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Within the framework of functional data analysis, we develop principal component analysis for periodically correlated time
series of functions. We define the components of the above analysis including periodic operator-valued filters, score processes,
and the inversion formulas. We show that these objects are defined via a convergent series under a simple condition requiring
summability of the Hilbert–Schmidt norms of the filter coefficients and that they possess optimality properties. We explain
how the Hilbert space theory reduces to an approximate finite-dimensional setting which is implemented in a custom-build |R|
package. A data example and a simulation study show that the new methodology is superior to existing tools if the functional
time series exhibits periodic characteristics.
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1. INTRODUCTION

Periodicity is one of the most important characteristics of time series, with early work going back to the very
origins of the field, e.g. Walker (1914) and Fisher (1929). The class of periodically correlated time series is par-
ticularly suitable to quantify periodic behavior reflected not only in the mean structure but also in correlations.
Consequently, periodically correlated (PC) time series have been used in many modeling and prediction appli-
cations, and various aspects of their theory have been studied. The book by Hurd and Miamee (2007) gives an
account of the subject. It is impossible to list even a fraction of relevant references, but to indicate the many flavors
of work done in this field, we cite Hurd (1989), Lund et al. (1995), Anderson and Meerschaert (1997), Javorskyj
et al. (2012), and Ghanbarzadeh and Aminghafari (2016).
The last decade has seen increased interest in time series of curves, often referred to as functional time series

(FTS). Examples of FTS include annual temperature or smoothed precipitation curves, e.g. Gromenko et al. (2017),
daily pollution level curves, e.g. Aue et al. (2015), various daily curves derived from high-frequency asset price
data, e.g. Horváth et al. (2014), yield curves, e.g. Hays et al. (2012), and daily vehicle traffic curves, e.g. Klepsch
et al. (2017). Other examples are given in the books by Horváth and Kokoszka (2012) and Kokoszka and Reimherr
(2017). The theory and methodology of FTS forms a subfield of functional data analysis (FDA). A key tool of
FDA is dimension reduction via functional principal component analysis (FPCA), see, e.g. Chapter 3 of Horváth
and Kokoszka (2012). FPCA has been developed for random samples of functions, i.e. for i.i.d. functional data.
Recently, Hörmann et al. (2015) extended the theory of Brillinger (1975, Chapter 9) from linear vector-valued
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time series to functional weakly dependent time series. Building on earlier advances of Panaretos and Tavakoli
(2013b, 2013a), they developed spectral domain PCA, which leads to a better representation of stationary FTS
than the usual (static) PCA. Suitable details and definitions are given in Section 2 . The objective of this paper is
to develop PCA for PC FTS. We establish the requisite theoretical framework and show that for FTS with periodic
characteristics the new approach is superior to the methodology of Hörmann et al. (2015). We emphasize that the
latter methodology was developed for stationary FTS and so is a priori not well suited for periodic functional data.
Tests for periodicity in FTS have recently been developed by Hörmann et al. (2018) and Zamani et al. (2016).
Zhang (2016) uses spectral methods to develop goodness-of-fit tests for FTS.
Section 2 introduces the requisite background and notation. The theory of PCA of PC FTS is presented

in Section 3, with proofs postponed to Section 6. Section 4 shows how the methodology developed in the
infinite-dimensional framework of function spaces is translated into an implementable setting of finite-dimensional
objects. Its usefulness is illustrated in Section 5 by an application to a particulate pollution dataset and a simu-
lation study. On-line Supporting Information contains additional information and selected proofs, referred to at
appropriate locations in the paper.

2. NOTATION AND PRELIMINARIES

This section introduces the notation and background used throughout the paper. A generic separable Hilbert space
is denoted by ℍ, and its inner product and norm are denoted, respectively, by < ., . >ℍ and ‖.‖ℍ. The subscript ℍ
is sometimes suppressed when there is no ambiguity.
The Hilbert space  = L2 ([0, 1]) and its T-fold Cartesian product T are extensively used throughout this

paper. They are equipped with inner products

⟨f , g⟩ = ∫
1

0
f (s) g (s) ds, f , g ∈ 

and ⟨(
f1 · · · fT

)′
,
(
g1 · · · gT

)′⟩
T

=
T∑
j=1

⟨
fj, gj
⟩
 , fj, gj ∈ ,

respectively. An operator Ψ from a Hilbert space ℍ to ℂp is a bounded linear operator if and only if there exist
(unique) elements Ψ1,… ,Ψp in ℍ such that

Ψ (h) =
(⟨h,Ψ1⟩ ℍ ,… ,

⟨
h,Ψp

⟩
ℍ

)′
, ∀ h ∈ ℍ. (2.1)

An operator Υ from ℂp to ℍ is linear and bounded if and only if there exist elements Υ1,… ,Υp in ℍ such that

Υ (y) = Υ
((
y1,… , yp

)′)
=

p∑
m=1

ymΥm, ∀ y ∈ ℂp.

For any two elements f and g in ℍ, f ⊗ g is a bounded linear operator defined by

f ⊗ g ∶ ℍ → ℍ, f ⊗ g ∶ h −→ ⟨h, g⟩ℍ f .
We use ‖.‖ to denote the operator norm, and ‖.‖ and ‖.‖ to denote, respectively, the nuclear and

Hilbert–Schmidt norms, see e.g. Horváth and Kokoszka (2012), Section 13.5.
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In the following, L2 (ℍ, (−𝜋, 𝜋]) denotes the space of square integrableℍ-valued functions on (−𝜋, 𝜋]. Similarly,
for a probability space (Ω,,ℙ) in place of (−𝜋, 𝜋], we use the notation L2 (ℍ,Ω). For two random elements
X,Y ∈ L2 (ℍ,Ω), the covariance operator, Cov (X,Y), is defined as

Cov (X,Y) = E [(X − EX)⊗ (Y − EY)] ∶ ℍ → ℍ,
Cov (X,Y) ∶ h −→ E

[⟨h, (Y − EY)⟩ℍ (X − EX)
]
.

Definition 2.1. Let X =
{
Xt, t ∈ ℤ

}
be an ℍ-valued time series with finite second moment E‖Xt‖2 < ∞. Then,

X is said to be PC if there exists a positive integer T such that

EXt = EXt+T , ∀ t ∈ ℤ,
Cov

(
Xt,Xs

)
= Cov

(
Xt+T ,Xs+T

)
, ∀ t, s ∈ ℤ.

The smallest such T will be called the period of the process, and X is then said to be T-PC, or T-PC, for short.
When T = 1, the process is (weakly) stationary.

For a T-PC process {Xt}, covariance operators at lag h are defined as

CX
h,(j,j′) = Cov

(
XTh+j,Xj′

)
, h ∈ ℤ and j, j′ = 0, 1,… ,T − 1.

