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Abstract
In this report we discuss the dynamical response of heavy quantum impurities immersed 
in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time 
domain allows one to identify interaction regimes that are characterized by distinct many-
body dynamics. From this theoretical study a picture emerges in which impurity dynamics is 
universal on essentially all time scales, and where the high-frequency few-body response is 
related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. 
Our theoretical description relies on different and complementary approaches: functional 
determinants give an exact numerical solution for time- and frequency-resolved responses, 
bosonization provides accurate analytical expressions at low temperatures, and the theory of 
Toeplitz determinants allows one to analytically predict response up to high temperatures. 
Using these approaches we predict the thermal decoherence rate of the fermionic system and 
prove that within the considered model the fastest rate of long-time decoherence is given 
by γ = πkBT/4. We show that Feshbach resonances in cold atomic systems give access to 
new interaction regimes where quantum effects can prevail even in the thermal regime of 
many-body dynamics. The key signature of this phenomenon is a crossover between different 
exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the 
orthogonality catastrophe is experimentally observable up to temperatures T/TF � 0.2 where 
it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight 
and we review how this phenomenon is related to the physics of heavy ions in liquid 3He and 
the formation of Fermi polarons. The presented results are in excellent agreement with recent 
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experiments on LiK mixtures, and we predict several new phenomena that can be tested using 
currently available experimental technology.

Keywords: quantum impurities, Feshbach resonances, Fermi gas, non-equilibrium dynamics, 
orthogonality catastrophe, functional determinants
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1.  Introduction

Exactly solvable models are a rare commodity in many-body 
physics [1]. Yet they provide a unique basis to develop a pro-
found understanding of physical systems and can serve as a 
benchmark for approximate theoretical approaches. Examples 
include the Ising model [2], one-dimensional systems [3, 4], 
the Kitaev model [5, 6], or the Dicke model [7] which became 
paradigms of condensed matter physics and quantum optics.

Heavy impurities interacting with a Fermi gas are another 
paradigmatic example that is exactly solvable and yet retains 
the complexity of an interacting many-body system exhibiting 
rich physics [8, 9]. Most prominently it features the orthogo-
nality catastrophe which defies a simple perturbative descrip-
tion and signals the absence of quasiparticles even at weak 
interactions, as first investigated by Anderson [10].

The Anderson orthogonality catastrophe manifests itself not 
only in ground state properties but also in the non-equilibrium 
dynamics. At long times, the power-law decay of coherence 
(for a definition see equation (10) and [11–13]) is one of its 
key manifestations which universally depends only on the scat-
tering phase shift close to the Fermi surface. In contrast, the 
description of the short-time dynamics, being testament of the 
short-distance physics, suffers typically from the microscopic 
unknown. In particular in conventional solid-state systems 
physics depends on the details of chemical bonding, the core-
hole potentials, as well as their screening and relaxation, which 
leads to highly non-universal short-time dynamics [14, 15].

Here we show that ultracold atoms provide a system where 
the physics of impurities is universal on essentially all time 
scales. This special property of cold atoms has its origin in 
their diluteness and ultra-low temperatures [16], which ren-
ders even the few-body physics universal [17]. Specifically, 
we propose the realization of an Anderson–Fano model [1] 
which is fully tunable by the use of Feshbach resonances [18]. 

		 D.2. Bottom-of-the-band and bound-state  
contributions.................................................................. 28

		 Appendix E. Asymptotic long-time response................ 29
		 E.1 Finite temperature.................................................... 29
		 E.2. Zero temperature.................................................... 30
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		 Appendix G. Subleading branches of Toeplitz  
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We introduce and review a functional determinant approach 
[19–22], that allows us not only to provide the exact numerical 
solution of its full non-equilibrium quench dynamics, but also 
to derive analytical expressions for the short- and long-time 
dynamics so that a complete analytical understanding of this 
paradigm model arises.

