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Abstract

In this report we discuss the dynamical response of heavy quantum impurities immersed

in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time
domain allows one to identify interaction regimes that are characterized by distinct many-
body dynamics. From this theoretical study a picture emerges in which impurity dynamics is
universal on essentially all time scales, and where the high-frequency few-body response is
related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations.
Our theoretical description relies on different and complementary approaches: functional
determinants give an exact numerical solution for time- and frequency-resolved responses,
bosonization provides accurate analytical expressions at low temperatures, and the theory of
Toeplitz determinants allows one to analytically predict response up to high temperatures.
Using these approaches we predict the thermal decoherence rate of the fermionic system and
prove that within the considered model the fastest rate of long-time decoherence is given

by v = kg T /4. We show that Feshbach resonances in cold atomic systems give access to
new interaction regimes where quantum effects can prevail even in the thermal regime of
many-body dynamics. The key signature of this phenomenon is a crossover between different
exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the
orthogonality catastrophe is experimentally observable up to temperatures 7/Tg < 0.2 where
it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight
and we review how this phenomenon is related to the physics of heavy ions in liquid *He and
the formation of Fermi polarons. The presented results are in excellent agreement with recent
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experiments on LiK mixtures, and we predict several new phenomena that can be tested using

currently available experimental technology.

Keywords: quantum impurities, Feshbach resonances, Fermi gas, non-equilibrium dynamics,

orthogonality catastrophe, functional determinants
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1. Introduction

Exactly solvable models are a rare commodity in many-body
physics [1]. Yet they provide a unique basis to develop a pro-
found understanding of physical systems and can serve as a
benchmark for approximate theoretical approaches. Examples
include the Ising model [2], one-dimensional systems [3, 4],
the Kitaev model [5, 6], or the Dicke model [7] which became
paradigms of condensed matter physics and quantum optics.

Heavy impurities interacting with a Fermi gas are another
paradigmatic example that is exactly solvable and yet retains
the complexity of an interacting many-body system exhibiting
rich physics [8, 9]. Most prominently it features the orthogo-
nality catastrophe which defies a simple perturbative descrip-
tion and signals the absence of quasiparticles even at weak
interactions, as first investigated by Anderson [10].

The Anderson orthogonality catastrophe manifests itself not
only in ground state properties but also in the non-equilibrium
dynamics. At long times, the power-law decay of coherence
(for a definition see equation (10) and [11-13]) is one of its
key manifestations which universally depends only on the scat-
tering phase shift close to the Fermi surface. In contrast, the
description of the short-time dynamics, being testament of the
short-distance physics, suffers typically from the microscopic
unknown. In particular in conventional solid-state systems
physics depends on the details of chemical bonding, the core-
hole potentials, as well as their screening and relaxation, which
leads to highly non-universal short-time dynamics [14, 15].

Here we show that ultracold atoms provide a system where
the physics of impurities is universal on essentially all time
scales. This special property of cold atoms has its origin in
their diluteness and ultra-low temperatures [16], which ren-
ders even the few-body physics universal [17]. Specifically,
we propose the realization of an Anderson—-Fano model [1]
which is fully tunable by the use of Feshbach resonances [18].
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Figure 1. Illustration of universal impurity dynamics. The upper
panel shows a sketch of the dephasing dynamics of a fermionic bath
interacting with a single localized impurity as function of time. The
corresponding many-body overlap S(¢), defined in equation (10),
see also equation (41), can be measured in Ramsey spectroscopy.

It is related by Fourier transformation to the absorption spectrum
A(w) of the impurity which hence contains equivalent physical
information in the frequency domain (lower panel). The short-

time dynamics, which is reflected in high-frequency tails of the
absorption response, is dominated by few-body physics. At times
exceeding the Fermi time scale 77 = hi/ep by 77 = h/ep, with

the Fermi energy eg, many-body physics becomes relevant and

the dynamics of the orthogonality catastrophe is manifest in a
power-law decay of coherence. Beyond the thermal time scale
Tihermal = 71/kpT, exponential decay takes over. Even in this long-
time regime, quantum effects can prevail. They lead to competing
exponential decay rates that signal the superposition of various
excitation branches visible in the absorption spectrum.

We introduce and review a functional determinant approach
[19-22], that allows us not only to provide the exact numerical
solution of its full non-equilibrium quench dynamics, but also
to derive analytical expressions for the short- and long-time
dynamics so that a complete analytical understanding of this
paradigm model arises.

From this solution, an overarching picture of universal-
ity emerges, reaching from short to long time scales. The
dynamics at short times is determined by universal tails of
the impurity high-frequency response [23, 24]. Those tails
are connected with the long-time dynamics by exact operator
identities known as the Tan relations [25-28]. For the long-
time, respectively low-frequency, response of the system we
derive analytical expressions valid at arbitrary temperatures
by a combination of the theory of Toeplitz determinants and
bosonization. We find that the physics of impurities can be

universally described in terms of excitation branches which
represent collections of relevant many-body states. By using
this approach, even the non-equilibrium dynamics beyond the
standard Luttinger liquid paradigm [4, 29] finds an analytical
description.

Due to the low temperatures and diluteness of cold atomic
gases, only short-range s-wave interactions are relevant. These
can be tuned [18] and universal regimes reached that are not
readily accessible in conventional solid state systems [30]. We
identify various interaction regimes exhibiting distinct deco-
herence dynamics and spectral properties that can be related
to dominant excitation branches. The main results are sum-
marized in figure 1. Here we show an illustration of the time-
and frequency-resolved response of the system following a
quench of the impurity-Fermi-gas interaction. Experimentally
the real-time dephasing signal S(¢) can be measured using an
interferometric Ramsey scheme, while the frequency-resolved
response A(w) is accessible in absorption spectroscopy. Both
signals are related by Fourier transformation and hence pro-
vide complementary probes of quantum many-body dynamics.

One finds various regimes of universal real-time dynamics.
At ultrashort times dephasing is dominated by few-body phys-
ics leading to universal high-frequency tails in the absorption
response [23, 24, 31, 32]. Intermediate time scales exhibit
strong oscillations signifying the dressing of the impurity by
excitations from the full depth of the Fermi sea. These oscilla-
tions are a robust and universal feature of short-range, strongly
interacting impurity Fermi systems and they govern not only
the dynamics of infinitely heavy impurities, but also appear
in the case of impurities of finite mass where the dressing by
bath excitations leads to the formation of polaronic quasipar-
ticles [31, 32].

At longer times, the dynamics of heavy impurities is gov-
erned by the power-law dephasing of the Anderson orthogo-
nality catastrophe which is universally dependent only on the
phase shift at the Fermi surface. Even longer times are domi-
nated by exponential decay due to finite temperature. Quite
surprisingly, we find that even at times substantially exceeding
the thermal time scale /i/kgT, the quantum nature of excita-
tion branches still persists. This is reflected in new features of
competing dynamics where the robustness of superpositions
of excitations branches leads to a crossover between charac-
teristic exponential decays of coherence at very long times.

Remarkably, although there is a enormous scale separation
between the many-body regime at long times and the intrinsic
few-body short-time dynamics, both regimes are connected
by the Tan relations [25-28]. We show that based on these
exact relations one can relate the long-time phase evolution of
the many-body wave function to the high-frequency tail of the
absorption spectrum.

1.1. Progress towards studying real-time impurity dynamics

Recent years have seen an extensive interest in the Fermi
polaron problem where one considers a single impurity
immersed in a Fermi gas. Quite generally, the interaction
between the impurity and the Fermi gas leads to the dress-
ing of the impurity by excitations in the Fermi sea. When
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Figure 2. Schematic representation of the model. Left: an impurity atom in the |{) hyperfine state (green sphere) is decoupled from atoms
in the Fermi sea (red spheres). Right: the impurity atom in the |1) hyperfine state (blue sphere) interacts with the Fermi sea atoms with

a strength that is tunable by a Feshbach resonance. The impurity is either of infinite mass or, as illustrated, trapped in a state-dependent,
strong, optical potential. When the impurity interacts with the Fermi gas it can bind with an atom from the Fermi sea and form a molecule.
The internal hyperfine spin state is addressed using radio-frequency (RF) pulses in RF absorption spectroscopy or Ramsey and spin-echo

interferometry.

the mass of the impurity is finite, this dressing by excitations
remains quite moderate. In consequence, the new many-body
ground state of the system—the ‘dressed impurity’—retains
some resemblance to its non-interacting counterpart and one
speaks of the formation of a well-defined quasiparticle: the
Fermi polaron, characterized by a finite quasiparticle weight
Z. In contrast, an infinitely heavy impurity is subject to a
much stronger dressing by bath excitations. Here the dressing
becomes even so extensive that the system is left in a state
orthogonal to its original non-interacting state. Hence the
dressed impurity completely looses its quasiparticle nature—
its quasiparticle weight vanishes, Z = 0—which signifies the
hallmark of the Anderson orthogonality catastrophe [10].

The case of impurities of finite mass has been considered
first in the context of the phase diagram of spin-imbalanced
Fermi gases [33-37] where the Fermi polaron problem rep-
resents the extreme limit of spin imbalance. Special attention
was given to the transition from a polaronic to a molecular
ground state [37—46], which serves as a benchmark for theor-
etical approaches ranging from variational wave functions
[33, 37, 40, 47], diagrammatic resummation [36, 48-51],1/N
expansions [52], quantum Monte Carlo calculations [34, 35],
and functional renormalization group [53] to diagrammatic
Monte Carlo calculations [38, 39, 54-56]. Using radio-fre-
quency spectroscopy, the ground state properties of the Fermi
polaron, including the polaron to molecule transition, were
first observed by Schirotzek ef al [57]; for an experimental
study in two dimensions we refer to [58].

Shortly after these observations it was theoretically pre-
dicted that the impurity excitation spectrum contains a rich and
interesting structure also above the ground state. In particular
studies of the impurity spectral function revealed a metastable
excitation at positive energies on the ‘repulsive’ side of the
Feshbach resonance (i.e. at positive scattering length a > 0),
separated by a large gap from the ground state [53, 59, 60].
Since this ‘repulsive polaron’ excitation can again be viewed
as the extreme limit of a spin-imbalanced Fermi gas, its prop-
erties are of significance for studies of the repulsive Fermi
gas and the question of a phase transition to itinerant Stoner
ferromagnetism [61-66]. For a detailed discussion we refer
the reader to the excellent review by Massignan et al [46].

The repulsive polaron was experimentally observed in three
dimensions for the first time by Kohstall ef al [67] and also in
two-dimensional Fermi gases by Koschorreck et al [68] fol-
lowing its theoretical prediction [51, 69]. For a recent exper-
imental study of repulsive polarons in a °Li Fermi gas using
radio-fregency spectroscopy we refer to [70].

While the ground state and zero-temperature properties of
Fermi polarons have received much theoretical attention, only
recently the study of real-time dynamics of Fermi polarons
came into reach of experimental techniques. First experimental
steps towards the study of real-time dynamics were taken by
Cetina et al [71], where the long-time impurity decoherence
dynamics following an interaction quench was studied (the
results of this work will be discussed in detail in section 5).
Very recently, interferometric Ramsey techniques were used
to experimentally observe the real-time formation of Fermi
polarons for the first time [31]. In the work [31], the func-
tional determinant approach, presented and reviewed in the
present report, had been employed for a detailed description
of the observed dephasing dynamics (for a detailed discussion
of a variational approach to the problem see [32]). With these
recent developments the stage it set for the experimental study
of impurities in the heavy-mass limit where strong fluctua-
tions lead to intriguing many-body dynamics accompanied by
the complete disintegration of Fermi polarons.

It is this real-time dynamics of heavy impurities immersed
in a Fermi gas that is at the center of this report. While devel-
oping the theoretical description, we will make connections to
known results on the excitation spectrum of Fermi polarons
wherever applicable. In this respect, this report serves not only
to introduce new approaches to the dynamics of heavy impu-
rities in Fermi gases as well as to highlight new directions in
the study of such systems, but also to make the connection to
previous theoretical work on ground and equilibrium proper-
ties of Fermi polarons.

1.2. Outline

The structure of this report builds on the observation that many
aspects of the dynamics of impurities can be studied equiva-
lently in the frequency or time domain. Experimentally, the
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Figure 3. Interaction regimes and scattering phase shift. The figures show the momentum dependence of the scattering phase shift in the
three interaction regimes. The various regimes are characterized by the scattering phase shift op = d;—, evaluated at the Fermi momentum
kg. The attractive regime (a) is characterized by a negative scattering length a < 0 and a positive phase shift dg that does not exceed 7 /2.
In the mixed regime (b) the scattering length remains negative while the positive phase shift at the Fermi surface dr exceeds 7 /2. The
repulsive regime (c) obtains its name from the fact that here single-particle scattering states are shifted upwards in energy (see the detailed
discussion in section 4). In this regime the scattering length @ > 0 and a bound state exists in the single-particle spectrum. The existence of
the bound state leads to a jump of the phase shift by 7 and we adapt the convention of choosing ¢; < 0. Blue dashed lines correspond to a
contact-interaction model with kgr* = 0 and red lines correspond to kgr* = 0.8. In the contact interaction model the mixed regime cannot
be realized. The individual plots are shown for scattering lengths (a) kpa = —0.5, (b) kpa = —100, (c) kra = 100.

time-resolved impurity Green’s function S(f) can be measured
using Ramsey interference, while its Fourier transform to the
frequency domain A(w) is accessible in absorption spectr-
oscopy [31, 72, 73]. While both signals contain in principle
the same information, their measurement can present differ-
ent challenges to experiments. Also, their separate theoretical
analysis gives insight to non-equilibrium impurity dynamics
from different perspectives. Beyond that, time domain meth-
ods also allow one to study observables, such as the spin-echo
signal, which have no analogue in frequency space and hence
yield information about the many-body system not accessible
by frequency-resolved methods. Following this route—after
we introduce the two-channel scattering model describing the
scattering in the vicinity of a Feshbach resonance and show
its equivalence to the Fano—Anderson model in section 2—we
introduce the dynamic response functions in the time and fre-
quency domain in section 3.

The radio-frequency absorption response of the system
is discussed in detail in section 4. We analyze its universal
properties and develop a simple interpretation of spectral fea-
tures in terms of a single-particle picture. This sets the basis to
identify universal excitation branches pertinent for our discus-
sion of the time-resolved response in section 5. Here we first
provide a numerically exact solution of the non-equilibrium
quench dynamics followed by the discussion of the relevant
excitation branches. The identification of these branches
allows us to derive analytical formulas for the universal
asymptotic long-time dynamics based on bosonization and
the theory of Toeplitz determinants. Finally, in section 6, we
introduce the Tan relations which relate the long-time phase
evolution of the impurity Green’s function to high-frequency
response. We summarize our findings and discuss future per-
spectives in section 7.

2. Anderson-Fano model with ultracold atoms
We study a low density of impurity atoms immersed into a

Fermi gas of atoms of mass m. As illustrated in figure 2, two
hyperfine states of the impurity atoms, which we refer to as |{)

and |1), respectively, participate in the dynamics. These states
are chosen such that only one of them interacts with the Fermi
gas while the other does not. In the following, we consider
impurities of an infinite mass which are localized in space.
Experimentally, this can be achieved by using atomic species
with a different polarizability so that only the impurities are
trapped by an optical lattice or microtraps while the fermions
in the bath remain mobile [16, 74-78].

2.1. Feshbach resonances

In ultracold atoms, the scattering of the bath atoms with the
impurity is described by the s-wave scattering amplitude

1 1
T keotd—ik ~ “tjatlraz—ik D

f(k)

where k is the momentum of the incoming atom, and dy is the
s-wave scattering phase shift. The second expression in equa-
tion (1) represents the effective range expansion of the phase
shift which is valid for small scattering momenta k. Here a is
the scattering length, and r, is the so-called effective range. In
the expansion also higher-order terms exist which are, how-
ever, typically negligible for ultracold atoms. Therefore, the
two parameters a and r, provide an accurate and universal
description of the scattering physics [17].

It is one of the great appeals of ultracold gases that the
scattering length a, and hence the interaction strength, can be
tuned almost at will using Feshbach resonances [18]. Here
one makes use of the coupling of the atoms in an open scat-
tering channel to a molecular state in a closed channel, which
is energetically accessible only by virtual processes. Due to
its magnetic moment the energy ¢,,(B) of the closed-channel
molecule can be tuned with respect to the open channel by an
external magnetic field B.

Depending on the relative detuning €,(B) from the scat-
tering threshold at zero energy, the scattering length can be
manipulated and at optimal detuning it diverges, a — oo, defin-
ing the Feshbach resonance. Close to the resonance, where the
non-resonant (background) scattering in the open channel can
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be neglected, the magnetic-field dependence of the scattering
length can be parametrized as [18]

h2

B) =~ — .
a(B) 2ftrear*dpt (B — By)

@)

Here, the reduced mass fieq = mM/(m+ M) becomes
tred = mforthe case of animpurity of mass M = co. Moreover,
Op is the differential magnetic moment of the closed-channel
molecule, and By denotes the magnetic field strength at which
the scattering length diverges. Most importantly, equation (2)
defines the range parameter r* > 0 which determines the
character of the Feshbach resonance.