It is easy to verify that the condition∑
h∈ℤ

‖‖‖CX
h,(j,j′)
‖‖‖ < ∞, j, j

′ = 0, 1,… ,T − 1, (2.2)

implies that for each 𝜃 the series
{

1

2𝜋

∑n
h=−n C

X
h,(j,j′)e

−ih𝜃 ∶ n ∈ ℤ+

}
is a Cauchy sequence in the Hilbert space of

Hilbert–Schmidt operators on ℍ. Then, spectral density operators are well defined by

X
𝜃,(j,j′) =

1
2𝜋

∑
h∈ℤ

CX
h,(j,j′)e

−ih𝜃, j, j′ = 0,… ,T − 1. (2.3)

Definition 2.2. A sequence
{
Ψl, l ∈ ℤ

}
of operators from a Hilbert space ℍ1 to a Hilbert space ℍ2 satisfying∑

l∈ℤ

‖‖Ψl
‖‖ < ∞, (2.4)

is called a filter. A T-periodic filter
{{

Ψt
l, l ∈ ℤ

}
, t ∈ ℤ

}
is a sequence of filters which is T-periodic with respect

to t, i.e. Ψt
l = Ψt+T

l , for each t and l. Consequently,

T−1∑
t=0

∑
l∈ℤ

‖‖Ψt
l
‖‖ < ∞. (2.5)

Related to the filter
{
Ψl, l ∈ ℤ

}
, Ψ (B) is an operator from

(
ℍ1

)ℤ
to
(
ℍ2

)ℤ
of the following form:

Ψ (B) =
∑
l∈ℤ

ΨlB
l,
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where B is the backward shift operator. In other words, if
{
Xt, t ∈ ℤ

}
is a time series with values in ℍ1, thenΨ (B)

transforms it to an ℍ2 -valued time series defined by

(Ψ (B) (X))t =
∑
l∈ ℤ

Ψl

(
Xt−l
)
.

For a p × p matrix A, aq,r denotes the entry in the qth row and rth column. To indicate that t = kT + d for some

integer k , we write t
T≡ d.

3. PRINCIPAL COMPONENT ANALYSIS OF PC FUNCTIONAL TIME SERIES

Before proceeding with the definitions and statements of properties of the principal component analysis for
PC-FTS, we provide a brief introduction, focusing on the ideas and omitting mathematical assumptions. Suppose
{Xt} is a weakly dependent, stationary, mean-zero time series of functions in . It admits the Karhunen–Lo éve
expansion

Xt(u) =
∞∑
m=1

𝜉tmvm(u), 𝜉tm = ⟨Xt, vm⟩, E𝜉2tm = 𝜆m, (3.1)

where the vm are the functional principal components (called static FPCs inHörmann et al. 2015). The orthonormal
functions vm are uniquely defined up to a sign, and the random variables 𝜉tm are called their scores. Even for
stationary (rather than PC) FTS, the dynamic FPCs are not defined as one function for every “frequency” level m.
The analog of 3.1 is

Xt(u) =
∞∑
m=1

∑
l∈ℤ

Ym,t+l𝜙ml(u). (3.2)

A single function vm is thus replaced by an infinite sequence of functions {𝜙ml, l ∈ ℤ}. However, one can still
define the scores as single numbers for every frequency level m, using the formula Ymt =

∑
l∈ℤ ⟨Xt−l, 𝜙ml⟩. The

analog of 𝜆m is

𝜈m ∶= E
‖‖‖‖‖
∑
l∈ℤ

Ym,t+l𝜙ml

‖‖‖‖‖
2

,

and we have the decomposition of variance E ‖‖Xt‖‖2 =
∑∞

m=1 𝜈m. In this section, we will see how these results
extend to the setting of PC FTS, which is necessarily more complex as it involves periodic sequences of functions.
The scores, and the reconstructions obtained from them, will have certain periodic properties. All results stated in
this section are proven in Section 6.
In order to define the dynamic functional principal components (DFPCs) in our setting, we first establish

conditions for the existence of a filtered (output) process of a T-PC FTS. The periodic structure of the covari-
ance operators of the T-PC input process X =

{
Xt, t ∈ ℤ

}
suggests applying a T-periodic functional filter{{

Ψt
l, l ∈ ℤ

}
, t ∈ ℤ

}
to obtain a filtered process Y =

{
Yt, t ∈ ℤ

}
with values in ℂp.

Theorem 3.1. Let X =
{
Xt, t ∈ ℤ

}
be an -valued T-PC process and

{{
Ψt
l, l ∈ ℤ

}
, t ∈ ℤ

}
a T-periodic filter

from  to ℂp with the elements Ψt
l,m,m = 1,… , p in , as described in (2.1). In particular, we assume that (2.5)

holds. Then, for each t,
∑

l∈ℤ Ψt
l

(
X(t−l)

)
converges in mean square to a limit Yt.
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If, in addition

T−1∑
t=0

∑
l∈ℤ

‖‖Ψt
l
‖‖ < ∞, (3.3)

then Y =
{
Yt, t ∈ ℤ

}
is a T-PC process with the following p × p spectral density matrices Y

𝜃,(d,f ) for d, f =
0,… ,T − 1

Y
𝜃,(d,f )

=
⎡⎢⎢⎣
⟨⎛⎜⎜⎝

X
𝜃,(0,0) · · · X

𝜃,(0,T−1)
⋮ ⋱ ⋮X

𝜃,(T−1,0) · · · X
𝜃,(T−1,T−1)

⎞⎟⎟⎠
⎛⎜⎜⎝

Ψd
𝜃,d,r
⋮

Ψd
𝜃,d−T+1,r

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

Ψf
𝜃,f ,q
⋮

Ψf
𝜃,f−T+1,q

⎞⎟⎟⎠
⟩

T

⎤⎥⎥⎦
q,r=1,…,p

,

where Ψd
𝜃,d,q =

∑
l∈ℤ Ψd

Tl+d,qe
il𝜃,… ,Ψd

𝜃,d−T+1,q =
∑

l∈ℤ Ψd
Tl+d−T+1,qe

il𝜃, f , d = 0,… ,T − 1.

To illustrate the spectral density structure of the output process, we consider T = 2, in which case

Y
𝜃,(0,0) =

[⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ0

𝜃,0,r
Ψ0

𝜃,−1,r

)
,

( Ψ0
𝜃,0,q

Ψ0
𝜃,−1,q

)⟩
2

]
q,r=1,…,p

,

Y
𝜃,(1,0) =

[⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ1

𝜃,1,r
Ψ1

𝜃,0,r

)
,

( Ψ0
𝜃,0,q

Ψ0
𝜃,−1,q

)⟩
2

]
q,r=1,…,p

,

Y
𝜃,(0,1) =

[⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ0

𝜃,0,r
Ψ0

𝜃,−1,r

)
,

(Ψ1
𝜃,1,q

Ψ1
𝜃,0,q

)⟩
2

]
q,r=1,…,p

,

Y
𝜃,(1,1) =

[⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ1

𝜃,1,r
Ψ1

𝜃,0,r

)
,

(Ψ1
𝜃,1,q

Ψ1
𝜃,0,q

)⟩
2

]
q,r=1,…,p

,

where Ψ0
𝜃,0,q ∶=

∑
l∈ℤ Ψ0

2l,qe
il𝜃 , Ψ0

𝜃,−1,q ∶=
∑

l∈ℤ Ψ0
2l−1,qe

il𝜃 , Ψ1
𝜃,0,q ∶=

∑
l∈ℤ Ψ1

2l,qe
il𝜃 , and Ψ1

𝜃,1,q ∶=
∑

l∈ℤ Ψ1
2l+1,qe

il𝜃 .
We emphasize that (2.5) is a sufficient condition for the mean-square convergence of the series defining the

filtered process Y, and (3.3) guarantees the existence of the spectral density operator of the filtered process.
Hörmann et al. (2015, p. 327), discuss this issue in the case of stationary input and output processes. In the
remainder of the paper, we assume (3.3) for each periodic functional filter.
The operator matrix (X

𝜃,(d,f ))0≤d,f≤T−1 in Theorem 3.1 is a non-negative, self-adjoint, compact operator fromT

to T , and so it admits the following spectral decomposition:(X
𝜃,(d,f )

