliasing), allowing wide-ranging
effects to the code. We identify likely invariants that enable
us to perform several scalable and precise whole program
context-sensitive static analyses, which are effective in re-
ducing dynamic analysis overhead. Second, optimistic hybrid
analysis is aimed at speculatively optimizing analysis code,
whereas profile-guided optimizations is aimed at optimizing
the original executable.

8 Conclusion

We argue that the traditional application of a sound static
analysis to accelerate dynamic analysis is suboptimal. To
this end, we introduce the concept of optimistic hybrid anal-
ysis, an analysis methodology that combines unsound static
analysis and speculative execution to dramatically accelerate
dynamic analysis without the loss of soundness. We show
that optimistic hybrid analysis dramatically accelerates two
dynamic analyses: program slicing and data-race detection.

Acknowledgments

We thank the anonymous reviewers and our shepherd, San-
tosh Pande, for their thoughtful comments. This work was

supported by the National Science Foundation under grants

CNS-1513718, SHF-1703931, and CAREER-1149773. This work
was supported in part by C-FAR, one of the six SRC STARnet

Centers, sponsored by MARCO and DARPA. Any opinions,
findings, conclusions, and recommendations expressed in

this paper are solely those of the authors.



References

(1]
(2]

(3]
(4]

(10]

(11]

(14]

[15

=

(16]

(17]

(18]

VimGolf. http://vimgolf.com, 2016. Accessed: 2016-07-31.

Project Gutenbveg. (n.d.). http://www.gutenberg.org, 2017. Accessed:
2017-04-12.

SvgCuts. http://svgcuts.com, 2017. Accessed: 2017-07-28.

AGrRAwAL, H., HORGAN, J. R., LONDON, S., AND WONG, W. E. Fault
localization using execution slices and dataflow tests. In Software Reli-
ability Engineering, 1995. Proceedings., Sixth International Symposium
on (1995), IEEE, pp. 143-151.

ANDERSEN, L. O. Program analysis and specialization for the ¢ pro-
gramming language. In PhD thesis, DIKU, University of Copenhagen
(1994).

BERNDL, M., LHOTAK, O., QI1AN, F., HENDREN, L., AND UMANEE, N.
Points-to analysis using bdds. In ACM SIGPLAN Notices (2003), vol. 38,
ACM, pp. 103-114.

BLACKBURN, S. M., GARNER, R., HoFrMAN, C., KHAN, A. M., McKINLEY,
K. S., BENTZUR, R., DiwAN, A., FEINBERG, D., FRAMPTON, D., GUYER,
S. Z., HirzeL, M., HoskING, A., Jump, M., LEg, H., Moss, J. E. B,
PHANSALKAR, A., STEFANOVIC, D., VANDRUNEN, T., VON DINCKLAGE, D.,
AND WIEDERMANN, B. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA °06: Proceedings of the 21st an-
nual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (New York, NY, USA, Oct. 2006), ACM
Press, pp. 169-190.

BonDp, M. D., AND McKINLEY, K. S. Probabilistic calling context. In
ACM SIGPLAN Notices (2007), vol. 42, ACM, pp. 97-112.

BrACE, K. S., RUDELL, R. L., AND BryanT, R. E. Efficient implemen-
tation of a bdd package. In Proceedings of the 27th ACM/IEEE Design
Automation Conference (New York, NY, USA, 1990), DAC *90, ACM,
pp. 40-45.

BuUrkE, M. G,, CHo1, J.-D., FINK, S., GROVE, D., HIND, M., SARKAR, V.,
SERRANO, M. ]J., SREEDHAR, V. C., SRINIVASAN, H., AND WHALEY, J. The
jalapeno dynamic optimizing compiler for java. In Proceedings of the
ACM 1999 conference on Java Grande (1999), ACM, pp. 129-141.
CALDER, B., FELLER, P., AND EUSTACE, A. Value profiling. In Proceedings
of the 30th Annual ACM/IEEE International Symposium on Microar-
chitecture (Washington, DC, USA, 1997), MICRO 30, IEEE Computer
Society, pp. 259-269.

CHAMBERS, C., AND UNGAR, D. Customization: Optimizing compiler
technology for self, a dynamically-typed object-oriented programming
language. SIGPLAN Not. 24, 7 (June 1989), 146—160.

CHANG, W., STREIFF, B., AND LIN, C. Efficient and extensible security
enforcement using dynamic data flow analysis. In Proceedings of the
15th ACM Conference on Computer and Communications Security (New
York, NY, USA, 2008), CCS 08, ACM, pp. 39-50.

Cwor, J.-D., LEE, K,, LogINOV, A., O’'CALLAHAN, R., SARKAR, V., AND
SRIDHARAN, M. Efficient and precise datarace detection for multi-
threaded object-oriented programs. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Imple-
mentation (Berlin, Germany, June 2002).