To a good approximation, r* is related to the effective range
as [18]

ro R —2r%. 3)

Therefore the range parameter r* provides the second param-
eter r, required to characterize the scattering properties of
ultracold atoms to high accuracy. In the following we will
use both r* and r, interchangeably to describe the momentum
dependence of the scattering phase shift d;. Note that unlike
the scattering length a, the range parameter r* can typically
not be tuned in a practical way [79-81], but is fixed by micro-
scopic molecular details.

2.2. Interaction regimes

The range r* influences the phase shift J; in equation (1) and
thus can have a profound effect on the many-body physics.
While for contact interactions, where r* = 0, the phase shift
is bounded by || < 7/2, for finite 7* it can exceed 7/2, see
figure 3. This allows one to realize interaction regimes that are
not accessible in simple contact-interaction models. The inter-
action regime are identified by phase shift g = dp—y, evalu-
ated at the Fermi momentum kg. One can distinguish three
interaction regimes, see figure 3:

(a) ‘attractive regime’: here a < 0 and the phase shift at the
Fermi surface 0 < dg < 7/2. In this regime the phase
shift is positive for all energies, 6(E) = 6,_ 5,5 > 0. As
discussed in section 4 the term ‘attractive’ is derived from
the fact that single-particle scattering states are shifted to
lower energies;

(b) ‘mixed regime’: here a < 0 and 7/2 < §g < 7. In this
regime the phase shift is again positive for all energies,
d(E) > 0. Within the two-channel model introduced
below it is realized for negative inverse dimensionless
scattering lengths —kpr* < 1/kpa < 0;

(c) ‘repulsive regime’: here a > 0 which in our convention
for the scattering phase implies §(E) < O for all energies.
As discussed in section 4 in this case single-particle scat-
tering states are shifted to higher energies motivating the
term ‘repulsive’ for this regime.

While the mixed regime (b) cannot be reached in a system
with contact interactions, it is accessible in the Anderson—Fano
model introduced below. Alternatively, the mixed regime can
also be realized using pure open-channel scattering potentials.

Here, according to Levinson’s theorem [82], a phase shift
0r > m/2 is possible when more than one bound state is sup-
ported by the interaction potential. Note that the term ‘mixed’
is derived from the observation (discussed in section 4) that
the many-body dynamics in this regime shares properties of
both the attractive and repulsive regimes.

Following the classification of the various interaction
regimes, one can use the value of kgr* for a many-body char-
acterization of Feshbach resonances. When kgr* < 1, one
speaks of so-called ‘broad’ Feshbach resonance [16]. For
those, the physics is universally parametrized by kra alone,
and Fermi gases close to such a resonance can be described
by simple contact interaction models. For broad Feshbach
resonances, the realization of the mixed regime requires very
large, negative values of kga.

In contrast, for so-called ‘narrow’ Feshbach resonances,
where kgr* 2 1, the mixed regime can be realized more easily.
In this regime unique dynamics beyond the simple paradigm
of contact interactions appears, and one has to employ models
beyond contact interactions for their description.

2.3. Anderson—Fano model

In the following we develop a theory which describes the
dynamical response of a Fermi gas coupled to an immobile
impurity close to a Feshbach resonance of arbitrary ‘width’
as determined by kgr*. Theoretically, Feshbach resonances
can be described with high accuracy by a two-channel model,
where the interaction between atoms is mediated by the
exchange of a closed-channel molecule [18, 83].

Specifically, for a bath of fermions interacting with a local-
ized impurity, the system is described by the two-channel
Hamiltonian

. h2v2? .
Hy o = */1/;[(1') 2V P(

+g/nwwmea+hq

r

) + el

“

where the first term describes the free fermions of mass m
with creation operators zZAﬂL (r). The second term represents
the closed-channel molecule created by QAST with energy €,,(B)
detuned from the scattering threshold. Furthermore, the impu-
rity, which is localized at r = 0, is created by the operator 7,/32
in the atomic spin state ¢ in which it interacts with the Fermi
sea; see figure 2 where we have chosen o =7.

Like the impurity, the molecule is immobile and hence the
corresponding creation operators carry no coordinate depend-
ence. Since their mass is infinite both molecule and impurity
also have no kinetic energy term. Finally, the interaction of the
impurity with the bath of fermions is described by the third
term, where the impurity 1, and a host atom 1 are converted
into the molecular state QAS Here the form factor x(r) deter-
mines the shape of the atom-to-molecule coupling and we
choose x(r) = e~"/? /4xp?r where the range p is determined
by the van-der-Waals length [84, 85].
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For an impurity of infinite mass the molecule creation
and impurity annihilation operator can be combined to a new
operator ! = ¢4, which allows us to map the two-channel
model onto the Fano—Anderson model
H = cuilin+ 3 alen + \% Y xwlitac+hel. (s

k k

Here the operators éf( are the creation operators of fermions
with dispersion relation e = h’k?/2m and Yy is the Fourier
transform of the form factor x (r). The Fano—Anderson model
has been introduced in solid state physics to describe localized
magnetic states in metals [86, 87]. It reappears here in the new
context where it can be experimentally studied with the high
control of ultracold atoms with tunable model parameters.

The parameters ¢,, g, and p of the model (5) can be
deduced from the scattering properties. Calculating the scat-
tering phase shift from the model (5) we can relate those
parameters to experimentally accessible quantities which are
the scattering length a, the range parameter r*, and the van der
Waals length /,4w, which determines the range of the underly-
ing atomic interaction potentials [88, 89]. Using the abbrevia-
tion @ = 4m/T(1/4)? lyaw =~ 0.956 Law [18], one finds (for
details see appendix A and [31, 84])

2 Wt K2 1 1 _

&= pgr em = 2 flred?™ (El a)’ p=aj2. ©)
Here we keep the effective mass fireq explicit as these equa-
tions apply to arbitrary mass ratios between impurity and bath
atoms; for the case of an immobile impurity ftreq = m. Note
that the first equation shows that the range parameter r* con-
trols the strength of the coupling of the atoms to the closed-
channel molecule.

The following many-body calculation requires to find
the single-particle solutions of Hamiltonian (5). Those are
obtained from the ansatz |¥) = ay,|m) + |¢b) which takes
into account explicitly the molecular state |m) and solves the
Schrodinger equation H|¥) = E|¥) [87]. Here o, is a con-
stant that determines the occupation of the closed-channel
molecule |m), and ¢ (r) = (r|¢)) = Asin(kr + &)/r + B x(r)
represents the open-channel scattering wave function. For the
bound state we use the ansatz Asinh(k(r — R))/r + Bx(r)
for the radial wave function where & is the binding wave vec-
tor and R is the size of a spherical box R. From the solution
of the Schrodinger equation we evaluate the unknown coef-
ficients A, B, a,,. Next, we calculate the single-particle
eigenenergies, determined through & and «, from the bound-
ary conditions of atoms being confined in the spherical box of
size R. For details we refer to appendix A.

3. Dynamic many-body responses

Information about a many-body system can be obtained
from response measurements in both the frequency and time
domain. In ultracold atomic systems experimental tools exist
to address both domains with high precision. While radio-
frequency (RF) spectroscopy gives access to the spectrum

of a many-body Hamiltonian, Ramsey or spin-echo interfer-
ometry reveals information about the time-evolution of the
many-body wave function. Using functional determinants
one can solve numerically the response of the model (5) in
both the frequency and time domain at arbitrary temperature
without approximations. In this section we introduce some
of the responses typically studied in cold atom experiments.
These will then be investigated in more detail in the following
sections.

3.1. Radio-frequency spectroscopy

Information about the spectrum, and in particular the ground
state of the Anderson—-Fano model (5), can be obtained
experimentally from RF spectroscopy. In such an experiment
the impurity is prepared in an initial spin state, |o), where
o € {1,1]}. Using a weak RF signal, the spin is then driven
into a final state |7), orthogonal to |o). Theoretically, the RF
signal can be modeled by a monochromatic perturbation
~ e“!|7){c| + h.c. of frequency w. In linear response theory
the absorption is given by Fermi’s golden rule (7 = 1)

Aw) = 2202 3 wil (WIS — (B — EDL. )
if

where the transition operator W = |7)(c’| 4 h.c. acts only on
the spin state of the impurity. Furthermore, €2 is the Rabi fre-
quency which determines the power of the applied RF field. In
the following we set 2 = 1. The sum in equation (7) extends
over complete sets of initial |i) and final many-body states | /)
with energies E; and Er. The weights w; are determined by the
initial state density matrix as w; = (i|;|i).

The measured RF signal depends on the specific initial and
final states chosen and in the following we will focus on two
scenarios. In the ‘standard RF’ scheme, the system is driven
from the spin state, in which the impurity interacts with the
Fermi sea, to a non-interacting spin state. In contrast, in the
‘reverse RF’ procedure the impurity is initially in a non-inter-
acting state and then driven to an interacting one [53]. In this
section we formally define the two schemes, while their dis-
tinct responses are discussed in detail in section 4.

3.1.1. ‘Standard’ RF spectroscopy. In the standard RF
scheme, the impurity is prepared in the state |1) in which it
interacts with the Fermi sea. At T = 0 the fermions are ini-
tially in the many-body ground state |¢)gs) of the Hamiltonian
(5),ie. H |¥as) = Ecs|tas), where they experience the impu-
rity as a scattering center at r = 0. The initial state, includ-
ing the impurity state, is then given by |i) = |1) ® |gs). At
finite temperature the fermionic initial ‘state’ is determined
by the thermal density matrix pgs = e PH=#N) /Zss, with
B =1/kgT the inverse temperature with kg the Boltzmann
constant, which we set to one in the following, N is the fer-
mion number, g their chemical potential, Zgs the partition
sum, and H is given by equation (5).

In the final state the impurity is in the spin state |]) which is
non-interacting with the Fermi gas. Since then the scattering
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center is absent, the system is described by the Hamiltonian
Hy, defined by equation (5) with g = 0. The sum over the
systems’ final states can be written in terms of the states
Ify = [4) & |[h,) where [),) denotes the complete set of many-
body fermionic eigenstates of Ho, Ho|i,) = E°|4,), ie.
E; = E? in equation (7). Using these definitions and trans-
forming equation (7) to the time domain (for details see
appendix B), one arrives at the expression for the ‘standard
RF absorption spectrum’

R(w) = 2Re /0 dtei“’Tr[eiﬁ’efig"’ﬁGs], (8)

which solely contains operators in the fermionic Hilbert space.

The standard RF response of an impurity immersed in
a Fermi gas has been measured by Schirotzek et al [57].
In this case the impurity was mobile and the ground state
of the system |¢)gs) — |¥poi) is @ well-defined quasiparti-
cle, the Fermi polaron. The Fermi polaron is a well-defined
quasiparticle since its state has a finite overlap with the
non-interacting ground state [i¢y) of the system, which
defines the quasiparticle weight Z = |{19|t)pa1}|* > 0. This
is different for an infinitely heavy impurity at zero temper-
ature. In this case the overlap of the interacting ground
state |t)gs) with the non-interacting ground state vanishes,
i.e. Z=|(o|thgs)|* = 0. Hence no quasiparticle exists in
this case, giving rise to the term ‘orthogonality catastro-
phe’ (OC) [10]. The relation between the Anderson OC and
Fermi polarons will be discussed in more detail in the fol-
lowing section 4.

3.12. ‘Reverse’ RF spectroscopy. In the ‘reverse’ RF
scheme, sometimes also called the ‘spin-injection’ scheme
[90], the role of interactions are reversed. Here the impu-
rity in its initial atomic state |}) is not interacting with the
Fermi gas. Hence, at T = 0, the fermions build a perfect free
Fermi sea |FS) by filling up all single-particle eigenstates of
the non-interacting Hamiltonian Hy up to the Fermi energy
er. The initial state is then given by |i) = ||} ® |FS). At finite
temperature T, |FS) is replaced by the thermal density matrix
pps = e~ PUH=1N) 7.0 of a free Fermi gas.

The impurity is then driven into its final state |1) in which
the impurity is interacting with the gas. In that state, the
dynamics of the fermions is described by the Hamiltonian H
where the scattering center at r = 0 is present; i.e. g > 0 in
equation (5). The final states in equation (7) are then given
by |f) = [1) @ |¥a), Where the fermionic states are defined
by H|tha) = Eq|ths). Note that we set the energy splitting
between hyperfine levels to zero. Basic manipulations (for
details see appendix B) lead to the reverse RF response

A(w) = 2Re /O die Trle e pes]. (9)

The reverse RF scheme had been implemented for the obser-
vation of the full impurity spectral function by Kohstall et al
[67], and found multiple applications in the observation
of polaronic physics with ultracold atoms [31, 58, 67, 70,
91-94].

3.2. Real-time responses

Information about the many-body dynamics can also be
obtained from real-time observables. Here we give two exam-
ples for real-time responses, namely Ramsey and spin-echo
interferometry [73, 95].

3.2.1. Ramsey interferometry. In many-body Ramsey inter-
ferometry, the impurity is initially prepared in a non-interact-
ing spin state |J.). Then using a 7r/2 rotation a superposition of
the two impurity states, (|{) + |1))/V/2 is prepared, where in
the state |1) the impurity interacts with the Fermi gas. After
a finite interaction time ¢ a second 7 /2 pulse with variable
phase ¢ is applied. Measuring &, then yields the Ramsey sig-
nal S(¢) [71, 73]. Throughout this work we assume infinitely
fast /2 rotations that leave the Fermi sea unperturbed. While
the implementation is experimentally challenging directly in
the strongly interacting regime, it has been shown [31] that
such protocols can indeed be realized by quenching interac-
tions using the optical resonance shifting technique developed
in [71]. A straightforward calculation shows that the Ramsey
signal is given by

S(t) — <eiﬁ0te—iﬁt> = Tr[eiﬁ(’te_iﬁtﬁps].

From this expression it is evident that the reverse RF absorp-
tion signal equation (9) is determined by the Fourier trans-
form of the Ramsey signal. Hence both signals contain the
same physical information and can be used as complementary
experimental tools (for more details see appendix B).

(10)

3.2.2. Spin-echo interferometry. In addition to the Ramsey
response, more complicated interferometric protocols can be
chosen which do not have simple conjugate observables in the
frequency domain. One example is spin-echo interferometry,
which defines a more involved spin trajectory by augmenting
the Ramsey sequence by an additional instantaneous spin-flip
at half of the evolution time. This leads to the expression [73]

(1)

In typical applications in the context of nuclear magnetic reso-
nance (NMR) spectroscopy such protocols are employed to
echo-out external, quasi-static perturbations. However, such
protocols can also yield additional information about the sys-
tem dynamics and we will contrast the spin-echo and Ramsey
response in the thermal and quantum regimes in section 5.

Sse(f) = <eif10t/261f1t/26—if10t/26—iﬁIr/2>.

3.3. Functional determinant approach

In order to calculate the absorption spectra A(w) and the
time-dependent many-body response such as the Ramsey and
spin-echo signal, we use the functional determinant approach
(FDA) [19-21]. The FDA provides an exact numerical solu-
tion for systems which are described by fermionic bilinear
Hamiltonians. Extensions to bosonic systems are possible
[20] and have been recently employed for the description of
Rydberg impurity systems [93, 94, 97]. The FDA reduces
expectation values of many-body operators to determinants in
single-particle Hilbert space by virtue of the formula
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Figure 4. Finite temperature RF absorption spectra — theory and experiment [67]. (a) Reverse RF absorption spectrum A(w) as function
of frequency w/er and inverse interaction strength 1/kga in the ‘attractive’, ‘mixed’, and ‘repulsive’ interaction regime as obtained from
an FDA calculation (throughout this work absorption spectra A(w) are shown in units of eg). The temperature 7/Tf = 0.16 and range
parameter kpr* = 0.71 are chosen as in the experiment by Kohstall et al [67]. Their experimental results are shown for comparison: in (b)
for a weak RF drive and (c) for a strong RF drive which saturated the signal and hence was beyond linear response. The dashed and dot-
dashed lines, shown in ((a)—(c)) correspond to the energy of the onset of the attractive and repulsive excitation branch. They are calculated
from Fumi’s theorem [96] which relates the sum over phase shifts to the ground state energy of the system, see also [1, 36, 60] and

appendix C.

T T T

£ attractive regime

- 15 - 1.0

T T

mixed regime

rep. branch
- Wg - - att. branch

non-int.

20F
—
3 st
<
1.0F "
0.5F ===
0.0 ===’ . .
- 15 1.0 - 0.5
w/ep

Figure 5. Finite temperature radio-frequency absorption

spectra. RF response in the reverse scheme where the impurity

is initially in a hyperfine state non-interacting with the Fermi

gas and driven to a state interacting with the gas (see inset in

(b) for an illustration). The spectra are shown for temperatures
T/Tr = (0.01, 0.16) (dashed, solid), for interaction strengths
1/kpa = (—0.91, —0.1, 1.0) ranging from the attractive to the
repulsive side of the Feshbach resonance, and for a fixed Feshbach
range parameter kgr* = 0.71. For T/Tr = 0 the spectral onset of
features will be replaced by sharp edges.

(e?‘ ...e?N> = det[l — 4 ne' ... ™).

Here Y; are arbitrary, fermionic, bilinear many-body opera-
tors and y; their single-particle representatives. Furthermore,
7t denotes the single-particle occupation number operator. The

(12)

identity (12) allows us to solve the time-dependent many-
body problem exactly by using the analytical solutions for the
single-particle states obtained for the model equation (5), see
appendix A.