From this solution, an overarching picture of universal-
ity emerges, reaching from short to long time scales. The 
dynamics at short times is determined by universal tails of 
the impurity high-frequency response [23, 24]. Those tails 
are connected with the long-time dynamics by exact operator 
identities known as the Tan relations [25–28]. For the long-
time, respectively low-frequency, response of the system we 
derive analytical expressions valid at arbitrary temperatures 
by a combination of the theory of Toeplitz determinants and 
bosonization. We find that the physics of impurities can be 

universally described in terms of excitation branches which 
represent collections of relevant many-body states. By using 
this approach, even the non-equilibrium dynamics beyond the 
standard Luttinger liquid paradigm [4, 29] finds an analytical 
description.

Due to the low temperatures and diluteness of cold atomic 
gases, only short-range s-wave interactions are relevant. These 
can be tuned [18] and universal regimes reached that are not 
readily accessible in conventional solid state systems [30]. We 
identify various interaction regimes exhibiting distinct deco-
herence dynamics and spectral properties that can be related 
to dominant excitation branches. The main results are sum-
marized in figure 1. Here we show an illustration of the time- 
and frequency-resolved response of the system following a 
quench of the impurity-Fermi-gas interaction. Experimentally 
the real-time dephasing signal S(t) can be measured using an 
interferometric Ramsey scheme, while the frequency-resolved 
response A(ω) is accessible in absorption spectroscopy. Both 
signals are related by Fourier transformation and hence pro-
vide complementary probes of quantum many-body dynamics.

One finds various regimes of universal real-time dynamics. 
At ultrashort times dephasing is dominated by few-body phys-
ics leading to universal high-frequency tails in the absorption 
response [23, 24, 31, 32]. Intermediate time scales exhibit 
strong oscillations signifying the dressing of the impurity by 
excitations from the full depth of the Fermi sea. These oscilla-
tions are a robust and universal feature of short-range, strongly 
interacting impurity Fermi systems and they govern not only 
the dynamics of infinitely heavy impurities, but also appear 
in the case of impurities of finite mass where the dressing by 
bath excitations leads to the formation of polaronic quasipar-
ticles [31, 32].

At longer times, the dynamics of heavy impurities is gov-
erned by the power-law dephasing of the Anderson orthogo-
nality catastrophe which is universally dependent only on the 
phase shift at the Fermi surface. Even longer times are domi-
nated by exponential decay due to finite temperature. Quite 
surprisingly, we find that even at times substantially exceeding 
the thermal time scale �/kBT , the quantum nature of excita-
tion branches still persists. This is reflected in new features of 
competing dynamics where the robustness of superpositions 
of excitations branches leads to a crossover between charac-
teristic exponential decays of coherence at very long times.

Remarkably, although there is a enormous scale separation 
between the many-body regime at long times and the intrinsic 
few-body short-time dynamics, both regimes are connected 
by the Tan relations [25–28]. We show that based on these 
exact relations one can relate the long-time phase evolution of 
the many-body wave function to the high-frequency tail of the 
absorption spectrum.

1.1.  Progress towards studying real-time impurity dynamics

Recent years have seen an extensive interest in the Fermi 
polaron problem where one considers a single impurity 
immersed in a Fermi gas. Quite generally, the interaction 
between the impurity and the Fermi gas leads to the dress-
ing of the impurity by excitations in the Fermi sea. When 

Figure 1.  Illustration of universal impurity dynamics. The upper 
panel shows a sketch of the dephasing dynamics of a fermionic bath 
interacting with a single localized impurity as function of time. The 
corresponding many-body overlap S(t), defined in equation (10), 
see also equation (41), can be measured in Ramsey spectroscopy. 
It is related by Fourier transformation to the absorption spectrum 
A(ω) of the impurity which hence contains equivalent physical 
information in the frequency domain (lower panel). The short-
time dynamics, which is reflected in high-frequency tails of the 
absorption response, is dominated by few-body physics. At times 
exceeding the Fermi time scale τF = �/εF by τF = h/εF, with 
the Fermi energy εF, many-body physics becomes relevant and 
the dynamics of the orthogonality catastrophe is manifest in a 
power-law decay of coherence. Beyond the thermal time scale 
τthermal = �/kBT , exponential decay takes over. Even in this long-
time regime, quantum effects can prevail. They lead to competing 
exponential decay rates that signal the superposition of various 
excitation branches visible in the absorption spectrum.