)
0≤d,f≤T−1 =

∑
m≥1

𝜆𝜃,m𝜑𝜃,m ⊗𝜑𝜃,m, (3.4)

where 𝜆𝜃,1 ≥ 𝜆𝜃,2 ≥ · · · ≥ 0, and
{
𝜑𝜃,m

}
m≥1 forms a complete orthonormal basis for T . By choosing(

Ψd
𝜃,d,q · · · Ψd

𝜃,d−T+1,q
)′

as the eigenfunction 𝜑𝜃,dp+q, the spectral density matrices of the filtered process Y ={
Yt, t ∈ ℤ

}
turn to diagonal matrices and an optimality property will be obtained. We are now ready to define the

DFPC filter and scores of the PC process X.
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Definition 3.1. Let X =
{
Xt, t ∈ ℤ

}
be an -valued mean-zero T-PC random process satisfying condition (2.2)

and
{
Φd
l,m, d = 0,… ,T − 1,m = 1,… p, l ∈ ℤ

}
be elements of  defined by

1
2𝜋 ∫

𝜋

−𝜋
𝜑𝜃,dp+me

−il𝜃 d𝜃 =
⎛⎜⎜⎝

Φd
lT+d,m
⋮

Φd
lT+d−T+1,m

⎞⎟⎟⎠ , m = 1,… , p, d = 0,… ,T − 1 (3.5)

for each l in ℤ, or equivalently by

𝜑𝜃,dp+m =
⎛⎜⎜⎝

Φd
𝜃,d,m
⋮

Φd
𝜃,d−T+1,m

⎞⎟⎟⎠ , m = 1,… , p, d = 0,… ,T − 1, (3.6)

for each 𝜃 in (−𝜋, 𝜋]. Then {
Φd
l,m, l ∈ ℤ

}
, d = 0,… ,T − 1

is said to be the (d,m)th DFPC filter of the process X. Furthermore

Yt,m =
∑
l∈ℤ

⟨
X(t−l),Φd

l,m

⟩
(3.7)

=
∑
l∈ℤ

⟨
X(t−lT−d),Φd

lT+d,m

⟩
+
∑
l∈ℤ

⟨
X(t−lT−d+1),Φd

lT+d−1,m

⟩
+ · · · +

∑
l∈ℤ

⟨
X(t−lT−d+T−1),Φd

lT+d−T+1,m

⟩
, m = 1,… p, t

T≡ d

will be called the (t,m)th DFPC score of X.

For illustration, in the case of T = 2, we have for m = 1,… , p

1
2𝜋 ∫

𝜋

−𝜋
𝜑𝜃,me

−il𝜃 d𝜃 =
(

Φ0
2l,m

Φ0
2l−1,m

)
and

1
2𝜋 ∫

𝜋

−𝜋
𝜑𝜃,p+me

−il𝜃 d𝜃 =
(
Φ1

2l+1,m
Φ1

2l,m

)
, (3.8)

for each l in ℤ, or equivalently

𝜑𝜃,m =
(

Φ0
𝜃,0,m

Φ0
𝜃,−1,m

)
and 𝜑𝜃,p+m =

(
Φ1

𝜃,1,m
Φ1

𝜃,0,m

)
, 𝜃 ∈ (−𝜋, 𝜋] .

The filters
{
Φd
l,m, l ∈ ℤ

}
are defined for d = 0, 1.

The following proposition lists some useful properties of the p-dimensional output process{
Yt = (Yt,1,… ,Yt,p)′, t ∈ ℤ

}
defined by (3.7).

Proposition 3.1. Let X =
{
Xt, t ∈ ℤ

}
be an -valued, mean-zero T-PC random process and assume that (2.2)

holds. Then

• the eigenfunctions 𝜑𝜃,m are Hermitian i.e. 𝜑−𝜃,m = 𝜑𝜃,m and the DFPC scores Yt,m are real-valued provided that
X is real-valued;
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• for each (t,m), the series (3.7) is mean-square convergent, has mean zero:

EYt,m = 0, (3.9)

and satisfies for t
T≡ d,

E ‖‖Yt,m‖‖2 =
T−1∑
j1 ,j2=0

∑
k,l∈ℤ

⟨
CX
k−l,(j1,j2)

(
Φd
kT+d−j2,m

)
,Φd

lT+d−j1,m

⟩
 ; (3.10)

• for any t and s, the DFPC scores Yt,m and Ys,m′ are uncorrelated if s − t is not a multiple of T or m ≠ m′. In
other words CY

h,(j1 ,j2)
= 0 for j1 ≠ j2 and C

Y
h,(j,j) are diagonal matrices for all h;

• the long-run covariance matrix of the filtered process
{
Yt, t ∈ ℤ

}
satisfies the following limiting equality:

lim
n→∞

1
n
Var
(
Y1 + · · · + Yn

)
= 2𝜋

T

T−1∑
d=0

diag
(
𝜆0,dp+1,… , 𝜆0,dp+p

)
.

For illustration, if T = 2, then

E ‖‖Yt,m‖‖2 =
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,0)

(
Φ0

2k,m

)
,Φ0

2l,m

⟩
 (3.11)

+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,1)

(
Φ0

2k−1,m

)
,Φ0

2l,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,0)

(
Φ0

2k,m

)
,Φ0

2l−1,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,1)

(
Φ0

2k−1,m

)
,Φ0

2l−1,m

⟩
 , t

2≡ 0

and

E ‖‖Yt,m‖‖2 =
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,1)

(
Φ1

2k,m

)
,Φ1

2l,m

⟩
 (3.12)

+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,0)

(
Φ1

2k+1,m

)
,Φ1

2l,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,1)

(
Φ1

2k,m

)
,Φ1

2l+1,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,0)

(
Φ1

2k+1,m

)
,Φ1

2l+1,m

⟩
 , t

2≡ 1.

The long-run covariance matrix is given by

lim
n→∞

1
n
Var
(
Y1 + · · · + Yn

)
= 2𝜋

2

[
diag

(
𝜆0,1,… , 𝜆0,p

)
+ diag

(
𝜆0,p+1,… , 𝜆0,2p

)]
.

The following theorem provides a formula for reconstructing the original -valued process X from its DFPC
scores

{
Yt,m, t ∈ ℤ,m ≥ 1

}
.
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Theorem 3.2. (Inversion Formula) Let X =
{
Xt, t ∈ ℤ

}
be an-valued, mean-zero T-PC random process, and{

Yt,m, t ∈ ℤ,m ≥ 1
}
be its DFPC scores. For each time t and positive integer m, define Xt,m to be

Xt,m ∶ =
∑
l∈ℤ

Yt+lT−d,mΦ0
lT−d,m +

∑
l∈ℤ

Yt+lT−d+1,mΦ1
lT−d+1,m

+ · · · +
∑
l∈ℤ

Yt+lT−d+T−1,mΦT−1
lT−d+T−1,m, t

T≡ d.

Then

Xt =
∑
m≥1

Xt,m, t
T≡ d,

where the convergence holds in mean square provided that

T−1∑
d=0

∑
l∈ℤ

‖‖‖Φd
l,m
‖‖‖ < ∞. (3.13)

If T = 2, then

Xt,m ∶=
∑
l∈ℤ

Yt+2l,mΦ0
2l,m +

∑
l∈ℤ

Yt+2l+1,mΦ1
2l+1,m, t

2≡ 0

Xt,m ∶=
∑
l∈ ℤ

Yt+2l−1,mΦ0
2l−1,m +

∑
l∈ℤ

Yt+2l,mΦ1
2l,m, t

2≡ 1.