4. Universal many-body response: radio-frequency
spectra

We now turn to RF absorption spectra. Our results are obtained
by evaluating equation (8) and (9) using the FDA. While there
has been much theoretical effort to predict the properties of
impurities immersed in Fermi gases at zero temperature using
approximate techniques [32-40, 46, 49-51, 53-55, 59, 60,
69, 98—124], our calculations are to our knowledge the first to
predict corresponding spectra at arbitrary temperature, which
are exact in the limit of infinitely heavy impurities (for com-
parison to recent ultracold atom experiments see also [31]).
Studying the frequency resolved response provides insight
about the relevant many-body states and allows us to identify
the excitation branches which will become of importance in
finding the analytical solution of the many-body dynamics in
section 5.

In this section, we focus mostly on the low-frequency
response which is universally determined by the scattering
phase shift close to the Fermi surface. The high-frequency
response is discussed in more detail in section 6.

4.1. Reverse RF spectra

First we consider the reverse RF absorption spectrum, where
the system is initially prepared in the non-interacting impurity
spin state and then driven into an interacting final state. In
the reverse RF scheme the measured response is identical to
the impurity spectral function [31, 32, 53, 67] and as such it
reveals the spectrum of the Hamiltonian (5). In figure 4(a) we
show a density plot of the predicted absorption spectrum as a
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Figure 6. Illustration of the excitation branches dominating the OC dynamics. In the upper panels we illustrate typical absorption spectra
realized in the respective interaction regimes. The middle panel shows representatives of many-body states constituting the respective
excitation branch. In this panel we illustrate typical rearrangements of atoms (solid red spheres) from their non-interacting single-particle
states (small solid, horizontal lines) into interacting states (small dashed, horizontal lines). Dependent on the interaction, those states are
either shifted upwards or downwards in energy, and their wave function overlap with the non-interacting states is modified as well. In this
panel p is the Fermi energy, ep the binding energy of the molecule present for a > 0, Ae the energy shift of single-particle levels due to
interactions with the impurity, and |FS) represents the Fermi sea in its non-interacting ground state. The combined effect of the processes
shown in the middle panel leads to the characteristic features in the absorption spectra shown in the upper panels where shaded regions
highlight the corresponding contributions. The characteristic excitations of each branch are summarized in the lowest panel where FS, FB,
and BS are short-hand for Fermi-surface, bottom-of-the-Fermi-sea, and bound-state contributions, respectively.

function of frequency w/er and inverse interaction strength
1/kpa for the temperature T/Tg = 0.16 and range param-
eter kpr* = 0.71. In figure 5 corresponding spectral cuts are
shown for each of the interaction regimes realized by the
specific interaction strengths 1/(kpa) = —0.91, —0.1, and 1,
respectively, which range from the ‘attractive’ (a < 0) to the
‘repulsive’ side (@ > 0) of the Feshbach resonance. We show
results for both low (7/Tr = 0.01, dashed) and high temper-
atures (T/Tr = 0.16, solid). Note that the results are shown
for the finite value 7/Tr = 0.01 as we discuss this case also
when considering the real-time response in section 5.

The reverse RF spectra are dominated by two main exci-
tations. The ‘attractive excitation branch’ appears as a pro-
nounced response at negative detuning w/ep < 0. It is
dominant in the attractive and mixed regime for kpa < 0. As
the resonance is crossed to positive values of 1/kra (figures
5(a)—(c)) the attractive branch loses weight and the ‘repulsive
excitation branch’ emerges at positive energies and carries
most of the spectral weight. As can be seen from the spec-
tral cuts in figure 5, at ultralow temperatures both excitation
branches exhibit a non-analytical onset in frequency. These
absorption edges are a key signature of the Anderson orthog-
onality catastrophe (OC) [10-12, 73], and they are a conse-
quence of the absence of quasiparticles at zero temperature for
an infinitely heavy impurity.

4.1.1. From Fermi polarons to the orthogonality catastro-
phe. Before we turn to the case of an infinitely heavy

impurity, which is the focus of this report, let us briefly con-
sider the general case of an impurity of arbitrary mass M.
The formation of a polaron is associated with the dressing of
the impurity by fluctuations in the many-body environment.
These fluctuations correspond to various ways in which the
fermions reoccupy their single-particle energy levels due to
the interaction with the impurity. This reoccupation becomes
apparent when expanding the many-body eigenstates of the
system in particle-hole fluctuations [33, 36]:

Vo) = VZad[FS) + Y ongdl_eheq|FS) + ...

~ (13)

Here we consider the case of zero total momentum, the opera-
tors 21;5 create an impurity in the momentum state p, and |FS)
represents the non-interacting Fermi sea in its ground state.
The second term in this expression corresponds to the genera-
tion of a single particle-hole fluctuation from the Fermi sea,
but to obtain the exact eigenstates of the system the complete
expansion (indicated by the dots) has to be considered.

While all eigenstates of the many-body Hamiltonian can
be described by equation (13), of particular interest are often
those states |1),,) that have finite overlap with the non-inter-
acting state of the system [iy) = EZ(T)|FS). States with a finite
quasiparticle weight Z, = |(1o|tba)|* represent quasiparti-
cles, called polarons, that bear close resemblance to their non-
interacting counterparts. As outlined in the introduction, for
a mobile impurity in three dimensions two of these polaron

10



Rep. Prog. Phys. 81 (2018) 024401

Report on Progress

states dominate the absorption response: the ‘attractive Fermi
polaron’ w§§l> exists at negative energy for sufficiently weak
attractive interactions, while the ‘repulsive Fermi polaron’
|¢Fé§> appears at positive energy in the repulsive interaction
regime (in addition to a dressed molecular state existing in this
regime at negative frequencies).

Polaron states can only exist when the particle-hole fluc-
tuations generated by the higher-order terms in equation (13)
are moderate enough to allow for a finite quasi-particle
weight Z,. Although particle-hole fluctuations close to the
Fermi surface come with no energy cost, they lead to a finite
recoil energy experienced by an impurity of finite mass. For
the leading term shown in equation (13), this energy is given
by Ewc = (k — q)%/2M. In a simple picture, this energy cost
suppresses particle-hole fluctuations and leads to a finite
Fermi polaron quasiparticle weight Z > 0.

This is different for impurities of infinite mass and from
our simple argument it is apparent that something remarkable
must happen in this limit. Here the recoil energy vanishes and
the energetic suppression of high-order particle-hole fluctua-
tions is absent. As it turns out the fluctuations become indeed
so dominant that they lead to the complete disintegration of
the quasiparticle and the weight Z = 0 vanishes identically.
Hence the many-body ground state |1)gs), which for a mobile
impurity at weak interactions had been |w§31), becomes now
completely orthogonal to its non-interacting counterpart,
Z = |{4ho|tbgs)|* = 0, and one encounters the ‘orthogonality
catastrophe’ (OC) [10]: no quasiparticles exist [11].

Describing the OC requires the inclusion of the higher-
order terms in the expansion (13) which poses a challenge for
theory that attracted intensive interest starting with the work
of Anderson [10]. Among other approaches [11, 125-134], for
overviews we refer to [1, 9, 135, 136], the FDA provides an
efficient tool to address this problem and yields exact results
for infinitely heavy impurities, also in the case of finite temper-
ature where thermal averages have to be performed.

4.1.2. Single-particle interpretation. The fluctuations in equa-
tion (13) correspond to the various ways in which fermions
can occupy their single-particle energy levels. The analysis of
this reoccupation of states becomes particularly simple in the
limit of an infinitely heavy impurity, where it corresponds to a
static scattering center and the exact single-particle states are
thus easily calculated.

Our analysis is illustrated in figure 6. In the upper panels
we show typical absorption spectra in the various interaction
regimes, while in the middle panel we illustrate the single-
particle energies of H and Hy as dashed and dotted lines,
respectively. We show here only s-wave states; for short-range
interactions, higher partial waves are not renormalized and
hence irrelevant. In the initial state where the impurity as a
scattering center is absent, the atoms fill up all these levels up
to the Fermi energy eg and build a perfect Fermi sea [FS) (left
subfigures). To the right, we show the single-particle ener-
gies when the impurity scattering center is present (dashed
horizontal lines). We illustrate various occupations of those
single-particle states which correspond to dominant features
in the absorption spectrum A(w).

1

The specific structure of the absorption spectra can be
understood in a simple single-particle picture when express-
ing the spectral function as

Aw) =21 [(alFS)*0lw — (Ea — Ers)].  (14)

Here|v, ) denotes the many-body eigenstates of the interacting
Hamiltonian H with eigenenergies E,, and Egs is the energy
of the initial non-interacting Fermi sea |FS). Equation (14) is
given for T = 0 and, as discussed in section 3, it can straight-
forwardly be extended to finite temperature by an additional
summation over initial states weighted by the thermal density
matrix.

A pronounced response in the spectrum is due to family of
states {|14)} which, for a finite size system, have a signifi-
cant many-body Frank-Condon overlap |{t,|FS)|*> with the
initial state |FS). Together with the density of states the over-
laps | (1) |[FS)|* determine the specific shape of the absorption
spectrum. These dominant families of states are called excita-
tion branches in the following.

Attractive excitation branch. When the microscopic inter-
action is weakly attractive, i.e. 1/kga < —1, the dressing of
the impurity by fermionic fluctuations leads to a reduction of
energy. This leads to the formation of an attractive dressed
impurity state |t,) constituting the new ground state of the
system. In the spectral cut shown in figure 5(a) the attractive
ground state can be identified as the pronounced edge feature
at negative detuning w/eg. The onset of this feature at negative
frequency is determined by eigenenergy E, of the attractive
state |1, ). This state is constructed by filling all interacting
single-particle states up to the Fermi energy and it has zero
quasiparticle weight Z = |(FS|tpy)|> = 0 in the limit of infi-
nite system size.

As illustrated by the horizontal dashed lines in figure 6,
each single-particle level is subject to a small, negative energy
shift Ae which is determined by the scattering phase shift
0(E) = 0;_ /znp evaluated at the respective single-particle
energy E (see equation (A.5) in appendix A). Each fermion
occupying these single-particle states acquires this energy
shift and the summation over all Ae determines the energy
E, shown as a dashed line in figure 4(a). This summation
reflects Fumi’s theorem [96], which states that the ground
state energy is determined by the sum over the single-particle
phase shifts [1, 4, 36, 60], see also appendix C.

We emphasize once more that for 7 = 0 the immobile
impurity in its attractive ground state has zero quasiparticle
weight Z = |(FS|tby)|> =0 in the thermodynamic limit,
signaling the breakdown of the polaron picture. This is dif-
ferent for a mobile impurity in three dimensions'?: here [tate)
corresponds to the attractive polaron state | Stotl> with a finite
quasiparticle weight Z that leads to a delta-peak response in
absorption spectroscopy at 7 = 0. This is in contrast to the
infinite-mass impurity where the finite weight in the delta
function is fully redistributed into the asymmetric wing
attached to the onset of the spectrum at Ey;.

10 The case of a mobile impurity in a Fermi gas in two dimension is still not
fully understood [9]; see also the recent work [134].
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This asymmetric continuum, visible on top of the attractive
ground-state excitation in figure 5, is due to the excitation of
an arbitrary number of low-energy particle-hole excitations
close to the Fermi surface. One representative member of this
family of states, massively contributing to the sum in equa-
tion (14), is illustrated in the third column in the center panel
in figure 6(a). The whole family of states, including |/, ), con-
tributing to the edge and the attached ‘wing’ in the absorption
spectrum (red shaded area in the spectrum in figure 6(a)) con-
stitutes the ‘attractive excitation branch’.

For weak attraction each of the slightly renormalized sin-
gle-particle states has a large overlap with its non-interacting
counter part (dotted versus solid lines in the center panels of
figure 6) and hence, by moving all fermions ‘down’ to the
attractive ground-state configuration, the largest many-body
overlap | (14|FS)|? can be achieved. This leads to the attractive
branch as the dominant feature in the spectrum in the attrac-
tive interaction regime and it almost saturates the spectral sum
rule.

This changes as attraction is increased. As illustrated in fig-
ure 6(b), for stronger attraction the single-particle states are
shifted further down in energy and the attractive ground state
becomes more deeply bound. At the same time the overlaps
of the single-particle states with their corresponding non-
interacting counterparts become progressively smaller so that
the spectral feature of the attractive excitation branch loses
weight.

Bottom-of-the-band excitation branch. Related to this loss
of spectral weight is the appearance of an additional feature
in the absorption spectrum as unitary scattering close to the
Fermi surface, i.e. 0 = 7/2, is approached. In this strong-
coupling regime, the overlap of single-particle levels is such
that a new pronounced excitation is favored at an energy eg
above the attractive ground-state excitation. As illustrated in
the second column of the center panel in figure 6(b), this fea-
ture corresponds to the distribution of the fermions into sin-
gle-particle levels such that the lowest scattering state at the
bottom of the Fermi sea remains empty. Hence the feature is
termed the ‘bottom-of-the-band excitation’ [73].

First let us consider contact interactions. Here, at unitarity,
where interactions are resonant, the phase shiftis 6(E) = /2
for all scattering energies. From equation (A.5) of appendix
A it then follows that the single-particle levels are located at
half-way of their non-interacting counterparts (see second
column in the middle panel of figure 6(b)). As a consequence
of this symmetry, the same overlap |(1,|FS)|? is achieved for
moving all particles ‘up’ in energy to build the bottom-of-
band excitation state or ‘down’ into the attractive ground state
|tha) Where all low-energy levels are filled. Furthermore, the
energies of the attractive and the bottom-of-band feature are
given by —eg/2 and +¢€g /2, respectively.

In the mixed regime, realized for kgr* > 0, the phase shift
at the Fermi surface dp exceeds /2. We find that this leads
to the bottom-of-the-band excitation acquiring a larger spec-
tral weight compared to the attractive excitation branch while
both excitations remain separated by approximately the Fermi
energy. This behavior makes the bottom-of-band excitation
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distinct from the repulsive state excitation to be discussed
below.

Similarly to the attractive ground state, also the bottom-
of-the-band feature can be dressed by particle-hole excita-
tions. This effect leads to the characteristic enhancement of
response on both sides of the bottom-of-the-band excitation
(see shaded area in the upper panel of figure 6(b)). This col-
lection of states defines the ‘bottom-of-the-band excitation
branch’ and it dominates the spectrum in the mixed interac-
tion regime, see figure 6(b). In a contact interaction model
(kgr* = 0), where the mixed interaction regime is absent,
the bottom-of-the-band branch still exists, but it does nei-
ther dominate the spectrum in weight, nor—as discussed in
the following section—does it represent the so-called leading
branch in the real-time dynamics.

Molecular excitation branch. When the attractive interac-
tion becomes sufficiently strong, a single-particle bound state
appears at zero energy as the Feshbach resonance at1 /kra = 0
is crossed to the repulsive interaction regime where a > 0.
This bound state with binding energy eg = —h?/2ma® close to
unitarity is energetically separated from the scattering states.
By filling all particles into the low-lying states including the
bound state one constructs the dressed ‘molecular ground
state’ [1mo1) (see figure 6(c)). This state, which becomes the
new ground state of the system after crossing the Feshbach
resonance to a > 0, is reflected in the sharp spectral onset at
its negative eigenenergy Ey,o. Additional particle-hole exci-
tations lead to a continuum of states attached to it, together
constituting the ‘molecular excitation branch’. However, the
molecular excitation branch does not represent the dominant
branch in the absorption response (see figure 5(c)). In fact, the
bound state has a wave function which decays exponentially
in space as ~e~'/ and hence it has decreasing overlap with
the low-energy scattering states as a > 0 becomes smaller. In
consequence, the weight of the molecular branch diminishes
as one moves further away from the Feshbach resonance.

Repulsive excitation branch. 1In contrast, a many-body state
with a much larger many-body overlap | {1, [FS)|? can be con-
structed by leaving the bound state empty, and instead filling
the lowest scattering states with all the atoms. This excited
‘repulsive state’ |1)rp) is illustrated in the second column of
the middle panel in figure 6(d) and leads to the spectral edge at
positive energies observed on the ‘repulsive’ side of the Fes-
hbach resonance.

The existence of the repulsive state originates from the fact
that the emergence of the bound state for a > 0 is tied to a
reassignment of scattering states. While for a < 0 the single-
particle levels are shifted downwards in energy, for a > 0 the
scattering states are effectively shifted upwards in energy (see
figures 6(c)—(e)). This reassignment of states becomes par-
ticular apparent when considering the limit @ — 0T far away
from resonance. Here the positive energy shifts of the scatter-
ing states approach zero from above. Indeed it is this upward
shift of single-particle scattering states that motivates the term
‘ repulsive’ interaction regime although the microscopic inter-
action of course still remains attractive.
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The repulsive state can again be ‘dressed’ by fluctuations
around the Fermi surface leading to the continuous spectrum
directly attached to the repulsive state (illustrated as red shaded
area in figure 6(d)). In contrast to the bottom-of-the-band
excitation, however, only dressing towards energies above the
edge of the repulsive state is efficient due to the finite bind-
ing energy of the molecule. The energy of the repulsive state
can again be calculated analytically by a summation over the
single-particle energy shifts reflecting Fumi’s theorem, here
applied to an excited many-body state. The resulting energy
E.p is shown as dashed-dotted line in spectrum in figure 4.