Rep. Prog. Phys. 81 (2018) 024401
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the mass of the impurity is finite, this dressing by excitations 
remains quite moderate. In consequence, the new many-body 
ground state of the system—the ‘dressed impurity’—retains 
some resemblance to its non-interacting counterpart and one 
speaks of the formation of a well-defined quasiparticle: the 
Fermi polaron, characterized by a finite quasiparticle weight 
Z. In contrast, an infinitely heavy impurity is subject to a 
much stronger dressing by bath excitations. Here the dressing 
becomes even so extensive that the system is left in a state 
orthogonal to its original non-interacting state. Hence the 
dressed impurity completely looses its quasiparticle nature—
its quasiparticle weight vanishes, Z = 0—which signifies the 
hallmark of the Anderson orthogonality catastrophe [10].

The case of impurities of finite mass has been considered 
first in the context of the phase diagram of spin-imbalanced 
Fermi gases [33–37] where the Fermi polaron problem rep-
resents the extreme limit of spin imbalance. Special attention 
was given to the transition from a polaronic to a molecular 
ground state [37–46], which serves as a benchmark for theor
etical approaches ranging from variational wave functions 
[33, 37, 40, 47], diagrammatic resummation [36, 48–51], 1/N  
expansions [52], quantum Monte Carlo calculations [34, 35], 
and functional renormalization group [53] to diagrammatic 
Monte Carlo calculations [38, 39, 54–56]. Using radio-fre-
quency spectroscopy, the ground state properties of the Fermi 
polaron, including the polaron to molecule transition, were 
first observed by Schirotzek et  al [57]; for an experimental 
study in two dimensions we refer to [58].

Shortly after these observations it was theoretically pre-
dicted that the impurity excitation spectrum contains a rich and 
interesting structure also above the ground state. In particular 
studies of the impurity spectral function revealed a metastable 
excitation at positive energies on the ‘repulsive’ side of the 
Feshbach resonance (i.e. at positive scattering length a > 0), 
separated by a large gap from the ground state [53, 59, 60]. 
Since this ‘repulsive polaron’ excitation can again be viewed 
as the extreme limit of a spin-imbalanced Fermi gas, its prop-
erties are of significance for studies of the repulsive Fermi 
gas and the question of a phase transition to itinerant Stoner 
ferromagnetism [61–66]. For a detailed discussion we refer 
the reader to the excellent review by Massignan et  al [46]. 

The repulsive polaron was experimentally observed in three 
dimensions for the first time by Kohstall et al [67] and also in 
two-dimensional Fermi gases by Koschorreck et al [68] fol-
lowing its theoretical prediction [51, 69]. For a recent exper
imental study of repulsive polarons in a 6Li Fermi gas using 
radio-freqency spectroscopy we refer to [70].

While the ground state and zero-temperature properties of 
Fermi polarons have received much theoretical attention, only 
recently the study of real-time dynamics of Fermi polarons 
came into reach of experimental techniques. First experimental 
steps towards the study of real-time dynamics were taken by 
Cetina et al [71], where the long-time impurity decoherence 
dynamics following an interaction quench was studied (the 
results of this work will be discussed in detail in section 5). 
Very recently, interferometric Ramsey techniques were used 
to experimentally observe the real-time formation of Fermi 
polarons for the first time [31]. In the work [31], the func-
tional determinant approach, presented and reviewed in the 
present report, had been employed for a detailed description 
of the observed dephasing dynamics (for a detailed discussion 
of a variational approach to the problem see [32]). With these 
recent developments the stage it set for the experimental study 
of impurities in the heavy-mass limit where strong fluctua-
tions lead to intriguing many-body dynamics accompanied by 
the complete disintegration of Fermi polarons.

It is this real-time dynamics of heavy impurities immersed 
in a Fermi gas that is at the center of this report. While devel-
oping the theoretical description, we will make connections to 
known results on the excitation spectrum of Fermi polarons 
wherever applicable. In this respect, this report serves not only 
to introduce new approaches to the dynamics of heavy impu-
rities in Fermi gases as well as to highlight new directions in 
the study of such systems, but also to make the connection to 
previous theoretical work on ground and equilibrium proper-
ties of Fermi polarons.