The following theorem establishes an optimality property of the above DFPC filter based on a mean-square
distance criterion:

Theorem 3.3. (Optimality) Let X =
{
Xt, t ∈ ℤ

}
be an -valued mean zero T-PC random process, and{

Xt,m, t ∈ ℤ,m ≥ 1
}
be as in Theorem 3.2.

For arbitrary -valued sequences{
Ψt
l,m, t = 0,… ,T − 1,m ≥ 1, l ∈ ℤ

}
and

{
Υt
l,m, t = 0,… ,T − 1,m ≥ 1, l ∈ ℤ

}
with

∑T−1
t=0
∑

l∈ℤ
‖‖‖Ψt

l,m
‖‖‖ < ∞ and

∑T−1
t=0
∑

l∈ℤ
‖‖‖Υt

l,m
‖‖‖ < ∞, for each m, consider

Y̆t,m =
∑
l∈ℤ

⟨
X(t−l),Ψd

l,m

⟩
=
∑
l∈ℤ

⟨
X(t−lT−d),Ψd

lT+d,m

⟩
+
∑
l∈ℤ

⟨
X(t−lT−d+1),Ψd

lT+d−1,m

⟩
+ · · · +

∑
l∈ℤ

⟨
X(t−lT−d+T−1),Ψd

lT+d−T+1,m

⟩
, t

T≡ d

J. Time Ser. Anal. 39: 502–522 (2018) Copyright © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12283



510 L. KIDZINSKI, P. KOKOSZKA AND N. MOHAMMADI JOUZDANI

and

X̆t,m =
∑
l∈ℤ

Y̆t+lT−d,mΥ0
lT−d,m +

∑
l∈ℤ

Y̆t+lT−d+1,mΥ1
lT−d+1,m

+ · · · +
∑
l∈ℤ

Y̆t+lT−d+T−1,mΥT−1
lT−d+T−1,m, t

T≡ d.

Then the following inequality holds for each t ∈ ℤ and p ≥ 1:

E
‖‖‖‖‖XTt −

p∑
m=1

XTt,m
‖‖‖‖‖
2

+ · · · + E
‖‖‖‖‖XTt+T−1 −

p∑
m=1

XTt+T−1,m
‖‖‖‖‖
2

=
∑
m>p

∫
𝜋

−𝜋
𝜆𝜃,m d𝜃

≤ E
‖‖‖‖‖XTt −

p∑
m=1

X̆Tt,m
‖‖‖‖‖
2

+ · · · + E
‖‖‖‖‖XTt+T−1 −

p∑
m=1

X̆Tt+T−1,m
‖‖‖‖‖
2

.

In practice, the scores Yt,m are estimated by truncated sums of the form

Ŷt,m =
LT+d∑

l=−LT+d−T+1

⟨
Xt−l, Φ̂d

l,m

⟩
(3.14)

=
L∑

l=−L

⟨
Xt−lT−d, Φ̂d

lT+d,m

⟩
+ · · ·

+
L∑

l=−L

⟨
Xt−lT−d+T−1, Φ̂d

lT+d−T+1,m

⟩
, t

T≡ d,

in which Φ̂d
l,m s are obtained from an estimator ̂X

𝜃,(q,r). In an asymptotic setting, the truncation level L is treated
as an increasing function of n (the length of the time series). (Recommendations for the selection of L in finite
samples are discussed in Sections 4 and 5.)
We conclude this section by showing in Theorem 3.4 that under mild assumptions, Ŷt,m − Yt,m converges to zero

in probability at a rate that depends on the rate of the estimation in the following condition:

Condition 3.1. The estimator ̂X
𝜃,(q,r) satisfies

∫
𝜋

−𝜋
E ‖‖‖X

𝜃,(q,r) − ̂X
𝜃,(q,r)
‖‖‖2 d𝜃 → 0, as n → ∞; q, r = 0,… ,T − 1.

In Supporting Information, we show that Condition 3.1 holds for the specific estimators we recommend. The
next condition is stronger than an analogous condition in Hörmann et al. (2015), but it is needed to establish a rate
of convergence rather than merely convergence to zero.

Condition 3.2. Let 𝜆𝜃,m be as in (3.4) and define 𝛼𝜃,1 ∶= 𝜆𝜃,1−𝜆𝜃,2 and 𝛼𝜃,m ∶= min
{
𝜆𝜃,m−1 − 𝜆𝜃,m, 𝜆𝜃,m − 𝜆𝜃,m+1

}
,

m > 1. Assume that inf𝜃∈(−𝜋,𝜋] 𝛼𝜃,m =∶ 𝛼⋆(m) > 0.
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Condition 3.3. Set

ĉ𝜃,m ∶=

⟨
𝜑𝜃,m, 𝜑̂𝜃,m

⟩
2|||⟨𝜑𝜃,m, 𝜑̂𝜃,m

⟩
2

|||
with 𝜑𝜃,m defined in (3.4). We assume that ĉ𝜃,m > 0.

Condition 3.3 merely sets a consistent orientation of the eigenfunctions.
To specify the rate of convergence, we introduce the following functions:

G(n) = ∫
𝜋

−𝜋

(
T−1∑
j,j′=0

‖‖‖X
𝜃,(j,j′) − ̂X

𝜃,(j,j′)
‖‖‖2
) 1

2

d𝜃

and

H(L) =
T−1∑
d=0

T−1∑
j=0

(∑
k∈ℤ

‖‖‖Φd
Tk+d−j,m

‖‖‖2 I {|k| > L}

) 1
4

.

Theorem 3.4. If Conditions 3.1–3.3 hold, then, for each m, as n → ∞ and L = L(n) → ∞ with n,

Ŷt,m − Yt,m = OP(G(n)L + H(L)).

In particular, Ŷt,m − Yt,m tends to zero in probability if L diverges so slowly that G(n)L → 0, in probability.

The proof of Theorem 3.4 is given in Supporting Information. Using Proposition A.2, one can, under additional
assumptions, easily derive a bound on EG(n).

4. NUMERICAL IMPLEMENTATION

The theory presented in Section 3 is developed in the framework of infinite-dimensional Hilbert spaces in which the
various functional objects live. Practically usable methodology requires a number of dimension reduction steps to
create approximating finite-dimensional objects, which can be manipulated by computers. This section describes
the main steps of such a reduction. Complexity and computing time are discussed in Supporting Information. We
developed an R package, pcdpca, which allows us to preform all procedures described in this paper. In particular,
it is used to perform the analysis and simulations in Section 5.
For a PC FTS X = {Xt, t ∈ ℤ}, we operate on its projections on the first K elements of a functional basis. The

main idea is to approximate a matrix of operators [X
𝜃,(d,f ), 0 ≤ d, f ≤ T − 1] in Theorem 3.1, by its equivalent in

the projected space, which is a TK × TK matrix that can be estimated by applying methodology of Hörmann et
al. (2015) to a series X̃t ∶= (XTt,XTt+1, ...,XTt+T−1). Next, we eigen-decompose the resulting spectral density. The
eigenvector dK + m corresponds to (d,m)th DFPC filter, for 1 ≤ m ≤ K and 0 ≤ d ≤ T − 1. By filtering X̃t with

(d,m)th filters, we obtain the multivariate process ƒYt ∶= (YTt,YTt+1, ...,YTt+T−1), from which we derive a process
of scores Y = {Yt, t ∈ ℤ}. Below, we describe the details.
We use linearly independent basis functions