While for an infinitely heavy impurity the repulsive state
has zero quasiparticle weight, for an impurity of finite mass
the repulsive state becomes the repulsive Fermi polaron exten-
sively discussed in literature [51, 53, 59, 60, 73, 107] and
observed in cold atoms [67, 68, 70] as well as two-dimensional
semiconductors [30]. Its analog for impurities immersed in
a Bose-Einstein condensate was recently observed as well
[91, 92] following intensive theoretical studies [137-152].

Molecule-hole excitation branch. The bound state can be
filled by any state from the Fermi sea which leads to the broad
excitation band of width ep above the molecular ground state
called the ‘molecule-hole continuum’ [53, 60, 67]. The upper
edge of that band at Ey, + €p is again dressed by particle-
hole excitations. The collection of these states constitutes the
‘molecule-hole excitation branch’ and it represents the ana-
log of the bottom-of-the-band branch for a > 0. Note that at
energies w < 0 but above Ey + €r we find that a spectral
gap appears where the weight is exponentially suppressed,
a phenomenon that is reminiscent of the ‘dark continuum’
found in diagrammatic Monte Carlo studies of mobile impuri-
ties by Goulko [56].

4.1.3. Comparison to experiments. The reverse RF absorp-
tion spectrum of impurities has been measured in LiK mix-
tures [31, 67]. In these experiments the K impurity atoms are
mobile. However, as shown in [31], by appropriately identi-
fying the scattering parameters in our model, our theory can
also be applied also in this case to obtain an approximate
solution due to the large mass imbalance between K and Li
atoms and the relatively high temperatures T/Tg 2 0.1. Spe-
cifically, our reduced mass differs by a factor (40/46) from
the experimental one [31, 67, 71]. According to equation (6)
this difference in the effective mass affects the coupling
strength g between the open-channel atoms and the closed-
channel molecule. In order to achieve the same coupling
g as realized in experiments we have to choose a rescaled
Feshbach range parameter kpr* = Iq:r;",(p(40/46)2 which is
reduced with respect to the experimental value kgrg,
detailed discussion see [31]).

In figure 4 we show the comparison of the FDA predic-
tion of the reverse RF spectrum to the experimental data
obtained in [67] taken at low (b) and high (c) RF power for the
experimentally realized range kgrgy, = 0.95 and temperature
T/T¢ = 0.16. In all subfigures we also show as dashed and
dot-dashed lines the analytically calculated energies of the
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Figure 7. Radio-frequency absorption spectra in the standard RF
scheme. In the standard scheme, the system is prepared in its many-
body ground state where the impurity is initially interacting with the
Fermi gas. It is then driven to a state non-interacting with the gas
(see inset in (b) for an illustration). The spectra are shown for the
same parameters as in figure 5, i.e. T/Tg = (0.01, 0.16) (dashed,
solid), interaction strengths 1/kra = (—0.91, —0.1, 1.0), and
Feshbach range parameter kgr* = 0.71.

attractive and repulsive state obtained from Fumi’s theorem as
also discussed in [36, 60] and appendix C. Our finite temper-
ature spectra are in excellent agreement with the experimental
data not only in energy but also spectral line shapes (see also
[31]) without any free parameters or artificial broadening of
spectral lines.

The good agreement in spectral line shapes when apply-
ing our theory to the finite mass case, where it becomes an
approximation, has two origins. First, although for the infi-
nitely heavy impurity the ground state—e.g. |ty) with
energy E,—Iloses all its quasiparticle weight, this weight is
predominately redistributed to a continuum of states that are
energetically close to E,y. Hence the integrated weight taken
from a sufficiently large energy window around the attractive
state can gain an integrated strength that is comparable to the
finite mass case. Therefore, for experiments that are subject to
broadening of spectral lines due to external factors (such as
trap average, laser lines width, etc), observed line shapes and
weights for the finite and infinite-mass case can appear quite
similar and distinguishing both cases remains a challenge for
frequency-domain measurements. Second, temperature has
the effect of broadening spectral lines. As we will show in the
following section 5, for finite temperature one can assign a
thermal weight to the dominant attractive and repulsive state
even for impurities of infinite mass. This leads to an absorp-
tion profile of Lorentzian line shape that is similar to the case
of a mobile impurities and which further contributes to the
good agreement between infinite-mass theory and experiment.
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Figure 8. Real-time evolution of Ramsey and spin-echo response. At finite temperature, the real-time Ramsey and spin-echo response of
the impurity atom unveil a quantum-to-classical crossover from short to long times. Here, the effective range, temperature, and scattering
length are given by kpr* = 0.8, T = 0.017T%, and kra = —1.1, respectively. The vertical dashed line indicates the thermal time scale

T = h/kgT. While for r < 7y, the spin-echo signal exhibits a three times faster power-law decay than the Ramsey signal, both signals
are governed the same exponential decay rate in the thermal regime for # > 7. The dashed and dotted lines on top of the FDA data show
the analytical result for the OC-characteristic power-law decay at early times and thermal exponential decay of coherence at long times,
respectively.
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Figure 9. Finite temperature decoherence rate of Ramsey and spin-echo signal. (a) The long-time decoherence rate +, as extracted from

a fit to the long-time exponential decay of the Ramsey and spin-echo signal computed by FDA, is shown as a function of the inverse
scattering length for 7/Tr = 0.1. The decoherence rate  of the two-channel model with kgr* = 0.8 (solid line) is compared with the results
from a contact interaction model (dashed line). The decay rate of the Ramsey and spin-echo protocol are identical. (b) Decoherence rate

v as a function of temperature evaluated at the interactions specified as circle and stars in (a). In (b) the interaction parameters are chosen
such that in the attractive and repulsive regime both zero and finite range give the same s-wave scattering phase shift dg at the Fermi energy.
Specifically, in the attractive regime (0 = 0.95): 1 /kpa = —0.72, kgr* = 0 (dashed blue), and 1 /kpa = —1.5, kgr* = 0.8 (solid blue);
repulsive regime (g = —0.66): 1 /kpa = 1.28, kgr* = 0 (dashed red), and 1 /kra = 0.5, kpr* = 0.8 (solid red).

4.2. Standard RF spectra increases as the interactions are tuned across the Feshbach
resonance. This shift has been observed by Schirotzek [57].
In particular, as kra > 0 and the bound state appears in the
spectrum, the ‘break-up energy’ involves the binding energy
of the molecule. Note that the repulsive state [t)rep), that corre-
sponds to the repulsive Fermi polaron for finite-mass impuri-
ties, cannot be revealed using the standard RF scheme, unless
it is prepared as an excited, non-equilibrium initial state of the
system [68].

The attractive Fermi polaron has been observed first in a two-
component °Li Fermi gas using the ‘standard’ RF scheme [57],
and its quasi-particle properties, such as its energy and residue
were measured. To illustrate the impact of the different RF
protocols we show in figure 7 our prediction for the absorp-
tion spectrum as obtained in the standard RF scheme for the
same parameters as in figure 5. As discussed in section 3, in
the standard RF scheme the system is initially prepared in the
interacting many-body ground state and then driven to a non-
interacting final state. 5. Universal many-body response: dephasing
The spectra are distinctly different from the reverse RF  dynamics

scheme. Since in the standard RF scheme the ground state,

e.g. |tha) for a < 0, is prepared initially, one has always to In typical condensed matter experiments, real-time observ-
pay its energy, e.g. E,, to ‘break’ this state. This leads to a  ables such as the many-body overlap S(¢) in equation (10)
shift to positive energies in the absorption spectrum, which are challenging to measure due to the large size of the Fermi

14
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energy ep. For instance, in typical solid state materials the
corresponding Fermi time 7z = h/eF is on the order of atto-
seconds [153]. In contrast, in ultracold atomic gases the Fermi
energy is lower by many orders of magnitude due to the
diluteness of ultracold atomic gases and large atomic masses,
which leads to Fermi times on the order of ys to ms. The com-
bination with interferometric techniques available in atomic
experiments makes it then possible to study many-body cor-
relation functions in fermionic systems in real time and to
observe striking far-from-equilibrium many-body dynamics.

5.1. Exact numerical solution

The time-dependent impurity problem represents an instance
where intriguing dynamics can be observed in an exactly solv-
able many-body system. In figure 8 we show the Ramsey sig-
nal (solid, red line) and the spin-echo response (solid, green
line) for a system in the attractive interaction regime charac-
terized by kpr* = 0.8, T = 0.01 Tr and interaction strength
kra = —1.1, as calculated by the FDA. Again, we assume
infinitely fast /2 spin rotations both in the Ramsey and spin-
echo sequence.

At times that are short compared to the inverse temper-
ature, quantum mechanics governs the evolution: due to the
sudden switch-on of interactions at ¢ = 0 the many-body
wave function dephases, leading to a power-law decay of
the Ramsey response with the exponent (dg/7)?, being the
universal real-time signature of the Anderson orthogonality
catastrophe [10, 11].

When time becomes comparable to the inverse temperature,
t 2 Tin ~ h/kgT, thermal fluctuations disrupt the coherent
and time-reversal symmetric quantum many-body dynam-
ics, and a crossover from quantum to predominantly thermal
dynamics takes place, see figure 8. The precise time scale for
this crossover depends on the microscopic details, such as the
scattering length and the effective range. However, this time
scale depends also on the chosen observable: for instance, in
the Ramsey signal a crossover to exponential dephasing sets
in earlier as compared to the spin-echo signal.

One key signature of the asymptotic finite-temperature
behavior is an exponential decay of coherence, |S(7)| ~ e~
Remarkably, while in the quantum regime at early times, before
thermal decoherence sets in, the dephasing rate is sensitive to
the specific spin rotation protocol chosen (e.g. the spin-echo
response decays faster than the Ramsey signal), using the the-
ory of Toeplitz determinants [19, 154], we prove (see appendix
E) that at finite temperature the long-time decoherence rate ~y
is identical for Ramsey and spin-echo interferometry—even
though in the spin-echo sequence the impurity spin is flipped in
the middle of the time evolution. This fact is of particular rele-
vance for recent experiments which inferred the long-time decay
of the impurity Green’s function from the spin-echo and not the
Ramsey signal [71] (see also the discussion in section 5.4).

In figure 9(a), we show the interaction dependence of the
finite-temperature decoherence rates « at T/Tr = 0.1 which
are identical for both Ramsey and spin-echo interferometry.
The rates are extracted from a fit to the very long-time decay
of the numerically evaluated S(¢) and Ssg(#) response, such
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as shown in figure 8. We compare the decoherence rate for
finite kpr* = 0.8 and for zero range kgr* = 0 corresponding
to a model with contact interactions.

As expected, for zero-range interactions, the maximum
decoherence rate arises at kpa — oo. The inclusion of a finite
range has the consequence of shifting this maximum of the
decoherence rate away from the center of the Feshbach reso-
nance. This shift can be understood from an analysis of the
most relevant scattering processes which, due to Pauli block-
ade, take place close to the Fermi surface. The impurity-par-
ticle scattering rate is determined by the scattering amplitude
f(k) and hence the scattering phase shift g, see equation (1),
evaluated at the Fermi energy E = ep.

For finite range r* > 0, the magnitude of the scattering
amplitude becomes maximal not at kra = co but when the
phase shift dg equals 7/2. The corresponding critical scatter-
ing length a. marks the transition from the attractive to the
mixed interaction regime. The shift in the decoherence rate
can be seen in figure 9(a) where the maximum decoherence is
reached at 1 /kgae, = —kpr* = —0.8. The finite effective range
in (1) hence leads to the, at first sight, counterintuitive effect
that, in the mixed regime, decoherence can slow down as the
magnitude of the scattering length a increases. Remarkably
this also implies that the position of the decoherence maxi-
mum can be used to determine the few-body effective range
from thermal many-body observables.

In figure 9(b), we show the temperature dependence of
the exponential decay rate obtained from exact calculations
of S(¢). In this figure, we compare the thermal decay rate ~
on both sides of the Feshbach resonance for zero and finite-
range interactions. To highlight the universality of our results,
we choose interaction parameters so that for both scenarios
the phase shifts dr are equal. We find that only at temper-
atures T/Tg 2 0.15 deviations become visible. This signifies
the highly universal character of the physics which is domi-
nated by the low-energy scattering phase shift alone and does
not depend on the microscopic details of interactions. For
low temperatures, we prove below that the maximal thermal
dephasing rate for heavy impurities interacting with a Fermi
gas with short-range interactions is in the long-time limit uni-
versally given by

_7TT
Ymax = 4

15)
This value is saturated at the transition from the attractive to
the mixed interaction regime.

As the temperature goes to zero, the thermal decoherence
rate vy vanishes. In this limit, the asymptotic exponential
form of the decay breaks down and logarithmic corrections
start to dominate. Those lead to the power-law decay of S(z)
as the key signature of the Anderson orthogonality catastro-
phe with an exponent given by (6g/7)% In contrast to the
long-time exponential decay at finite temperature, at zero
temperature the power law exponent does depend on the
trajectory of the impurity spin on the Bloch sphere which
are different for Ramsey or spin-echo interferometry. In
particular, quantum interference effects enhance the expo-
nent at each spin flip in an interferometric sequence [73].
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Using the theoretical techniques of [13, 73], we prove that
the spin-echo exponent is enhanced by a factor three; details
are given in appendix E.2.

We note that for very narrow Feshbach resonances with
ker* > 1 the deviations from the contact interaction model,
visible in figure 9(b), set in at lower temperatures. This is
due to the fact that for such resonances the phase shift 6(E)
close to the Fermi surface becomes strongly energy depend-
ent. The thermal softening of the Fermi distribution function
allows fermions to probe this energy dependence which leads
to the deviations of dephasing rate from the contact interac-
tion model.

5.2. Analytical results

While the previous subsection focused on an exact numer-
ical evaluation of the Ramsey signal at all times, we will now
derive analytical expressions at intermediate and long times.
Analytical results for the short-time dynamics will be dis-
cussed in section 6.

In this section, we are interested in the many-body
regime of quantum dynamics where fep > 1 and study the
crossover from the ‘low-T’ regime (with T < 1), where
S(t) exhibits power-law dephasing [10, 11, 126, 136], to the
‘high-T” regime (tT > 1) showing exponential decay (fig-
ure 8) [127]. While analytic understanding of the Ramsey
response has been developed in [73] in the low-T regime
for zero-range interactions, below we focus on the high-T
regime.

5.2.1. Excitation branches. Similarly to the absorption spec-
trum A(w) discussed in section 4, the time-dependent overlap
S(t) can be decomposed into the sum

Z |<wa ‘FS> |ZeiEFSte—iEat’
{l¥a)}

where {|1),)} denotes the complete set of many-body eigen-
states of the ‘interacting’ Hamiltonian H with eigenenergies
E,, and |FS) the non-interacting Fermi sea.

Being directly related by Fourier transforms, A(w) and S(z)
carry the same physical information (for details see appendix
B). Depending on the interaction regime, different ‘excitation
branches’ {|1,)} dominate the dynamics of S(¢). In section 4
we identified five such branches (summarized in figure 6), and
to make the discussion in this section self-contained we repeat
here our main findings.

In the attractive and mixed regimes (a) and (b), the absorp-
tion spectra are dominated by the attractive state together with
particle-hole (p/h) excitations around the Fermi surface (FS);
this collection of states constitutes the ‘attractive excitation
branch’ (branch A). Another relevant class of excitations in
regimes (a) and (b) is the bottom-of-the-band contribution (FB,
for ‘Fermi bottom’). Together with p/h excitations it forms the
‘bottom-of-the-band branch’ (branch B), see figure 6(b). We
find that these two branches describe accurately the long-time
many-body dynamics and S(7) can be approximated as

(16)

16

S(1) ~ Salt) + S (1), (17)

where S, () accounts for the attractive branch A, and Sg(?)
accounts for the bottom-of-the-band branch B.
The two branch contributions can be written as

Sa(?)

Here S,(ZFS)(I) and S (¢) represent excitations around the
Fermi level and the creation of a hole at the bottom of the
Fermi sea, respectively. The subscript n specifies the number
of particles added or removed from the Fermi surface or bot-
tom of the Fermi sea. Note that the total particle number is
conserved in each of the branches. For instance, in Sg(7) one
particle is removed from the bottom of the band and inserted
close to the Fermi surface.

In the ‘repulsive regime’ (c), where dg < 0 and a bound
state (BS) is present, three relevant branches can be identified
and S(¢) approximated as

S(t) = S (t) + Spi(t) + Spa(t) . (19)

The three branches, denoted as ‘molecular excitation branch’
Al, the ‘repulsive excitation branch’ B1, and the ‘molecule-
hole branch’ B2 correspond to the most relevant spectral fea-
tures discussed in section 4. As illustrated in figure 6(c), Sa1(?)
represents the attractive ground state ‘dressed’ by p/h excita-
tions. In the spectral function those states correspond to the
absorption edge at negative frequencies, while Sg; (f) accounts
for p/h excitations close to the Fermi surface on top of the
repulsive state, see figure 6(d). Finally, Sp,(#) describes the
edge of the molecule-hole continuum and represents the fam-
ily of states where the bound state is filled by an atom from
the bottom of the Fermi sea again dressed by p/h fluctuations
at the Fermi surface, see figure 6(e). Accordingly, the branch
contributions can be expressed in terms of the processes (FS),
(BS), and (FB),

=Ca ST, Sp()=Cp S @) STy, 8

Sai(t) = FS)(f) S(BS (1),
Spi(t) = Cpy S(FS)(I) , (20)
Sp2(t) = Cr S, Fs)(l) ( ) S §BS)(0-

While the contributions S, (f) can be analytically evalu-
ated as we will now demonstrate, the coefficients C, in
equations (18) and (20) depend on the microscopic details,
and have to be determined from a numerical evaluation of
equation (12).