CSALLNER, C., SMARAGDAKIS, Y., AND XIE, T. Dsd-crasher: A hybrid
analysis tool for bug finding. ACM Trans. Softw. Eng. Methodol. 17, 2
(May 2008), 8:1-8:37.

DEVECSERY, D., CHOw, M., Dou, X., FLINN, J., AND CHEN, P. M. Eidetic
systems. In Proceedings of the 11th Symposium on Operating Systems
Design and Implementation (Broomfield, CO, October 2014).
DUFOUR, B., RYDER, B. G., AND SEVITSKY, G. Blended analysis for
performance understanding of framework-based applications. In Pro-
ceedings of the 2007 International Symposium on Software Testing and
Analysis (New York, NY, USA, 2007), ISSTA *07, ACM, pp. 118-128.
DUFOUR, B., RYDER, B. G., AND SEVITSKY, G. A scalable technique for
characterizing the usage of temporaries in framework-intensive java
applications. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (New York, NY,

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

USA, 2008), SIGSOFT *08/FSE-16, ACM, pp. 59-70.

Eimas, T., QADEER, S., AND TAsIRAN, S. Goldilocks: A race and
transaction-aware Java runtime. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation
(2007), pp. 245-255.

Enck, W, GILBERT, P., gon CHUN, B., Cox, L. P,, Jung, J., McDANIEL, P.,
AND SHETH, A. N. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings of
the 9th Symposium on Operating Systems Design and Implementation
(Vancouver, BC, October 2010).

ERNsT, M. D. Static and dynamic analysis: Synergy and duality. In
IN WODA 2003: ICSE WORKSHOP ON DYNAMIC ANALYSIS (2003),
pp. 24-27.

ErNsT, M. D., COCKRELL, J., GRiswoLD, W. G., AND NOTKIN, D. Dynam-
ically discovering likely program invariants to support program evo-
lution. In Proceedings of the 21st International Conference on Software
Engineering (New York, NY, USA, 1999), ICSE *99, ACM, pp. 213-224.
FLANAGAN, C., AND FREUND, S. FastTrack: Efficient and precise dy-
namic race detection. In Proceedings of the ACM SIGPLAN 2009 Con-
ference on Programming Language Design and Implementation (Dublin,
Ireland, June 2009), pp. 121-133.

FrLanAGgaN, C., AND FREUND, S. N. The roadrunner dynamic analysis
framework for concurrent programs. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (New York, NY, USA, 2010), PASTE ’10, ACM, pp. 1-8.
Gurta, N, HE, H., ZHANG, X., AND GUPTA, R. Locating faulty code
using failure-inducing chops. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering (2005),
ACM, pp. 263-272.

GUPTA, R, SOFFA, M. L., AND HowARD, J. Hybrid slicing: Integrating
dynamic information with static analysis. ACM Trans. Softw. Eng.
Methodol. 6, 4 (Oct. 1997), 370-397.

GUYER, S. Z., AND LIN, C. Client-driven pointer analysis. In Pro-
ceedings of the 10th International Conference on Static Analysis (Berlin,
Heidelberg, 2003), SAS’03, Springer-Verlag, pp. 214-236.

HANGAL, S., AND LaMm, M. S. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the 24th International
Conference on Software Engineering (May 2002), pp. 291-301.
HARDEKOPF, B., AND LIN, C. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In ACM SIGPLAN
Notices (2007), vol. 42, ACM, pp. 290-299.

HARDEKOPF, B., AND LIN, C. Exploiting pointer and location equiv-
alence to optimize pointer analysis. In International Static Analysis
Symposium (2007), Springer, pp. 265-280.

Kim, T., CHANDRA, R., AND ZELDOVICH, N. Efficient patch-based au-
diting for Web application vulnerabilities. In Proceedings of the 10th
Symposium on Operating Systems Design and Implementation (Holly-
wood, CA, October 2012).

KINDER, J., AND KRAVCHENKO, D. Alternating control flow reconstruc-
tion. In Proceedings of the 13th International Conference on Verification,
Model Checking, and Abstract Interpretation (Berlin, Heidelberg, 2012),
VMCAT'12, Springer-Verlag, pp. 267-282.

LEE, D., CHEN, P. M, FLINN, J., AND NARAYANASAMY, S. Chimera: Hybrid
program analysis for determinism. In Proceedings of the ACM SIGPLAN
2012 Conference on Programming Language Design and Implementation
(Beijing, China, June 2012).