{
B1,B2,… ,BK

}
to convert the data observed at discrete time points

to functional objects of the form x (u) =
∑K

j=1 cjBj (u). This is just the usual basis expansion step, see e.g. Chapter 3
of Ramsay et al. (2009) or Chapter 1 of Kokoszka and Reimherr (2017).We thus work in a finite-dimensional space
K = sp

{
B1,B2,… ,BK

}
. To each bounded linear operator A ∶ K → K , there corresponds a complex-valued
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K × K matrix 𝔄 defined by the relation A(x) = B′𝔄c, where B =
(
B1,B2,… ,BK

)′
and c =

(
c1, c2,… , cK

)′
. Let

MB be the complex-valued K × K matrix
(⟨
Bq,Br

⟩)
q,r=0,…,K

, Xt = B′ct, and define

B′
T ∶=

⎛⎜⎜⎝
⎛⎜⎜⎝
B1
0
⋮
0

⎞⎟⎟⎠ ,… ,

⎛⎜⎜⎝
BK
0
⋮
0

⎞⎟⎟⎠ ,… ,

⎛⎜⎜⎝
0
⋮
0
B1

⎞⎟⎟⎠ ,… ,

⎛⎜⎜⎝
0
⋮
0
BK

⎞⎟⎟⎠
⎞⎟⎟⎠ =
(
b′
1,b

′

2,… ,b′
T

)
.

Next, define the matrix

𝔉X̃
𝜃
=
⎛⎜⎜⎝

 c
𝜃,(0,0) · · ·  c

𝜃,(0,T−1)
⋮ ⋱ ⋮ c

𝜃,(T−1,0) · · ·  c
𝜃,(T−1,T−1)

⎞⎟⎟⎠
(

M′
B 0
⋱

0 M′
B

)
(4.1)

as the matrix corresponding to the operator  X̃
𝜃
, where all random functions are restricted to the subspace T

K .
Recall the definition of the spectral density operators  c

𝜃,(q,r) corresponding to T-PC sequence c =
{
ct, t ∈ ℤ

}
from

(2.3)

If 𝜆𝜃,m and 𝝋𝜃,m ∶=
(
𝝋

′
𝜃,m,1,… , 𝝋′

𝜃,m,T

)′
are the mth eigenvalue and eigenfunction of TK ×TK complex-valued

matrix 𝔉X̃
𝜃
, then 𝜆𝜃,m and

B′
T𝝋𝜃,m =

(
b′
1,b

′
2,… ,b′

T

) (
𝝋

′
𝜃,m,1,… , 𝝋′

𝜃,m,T

)′
=
(
B′

𝝋𝜃,m,1,… ,B′
𝝋𝜃,m,T

)′
are the mth eigenvalue and eigenfunction of the operator  X̃

𝜃
. This motivates us to use the ordinary multivariate

techniques to estimate Cc
h,(q,r), and consequently  c

𝜃,(q,r), for q, r = 0,… ,T − 1, and 𝜃 ∈ (−𝜋, 𝜋], by

Ĉc
h,(q,r) =

T
n

∑
j∈ℤ

cq+Tjc
′
r+Tj−ThI {1 ≤ q + Tj ≤ n} I {1 ≤ r + Tj − Th ≤ n} , h ≥ 0

(
Ĉ

c

−h,(q,r)

)′

= Ĉc
h,(q,r), h < 0

and

̂ c
𝜃,(q,r) =

1
2𝜋

∑
|h|≤q(n)w

(
h
q(n)

)
Ĉc
h,(q,r)e

−ih𝜃, (4.2)

where w is a suitable weight function, q(n) → ∞, and q(n) = o (n). By substituting  c
𝜃,(q,r) in (4.1) with its sample

estimator ̂ c
𝜃,(q,r), we obtain an estimator 𝔉̂X̃

𝜃
. Subsequently, we eigen-decompose 𝔉̂X̃

𝜃
to its eigenvalues 𝜆𝜃,m and

eigenvectors 𝝋̂𝜃,m ∶=
(
𝝋̂

′
𝜃,m,1,… , 𝝋̂

′
𝜃,m,T

)′
, m ≥ 1. We use

B′
T𝝋̂𝜃,m =

(
b′
1,… ,b′

T

)( 𝝋̂𝜃,m,1
⋮

𝝋̂𝜃,m,T

)
=

(
B′
𝝋̂𝜃,m,1
⋮

B′
𝝋̂𝜃,m,T

)
=

(
𝜑̂𝜃,m,1
⋮

𝜑̂𝜃,m,T

)
= 𝜑̂𝜃,m
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to get estimators 𝜑̂𝜃,m, and set (
B′
𝝋̂𝜃,dp+m,1
⋮

B′
𝝋̂𝜃,dp+m,T

)
=
⎛⎜⎜⎝

Φ̂d
𝜃,d,m
⋮

Φ̂d
𝜃,d−T+1,m

⎞⎟⎟⎠ ,
or equivalently

⎛⎜⎜⎜⎝
B′𝚽̂

d

lT+d,m
⋮

B′𝚽̂
d

lT+d−T+1,m

⎞⎟⎟⎟⎠ ∶=
1
2𝜋 ∫

𝜋

−𝜋

(
B′
𝝋̂𝜃,dp+m,1
⋮

B′
𝝋̂𝜃,dp+m,T

)
e−il𝜃 d𝜃 =

⎛⎜⎜⎝
Φ̂d
lT+d,m
⋮

Φ̂d
lT+d−T+1,m

⎞⎟⎟⎠ , (4.3)

for d = 0,… ,T − 1, m = 1,… , p. Note that one may use numerical integration to find Φ̂d
l,m. Therefore, the

PC-DFPC scores can be estimated by

Ŷt,m =
LT+d∑

l=−LT+d−T+1

⟨
Xt−l, Φ̂d

l,m

⟩
=

L∑
l=−L

⟨
Xt−lT−d, Φ̂d

lT+d,m

⟩
+ · · · +

L∑
l=−L

⟨
Xt−lT−d+T−1, Φ̂d

lT+d−T+1,m

⟩
=

L∑
l=−L

c′(t−lT−d)MB𝚽̂
d

lT+d,m +…+
L∑

l=−L
c′(t−lT−d+T−1)MB𝚽̂

d

lT+d−T+1,m, t
T≡ d,

where L satisfies

L∑
l=−L

(‖‖‖Φ̂d
lT+d,m

‖‖‖2 + · · · + ‖‖‖Φ̂d
lT+d−T+1,m

‖‖‖2
)

≥ 1 − 𝜀

for some d and small 𝜀 > 0. (We use 𝜀 = 0.01 in our computations.) Consequently, Xt can be approximated by

X̂t =
p∑

m=1

L∑
l=−L

Ŷt+lT−d,mΦ̂0
lT−d,m +…+

p∑
m=1

L∑
l=−L

Ŷt+lT−d+T−1,mΦ̂T−1
lT−d+T−1,m, t

T≡ d.

To facilitate understanding, Supporting Information contains explicit formulas in the case of T = 2.

Remark 4.1. Usually, the mean 𝜇 of the process X is not known. In this case, we first use smoothed functions
Xt = B′ct to obtain estimators 𝜇0,… , 𝜇T−1 or T-periodic mean function estimator

{
𝜇t ∶ 𝜇Tk+d = 𝜇d; k ∈ ℤ

}
, and

then apply the above method to the centered functional observations X∗
t = Xt − 𝜇t.