5.2.2. Temperature independent contributions. First, we
turn to the contributions from the bottom of the Fermi sea

S (_F};) (¢) and the bound state S iBS) (¢). Both involve states deep
under the Fermi sea and hence yield temperature-independent

contributions to the dynamics. The bound-state contribution is
simply given by the phase accumulation of the form

SEBS) (1) xe

where ep < 0 1is the energy of the bound state.

—iegt
>

21
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Table 1. Summary of the interaction regimes and branches. The various branches contributing to the dephasing of S(z). The leading
branches, leading dephasing rates, as well as references to the high temperature corrections are indicated for the different interaction

regimes (a)—(c).

Contribution Low-T decay High-T

Interaction regime Parameters Branch Leading  to S(¢) rate y correction
(a) ‘Attractive’ a<0,6E) >0, A yes S(()FS)(t) Yo = T82/ Equation (34)
O <m/2 B no S§FS)(I) S(_FIB)(t) v =T(d — m)2/x  Equation (38)
(b) ‘Mixed’ a<0,56E)>0, A no ST (1) o = T8/ Equation (38)
o >m/2 B yes s (1) s (1) v = T(8 — )?/r  Equation (34)
(¢) ‘Repulsive’ a>0,0(E)<0 Al no S (1) B9 (1) v_1 = T(6¢ + m)?/m Equation (38)
Bl yes s () v = T8/ Equation (34)
B2 yes S(()FS)([) S(_FF)(t) SEBS)(t) v =T /m Equation (34)

For the bottom-of-the-band feature an analysis of the rel-
evant many-body states yields (for details see appendix D)

* dE
S(_FB)toc/
PO Vet

Equation (22) has a power-law decay with time r~'/2 at
1/ep <t < 1/} and t73/2 at 1 < te};, where we define the
energy scale €5 = 1/(2m|al?) for both positive and negative
a. A similar result for the bottom-of-the-band and bound-state
contributions was reported in [73].

sin? §(E) e . (22)

5.2.3. Fermi-surface contributions. In contrast to the (BS)
and (FB) processes, p/h excitations around the Fermi surface
(FS) involve arbitrarily low energies. Hence these processes
are influenced by finite temperature and they become respon-
sible for the exponential dephasing of the Ramsey signal.

The behavior of the contributions S () can be under-
stood analytically using two approaches. First, bosonization,
valid at low temperatures, allows us to describe a crossover
from short-time power-law decay to long-time exponential
decoherence and allows us to reveal corrections to the temper-
ature dependence of the decoherence rate. Second, the theory
of Toeplitz determinants provides analytical expressions for
the decoherence rate of the various excitation branches at rela-
tively high temperatures.

5.2.4. Bosonization. In the bosonization approach (for
details see appendix D and [4, 29]), the energy dependence
of the phase shift §(E) is neglected and the dispersion relation
is linearized around the Fermi surface. Hence, the approach is
only applicable at low temperatures where the Fermi surface is
sharply defined. Following standard bosonization techniques
one can extract the power-law decay of coherence at 7 = 0,

S(()FS) (l) o e—iAEt t—(6p/ﬂ')2 , (23)

which represents the well-known result for the Fermi-edge
singularity [11]. Here the energy AE determines the spectral
onset of the attractive and repulsive polaron feature, which is
given by Fumi’s theorem [1, 4],

ag—- [ e,
0

™

(24)

as a sum over all phase shifts up to the Fermi energy (see
appendix C).

At finite temperature, a conformal mapping of com-
plex time onto a cylinder with the periodicity i/T leads to
(see appendix D and [29, 155, 156])

(8k/m)?
FS —i T
S((’ (1) ocea (sinh 7th> ’

which generalizes equation (23) to finite temperature.

Now we turn to the Fermi-surface branch contrib-
utions S,(lFS)(t) for n # 0. These contributions appear when
atoms are transferred from the bottom of the Fermi sea
to the Fermi surface (n = 1) or from the Fermi surface
to the bound state (n = —1). As derived in the theory of
the Fermi-edge singularity [128], and as also discussed in
the context of full counting statistics (see, e.g. [22, 157]
and references therein), the contributions S, (¢) with n # 0
are accounted for by a shift g — g = 7. Furthermore, as
a particle is removed or added to the Fermi surface, the
energy AE is modified as well, and AE — AE + €. This
leads to the general expression for the various Fermi-
surface contributions,

(25)

nT
sinh 7Tt

) B g

This equation describes the full crossover from the low-
temperature regime with power-law behavior

Sr(LFS) (t) x e—i(AE+neF)t (

. (% _,)?
Sr(LFS) (t) x e*l(AE*‘rnEF)t t (1\— ) 27)

to the finite temperature regime where, at sufficiently long
times T >> 1, the Fermi-surface contributions decay expo-
nentially according to

2
SIS (1) o T(%F_") e MlgTiwnl (28)

Here, we introduced the exponential decay rates and
frequencies

L (0r— nr)?
'Yn - T T ) (29)
w, = AE + neg.

17
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Figure 10. Crossover from subleading to leading branch dynamics.
Absolute value of the Ramsey contrast S(¢) as function of time.
Interaction parameters are chosen to correspond to the mixed
regime (b) with T/T¢ = 0.1, 1 /kpa = —0.61, and kgr* = 0.8. The
solid line shows the exact numerical evaluation of the dynamical
overlap S(#) using the FDA, while the dotted (dashed) line shows
exponentials with exponents 7 (7o), respectively, which correspond
to the leading (subleading) branch dynamics in this interaction
regime. For the detailed dependence of the decoherence rates on
1/(kga), see figure 15.

Remarkably, equation (28) predicts a prefactor of the expo-
nential decay which features a power-law dependence on
temperature with an exponent governed by the OC (dg/7)>%
According to equations (17) and (19), S(¢) is given by a
sum over various branch contributions. Out of those, the
branch exhibiting the smallest decay coefficient 7,, as deter-
mined by equation (29), will survive at long evolution times.

This branch, which we call the ‘leading’ branch, d?termines

E_5)2

the temperature scaling of the prefactor oc T\ ™ in
equation (28).

In table 1 we summarize our findings. In the column
‘low-T decay rate” we list the decay rates -y, which are appli-
cable in the limit 7/eg < 1 (provided T >> 1 and teg > 1).
Furthermore we show the definitions of the interaction regimes
as well as the various contributions to the dephasing dynamics
of the Ramsey signal S().

For instance, according to equation (18), in the attrac-
tive regime (a) both S(()FS)(t) and S EFS) (¢) contribute. Since in
this regime dr < 7/2, we find that vy < 7y;. Therefore Sa(t),
which represents the attractive excitation branch, is leading.
In contrast, in the mixed regime (b) v; < 7o and hence the
bottom-of-the-band contribution Sg(¢) is the leading branch.
Finally, in the repulsive regime (c) both Sg;(f) and Sp,(f) are
leading branches. They represent the dressed repulsive state
branch and the edge of the molecule-hole continuum, respec-
tively (see figure 6).

The actual time scale from which on the leading branch
observably dominates the dynamics depends on the relative
magnitudes of its coefficients C,(T). For instance, in the
mixed regime (b) the ‘bottom-of-the-band branch’ B is lead-
ing. However, its coefficient Cg can be numerically so small
that for experimentally observable times the attractive branch
A actually dominates the dynamics. This effect is shown in
figure 10. Here a crossover between two exponential decay
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rates can be seen in the Ramsey signal S(¢). For short and
intermediate times, S(¢) exhibits an exponential decay with
the ‘fast’, subleading decay rate 7o (dotted line). Only at long
times S(z) crosses over to the slower, leading decay rate 7
(dot-dashed line).

The fact that the fast decay of the subleading branch can
dominate the short-time behavior demonstrates that, although
the observed dynamics may naively seem to have reached
quasi-classical behavior, quantum effects can still lead to
long-time interference effects. The small signal at long times
makes the experimental observation of this crossover between
multiple exponential decoherence rates a challenge, simi-
lar to competing 7> decay coefficients encountered in NMR
spectroscopy [158, 159]. We note that in figure 10 we have
chosen interaction parameters that allow us to demonstrate
the crossover at long times. This choice leads to a very small
Ramsey contrast in the crossover regime. In experiments more
favorable interaction parameters can be chosen that lead to a
substantially higher Ramsey contrast (as an example see fig-
ure F1 in appendix F).

Power-law  temperature  dependence. The power-law
temperature dependence of the Fermi surface contributions
given by equation (28) can be observed experimentally. One
means to do so is to fit the asymptotic forms of S(¢) in equa-
tions (17) and (19) to the meas?ged %ezlta of S(¢). To obtain

unbiased results, the prefactor T’ is absorbed in a res-

caled definition of the coefficients

(1) = cr(Fn) (30)

where C,, is a temperature independent constant. Studying the
fit parameters C,, (T as a function of temperature then allows
one to reveal the intricate OC power-law dependence.

We demonstrate this fitting procedure for the three interac-
tion regimes by numerically calculating the exact signal S(¢)
shown in the upper panels of figure 11. This data is then fit
by the respective asymptotic forms (17) and (19) using equa-
tions (21), (22) and (26) with rescaled coefficients Cy, (T). The
resulting fits of the complex S(z) are shown as solid lines in
figures 11(a)—(c) and they compare remarkably well with the
exact data (symbols) down to relatively short times.

The scaling of the extracted coefficients C,, with temper-
ature is shown in the lower panels of figure 11. Specifically, in
figure 11(d) we study the attractive regime where the attractive
branch A is leading. We find that the corresponding coefficient
Ca universally follows the predicted power-law dependence.
Furthermore, our analysis shows that the subleading coeffi-
cient |Cy(T)| is numerically smaller than |C,(T)] so that the
leading branch A will also dominate the decay of S(z).

As an alternative to a fit of the full complex signal of S(7),
one may also fit directly the absolute value |S(¢)| to obtain the
temperature scaling of C,. In such a procedure, illustrated
in figure 12, |Ca| as well as the decay exponent serve as fit
parameters. The corresponding results are illustrated as open
symbols in figure 11(d). This alternative procedure reveals
that the temperature scaling of Cy, that is governed by the OC
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Figure 11. Power-low temperature dependence of dephasing dynamics. The upper panels (a-c) show the real and imaginary part of

the Ramsey signal as calculated exactly using the FDA (symbols). The data, shown for the exemplary temperature 7/Tr = 0.012, is
fitted by the analytical expressions (17) and (19) (solid lines). The results are shown for parameters (a) 1 /kpa = —0.1, kgr* = 0, (b)
1/kpa = —0.5, kpr* = 0.8 (¢) 1 /kpa = 2, kpr* = 0. In (d-f) the temperature dependence of the rescaled coefficients C‘Q(T) is shown
where a = (A, B, Al, B1,B2) specifies the excitation branch. The parameters are: (d) 1/kgpa = —0.1, kpr* = 0 (black) and 1 /kpa = —2,
ker* = 0.8 (red), (e) 1 /kgpa = —0.5, kgr* = 0.8, (f) 1 /kpa = 0.1, kgr* = 0. The open symbols in (d) correspond to an alternative fitting
procedure, where the absolute value of |S(¢)| is fit by a single exponential decay function.
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Figure 12. Thermal decay of the Ramsey signal and thermal
weight. The Ramsey contrast |S(7)| is shown for various
temperatures at fixed interaction parameters kpa = —1.1 and

ker* = 0.8. While at T = 0 the contrast decays to zero as a power-
law, the decay is exponential at finite temperature. The dashed
lines are exponential fits to the data and the points on the y-axis
indicate the scaling behavior of the ‘thermal weights’ Ch (the fit for
T/Tr = 0.01 involves data at times not shown in the plot). For an
impurity of finite mass (e.g. Mimp/m = 40/6 for a 40K impurity in
a SLi Fermi gas), the decay of the Ramsey contrast would saturate
at the finite polaron quasi-particle weight Z = |S(t — co)] at zero
temperature (illustrated by the dot-dashed line).

exponent ()2, can be observed up to temperatures as large
as T/Tr ~ 0.2, making it accessible to current experimental
technology.

Figure 11(e) shows the results in the mixed regime
(kgr* = 0.8, 1/kpa = —0.5) for both coefficients Ca(T)
and Cg(T). The dashed and solid curv, s show the pf%gictegi
asymptotic power law behavior ~T 7> and ~T 1> ,
respectively. Although in this regime the bottom-of-the-band

ks
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branch B is formally leading, the corresponding coefficient
|Cg(T)| is numerically substantially smaller than |Cx(T)|.
This finding reflects the crossover of exponential decay rates
shown in figure 10: for limited observation time the decay
with the subleading, and hence larger decay rate o will domi-
nate. This demonstrates that in experiments performed in the
mixed interaction regime one has to be careful in assigning
thermal decoherence rates from early-time dynamics.

In the repulsive interaction regime the presence of the
bound state leads to additional oscillations in the Ramsey
signal. As can be seen in the upper panel figure 11(c) these
oscillations are captured with remarkably high accuracy by
the analytical expression equation (19) even at short times.
In the lower panel figure 11(f) the temperature dependence
of the corresponding rescaled Ramsey coefficients CQ(T) is
shown. We find that up to high temperatures 7 /Tg = 0.2 the
coefficient C4; follows the power-law prediction (solid line).
Similarly to the mixed interaction regime, it is again not the
leading branches B1 and B2 which have the numerically larg-
est values |Co(T)|. Instead, for the chosen interactions we
find that the subleading bound-state branch A; dominates the
dephasing at short and intermediate times.

Relation to ion mobility in 3He. Our results on the scaling of
the coefficients C,(T) allow us to draw connections to early
work by Kondo and Soda [160] on ion mobility in *He. In
their work Kondo and Soda studied the renormalization of a
heavy ion due to its interaction with the fermionic quasipar-
ticles in liquid 3He. In this case, the ion Green’s function can
be expressed as G(q,w) = Z(T)/[w — Eq + il'(T)], which in
the time domain becomes

G(q.1)

Z(T)e Melba, (31)
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Figure 13. Decoherence rate at high temperatures. We compare
theoretical predictions from bosonization and the Toeplitz-
determinant approach to the numerically exact long-time
decoherence rate of the Ramsey signal as function of temperature
in the attractive and repulsive regime for kgr* = 0.8. The Toeplitz
determinant approach gives very accurate results up to high
temperatures, while bosonization starts to fail at /T ~ 0.15.

Here E,, is the renormalized ion dispersion relation and I'(T')
its quasiparticle lifetime. Z(T) is the quasiparticle weight that
determines the ion mobility x oc Z(T)? [160].

Using a perturbative expansion, Kondo and Soda predicted
the ion quasiparticle weight to scale as

2 )”3'*.

Here V) is the microscopic contact coupling constant between
the ion impurity and fermions of mass m, and p is the density
of states at the Fermi surface. This scaling was predicted to be
valid for temperatures Ty < T < Tg, where Ty = (m/M)Tr
approaches zero as the ion mass M goes to infinity.

The expression for the ion Green’s function equa-
tion (31) suggests a comparison with our prediction for the
Fermi surface contribution to the impurity Green’s function
equation (28). Remarkably, the scaling of the prefactor, see
equation (30) for n = 0, reproduces Kondo’s scaling of the
impurity quasiparticle weight in equation (32), in our case
derived from an exact calculation.

Having this relation in mind, one may interpret the coef-
ficients Ca as wave-function renormalizations that determine
the temperature-dependent spectral weight of the respective
excitation branches. As temperature goes to zero we predict
this thermal weight to vanish according to a power law that is
governed by the OC exponent, see figure 11. This behavior is
illustrated in figure 12, where we show Ramsey contrast curves
at various temperatures. Exponential fits to the long-time
decoherence data, shown as dashed lines in figure 12, indicate
that the weights of the exponential decays, shown as green
dots, decrease with decreasing temperature. Simultaneously,
the regime of quantum dephasing extends to longer times. In
the limit of zero temperature, the thermal weight goes to zero
and the thermal exponential decay of the Ramsey contrast is
replaced by a power law with exponent (g /7)2, characteristic
of the Anderson OC. Remarkably, we find that each excita-
tion branch is governed by its unique scaling exponent. While

T

= 32
T (32)
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Figure 14. Evaluation of the Toeplitz determinant. For the
evaluation of the Toeplitz determinant according to equation (33)
the branch of the logarithm has to be analytically continued as
illustrated by the black solid line. Here the imaginary part of

the integrand In o (E) is shown as function of E for interaction
parameters in the mixed interaction regime (b) with 1 /kpa = —0.5,
kpr* = 0.8, and T/T¢ = 0.114.

in liquid Helium the measurement of subleading excitation
branches is difficult, ultracold atoms allow not only for the
verification of the power-law scaling equation (30) but also
for the observation of subleading excitation branch dynamics.

We note that, while for an infinitely heavy impurity the
thermal weight Cx goes to zero at T = 0, for a mobile impu-
rity in three dimensions the Ramsey contrast will saturate at a
finite quasi-particle weight Z(T = 0) = S(t — oo) (illustrated
by horizontal dash-dotted line in figure 12 [31, 32, 53, 60]).
Here, the time scale for the crossover to many-body dynam-
ics that is greatly affected by the impurity mass is expected
to be approximately given by the inverse impurity recoil
energy Epc ~ (2kg)?/(2M). However, both a detailed study
of the behavior of the quasiparticle weight as function of the
inverse impurity mass 1/M as well as the related many-body
dynamics remain open questions which need to be addressed
in future studies.