1.2.  Outline

The structure of this report builds on the observation that many 
aspects of the dynamics of impurities can be studied equiva-
lently in the frequency or time domain. Experimentally, the 

Figure 2.  Schematic representation of the model. Left: an impurity atom in the |↓〉 hyperfine state (green sphere) is decoupled from atoms 
in the Fermi sea (red spheres). Right: the impurity atom in the |↑〉 hyperfine state (blue sphere) interacts with the Fermi sea atoms with 
a strength that is tunable by a Feshbach resonance. The impurity is either of infinite mass or, as illustrated, trapped in a state-dependent, 
strong, optical potential. When the impurity interacts with the Fermi gas it can bind with an atom from the Fermi sea and form a molecule. 
The internal hyperfine spin state is addressed using radio-frequency (RF) pulses in RF absorption spectroscopy or Ramsey and spin-echo 
interferometry.

Rep. Prog. Phys. 81 (2018) 024401
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time-resolved impurity Green’s function S(t) can be measured 
using Ramsey interference, while its Fourier transform to the 
frequency domain A(ω) is accessible in absorption spectr
oscopy [31, 72, 73]. While both signals contain in principle 
the same information, their measurement can present differ-
ent challenges to experiments. Also, their separate theoretical 
analysis gives insight to non-equilibrium impurity dynamics 
from different perspectives. Beyond that, time domain meth-
ods also allow one to study observables, such as the spin-echo 
signal, which have no analogue in frequency space and hence 
yield information about the many-body system not accessible 
by frequency-resolved methods. Following this route—after 
we introduce the two-channel scattering model describing the 
scattering in the vicinity of a Feshbach resonance and show 
its equivalence to the Fano–Anderson model in section 2—we 
introduce the dynamic response functions in the time and fre-
quency domain in section 3.

The radio-frequency absorption response of the system 
is discussed in detail in section  4. We analyze its universal 
properties and develop a simple interpretation of spectral fea-
tures in terms of a single-particle picture. This sets the basis to 
identify universal excitation branches pertinent for our discus-
sion of the time-resolved response in section 5. Here we first 
provide a numerically exact solution of the non-equilibrium 
quench dynamics followed by the discussion of the relevant 
excitation branches. The identification of these branches 
allows us to derive analytical formulas for the universal 
asymptotic long-time dynamics based on bosonization and 
the theory of Toeplitz determinants. Finally, in section 6, we 
introduce the Tan relations which relate the long-time phase 
evolution of the impurity Green’s function to high-frequency 
response. We summarize our findings and discuss future per-
spectives in section 7.

2.  Anderson–Fano model with ultracold atoms

We study a low density of impurity atoms immersed into a 
Fermi gas of atoms of mass m. As illustrated in figure 2, two 
hyperfine states of the impurity atoms, which we refer to as |↓〉 

and |↑〉, respectively, participate in the dynamics. These states 
are chosen such that only one of them interacts with the Fermi 
gas while the other does not. In the following, we consider 
impurities of an infinite mass which are localized in space. 
Experimentally, this can be achieved by using atomic species 
with a different polarizability so that only the impurities are 
trapped by an optical lattice or microtraps while the fermions 
in the bath remain mobile [16, 74–78].

2.1.  Feshbach resonances

In ultracold atoms, the scattering of the bath atoms with the 
impurity is described by the s-wave scattering amplitude

f (k) =
1

k cot δk − ik
≈ 1

−1/a+ 1
2 rek

2 − ik� (1)

where k is the momentum of the incoming atom, and δk is the 
s-wave scattering phase shift. The second expression in equa-
tion (1) represents the effective range expansion of the phase 
shift which is valid for small scattering momenta k. Here a is 
the scattering length, and re is the so-called effective range. In 
the expansion also higher-order terms exist which are, how-
ever, typically negligible for ultracold atoms. Therefore, the 
two parameters a and re provide an accurate and universal 
description of the scattering physics [17].