LivsHITS, B., SRIDHARAN, M., SMARAGDAKIS, Y., LHOTAK, O., AMARAL,
J. N.,, CHANG, B.-Y. E., GUYER, S. Z., KHEDKER, U. P., M@LLER, A., AND
VARDOULAKIS, D. In defense of soundiness: A manifesto. Commun.
ACM 58, 2 (Jan. 2015), 44-46.

MANGAL, R., ZHANG, X., NoRI, A. V., AND NAIK, M. A user-guided
approach to program analysis. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (New York, NY, USA,
2015), ESEC/FSE 2015, ACM, pp. 462-473.

Mock, M., ATKINSON, D. C., CHAMBERS, C., AND EGGERs, S. J. Improving



(37]

(38]

(39]

(40]

(43]

[44]

program slicing with dynamic points-to data. In Proceedings of the
10th ACM SIGSOFT Symposium on Foundations of Software Engineering
(New York, NY, USA, 2002), SIGSOFT ’02/FSE-10, ACM, pp. 71-80.
Mock, M., Das, M., CHAMBERS, C., AND EGGERs, S. J. Dynamic points-
to sets: A comparison with static analyses and potential applications
in program understanding and optimization. In Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering (2001), ACM, pp. 66-72.

MYERS, A. C. JFlow: Practical mostly-static information flow control.
In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (San Antonio, TX, January 1999),
pp. 228-241.

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND ZDANCEWIC, S. Cets:
Compiler enforced temporal safety for c. SIGPLAN Not. 45, 8 (June
2010), 31-40.

NAIK, M., AIKEN, A., AND WHALEY, J. Effective static race detection
for java. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY,
USA, 2006), PLDI "06, ACM, pp. 308-319.

NEecuLa, G. C., McPEAK, S., AND WEIMER, W. Ccured: Type-safe
retrofitting of legacy code. SIGPLAN Not. 37, 1 (Jan. 2002), 128-139.
NETHERCOTE, N., AND SEWARD, ]J. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Im-
plementation (San Diego, CA, June 2007).

NIMMER, J. W., AND ERNST, M. D. Invariant inference for static check-
ing:. In Proceedings of the 10th ACM SIGSOFT Symposium on Founda-
tions of Software Engineering (New York, NY, USA, 2002), SIGSOFT
*02/FSE-10, ACM, pp. 11-20.

RHODES, D., FLANAGAN, C., AND FREUND, S. N. Bigfoot: Static check
placement for dynamic race detection. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (New York, NY, USA, 2017), PLDI 2017, ACM, pp. 141-156.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

SaHOO, S. K., CRISWELL, J., GEIGLE, C., AND ADVE, V. Using likely
invariants for automated software fault localization. ACM SIGPLAN
Notices 48, 4 (2013), 139-152.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON,
T. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems 15, 4 (November 1997), 391—
411.

SENGUPTA, A., Biswas, S., ZHANG, M., BoND, M. D., AND KULKARNTI,
M. Hybrid static-dynamic analysis for statically bounded region
serializability. In ACM SIGPLAN Notices (2015), vol. 50, ACM, pp. 561-
575.

SmrTH, L. A., BULL, J. M., AND OBDRZALEK, J. A parallel java grande
benchmark suite. In Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing (New York, NY, USA, 2001), SC ’01, ACM, pp. 8-8.
STEFFAN, J. G., AND MowRy, T. C. The potential for using thread-level
data speculation to facilitate automatic parallelization. In Proceedings of
the 25th International Symposium on Computer Architecture (February
1998), pp. 2-13.

VOUNG, J. W., JHALA, R, AND LERNER, S. Relay: static race detection
on millions of lines of code. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (Dubrovnik,
Croatia, 2007), pp. 205-214.

WEL S., AND RYDER, B. G. Practical blended taint analysis for javascript.
In Proceedings of the 2013 International Symposium on Software Testing
and Analysis (New York, NY, USA, 2013), ISSTA 2013, ACM, pp. 336—
346.

WEISER, M. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering (Piscataway, NJ, USA, 1981), ICSE
’81, IEEE Press, pp. 439-449.

Znu, J. Towards scalable flow and context sensitive pointer analysis.
In Design Automation Conference, 2005. Proceedings. 42nd (June 2005),

pp. 831-836.



	1 Introduction
	2 Design
	2.1 Likely Invariant Profiling
	2.2 Predicated Static Analysis
	2.3 Dynamic Analysis

	3 Static Analysis Background
	4 OptFT
	4.1 Analysis Overview
	4.2 Invariants

	5 OptSlice
	5.1 Static Analysis
	5.2 Invariants

	6 Evaluation
	6.1 Experimental Setup
	6.2 Dynamic Overhead Reduction
	6.3 Predicated Static Analysis

	7 Related Work
	8 Conclusion
	References