5.2.5. Toeplitz-determinant approach. In figure 13 we com-
pare the temperature dependence of the leading branch deco-
herence rate -, as obtained from bosonization (dotted lines)
with the exact numerical result (solid lines). We find that
for sufficiently low temperatures both agree. However, as
T/Tr is increased to values realized in current experiments,
T/Tr = 0.2, deviations appear. The reason for the failure of
the bosonization approach lies in the fact that at high temper-
atures, on the one hand, the energy dependence of the phase
shift §(E) has to be taken into account, and, on the other hand,
the assumption of a linearized dispersion relation becomes
invalid.

These effects can be taken into account in a quasi-classical
approach motivated by the theory of the Toeplitz determinants
[19, 161-165]. In this approach, many-body overlaps such as
equation (12) are evaluated in a quasi-classical basis of wave
packets localized both in coordinate space and momentum;
for details we refer to appendix E. In this basis, the evolution
operator in equation (10) is of a Toeplitz form, i.e. the kernel
depends only on a time difference and, consequently, S(¢) can
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Figure 15. Dependence of decoherence rate on the interaction
strength. The interaction dependent decoherence rate of S(r)
obtained from the exact FDA and Toeplitz determinant approach
at T/Tr = 0.1 and kpr* = 0.8.

be expressed as a Toeplitz determinant. Such determinants
were studied in various physical and mathematical context,
and, applying these techniques, the asymptotic behavior of
the Fermi-surface contributions at long times can be obtained
(see, e.g. [22] for a related discussion in the context of full
counting statistics).

Leading branch decoherence. The leading asymptotic
behavior of Toeplitz determinants is given by the so-called
Szegd formula, which allows us to map the calculation of the
asymptotic Toeplitz determinant onto contour integrations,
see e.g. [165]. By going to the frequency representation, in
which the kernel operator in equation (10) is diagonal, one
finds for the Fermi sea contributions (see appendix E)

S(t) = exp (t /Ooo dE

—In
2

[1 —np(E) + nF(E)eZi‘s(E)]> ,
(33)
where ng(E) is the Fermi occupation number.

In the evaluation of equation (33) the branch of the loga-
rithm must be chosen so that the integrand analytically contin-
ues along the integration contour and tends to zero as £ — 00.
While in the attractive and repulsive interaction regime (a) and
(c) one can remain in the principal branch of the logarithm,
the mixed interaction regime (b) requires more care. Here the
phase shift at the Fermi surface exceeds /2 which requires to
evaluate the integrand in equation (33) starting at low energies
in the lower Riemann sheet and then analytically continue to
the principal branch at high energies. This is illustrated in fig-
ure 14 where we show the imaginary part of the integrand of
equation (33) along the integration contour.

Using this integration procedure, one obtains the oscilla-
tion frequency wy, and the decay rate -y, from

. /°°dE
wp + vy, = —
0

—1
27 .

where we defined the so-called ‘symbol’ of the Toeplitz

determinant

[o(E)] (34)

o(E) = 1 — np(E) + ng(E)e*®), (35)
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Figure 16. Universal scaling relations of decoherence rates. At low
temperatures the decoherence rates of the leading and subleading
branch obey the universal scaling relations equation (39) (solid
line) which are independent of interaction strength and hold up to
temperature 7/Tr =~ 0.2 as can be seen from the comparison to

the result from the Toeplitz determinant theory for three different
interaction strengths and fixed kgr* = 0.8.

However, the values of w; and 7y, as obtained from equa-
tion (34) correspond only to the leading branch of the respec-
tive interaction regime (see figure 6): in regime (a) this is
branch A, in regime (b) it is branch B, and in regime (c) these
are the branches B1 and B2. Note that in the limit 7 — 0, the
integral (34) is easily computable and reproduces the results
derived in the bosonization approach, equation (29).

Subleading branch decoherence. Calculating the frequen-
cies and the decay rates for the subleading branch requires
more effort. In the context of the theory of Toeplitz determi-
nants, subleading branches were studied in the case of singular
symbols o (E). In that case, the theory of subleading branches is
known under the name of the generalized Fisher-Hartwig con-
jecture and all branches decay as power laws [162, 166, 167].
However, in our finite-temperature case, the decay is expo-
nential, and the theory of Fisher-Hartwig singularities does
not directly apply.

Still, the contribution of different excitation branches
can be found from the following argument. Each branch
contribution corresponds to a specific configuration of fermi-
ons (see figure 6) and should be an analytical functional of
d(E). Consequently, the subleading branch may be obtained
as an analytical continuation from the regime where the corre-
sponding contribution constitutes the leading branch and is
given by equation (33). This analytical continuation techni-
cally amounts to a continuous deformation of the leading inte-
gration contour in equation (33) into a new contour Csy in the
complex energy plane so that it never crosses any singularities
of the integrand.

As discussed in detail in appendix G, we find that for each
interaction regime an integration contour Cgy, can be chosen to
give the desired subleading frequency and decay rate

. dE
lwsy + s = —
CsL

- In[o(E)] .

(36)
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Figure 17. Decoherence rate: theory and experiment [71]. (a)
Decoherence rate as function of interaction strength 1 /kra. The
black symbols represent the experimentally measured decoherence
rate of the spin-echo signal at long times while the red data points
were extracted from exponential fits to the short-time dynamics.
The theoretical predictions from FDA and Toeplitz determinant
theory are shown as solid and dashed lines. They are obtained for
experimental temperature 7 /T = 0.16 and rescaled resonance

parameter kgr* = (40/46)*kgrs, = 0.7 [31]. (b) FDA simulation of
the time-resolved responses (lines) and experimental data (symbols)
for the interaction strength 1/kpa = —2.1, indicated by the open
square in (a). The Ramsey and spin-echo response lead to the same
exponential decay rate. (¢) FDA simulation of the experimental
spin-echo sequence at T/Tg = 0.2 and 1 /kga = —0.15, including
finite pulse duration and initial state interaction. The dotted line is
an exponential fit to the experimental data that leads to the open red
circle in (a). The inset shows a zoom into short evolution times on a
linear scale. The experimental data is taken from [71].

The specific contours are derived from an analysis of the ana-
lytical structure of the integrand In o (E) which is determined
by the roots E, of the symbol ¢ (E),

o(E,) =0, 37)

in the complex energy plane. By choosing the appropriate
integration contours one can show that the subleading decay
rate and frequency are given by (see appendix G)

22

~sL = Y + [ImE; |

wst, = wy, — sign(ImE,) ReE, . (38)

In the low temperature limit 7 — 0, E, = e + iT (&7 + 20F)
where the — applies to the attractive and mixed regime (a) and
(b) and + holds for the repulsive regime (c¢). Then the result
equation (38) indeed reproduces equation (29).

The analytical Toeplitz approach is in remarkable agree-
ment with exact numerical results. In figure 13 we compare
the temperature dependence of decoherence rate as obtained
from the Toeplitz approach and the exact FDA calculation.
The predicted rates, shown for two interaction regimes, are in
excellent agreement up to temperatures as high as T/Tf ~ 1,
where bosonization completely fails.

The virtue of the Toeplitz approach is further demonstrated
in figure 15 where we show the interaction dependence of
the decoherence rate. The rate of the leading (solid) and sub-
leading branch (dashed) obtained from the Toeplitz approach
compare remarkably well with the exact FDA results (sym-
bols). But most importantly it also analytically predicts the
rate of the subleading branch which can dominate the inter-
mediate time evolution, see figure 10. As discussed below,
this becomes particularly relevant for experiments in which
very long time scales are inaccessible due to small Ramsey
contrast.

5.3. Universal scaling relations

Within the bosonization approximation, the decay rates and
frequencies for the leading and subleading branches obey
simple scaling relations,

VAL + VAsL = VT, (39)
lwr — wsL| = €. (40)

These relations are universal and do not depend on the par-
ticular form of the phase shift 6(E). Being derived from
bosonization, they are valid in the limit of low temperature 7,
but remarkably, we find that finite-7 corrections remain small
up to rather high temperatures compared to 7g. This is illus-
trated in figure 16, where we compare the scaling of the decay
rates obtained from the Toeplitz determinant approach to the
prediction equation (39) for the various interaction regimes.

5.4. Comparison to experiments

The long-time thermal decoherence rate of impurities
immersed in a Fermi gas has recently been measured [71].
The experiment was performed using a dilute sample of
40K impurities immersed in a ®Li Fermi gas, and the spin-echo
decoherence rate was determined. The interaction between the
impurities and the Fermi gas was characterized by a narrow
Feshbach resonance of range kgrg,, = 0.93 and the temper-
ature was T/Tg = 0.16. For relatively ‘weak’ interactions
with 1 /kpa < —1.4 and 1 /kga > 0.8 the loss in spin-echo con-
trast |E(¢)| was recorded up to long times ter & 220 and was
fit to an exponential decay. In figure 17(a) the experimentally
determined finite temperature decoherence rate is shown as
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black squares. In this figure we also show our prediction from
the FDA with the appropriately rescaled resonance parameter
kpr* = (40/46)2kpr:Xp = 0.7 (see [31]) as the blue solid line.
In this temperature regime the exact FDA agrees with the the-
ory of Toeplitz determinants and we find full agreement with
the experimental data (black squares).

In a complementary approach in [71, 115], the thermal
decoherence rate of the spin-echo signal was calculated
using Fermi liquid theory. In these works, which relied on an
a priori assumed equivalence of the spin-echo and Ramsey
signal, good agreement with experimental observation was
found away from the Feshbach resonance. In the theoretical
description, which applies to the weakly interacting regime
[71], the inclusion of the decay of the repulsive polaron into
the weakly bound molecular state was found to be important
in the repulsive regime. This decay process was captured by
adding a semi-phenomenological decay rate to the quasipar-
ticle collision rate, obtained from Fermi liquid theory. Our
results which are based on an exact solution, fully include all
conversion processes between the repulsive polaron excita-
tion branch and the molecular state. The excellent agreement
of our prediction with the experimental data hence confirms
the previous conjecture [71] that the inclusion of higher-order
processes is crucial for an accurate description of the impurity
dephasing dynamics.

Close to the Feshbach resonance, the experiment could not
access the very long-time dynamics due to fast loss of spin-
echo contrast. As a consequence, the data was measured only
up to small times of teg ~ 10 and again fit to an exponential
decay. The resulting, experimentally measured rates are shown
as the red dots in figure 17(a). We find that in the mixed, as
well as in the repulsive regime at strong interactions, it devi-
ates from the FDA prediction.

Based on our previous discussion this discrepancy does,
however, not come as a surprise, and we can identify two pos-
sible explanations for the deviations. First, in the repulsive and
mixed regime, very long times have to be reached to observe
the leading long-time decoherence rate, as here the sublead-
ing branch dominates the intermediate-time dynamics. In
figure 17(a) we show the decoherence rate of the subleading
branch as obtained from the theory of Toeplitz determinants
as dashed line. We find that it agrees reasonably well with
the observed enhanced decay rate in the mixed regime. This
makes it plausible that the experiment may have observed
the intermediate-time dynamics governed by the subleading
branch. A second explanation for the deviations may be found
in the fact that at the times accessible in the experiment oscil-
lations originating from bottom-of-the-band excitations still
influence the dynamics of the Ramsey and spin-echo contrast.
Indeed these oscillations dominate the short and intermedi-
ate time dynamics in the strongly interacting regime, see e.g.
figure F1 in appendix F. Only far beyond the thermal time
scale 7y = 1/T a pure exponential decay can be expected,
and hence the experimental data may have been still strongly
influenced by non-thermal quantum dynamics. Furthermore,
while the Ramsey- and spin-echo response lead to equivalent
decoherence rates at very long times, their signals can show
very distinct behavior at short and intermediate times.
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Figure 18. RF spectra for finite initial and final state interactions.
RF spectrum for fixed final state interaction 1/kpay = 0.05

while the initial state interaction between the static impurity and
the Fermi gas is varied: (a) 1 /kga; = —6, (b) 1 /kpa; = =2, (¢)
1/kpa; = —0.05, (d) 1 /kpa; = 2. The temperature is given by
T/Te = 0.1and kgrf = kpry = 0.8 in both the initial and the final
state.

To corroborate these arguments we have simulated the
time-resolved signal for the experimental setup of [71] using
the FDA and taking the experimental parameters as input. The
results of our simulations for two representative interaction
strengths (open symbols in figure 17(a)) are shown as curves
in figures 17(b) and (c) where also the experimental, time-
resolved data (symbols) for the spin-echo signal, as given in
[71], is shown. For weak interaction, see figure 17(b), long
evolution times were experimentally accessible. Here the
theoretical simulation of the time-resolved spin-echo signal
reveals that the experimental data is well described by an
exponential, thermal decay with a decay rate that agrees with
the experimental data.

This is in contrast to strong interactions, analyzed in
figure 17(c). Here we simulate in detail the experimental
sequence employed to obtain the red open data point in fig-
ure 17(a). To this end, we include the finite pulse duration
Tr/2 = Tr/2 & 2.5/€r of the spin-rotation pulses. Moreover,
we simulate the fact that these pulses were performed at weak
initial interaction 1/kga;, followed by a quench to the final
interaction strength 1/kpa = —0.15. The details of the proto-
col are described in [31]. The green shaded area in figure 17(c)
shows the simulated response for varying initial state interac-
tions ranging from zero 1 /kpa;, = —oo (solid), to intermedi-
ate interactions 1/kga;, = —2.25 (dashed). The dotted black
line is an exponential fit to the experimental data (symbols).
From the simulation we find that independent of the initial
state interaction, the dynamics is strongly influenced by bot-
tom-of-the-band excitations that lead to pronounced oscil-
lations in the signal. The comparison with the experimental
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data (symbols) in figure 17(c) makes it thus plausible that the
experiment may have probed an intermediate time regime
at which the pure exponential late-time decay has not yet
become apparent.

6. Universal short-time, high-frequency response

In the previous sections we have demonstrated that the com-
bined use of the FDA, bosonization, and the theory of Toeplitz
determinants allows us to obtain a precise analytical understand-
ing of the dephasing dynamics of heavy impurities immersed
in a Fermi gas at intermediate and long times. The analytical
approaches provided an intuitive description of the universal
long-time dynamics and hence low-frequency response in
terms of a few relevant excitation branches. Here we turn to the
short-time behavior of the Ramsey signal which is more conve-
niently studied in the corresponding high-frequency response.
To this end we study the high-frequency absorption for a sys-
tem where the impurities are interacting with the Fermi gas in
both the initial and final state. Considering this scenario allows
us to connect our predictions to universal analytical results
obtained from a short-time operator product expansion [23].

6.1 RF response with finite initial and final state interactions

For many experimentally accessible atomic species interac-
tions between the impurity and the Fermi gas are present both
in the initial and final impurity spin state [168]. In this case the
absorption spectrum is given by

o0
A(w) = 2Re / dre“ Tr[eHite = ).
0 (4D
Here H; (Hy) is the initial (final) Hamiltonian of the system
with initial (final) state scattering length a; (ay) and range r;
(r}‘).

Based on equation (41) we study the influence of initial
state interactions on the RF response as shown in figure 18.
In this figure, we keep the final state interactions fixed at
1/kra; = 0.05 while varying the interaction 1/kgg; in the ini-
tial state. For weak initial state interactions (solid line in fig-
ure 18(a)), the spectrum is only slightly shifted with respect
to the perfect reverse RF response (dashed line). However,
as interactions in the initial state are increased, not only the
spectrum is shifted further, but it also changes in shape, see
figures 18(b)—(d).

When interactions in the initial and final state become
comparably strong, see figure 18(c), the response approaches
a O-peak due to the symmetry between the initial and final
state. Using this feature—when the initial and final state have
the same scattering length, a; = ay, yet differ in the Feshbach
resonance width—RF measurements on impurities provide a
tool for the experimental determination of r*.

6.2. Analytical high-frequency response

We now turn to the absorption response at high frequencies.
As has been shown recently [23], the absorption behavior at
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Figure 19. RF high-frequency tail. RF spectrum on double-
logarithmic scale as function of frequency as obtained from FDA
(blue solid) for contact interactions, kgr* = 0, where both finite
initial and final state interactions are present with 1/kra; = —0.5,
1/kpay = —4. The black dotted (green dot-dashed) line shows

the limiting w—3/2 (w~>/2) behavior. The red dashed line gives

the analytical prediction from the operator product expansion,
equation (44) [23], with the contact C calculated from the adiabatic
theorem, equation (43). The inset shows the rf response including
low frequencies.

high frequency can be related to seemingly unrelated quanti-
ties by so-called ‘Tan relations’ [25-28, 62, 169-176]. These
relations apply to arbitrary two-component Fermi gases (the
case of an impurity immersed in a Fermi gas is a special
case), where the two fermion species interact with short-range
potentials. For such gases the momentum distribution decays
as [177] c
=
at large momenta k = |k A decade ago, Tan discovered
theoretically that the coefficient C, which has been termed the
‘contact’, is related to various quantities by simple, univer-
sal relations [25-27]. For instance, Tan’s adiabatic theorem
states that the change of energy E of an arbitrary two-comp-
onent Fermi gas interacting with contact interactions, due to a
change of the interspecies scattering length a is determined by

E
d(1/a) 87 fired

where fieq = mymy/(m + my) is the reduced mass, and m; ,
are the masses of the two fermion species. Similar formulas
relate the contact C to the pressure, the density-density cor-
relator, the virial theorem, and the inelastic two-body loss
observed in such systems [25-28, 62, 172, 175, 176].