It is one of the great appeals of ultracold gases that the 
scattering length a, and hence the interaction strength, can be 
tuned almost at will using Feshbach resonances [18]. Here 
one makes use of the coupling of the atoms in an open scat-
tering channel to a molecular state in a closed channel, which 
is energetically accessible only by virtual processes. Due to 
its magnetic moment the energy εm(B) of the closed-channel 
molecule can be tuned with respect to the open channel by an 
external magnetic field B.

Depending on the relative detuning εm(B) from the scat-
tering threshold at zero energy, the scattering length can be 
manipulated and at optimal detuning it diverges, a → ∞, defin-
ing the Feshbach resonance. Close to the resonance, where the 
non-resonant (background) scattering in the open channel can 

Figure 3.  Interaction regimes and scattering phase shift. The figures show the momentum dependence of the scattering phase shift in the 
three interaction regimes. The various regimes are characterized by the scattering phase shift δF ≡ δk=kF evaluated at the Fermi momentum 
kF. The attractive regime (a) is characterized by a negative scattering length a < 0 and a positive phase shift δF that does not exceed π/2. 
In the mixed regime (b) the scattering length remains negative while the positive phase shift at the Fermi surface δF exceeds π/2. The 
repulsive regime (c) obtains its name from the fact that here single-particle scattering states are shifted upwards in energy (see the detailed 
discussion in section 4). In this regime the scattering length a > 0 and a bound state exists in the single-particle spectrum. The existence of 
the bound state leads to a jump of the phase shift by π and we adapt the convention of choosing δk < 0. Blue dashed lines correspond to a 
contact-interaction model with kFr∗ = 0 and red lines correspond to kFr∗ = 0.8. In the contact interaction model the mixed regime cannot 
be realized. The individual plots are shown for scattering lengths (a) kFa = −0.5, (b) kFa = −100, (c) kFa = 100.
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be neglected, the magnetic-field dependence of the scattering 
length can be parametrized as [18]

a(B) ≈ − �2

2µredr∗δµ (B− B0)
.� (2)

Here, the reduced mass µred = mM/(m+M) becomes 
µred = m for the case of an impurity of mass M = ∞. Moreover, 
δµ is the differential magnetic moment of the closed-channel 
molecule, and B0 denotes the magnetic field strength at which 
the scattering length diverges. Most importantly, equation (2) 
defines the range parameter r∗ > 0 which determines the 
character of the Feshbach resonance.

To a good approximation, r∗ is related to the effective range 
as [18]

re ≈ −2r∗.� (3)

Therefore the range parameter r∗ provides the second param
eter re required to characterize the scattering properties of 
ultracold atoms to high accuracy. In the following we will 
use both r∗ and re interchangeably to describe the momentum 
dependence of the scattering phase shift δk. Note that unlike 
the scattering length a, the range parameter r∗ can typically 
not be tuned in a practical way [79–81], but is fixed by micro-
scopic molecular details.

2.2.  Interaction regimes

The range r∗ influences the phase shift δk in equation (1) and 
thus can have a profound effect on the many-body physics. 
While for contact interactions, where r∗ = 0, the phase shift 
is bounded by |δk| � π/2, for finite r∗ it can exceed π/2, see 
figure 3. This allows one to realize interaction regimes that are 
not accessible in simple contact-interaction models. The inter-
action regime are identified by phase shift δF ≡ δk=kF evalu-
ated at the Fermi momentum kF. One can distinguish three 
interaction regimes, see figure 3:

	 (a)	�‘attractive regime’: here a < 0 and the phase shift at the 
Fermi surface 0 < δF < π/2. In this regime the phase 
shift is positive for all energies, δ(E) ≡ δk=

√
2mE > 0. As 

discussed in section 4 the term ‘attractive’ is derived from 
the fact that single-particle scattering states are shifted to 
lower energies;

	(b)	‘mixed regime’: here a < 0 and π/2 < δF < π . In this 
regime the phase shift is again positive for all energies, 
δ(E) > 0. Within the two-channel model introduced 
below it is realized for negative inverse dimensionless 
scattering lengths −kFr∗ < 1/kFa < 0;

	 (c)	‘repulsive regime’: here a > 0 which in our convention 
for the scattering phase implies δ(E) < 0 for all energies. 
As discussed in section 4 in this case single-particle scat-
tering states are shifted to higher energies motivating the 
term ‘repulsive’ for this regime.