5. APPLICATION TO PARTICULATE POLLUTION DATA

To illustrate the advantages of PC-DFPCA relative to the (stationary) DFPCA, which may arise in certain settings,
we further explore the dataset analyzed in Hörmann et al. (2015). The dataset contains intraday measurements of
pollution in Graz, Austria, between October 1, 2010 and March 31, 2011. Observations were sampled every 30
minutes and the concentration of particulate matter of diameter of less than 10𝜇m was measured in the ambient
air. In order to facilitate the comparison with the results reported in Hörmann et al. (2015), we employ exactly
the same preprocessing procedure, including square-root transformation and removal of the mean weekly pattern
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Figure 1. Ten successive intraday observations of PM10 data (top-left), the corresponding functional PCA curves reconstructed
from the first principal component (top-right), dynamic functional principal component curves (bottom-left), and periodically
correlated dynamic principal components (bottom-right). Colors and types of curves match the same observations among plots

[Color figure can be viewed at wileyonlinelibrary.com]

and outliers. Note that the removal of the mean weekly pattern does not affect periodic covariances between
weekdays, and therefore they can be exploited using the PC-DFPCA procedure applied with the period T = 7.
The preprocessed dataset contains 175 daily curves, each converted to a functional object with 15 Fourier basis
functions, yielding a FTS {Xt ∶ 1 ≤ t ≤ 175}.
For FPCA and DFPCA, we use the same procedure as Hörmann et al. (2015) using the implementation and data

published by those researchers as the R package freqdom. To implement the PC-DFPCA, some modifications are
needed. Regarding the metaparameters q and L, we recommend q = n1∕3 and L = 3 for the series consisting of
several hundred observations. The simulations reported in Supporting Information show that choosing a larger L
does not improve the quality of prediction.
As a measure of fit, we use the normalized mean-squared error (NMSE), defined as

NMSE =
n∑
t=1
‖Xt − X̂t‖2∕ n∑

t=1
‖Xt‖2,

where the X̂t are the observations obtained from the inverse transform. We refer to the value NMSE ⋅ 100 as the
percentage of variance explained.

wileyonlinelibrary.com/journal/jtsa Copyright © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. 39: 502–522 (2018)
DOI: 10.1111/jtsa.12283



PERIODICALLY CORRELATED FUNCTIONAL TIME SERIES 515

0 50 150

−
6

−
4

−
2

0
2

4
6

Time [days]

1s
t D

F
P

C
 s

co
re

s

0 50 150

−
6

−
4

−
2

0
2

4
6

Time [days]

1s
t P

C
−

D
F

P
C

 s
co

re
s

0 50 150

−
6

−
4

−
2

0
2

4
6

Time [days]

D
iff

er
en

ce
s

Figure 2. The first dynamic
principal component scores
(left), the first periodically
correlated dynamic principal
component scores (middle), and
differences between the two

series (right)
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For the sake of comparison and discussion, we focus only on the first principal component, which already
explains 73 of variability in the static FPCA, 80 of variability in theDFPCA, and 88 of variability in the PC-DFPCA
procedure. Curves corresponding to the components obtained through each of these methods are presented in
Figure 1. As the percentages above suggest, there is a clear progression in the quality of the approximation using
just one component. This is an important finding because the purpose of the principal component analysis of any
type is to reduce the dimension of the data using the smallest possible number of projections without sacrificing
the quality of approximation.
Hörmann et al. (2015) observed that, for this particular dataset, the sequences of scores of the DFPCs and the

static FPCs were almost identical. This is no longer the case if the PC-DFPCs are used. Figure 2 compares the
DFPC and the PC-DFPC scores and shows that the resulting time series are quite different. PC-DFPCA takes into
account the periodic correlation structure, which neither the static nor the (stationary) DFPCA does.
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The estimated PC-DFPCA filters are very high dimensional as can be seen in Figure 3. In particular, with L = 3,
T = 7, and p = 15, we estimated (2L + 1)T2p2 = 735 real numbers, which may raise concerns about overfitting.
This, however, does not translate into problems with the finite sample performance, as the following simulation
study shows.

6. PROOFS OF THE RESULTS OF SECTION 3

To explain the essence and technique of the proofs, we consider the special case of T = 2. The arguments for
general T proceed analogously, merely with a more heavy and less explicit notation, which may obscure the
essential arguments.

Proof of Theorem 3.1. To establish the mean-square convergence of the series
∑

l∈ℤ Ψt
l

(
X(t−l)

)
, let Sn,t be its partial

sum, i.e. Sn,t =
∑

−n≤l≤nΨt
l

(
X(t−l)

)
, for each positive integer n. Then for m < n, we have

E ‖‖Sn,t − Sm,t‖‖2ℂp =
∑

m<|l|,|k|≤n E
⟨
Ψt
l

(
X(t−l)

)
,Ψt

k

(
X(t−k)

)⟩
ℂp

≤ ∑
m<|l|,|k|≤n E

(‖‖‖Ψt
l

(
X(t−l)

)‖‖‖ℂp

‖‖‖Ψt
k

(
X(t−k)

)‖‖‖ℂp

)
≤ ∑

m<|l|,|k|≤n
‖‖Ψt

l
‖‖ ‖‖Ψt

k
‖‖ E (‖‖‖X(t−l)

‖‖‖ ‖‖‖X(t−k)
‖‖‖)

≤ ∑
m<|l|,|k|≤n

‖‖Ψt
l
‖‖ ‖‖Ψt

k
‖‖(E ‖‖‖X(t−l)

‖‖‖2 E ‖‖‖X(t−k)
‖‖‖2
) 1

2

≤ M
∑
|l|>m

∑
|k|>m

‖‖Ψt
l
‖‖ ‖‖Ψt

k
‖‖ for some M ∈ ℝ+

≤ M

(∑
|l|>m
‖‖Ψt

l
‖‖
)2

. (6.1)

Summability condition (2.5) implies that (6.1) tends to zero as n andm tend to infinity. Therefore,
{
Sn,t, n ∈ ℤ+

}
forms a Cauchy sequence in L2 (ℂp,Ω), for each t, which implies the desired mean-square convergence. According
to the representation of the filtered process Y at time t, i.e.

Yt =
∑
l∈ℤ

Ψ0
l

(
X(t−l)

)
=
∑
l∈ℤ

Ψ0
2l

(
X(t−2l)

)
+
∑
l∈ℤ

Ψ0
2l−1

(
X(t−2l+1)

)
, t

2≡ 0

Yt =
∑
l∈ℤ

Ψ1
l

(
X(t−l)

)
=
∑
l∈ℤ

Ψ1
2l

(
X(t−2l)

)
+
∑
l∈ℤ

Ψ1
2l+1

(
X(t−2l−1)

)
, t

2≡ 1,

for each h ∈ ℤ we have

Cov
(
Y2h,Y0

)
= lim

n→∞

∑
|k|≤n
∑
|l|≤nCov

(
Ψ0
k

(
X(2h−k)

)
,Ψ0

l

(
X(0−l)

))
=
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kCov

(
X(2h−2k),X−2l

) (
Ψ0

2l

)∗
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+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kCov

(
X(2h−2k),X−2l+1

) (
Ψ0

2l−1

)∗
+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+1),X−2l

) (
Ψ0

2l

)∗
+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+1),X−2l+1

) (
Ψ0

2l−1

)∗
.