The contact C appears also in the RF absorption spectrum
when final and initial state interactions are present. Using an
operator product expansion (OPE) Braaten [23] predicted that
at high frequencies the RF response follows

) 2
where we have set the Rabi coupling 2 = 1. The contact C

depends on the initial state of the system, and hence in par-
ticular on the initial state scattering length a;.

n(k) (42)

(43)

1
47 (2 pireqw?) >

1

(1

a; ar

¢
af_2 + 2treqw

A(w) — (44)
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The Tan relations can be derived from operator identi-
ties and as such hold irrespectively of the state of the sys-
tem. Only the contact C itself then depends on the state and
has either to be measured experimentally or determined from
first principle calculations which are a challenge for generic
many-body problems. However, being valid foran arbitrary two-
component Fermi gas, the Tan relations apply also to our case
of heavy impurities immersed in a Fermi gas.

In figure 19 we show the high-frequency response of an
impurity on a double logarithmic scale as obtained from the
FDA (solid line). In this figure, both initial and final state con-
tact interactions are present (kpa; = —0.5 and kpay = —4).
The inset shows the response on a linear scale including the
polaron ‘peak’ at low frequencies. We find that the signal
undergoes a crossover from a non-analytical w=>/2 to w=3/2
behavior. Having the exact numerical FDA solution we may
now turn to the verification of equation (44). To this end, we
first calculate the ground-state energy E = AE as function of
the scattering length a; from equation (24). Using the adiaba-
tic theorem, equation (43), we then determine the contact as
function of g;. The resulting function C(a;) serves as input
into the OPE prediction equation (44) which has hence no
free parameter (for an infinitely heavy impurity pireq = m,
where m is the mass of the atoms in the Fermi gas). In fig-
ure 19 the resulting prediction is shown as red, dashed curve.
We find that the analytical expression equation (44) describes
with remarkable precision the exact RF response down to fre-
quencies of the order of the Fermi energy. We note that we
discussed here only the high-frequency response for contact
interactions. The inclusion of a finite characteristic range r*
leads to the crossover to a modified power-law at frequencies
w ~ 1/(mr*?)[23, 172]. For a detailed discussion of the role
of finite range interactions we refer to [32].

6.2.1. Relation to the long-time evolution. The RF absorp-
tion response A(w) is related to the Ramsey signal S(z) by
Fourier transformation (see also appendix B). Accordingly,
the high-frequency behavior of A(w) including the contact C
as given by equation (44), is naturally reflected in the short-
time dynamics of S(z). The Tan relations connect the high-
frequency behavior, however, also to the long-time behavior
of S(#). To illustrate this, we focus on low temperatures and
the attractive interaction regime.

As we have seen in section 5.2, in the attractive interaction
regime the attractive polaron excitation branch A, and hence
the Fermi surface contribution Sé%), dominates the long-time
dynamics, see equations (17) and (18). Thus, at long times the
phase evolution of the Ramsey signal follows S(¢) ~ e 1A%
(see equation (28)). Here AE is given by the attractive
‘polaron’ ground-state energy, which follows from Fumi’s
theorem, equation (24). According to equation (28) the long-
time phase evolution is approximately linear in time. Hence
AE can be extracted relatively easily as function of the scat-
tering length from experimental long-time data [31]. We note
that a similar relation of the phase evolution of the Ramsey
signal to the Tan contact C has recently been discussed also
in an experimental study of the dephasing dynamics of the
unitary Bose gas [178].
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The ground-state energy of the system E = AE can
be used to calculate the contact C from the adiabatic theo-
rem (43). Since the contact C is the only free parameter that
enters the high-frequency tail in equation (44), one can pre-
dict the short-time (high-frequency) dephasing behavior of the
corresponding Ramsey signal S(¢) from long-time dephasing
dynamics.

7. Summary and outlook

We have studied the real-time and absorption response of
impurities immersed in a Fermi sea. In cold atoms the inter-
action between the impurity and fermions can be controlled
by Feshbach resonances and we showed that the system is
described by an Anderson—-Fano model. We found that three
distinct interaction regimes can be identified that are univer-
sally determined by the phase shift at the Fermi surface. For
each of these regimes we have computed the ‘standard’ and
‘reverse’ radio-frequency absorption spectra at both zero and
finite temperature and calculated the real-time interferometric
responses of the system exactly.

In each interaction regime we identified analytically
excitation branches in the many-body Hilbert space which
dominate the dynamics. While in the attractive and repulsive
regime polaron-type excitations govern the dynamics, narrow
Feshbach resonances allow one to additionally address a novel
‘mixed regime’ where ‘bottom-of-the-Fermi sea’ excitations
dominate the dynamics. This regime is special in exhibiting
a quantum-interference-induced crossover in the decoherence
dynamics at times much larger than the thermal time scale
h/kgT.

We have analyzed the competition between quantum
dephasing and thermal decoherence in the real-time response
of the system. The former leads to a power-law decay of coher-
ence up to a time scale set by the inverse temperature, while
the latter gives rise to exponential decoherence. Using bosoni-
zation and Toeplitz determinant theory, we obtained analytic
predictions for the intermediate to long-time response, which
only depend on the scattering phase shift and temperature but
not on the trajectory of the impurity spin. As a consequence,
Ramsey and spin-echo interferometry exhibit the same deco-
herence rates at long times and we predicted that the maxi-
mum decoherence rate is given by wkgT /4.

Moreover, in analogy to earlier results on ion mobility in
liquid *He we find that at finite temperatures a finite spec-
tral weight can be assigned to the various excitation branches
that depends as a power-law on temperature. As temperature
approaches zero, this weight vanishes as oc 7%, with « being
related to the OC critical exponent.

In the present work we have considered the problem of an
infinitely heavy impurity coupled to a Fermi gas. Extending
on our exact solution, one may study the fate of the Anderson
orthogonality catastrophe as the mass of the impurity becomes
finite. This problem is still lacking a definite solution in low
dimensions [9, 179-182], and experiments with ultracold
atoms, where the mass of the impurity can be tuned using state
selective optical potentials [183, 184], may shed light on this
outstanding problem. To address this question theoretically, the
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functional determinant approach can be extended to account
for Hamiltonians beyond bilinear order. In this way also inter-
actions in the bath can be accounted for, as of relevance for a
wide set of impurity problems in condensed matter physics.
The inclusion of higher-order terms is expected to become
of particular relevance when considering low dimensional
systems where enhanced quantum effects can lead to strik-
ing non-equilibrium dynamics [185-190], or when studying
externally driven systems [191-195]. Similarly, higher-order
effect will become important as the impurity concentration is
increased. In this case bath-mediated interactions will modify
the many-body dynamics of the system. The detailed study of
such effects remains an open challenge.

While the real-time Ramsey interferometry signal corre-
sponds to the Fourier transform of the reverse radio-frequency
response, more complicated interferometric measurements do
not have a simple conjugate response [73]. As an example we
discussed spin-echo interferometry, yet, more complex proto-
cols from nuclear-magnetic resonance can be envisioned, not
only as a probe of many-body physics but also for controlling
and manipulating many-body wave functions. Augmenting this
technique with parameter ramps, one can adiabatically prepare
many-body states and consequently probe them similar to
pump-probe experiments in ultra-fast spectroscopy [196].

Moreover, in recent experiments exotic states of matter
have been created in non-equilibrium transient regimes [191,
192, 197, 198]. In these experiments, physics is probed on
scales ranging from long times to short times on the order
of the Fermi time ~ /i/eg. In light of these developments a
detailed account of the short- to long-time dynamics becomes
increasingly important for our theoretical understanding of
new frontiers of condensed matter physics. In this respect
cold atomic systems provide a well-controlled starting point
where dynamics can find a universal description on extended
time scales as compared to traditional solid state systems. The
description of dynamics in terms of excitation branches, put
forward in this work, may provide a means to devise powerful
variational wave functions that take into account most relevant
parts of Hilbert space, and allow one to account for the inter-
play of few- and many-body physics far from equilibrium.
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Appendix A. Exact single-particle wavefunctions
in the two-channel model

We calculate exactly the single-particle wavefunctions of
model (5). We use the Ansatz |¥) = «a,,|m) + |¢) to solve
the Schrodinger equation H|¥) = E|¥) which gives (in units
h=2m=1)

EmOtm + g/d3rx(r)¢(r) = Eaq,, (A.la)

gx(r)am — V2(r) = Ep(r),

where x(r) = e~"/? /47 p?r is the form factor defined in the
main text. These equations can be solved by choosing

(A.1b)

«, = const.

(A.2q)

sin kr + oy
:A _—
e )

where the phase shift d; is a function of k. This leads to the
following equations

+ B x(r), (A.2b)

E=FK (A3a)
B g kp cos 6y + sin
T R et - A3
while normalization requires
sin 26
1=a2 + 27TA2R<1 + 2kRk)
g*pa?, - 2agpan, kp cos & + sin & (Ad)

8 (1 + k20%) (e ZaE
Together these equations determine the unknown coefficients
A, B, and «,.

Next, we calculate k and d; from the boundary conditions
set by constraining the atoms to a spherical box of radius R
which yields

kR + 6 = nm. (AS)

This result is then compared to the scattering phase shift &
as obtained from continuum scattering solution for the two-
channel model (5) [84],

272

. 8 2,Ufred
" 4rh2pll —ikp?|

(A.6)

where we made factors of 7 and the reduced mass fireq explicit.

Using the low energy expansion of f(k) one readily identifies

f(k) _ Hred

= 38 X(K)? | +e

2,U/red
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the microscopic parameters of our model as discussed in [31,
84] and given in equation (6). Note within our model the effec-
tive range is given by r. = —2r* + 3p — 4p? /a which reduces
to r, = —2r* for small values of p as stipulated in the main text.

Appendix B. Relation between S(t) and A(w)

In this appendix we prove the simple statement that the time-
dependent Ramsey signal S(7) and the frequency-resolved
absorption spectrum A(w) are related by Fourier transforma-
tion. The absorption response is given by Fermi’s Golden
Rule equation (7) (see. also the T = 0 limit in equation (14)).
After inserting the Fourier representation of the delta dis-
tribution and using that |¢;) and |1),,) are many-body eigen-
= Ei[t;) and
= E4|tha)) this equation can be rewritten as

states of Hy and H, respectively (i.e. f10|1/1i>
H[ta)

Alw) = /_ 0’ S (Wil ese ™) (e i) el

:[m

This can be conveniently reexpressed as

dfTr [ste‘Hof ”ﬂ e, (B.1)

o0

A(W) — 2Re/ dt Tr |:pFSelHol 11:11’] eiw[/ (Bz)
0

where we used that pgs, H, and I:Io are hermitian. The inte-

grand contains the overlap S(z):

8(1) =

that is experimentally obtained for positive times ¢ > 0 from
the Ramsey signal. The function S(f) at negative times can
be inferred from S(—¢) = $*(). Hence the absorption spec-
trum is directly obtained from the Fourier transform of the
Ramsey signal. From equation (B.1) now simply follows also
the reverse statement: multiplication of equation (B.1) by
e~ /27 and integration over all frequencies yields

/ 7A e iwt / /oo dt/eiw(t’—t)Tr[pFSeifiot’efifit’]
_ 27 J_ o

/ dr'S(e)o(t —1) = S(1)

1Ht]

Tr[ste (B.3)

(B.4)
which shows that the complex Ramsey signal S(f) can be
directly calculated from the Fourier transform of the absorp-
tion spectrum A(w).

Appendix C. Fumi’s theorem

Here we give a short illustrative derivation of Fumi’s theo-
rem [1] for the case of an immobile impurity that interacts
with contact interactions with a surrounding Fermi gas at zero
temperature and in three dimensions. Specifically, we consider
here the attractive ground state of the system at a < 0, but the
generalization to the repulsive state as well as the inclusion of
the bound state for a > 0 is straightforward.
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Consider the impurity being localized at r = 0 in a spheri-
cal box of radius R (see appendix A). Only s-wave states
have to be considered and the radial single-particle wave
functions in absence of the impurity potential are given by
uy(r) ~ sin(nmr/R) with n the nodal quantum number. In
presence of the scattering potential the wave functions acquire
a scattering phase shift and are given by v,,(r) ~ sin(k,r + d,)
where the wave number &, is determined from the boundary
condition equation (A.5) and we introduced d,, = ,.

The energy of the many-body state of interest is obtained
by filling the single-particle states with fermions up to the
Fermi energy. The single-particle energies in the non-interact-
ing case are ¢, = (%) 2/2m while in the presence of the scat-
tering potential they are given by €, = ﬁ ("”R‘S )2 In the
attractive interaction regime this leads to a downward shift of
single-particle levels. The ‘interacting’ ground state energy of
the attractive state (with respect to the non-interacting ground
state) is given by summing over all single-particle energy
shifts Ae, = €, — €, up to the Fermi energy

E = ZAE,, = f%Zn&,.

In the second equation we used the fact that §2 < 2a7|5,] is
a good approximation since |d,| is bound by 7. In the limit
R — 0o we may now replace the sum over n by an energy
integration using AE, =€, — ¢,_1 = (2n — 1)(7/R)?. For
large box sizes R, states with small n lie at very small ener-
gies for which the phase shift is negligible. Thus we can take
AE, = 2n(m/R)?. From this follows now directly the contin-
uum limit of equation (C.1):

2 1 2
E:—I;;Xn:nén:—wzn:Z(;) no,

AE,

—/OeFdEcS( )

In ‘repulsive regime’ one has a > 0 and a molecular bound state
with finite binding energy ep is present in the single-particle
spectrum. If one is interested in the repulsive state the bound
state remains unoccupied and equation (C.2) directly applies. To
obtain, however, the energy £, for the ground state in this regime
in which the molecule is occupied with a fermion, the molecular
binding energy eg < 0 has to be added to equation (C.2).

(C.1)

(C2)

R—o0

Appendix D. Technical details on bosonization

D.1. Fermi-surface contribution

The problem of a three-dimensional Fermi sea coupled to a
static impurity scattering potential reduces for s-wave scatter-
ing effectively to a one-dimensional problem in a semi-infinite
space (r > 0). Furthermore, at sufficiently low temperatures
one can linearize the spectrum near the Fermi surface so that
one obtains right and left moving fermions. If one unfolds the
coordinate axis one can map left moving fermions at » > 0
onto right moving fermions at r < 0, thus arriving at the
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model of one-dimensional ‘chiral’ fermions [4]. Denoting the
annihilation operator of the chiral fermions as 1 (x), the effec-
tive Hamiltonian then can be expressed as

Ho = —ive / dx 9 (1) B x) D.1)

Hi = [ @ V()0 (@) (D2)
where V(x) is a scattering potential around x = 0 (we assume
that the impurity is infinitely heavy). Using the standard
bosonization approach, we rewrite the problem in terms of a
bosonic field ¢(x) [4, 19, 29],

Y(x) oc el | (D.3)
with the commutator
[$(x), p(x')] —x'). (D.4)

At long times, the short-range structure of the potential Vo (x)
may be ignored, with the effect of the scattering incorporated
in the scattering phase Jg:

= im Sign(x

_YF 2
— & [ax @) ®5)
Hi = =" 0,6(0) + AE, (D.6)
where
AE:—/EP 9 sE)
o 7 (D.7)

is the total energy shift due to the impurity (this relation is
known as Fumi’s theorem, see appendix C). Then S(¢) can be
calculated as

S(r) = (efore=iHotHn)ty — o=iAEl <c Xp {176/ dr'0,¢(0, ¢ )}>
Hy

= e (e [i% 60,0 - 6(0.0)| >H0 wes (G

9

™

(
sinh7th>

(D.8)

In the second step we used the linearized dispersion and

replaced the time derivative by a spacial derivative vedt’ — dx,

which allows us to easily evaluate the integral in the exponent.

D.2. Bottom-of-the-band and bound-state contributions

The bottom-of-the-band and bound-state effects are associ-
ated with intermediate states where a particle is moved from
the bottom of the Fermi sea (or from the bound state) to the
Fermi level, see figure 6. Such contributions were discussed in
[73, 128] and here we extend those results. We start with the
case of the bottom-of-the-band contribution.

The contribution to S(¢) from the intermediate states with
one isolated hole deep inside the Fermi sea can be written as

= [ 50 X [{rstiuan)] e

—iE t+i(Ey— e..)t

i

(D.9)

)Z.
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where |FS) is the ground state of the free Hamiltonian Hy, |’}
are the eigenstates of the Hamiltonian with scattering Hy + Hiy
without any holes deep under the Fermi surface (only with
particle-hole excitations around the Fermi level) and with one
extra particle compared to the state [FS). Furthermore 1)y is
the annihilation operator for the single-particle eigenstate of
the scattering Hamiltonian with the momentum & close to the
bottom of the Fermi sea, Ejis the multi-particle energy of the
state |m’) (relative to the ground-state energy of Hy), Ej is
the single-particle energy of 1[;k measured from the bottom of
the Fermi sea, and eg is the Fermi energy.