While the mixed regime (b) cannot be reached in a system 
with contact interactions, it is accessible in the Anderson–Fano 
model introduced below. Alternatively, the mixed regime can 
also be realized using pure open-channel scattering potentials. 

Here, according to Levinson’s theorem [82], a phase shift 
δF > π/2 is possible when more than one bound state is sup-
ported by the interaction potential. Note that the term ‘mixed’ 
is derived from the observation (discussed in section 4) that 
the many-body dynamics in this regime shares properties of 
both the attractive and repulsive regimes.

Following the classification of the various interaction 
regimes, one can use the value of kFr∗ for a many-body char-
acterization of Feshbach resonances. When kFr∗ � 1, one 
speaks of so-called ‘broad’ Feshbach resonance [16]. For 
those, the physics is universally parametrized by kFa alone, 
and Fermi gases close to such a resonance can be described 
by simple contact interaction models. For broad Feshbach 
resonances, the realization of the mixed regime requires very 
large, negative values of kFa.

In contrast, for so-called ‘narrow’ Feshbach resonances, 
where kFr∗ � 1, the mixed regime can be realized more easily. 
In this regime unique dynamics beyond the simple paradigm 
of contact interactions appears, and one has to employ models 
beyond contact interactions for their description.

2.3.  Anderson–Fano model

In the following we develop a theory which describes the 
dynamical response of a Fermi gas coupled to an immobile 
impurity close to a Feshbach resonance of arbitrary ‘width’ 
as determined by kFr∗. Theoretically, Feshbach resonances 
can be described with high accuracy by a two-channel model, 
where the interaction between atoms is mediated by the 
exchange of a closed-channel molecule [18, 83].

Specifically, for a bath of fermions interacting with a local-
ized impurity, the system is described by the two-channel 
Hamiltonian

H2−ch = −
∫

r
ψ̂†(r)

�2∇2

2m
ψ̂(r) + εmφ̂

†φ

+ g
∫

r
χ(r)[φ̂†ψ̂σψ̂(r) + h.c.]

� (4)

where the first term describes the free fermions of mass m 
with creation operators ψ̂†(r). The second term represents 
the closed-channel molecule created by φ̂† with energy εm(B) 
detuned from the scattering threshold. Furthermore, the impu-
rity, which is localized at r = 0, is created by the operator ψ̂†

σ 
in the atomic spin state σ in which it interacts with the Fermi 
sea; see figure 2 where we have chosen σ = ↑ .

Like the impurity, the molecule is immobile and hence the 
corresponding creation operators carry no coordinate depend
ence. Since their mass is infinite both molecule and impurity 
also have no kinetic energy term. Finally, the interaction of the 
impurity with the bath of fermions is described by the third 
term, where the impurity ψ̂σ and a host atom ψ̂ are converted 
into the molecular state φ̂. Here the form factor χ(r) deter-
mines the shape of the atom-to-molecule coupling and we 
choose χ(r) = e−r/ρ/4πρ2r  where the range ρ is determined 
by the van-der-Waals length [84, 85].
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For an impurity of infinite mass the molecule creation 
and impurity annihilation operator can be combined to a new 
operator m̂† = φ̂†ψ̂σ which allows us to map the two-channel 
model onto the Fano–Anderson model

Ĥ = εmm̂†m̂+
∑
k

εkĉ
†
kĉk +

g√
V

∑
k

χk[m̂†ĉk + h.c.].� (5)

Here the operators ĉ†k are the creation operators of fermions 
with dispersion relation εk = �2k2/2m and χk  is the Fourier 
transform of the form factor χ(r). The Fano–Anderson model 
has been introduced in solid state physics to describe localized 
magnetic states in metals [86, 87]. It reappears here in the new 
context where it can be experimentally studied with the high 
control of ultracold atoms with tunable model parameters.