Consequently

Y
𝜃,(0,0) =

1
2𝜋

∑
h∈ℤ

Cov
(
Y2h,Y0

)
e−ih𝜃

= 1
2𝜋

∑
h∈ℤ

∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kCov

(
X(2h−2k),X−2l

) (
Ψ0

2l

)∗
e−ih𝜃

+ 1
2𝜋

∑
h∈ℤ

∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kCov

(
X(2h−2k),X−2l+1

) (
Ψ0

2l−1

)∗
e−ih𝜃

+ 1
2𝜋

∑
h∈ℤ

∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+1),X−2l

) (
Ψ0

2l

)∗
e−ih𝜃

+ 1
2𝜋

∑
h∈ℤ

∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+1),X−2l+1

) (
Ψ0

2l−1

)∗
e−ih𝜃,

which leads to

Y
𝜃,(0,0) =

1
2𝜋

∑
k∈ℤ

∑
l∈ℤ

∑
h∈ℤ

Ψ0
2kCov

(
X(2h−2k+2l),X0

) (
Ψ0

2l

)∗
e−i(h−k+l)𝜃eil𝜃e−ik𝜃

+ 1
2𝜋

∑
k∈ℤ

∑
l∈ℤ

∑
h∈ℤ

Ψ0
2kCov

(
X(2h−2k+2l),X1

) (
Ψ0

2l−1

)∗
e−i(h−k+l)𝜃eil𝜃e−ik𝜃

+ 1
2𝜋

∑
k∈ℤ

∑
l∈ℤ

∑
h∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+2l+1),X0

) (
Ψ0

2l

)∗
e−i(h−k+l)𝜃eil𝜃e−ik𝜃

+ 1
2𝜋

∑
k∈ℤ

∑
l∈ℤ

∑
h∈ℤ

Ψ0
2k−1Cov

(
X(2h−2k+2l+1),X1

) (
Ψ0

2l−1

)∗
e−i(h−k+l)𝜃eil𝜃e−ik𝜃,

=
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kX

𝜃,(0,0)

(
Ψ0

2l

)∗
eil𝜃e−ik𝜃

+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2kX

𝜃,(0,1)

(
Ψ0

2l−1

)∗
eil𝜃e−ik𝜃

+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1X

𝜃,(1,0)

(
Ψ0

2l

)∗
eil𝜃e−ik𝜃

+
∑
k∈ℤ

∑
l∈ℤ

Ψ0
2k−1X

𝜃,(1,1)

(
Ψ0

2l−1

)∗
eil𝜃e−ik𝜃

= ∶ Ψ0
𝜃,0X

𝜃,(0,0)

(
Ψ0

𝜃,0

)∗
+Ψ0

𝜃,0X
𝜃,(0,1)

(
Ψ0

𝜃,−1

)∗
+Ψ0

𝜃,−1X
𝜃,(1,0)

(
Ψ0

𝜃,0

)∗
+Ψ0

𝜃,−1X
𝜃,(1,1)

(
Ψ0

𝜃,−1

)∗
.
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The operator Y
𝜃,(0,0) from ℂp to ℂp has the following matrix form:

(⟨(X
𝜃,(0,0)

)∗ (
Ψ0

𝜃,0,r

)
,Ψ0

𝜃,0,q

⟩

)
p×p

+
(⟨(X

𝜃,(0,1)

)∗ (
Ψ0

𝜃,0,r

)
,Ψ0

𝜃,−1,q

⟩

)
p×p

+
(⟨(X

𝜃,(1,0)

)∗ (
Ψ0

𝜃,−1,r

)
,Ψ0

𝜃,0,q

⟩

)
p×p

+
(⟨(X

𝜃,(1,1)

)∗ (
Ψ0

𝜃,−1,r

)
,Ψ0

𝜃,−1,q

⟩

)
p×p

.

Finally

Y
𝜃,(0,0) =

⟨⎛⎜⎜⎝
(X

𝜃,(0,0)

)∗ (X
𝜃,(1,0)

)∗(X
𝜃,(0,1)

)∗ (X
𝜃,(1,1)

)∗ ⎞⎟⎟⎠
(

Ψ0
𝜃,0,r

Ψ0
𝜃,−1,r

)
,

( Ψ0
𝜃,0,q

Ψ0
𝜃,−1,q

)⟩
2

=
⟨( X

𝜃,(0,0) X
𝜃,(0,1)X

𝜃,(1,0) X
𝜃,(1,1)

)(
Ψ0

𝜃,0,r
Ψ0

𝜃,−1,r

)
,

( Ψ0
𝜃,0,q

Ψ0
𝜃,−1,q

)⟩
2

.

Using similar arguments leads to the following representations for Y
𝜃,(1,0), Y

𝜃,(0,1), and Y
𝜃,(1,1):

Y
𝜃,(1,0) =

⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ1

𝜃,1,r
Ψ1

𝜃,0,r

)
,

( Ψ0
𝜃,0,q

Ψ0
𝜃,−1,q

)⟩
2

Y
𝜃,(0,1) =

⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ0

𝜃,0,r
Ψ0

𝜃,−1,r

)
,

(Ψ1
𝜃,1,q

Ψ1
𝜃,0,q

)⟩
2

Y
𝜃,(1,1) =

⟨( X
𝜃,(0,0) X

𝜃,(0,1)X
𝜃,(1,0) X

𝜃,(1,1)

)(
Ψ1

𝜃,1,r
Ψ1

𝜃,0,r

)
,

(Ψ1
𝜃,1,q

Ψ1
𝜃,0,q

)⟩
2

.

Note that the 2-periodic behavior of the covariance operators of the filtered process Y is an implicit result of the
above argument, which completes the proof of Theorem 3.1 for the special case T = 2. The general case is similar.

Proof of Proposition 3.1. To establish part (a), consider the eigenvalue decomposition (3.4). We then have

𝜆𝜃,m𝜑𝜃,m =
( X

𝜃,(0,0) X
𝜃,(0,1)X

𝜃,(1,0) X
𝜃,(1,1)

)(
𝜑𝜃,m

)
=
( X

𝜃,(0,0) X
𝜃,(0,1)X

𝜃,(1,0) X
𝜃,(1,1)

)(
𝜑𝜃,m,1
𝜑𝜃,m,2

)
=
( X

𝜃,(0,0)

(
𝜑𝜃,m,1

)
+ X

𝜃,(0,1)

(
𝜑𝜃,m,2

)
X
𝜃,(1,0)

(
𝜑𝜃,m,1

)
+ X

𝜃,(1,1)

(
𝜑𝜃,m,2

) )
= 1

2𝜋

∑
h∈ℤ

(
E
[⟨
𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h

E
[⟨
𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h+1

)
e−ih𝜃.
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Consequently

𝜆𝜃,m𝜑𝜃,m = 1
2𝜋

∑
h∈ℤ

⎛⎜⎜⎝
E
[⟨

𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h

E
[⟨

𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h+1

⎞⎟⎟⎠ e+ih𝜃
1
2𝜋

∑
h∈ℤ

(
E
[⟨
𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h

E
[⟨
𝜑𝜃,m,1,X0

⟩
 +
⟨
𝜑𝜃,m,2,X1

⟩

]
X2h+1

)
e+ih𝜃

=
( X

−𝜃,(0,0) X
−𝜃,(0,1)X

−𝜃,(1,0) X
−𝜃,(1,1)

)(
𝜑𝜃,m

)
.