We can further expand @/;k in terms of the free-Hamiltonian
states :

(i13tes) = [ 5 (ol es) (wwld)

The overlap matrix elements can be computed as

dk’
(D.10)

o0
<¢k,|¢k> —4 / sin(K'x) sin(kx + 0(Ey)) dx
0
o 4 .
= o oin O(Ey) =~ T sin 0 (Ex) ,

(D.11)
where 0(Ey) is the scattering phase at the energy Ej and we
have used k < kg ~ k.

Combining everything together and performing integration
over k" in equation (D.10), we find
elbut <engxw(O)e—i(Hn+H.n.)th(0)> e iert ,

/ — sin® §(E
(D.12)

where the last average can now be understood in the linear-
ized model of chiral fermions discussed in the previous sec-
tion. The important property of the above expression is that it
factorizes into the bottom-of-the-Fermi-sea and Fermi-surface
contributions.

The first factor due to the bottom-of-the-Fermi-sea can
be re-expressed, using the quadratic dispersion relation

= k*/(2m) as
(FB) 4 Oo%-z iEszl/oo e, iEt
S5 = kF/ 7 Sin O(Ep) e = A \/Esm O(E)e™.
(D.13)

Here we extended integration to infinity, assuming 7 < eg
and 1> ep ! The time dependence of S(_Ff)(t) at large 7 is

determined by the behavior of the integrand around E = 0.
Since §(E) o k VE at E — 0, we find that

ST (1) o 173/2

(D.14)
(2ml|a*)~! < ep),
there is an intermediate regime ;' < t < |eg|™!. At such
times, we may approximate §(E) ~ /2 in the integral, which
gives

atvery largez. Closetotheresonance (leg| =

ST (1) oct71/2

The second factor in equation (D.12) is the Fermi-surface
contribution. It can be calculated using the bosonization
approach:

(D.15)
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5 (1) = % <eiH°'¢(0)efi(H°+H‘"‘)t¢T(0)> e
_ A b <exp {i (iF _ 1) (6(0,1) — (0, o))]>
ke U fo
o o iAE—ier ( nT )(:_1) .
sinh 7Tt
(D.16)

The case of the bound-state contribution can be treated in
a similar way. The only difference will be the overlap matrix

element <¢k/|TLBs> (here z/NJBs is the wave function of the

bound state), which will contribute to the overall prefactor in
the bound-state term (21).

Appendix E. Asymptotic long-time response

E.1. Finite temperature

In this section, we derive the exponential decay of the Ramsey
signal S(¢) at finite temperature at long times feg > 1:

S(t) ~ exp(—yt —iwt) . (E.1)

Furthermore, we will show that the decay rate is identical for
the spin-echo and Ramsey protocols.

Our derivation is inspired by the Toeplitz-determinant
technique used in full counting statistics for linearized dis-
persion relations [19, 164] and resembles the Szeg6 formula
for Toeplitz determinants. However, here we go beyond the
Toeplitz-determinant approximation and take into account
both the energy-dependence of the scattering phase and the
nonlinear dispersion relation.

The Ramsey overlap is given by
B=1—h+aehie i

S(f) = det B; (E2)

where Ao and h are the single-particle Hamiltonians without
and with scattering potential, respectively.

Since the scattering potential is spherically symmetric, we
can perform a partial wave expansion, and due to the low ener-
gies involved, we need to consider s-wave scattering only. We
then use the standard approach to express the radial part of the
scattering wave function ¥ (r) by

u(r) = r¥(r) (E.3)
where r > 0 and u(r) fulfills the radial boundary condition

u(0) = 0. Outside of the scattering potential u(r) takes the
form

u(r) o sinfkx + 6(E)], (E.4)

where 6(E) is the scattering phase shift and E = k?/2m the
scattering energy.

The key observation for calculating the determinant (E.2)
is that the operator B acts nearly diagonally on quasiclassi-
cal wave packets localized both in momentum and coordinate
space. For example we can use the Gaussian wave packets

u,(q?,)ro(r) = (2m) " VAAT 2 exp [ikor - (E.5)
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where A, determines the width of the wave packet in real
space. From its Fourier transform it follows that the wave
packet is localized in momentum space around the momentum
ko with width A1,

There are three time/energy scales in the problem: the
inverse Fermi energy e !, the evolution time #, and the ‘col-
lision time’ 7. = OF(E)/JE (this time is typically of the
order of ep Uor smaller, but becomes large at the bottom of
the Fermi sea). Our further discussion assumes that the wave
packets (E.5) propagate quasiclassically and simply acquire
an extra phase when scattering. This requires that the wave
packets are sufficiently localized in coordinate space so that
the time ¢ fulfills

_1 Ar
E < - <t (E.6)
where v = |v(ko)| is given by the group velocity v(ko) = % ] t
of the wave packet. We impose the condition (E.6) at the Fermi
surface (with E = er and v = vg), which implies 7 > ep ! The
condition (E.6) would break down close to the bottom of the
Fermi sea, but we can make this region arbitrarily small for large
t. Additionally, we require that the phase shift does not change
much across the energy window of the wave packet, which
implies
A,
Teol <L —. (E7)
v
For the same reason as above, we require this condition only
at the Fermi energy (which, in turn, implies the applicability
condition ¢ > Teq)).

To properly take into account the boundary conditions on
the function u(r), we consider anti-symmetrized superposition
of wave packets
(0)

= Ukor

(0)

I

Uk, () (r) (r).

These form an overcomplete set on » > 0 with the com-
pleteness relation (r, ' > 0)

+oo dk()
27

(E.8)

/ dry uko,ro(r)uz)’,o(r') =d(r—r"). (E.9)
0

— 00

The two time evolution operators in B in equation (E.2)
propagate the wave packets forward and backward in time.
Neglecting residual diffusion of the wave packet due to the
short range interaction potential (which is a good approx-
imation for small collision times, see (E.7)), B acts approxi-
mately diagonally on the wave packets:

1
1+ n(E(ko))(eX0EW) — 1)

7V(k()) t<ry,
—v(k()) t>ry.
(E.10)

Here we made use of the condition (E.7), i.e. we assume the
wave packet is sufficiently localized in momentum space
around momentum kg, so that phase shift is approximately
constant across the wave packet’s energy window.

Using the completeness relation (E.9) and equation (E.10),
we can compute

B ukovru(r) ~ ukovro(r) {
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. T dky [
InS(r) =trlnB = — dro 6(—ro — v(ko)?)
—0 2w 0

In [1 + n(E (ko)) (X9 EGo)) — 1)}

0
_ [ gk OE 25 (E (ko))
_/_Oo 7 ot o [1+n(E(k0))(e 1)}
_ > d£ 2i16(E)
J/O S In [1+n(E)(e 1)} ,

(E.11)
where a small correction due to the normalization of equa-
tion (E.8) is assumed to be neglibible. The result (E.11) is
equation (33) from the main text which determines ~ and w.

In particular,

o0
v = —Re / dE In
o 27

Our derivation above generalizes the Toeplitz-determinant
approach commonly used in full-counting statistics (see, e.g.
[165] and references therein). The conventional Toeplitz-
determinant approach usually assumes a linearized spectrum,
which results in the operator B being a Toeplitz matrix, and
equation (E.11) resulting from the Szeg6 theorem. In our deri-
vation, we relax the assumption of a linear dispersion rela-
tion, however B may still be loosely thought of as a Toeplitz
matrix, if we label states by their arrival time 7 = ro/v(k) at
the scatterer. With this relation in mind, we continue to call
our method the ‘Toeplitz-determinant approach’, keeping the
corresponding terminology of the Szeg6é formula for equa-
tion (E.11) and ‘symbol’ for the argument of the logarithm
in it.

Repeating the same calculation for the case of the spin-
echo response,

[1 4 n(E) () _ 1)} : (E.12)

E(f) = det C; C=1—-n+ fleiizgt/Zeiﬁt/Zefiizgt/Zefiﬁt/Z’
(E.13)
we find

1

c ukoyro(r) ~ uko,ro(r)

which leads to

1 dE

YSE Fiwsg = — 5 Py

2/0 2m

+1n[l + n(E)(e~20®) — 1)]} .

{ln[l + n(E)(eX® — 1)

(E.15)

It is straightforward to check that wsg = 0 and ~ysg reduces to
equation (E.12), i.e. the Ramsey and spin-echo decoherence
rates are equal.

Generalizing these derivations, we find that the decoher-
ence rate y does generally not depend on the trajectory of the
impurity spin (on the Bloch sphere), i.e. arbitrarily many spin-
echos with corresponding time partitions as in equation (E.13)

1+ n(E(k)) (e~ 25 E®)) _ 1)
1+ n(E(ko)) (eX9E®) _ 1)
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also yield the same result. Hence different trajectories give
rise to the same exponential decay in the thermal long-time
regime.

E.2. Zero temperature

At zero temperature, dephasing of the many-body wave func-
tion leads to a power-law decay of the dynamic Ramsey and
spin-echo response [73]. The power-law decay can be attrib-
uted to the creation of infinitely many particle-hole excitations
at the Fermi level which gradually renders the many-body
wave function orthogonal to the original Fermi sea. We note
that the exponential decay rate v which we evaluated in the
previous section for finite temperature tends asymptotically
to zero with temperature, see equation (29). Approaching zero
temperature logarithmic corrections to equation (E.1) will
emerge giving rise to the power-law decay. Using the map-
ping onto a Riemann-Hilbert problem, introduced in [13] to
solve generic time-dependent perturbations to the Fermi sea,
we calculate the power law exponent for both Ramsey and
spin echo protocols, see also [73].

We first study the Ramsey response equation (10) and
define R(\, 7) as the time diagonal element of equation (E.10),
which dominates the asymptotic dynamics, to the power of an
auxiliary parameter A

- |

The asymptotic behavior of the Ramsey signal can be obtained
from [13]

17
621)\5p’

ifr<r

otherwise. (E.16)

. A ' .
i dInY(r 4+i0)dInR(\, 7)
~— E.17
In S(z) o /0 d)\/o dr i o ( )
where Y(z) solves the Riemann-Hilbert problem
Y(t—i0M)Y(r +i07)"' = R(\, 7). (E.18)
—v(ko)t < rg,
7V(k()) t/2 <ryp< *V(k()) t,
—V(k()) t/2 >ro, (E.14)

The function Y(z)is analytic everywhere in the complex plane
except for the interval [0, #] and can be obtained from

1 InR(\,Z)

InY(z) = — . .
nY(z) = / p— dz (E.19)
For R(), 7) given by equation (E.16), we obtain
%)
InY(z) = “F n . (E.20)
™ z—t

In the vicinity of the branch points of Y at 0 and ¢ we cut
off the integral equation (E.17) at the Fermi energy ep of the
problem which amounts to replacing i0" by ieg L Computing
the integral gives
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S(t) ~ (iegt) =%/,
which is the well known result for the asymptotic behavior of
S(#)[11, 13].

For the spin-echo response equation (11), Rsg(A,7) is
obtained from equation (E.14)

(E21)

eZNF t>2r
Rsg(\,7) = { e 2iMor 2r>t>71 (E22)
1 otherwise
yielding
)\51: Z(Z — l)
InY. =—1In— .
n Ysg () N 2 (E.23)

d

With that we can evaluate equation (E.17)
8
I ~ —3—7r2 In(iegr)

(/t/sz—/t dT)
’ " (E.24)

and thus we find for the asymptotic behavior of the spin-echo
response

In 2(z—1)

(z—1/2)

S (1) ~ (iept) 3%/ (E.25)

At zero temperature, the spin-echo exponent is therefore enhanced
by a factor 3 as compared to the Ramsey exponent, which dem-
onstrates the importance of quantum interference effects.

Appendix F. Bi-exponential crossover

The measurement of the crossover of exponential decay rates
of the Ramsey signal S(¢) from subleading- to leading-branch
dynamics can be an experimental challenge due to small Ramsey
contrast. In figure 10 in the main text, we have shown an example
where the crossover takes place at relatively long times 7. There,
the parameters were chosen so that oscillations due to bottom-of-
the band excitations at short times are damped out in the cross-
over regime. At the correspondingly long times, the Ramsey
contrast |S(#) | became inaccessibly small for experiments.
However, the precise time at which the crossover takes
place, as well as the corresponding magnitude of the Ramsey
signal, is highly sensitive to the specific interaction param-
eters chosen. Hence, more favorable Ramsey contrast can
easily be achieved by choosing only slightly modified param-
eters. For instance, in figure F1 we show the Ramsey contrast
where, compared to figure 10, the temperature is increased
from T/Tg = 0.1 to T/Tr = 0.2 and where kgr* is changed
from 0.8 to 1.1. This slight variation already yields an increase
of the Ramsey contrast in the interference region by six orders
of magnitude. This demonstrates that parameters can be
optimized to bring the observation of the subleading to lead-
ing branch dynamics within reach of experimental precision.

Appendix G. Subleading branches of Toeplitz
determinants

As outlined in section 5, analytical expressions for the differ-
ent branches of the Fermi-surface contribution Sf,FS)(t) may
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Figure F1. Crossover from subleading to leading branch dynamics.
Ramsey contrast |S(7)] as function of time. Interaction parameters
are chosen to correspond to the mixed regime (b). Compare to
figure 10, we choose slightly different parameters, 7 /Tr = 0.2,
1/kpa = —0.61, and kpr* = 1.1. The solid line shows the exact
numerical evaluation of the dynamical overlap S(¢) using the

FDA, while the dotted (dashed) line shows exponentials with the
analytically predicted exponents 71 (7o), see equation (29).

be obtained by choosing different integration contours Cgy, in
equation (36), which, for convenience, we state here again,

dE
iwsy + YsL = */ —In [J(E)] s
Cs1. 27T

where, using the explicit form of Fermi distribution function,
the symbol o(E) is given by

(G.1)

o(E) =1 — n(E) 4 n(E)e**®, (G.2)

The derivation of the contours follows from an argument
based on analytic continuation: the leading branch is given
by the Szeg6 formula, leading to equation (34), while the
subleading branch can be obtained by analytically continu-
ing contours from a neighboring interaction regime where the
corresponding branch is leading.

First, we consider the leading branches. In the upper panels
of figure G1, we show as solid lines the contours for the evalu-
ation of the leading branch in the three interaction regimes
(a)—(c) (according to table 1). The corresponding trajectories
of o(E) in the complex plane are shown in the lower panels of
figure G1 as a function of the real variable E ranging from 0
to oo (assuming low temperature T < €p). In the regimes (a)
and (c), those trajectories do not encircle zero, and the asymp-
totics of the corresponding Toeplitz determinant follows from
the conventional Szeg6 formula. In other words, the leading
branch S(()FS)(t) is given by equation (34) with the usual inte-
gration along the real axis.

At the transition between the regimes (b) and (c), only scat-
tering deeply below the Fermi surface is modified. Therefore
we deduce that the leading branch in the regime (b) is also
given by an integration along the real axis. As discussed in
section 5.2.5, the branch of the logarithm is continued ana-
Iytically along the contour, with the boundary condition
log(c(E—00)) = 0. In the interaction regime (b) we denote
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(a) attractive regime

(b) mixed regime

(c) repulsive regime
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Figure G1. Integration contours for the evaluation of the Toeplitz determinant. The upper panel shows the integration contours in the
complex variable E for the leading (solid lines) and subleading (dashed lines) branches in equations (34) and (36) for the three interaction
regimes in table 1. The cross marks the logarithmic branching point E, of the integrand. The lower panels schematically show the
trajectories of o(E) in the complex plane (solid lines) for the leading branch as E spans the range from 0 to co. Low temperature 7 < €F is

assumed.

the leading branch as S EFS)
respect to the leading branch contribution S(()FS) (¢) in regimes
(a) and (c) reflects that on passing from the regime (c) to the
regime (b), we re-integrate the empty bound or bottom of
the band state (see figure 6) into a hole near the bottom of the
Fermi sea: as a consequence, the state without an extra particle
at the Fermi surface in the regime (c) is interpreted as a state
with one extra particle at the Fermi surface in the regime (b),

(¢). This change of notation with

hence the nomenclature S gFS) (¢). Note that the physical oscilla-
tion frequency is indeed continuous across the transition: while
the shift of §(E) by = (see figure 3) leads to a decrease of wy, by
€r, this energy is compensated by an additional contribution of
er from the hole at the bottom of the Fermi sea.

We now turn to the subleading branches. In order to obtain
the corresponding integration contours, we examine first the
transition between the regimes (a) and (b). At this transition,
a zero E, of o(E) (and hence a logarithmic branching point of
the integrand) crosses the real axis of E. The analytical con-
tinuity of the branches prescribes that they may be obtained
by the same integrals (36), but with the contours deformed to
accommodate for the shift of the zero of o(E), so that the inte-
grand stays continuously on the same branch of the logarithm.
In this way, we find the subleading branch in the regime (b) as
a continuation of the leading branch in the regime (a) and the
subleading branch in the regime (a) as a continuation of the
leading branch in the regime (b). The corresponding integra-
tion contours for the subleading branches are shown in the
upper panels of figure G1 as dashed lines: they deviate from
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the real axis to go around the zero of ¢(E) (and end up on a
different branch of the logarithm, with respect to the integrand
for the leading branch of their respective interaction regime).
Finally, the subleading branch in the regime (c) is given by
the same type of contour as in the regime (b) for the same
reason as for the leading branch. For the calculation of int-
egrals for the subleading branches, leading to the expressions
equation (38), the contour deviations from the real axis can be
chosen to be perpendicular to it, so that the contour retraces
itself on the way back, as shown in figure G1. The universal
jump of the logarithm of 27i between the two branches then
yields the result (38).
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