The parameters εm, g, and ρ of the model (5) can be 
deduced from the scattering properties. Calculating the scat-
tering phase shift from the model (5) we can relate those 
parameters to experimentally accessible quantities which are 
the scattering length a, the range parameter r∗, and the van der 
Waals length lvdW, which determines the range of the underly-
ing atomic interaction potentials [88, 89]. Using the abbrevia-
tion ā = 4π/Γ(1/4)2 lvdW ≈ 0.956 lvdW [18], one finds (for 
details see appendix A and [31, 84])

g2 =
�4π
µ2
redr∗

, εm =
�2

2µredr∗

(1
ā
− 1

a

)
, ρ = ā/2.� (6)

Here we keep the effective mass µred explicit as these equa-
tions apply to arbitrary mass ratios between impurity and bath 
atoms; for the case of an immobile impurity µred = m. Note 
that the first equation shows that the range parameter r∗ con-
trols the strength of the coupling of the atoms to the closed-
channel molecule.

The following many-body calculation requires to find 
the single-particle solutions of Hamiltonian (5). Those are 
obtained from the ansatz |Ψ〉 = αm|m〉+ |ψ〉 which takes 
into account explicitly the molecular state |m〉 and solves the 
Schrödinger equation  Ĥ|Ψ〉 = E|Ψ〉 [87]. Here αm is a con-
stant that determines the occupation of the closed-channel 
molecule |m〉, and ψ(r) = 〈r|ψ〉 = A sin(kr + δk)/r + Bχ(r) 
represents the open-channel scattering wave function. For the 
bound state we use the ansatz A sinh(κ(r − R))/r + Bχ(r) 
for the radial wave function where κ is the binding wave vec-
tor and R is the size of a spherical box R. From the solution 
of the Schrödinger equation we evaluate the unknown coef-
ficients A, B, αm. Next, we calculate the single-particle 
eigenenergies, determined through k and κ, from the bound-
ary conditions of atoms being confined in the spherical box of 
size R. For details we refer to appendix A.

3.  Dynamic many-body responses

Information about a many-body system can be obtained 
from response measurements in both the frequency and time 
domain. In ultracold atomic systems experimental tools exist 
to address both domains with high precision. While radio-
frequency (RF) spectroscopy gives access to the spectrum 

of a many-body Hamiltonian, Ramsey or spin-echo interfer-
ometry reveals information about the time-evolution of the 
many-body wave function. Using functional determinants 
one can solve numerically the response of the model (5) in 
both the frequency and time domain at arbitrary temperature 
without approximations. In this section  we introduce some 
of the responses typically studied in cold atom experiments. 
These will then be investigated in more detail in the following 
sections.

3.1.  Radio-frequency spectroscopy

Information about the spectrum, and in particular the ground 
state of the Anderson–Fano model (5), can be obtained 
experimentally from RF spectroscopy. In such an experiment 
the impurity is prepared in an initial spin state, |σ〉, where 
σ ∈ {↑, ↓}. Using a weak RF signal, the spin is then driven 
into a final state |σ̄〉, orthogonal to |σ〉. Theoretically, the RF 
signal can be modeled by a monochromatic perturbation 
∼ eiωt|σ̄〉〈σ|+ h.c. of frequency ω. In linear response theory 
the absorption is given by Fermi’s golden rule (� = 1)

A(ω) = 2πΩ2
∑
i,f

wi|〈f |Ŵ|i〉|2δ[ω − (Ef − Ei)],� (7)

where the transition operator Ŵ = |σ̄〉〈σ|+ h.c. acts only on 
the spin state of the impurity. Furthermore, Ω is the Rabi fre-
quency which determines the power of the applied RF field. In 
the following we set Ω = 1. The sum in equation (7) extends 
over complete sets of initial |i〉 and final many-body states | f 〉 
with energies Ei and Ef. The weights wi are determined by the 
initial state density matrix as wi = 〈i|ρ̂i|i〉.