Hence, 𝜆𝜃,m and 𝜑𝜃,m are an eigenvalue/eigenfunction pair of

( X
−𝜃,(0,0) X

−𝜃,(0,1)X
−𝜃,(1,0) X

−𝜃,(1,1)

)
. Now, use (3.8) to obtain

Φt
l,m = Φ

t

l,m, which implies that the DFPC scores Yt,m satisfy

Yt,m =
∑
l∈ℤ

⟨
Xt−l,Φt

l,m

⟩
 =

∑
l∈ℤ

⟨
Xt−l,Φ

t

l,m

⟩


=
∑
l∈ℤ

⟨
Xt−l,Φt

l,m

⟩
 = Yt,m,

and so are real for each t and m.
For part (b), first we define Yt,m,n ∶=

∑n
l=−n

⟨
Xt−l,Φt

l,m

⟩
. Then we use a similar argument as in the proof of

Theorem 3.1 to show that Yt,m,n is converges in mean square to Yt,m =
∑

l∈ℤ

⟨
Xt−l,Φt

l,m

⟩
. Hence

‖‖‖E (Yt,m,n ⊗ Yt,m,n
)
− E
(
Yt,m ⊗ Yt,m

)‖‖‖ → 0, as n → ∞

or equivalently

|||E ‖‖Yt,m,n‖‖2ℂ − E ‖‖Yt,m‖‖2ℂ||| → 0, as n → ∞.

Consequently, for t
2≡ 0, we have

E ‖‖Yt,m‖‖2ℂ = lim
n→∞

EYt,m,nYt,m,n = lim
n→∞

∑
|k|≤n
∑
|l|≤n E

⟨
Xt−l,Φ0

l,m

⟩⟨
Φ0
k,m,Xt−k

⟩
=
∑
k∈ℤ

∑
l∈ℤ

E
⟨
Xt−2l,Φ0

2l,m

⟩⟨
Φ0

2k,m,Xt−2k
⟩

+
∑
k∈ℤ

∑
l∈ℤ

E
⟨
Xt−2l,Φ0

2l,m

⟩⟨
Φ0

2k−1,m,Xt−2k+1
⟩

+
∑
k∈ℤ

∑
l∈ℤ

E
⟨
Xt−2l+1,Φ0

2l−1,m

⟩⟨
Φ0

2k,m,Xt−2k
⟩

+
∑
k∈ℤ

∑
l∈ℤ

E
⟨
Xt−2l+1,Φ0

2l−1,m

⟩⟨
Φ0

2k−1,m,Xt−2k+1
⟩
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=
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,0)

(
Φ0

2k,m

)
,Φ0

2l,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(0,1)

(
Φ0

2k−1,m

)
,Φ0

2l,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,0)

(
Φ0

2k,m

)
,Φ0

2l−1,m

⟩


+
∑
k∈ℤ

∑
l∈ℤ

⟨
CX
k−l,(1,1)

(
Φ0

2k−1,m

)
,Φ0

2l−1,m

⟩
 .

That is the desired result for the case t
2≡ 0. The case t

2≡ 1 is handled in a similar way.
Part (c) is a direct result of Theorem 3.1, so we can proceed to the proof of part (d). Considering part (c) and

using the results of Proposition 3 of Hörmann et al. (2015) lead to the desired result for 2n in place of n.

lim
n→∞

1
2n

Var
(
Y1 + · · · + Y2n

)
= lim

n→∞

1
2n

[
Var
(
Y1 + Y3 + · · · + Y2n−1

)
+ Var

(
Y2 + Y4 + · · · + Y2n

)]
= 2𝜋

2

[
diag

(
𝜆0,1,… , 𝜆0,p

)
+ diag

(
𝜆0,p+1,… , 𝜆0,2p

)]
and similarly for 2n + 1 in place of 2n. This completes the proof.

Proofs of Theorems 3.2 and 3.3. Consider the H2-valued, mean-zero stationary process X̃ =
{
X̃t =

(
X2t,X2t+1

)′
,

t ∈ ℤ
}
and the filter

{
𝚿l, l ∈ ℤ

}
with the following matrix form:

𝚿l =
(

Ψ0
2l Ψ0

2l−1
Ψ1

2l+1 Ψ1
2l

)
∶ 2 →

(
(ℂp)2

)
ℂ2p,

where

Ψt
l ∶  → ℂp

Ψt
l ∶ h −→

(⟨
h,Ψt

l,1

⟩
,… ,

⟨
h,Ψt

l,p

⟩)′
, t = 0, 1, l ∈ ℤ.

Similarly, define the sequence of operators
{
𝚼l, l ∈ ℤ

}
with

𝚼−l =
(

Υ0
2l Υ0

2l+1
Υ1

2l−1 Υ1
2l

)
∶
(
(ℂp)2

)
ℂ2p → 2,

where

Υt
l ∶ ℂp → 

Υt
l ∶ y −→

p∑
m=1

ymΥt
l,m, t = 0, 1, l ∈ ℤ.
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Therefore

𝚼 (B)𝚿 (B) X̃t =
p∑

m=1

(
X̆2t,m

X̆2t+1,m

)
.

On the other hand, there exist elements 𝜓 l
q =
(
𝜓 l
q,1 𝜓 l

q,2

)′
and 𝜐lq =

(
𝜐lq,1 𝜐lq,2

)′
, q = 1,… , 2p, in2, such that

𝚿l (h) = 𝚿l

((
h1, h2

)′) =
(⟨
h, 𝜓 l

1

⟩
2 ,… ,

⟨
h, 𝜓 l

2p

⟩
2

)′
=
(⟨
h1, 𝜓

l
1,1

⟩
+
⟨
h2, 𝜓

l
1,2

⟩
,… ,

⟨
h1, 𝜓

l
2p,1

⟩
+
⟨
h2, 𝜓

l
2p,2

⟩)′
, ∀h1, h2 ∈ 

and

𝚼−l (y) = 𝚼−l

((
y1, y2

)′)
=

p∑
m=1

y1,m𝜐
l
m +

p∑
m=1

y2,m𝜐
l
m+p, ∀y1, y2 ∈ ℂp.

Simple calculations lead to the following relations, valid for m = 1,… , p, which play a crucial role in the
remainder of the proof:

𝜓 l
m =
(
𝜓 l
m,1

𝜓 l
m,2

)
=
(

Ψ0
2l,m

Ψ0
2l−1,m

)
, 𝜓 l

m+p =
(
𝜓 l
m+p,1

𝜓 l
m+p,2

)
=
(
Ψ1

2l+1,m
Ψ1

2l,m

)
,

𝜐lm =
(
𝜐lm,1
𝜐lm,2

)
=
(

Υ0
2l,m

Υ1
2l−1,m

)
, 𝜐lm+p =

(
𝜐lm+p,1
𝜐lm+p,2

)
=
(
Υ0

2l+1,m
Υ1

2l,m

)
.

According to Hörmann et al. (2015), we can minimize

E ‖‖‖X̃t − 𝚼 (B)𝚿 (B)
(
X̃t
)‖‖‖22

by choosing 𝜐𝜃,m =
∑

l∈ℤ 𝜐
l
me

il𝜃 = 𝜓𝜃,m =
∑

l∈ℤ 𝜓
l
me

il𝜃 as the m-th eigenfunctions of the spectral density operator
 X̃
𝜃
of the process X̃. Note that  X̃

𝜃
is nothing other than

 X̃
𝜃
(h) =  X̃

𝜃

((
h1
h2

))
=
( X

𝜃,(0,0) X
𝜃,(0,1)X

𝜃,(1,0) X
𝜃,(1,1)

)(
h1
h2

)
, ∀h1, h2 ∈ .

This completes the proof.
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