The measured RF signal depends on the specific initial and 
final states chosen and in the following we will focus on two 
scenarios. In the ‘standard RF’ scheme, the system is driven 
from the spin state, in which the impurity interacts with the 
Fermi sea, to a non-interacting spin state. In contrast, in the 
‘reverse RF’ procedure the impurity is initially in a non-inter-
acting state and then driven to an interacting one [53]. In this 
section we formally define the two schemes, while their dis-
tinct responses are discussed in detail in section 4.

3.1.1.  ‘Standard’ RF spectroscopy.  In the standard RF 
scheme, the impurity is prepared in the state |↑〉 in which it 
interacts with the Fermi sea. At T = 0 the fermions are ini-
tially in the many-body ground state |ψGS〉 of the Hamiltonian 
(5), i.e. Ĥ|ψGS〉 = EGS|ψGS〉, where they experience the impu-
rity as a scattering center at r = 0. The initial state, includ-
ing the impurity state, is then given by |i〉 = |↑〉 ⊗ |ψGS〉. At 
finite temperature the fermionic initial ‘state’ is determined 

by the thermal density matrix ρ̂GS ≡ e−β(Ĥ−µN̂)/ZGS, with 
β = 1/kBT  the inverse temperature with kB the Boltzmann 
constant, which we set to one in the following, N̂  is the fer-
mion number, μ their chemical potential, ZGS the partition 
sum, and Ĥ  is given by equation (5).

In the final state the impurity is in the spin state |↓〉 which is 
non-interacting with the Fermi gas. Since then the scattering 
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center is absent, the system is described by the Hamiltonian 
Ĥ0, defined by equation  (5) with g = 0. The sum over the 
systems’ final states can be written in terms of the states 
|f 〉 = |↓〉 ⊗ |ψn〉 where |ψn〉 denotes the complete set of many-
body fermionic eigenstates of Ĥ0, Ĥ0|ψn〉 = E0

n|ψn〉, i.e. 
Ef ≡ E0

n in equation  (7). Using these definitions and trans-
forming equation  (7) to the time domain (for details see 
appendix B), one arrives at the expression for the ‘standard 
RF absorption spectrum’ 

R(ω) = 2Re
∫ ∞

0
dteiωtTr[eiĤte−iĤ0tρ̂GS],� (8)

which solely contains operators in the fermionic Hilbert space.
The standard RF response of an impurity immersed in 

a Fermi gas has been measured by Schirotzek et  al [57]. 
In this case the impurity was mobile and the ground state 
of the system |ψGS〉 → |ψpol〉 is a well-defined quasiparti-
cle, the Fermi polaron. The Fermi polaron is a well-defined 
quasiparticle since its state has a finite overlap with the 
non-interacting ground state |ψ0〉 of the system, which 
defines the quasiparticle weight Z = |〈ψ0|ψpol〉|2 > 0. This 
is different for an infinitely heavy impurity at zero temper
ature. In this case the overlap of the interacting ground 
state |ψGS〉 with the non-interacting ground state vanishes, 
i.e. Z = |〈ψ0|ψGS〉|2 ≡ 0. Hence no quasiparticle exists in 
this case, giving rise to the term ‘orthogonality catastro-
phe’ (OC) [10]. The relation between the Anderson OC and 
Fermi polarons will be discussed in more detail in the fol-
lowing section 4.

3.1.2.  ‘Reverse’ RF spectroscopy.  In the ‘reverse’ RF 
scheme, sometimes also called the ‘spin-injection’ scheme 
[90], the role of interactions are reversed. Here the impu-
rity in its initial atomic state |↓〉 is not interacting with the 
Fermi gas. Hence, at T = 0, the fermions build a perfect free 
Fermi sea |FS〉 by filling up all single-particle eigenstates of 
the non-interacting Hamiltonian Ĥ0 up to the Fermi energy 
εF. The initial state is then given by |i〉 = |↓〉 ⊗ |FS〉. At finite 

temperature T, |FS〉 is replaced by the thermal density matrix 
ρ̂FS = e−β(Ĥ0−µN̂)/ZFS of a free Fermi gas.

The impurity is then driven into its final state |↑〉 in which 
the impurity is interacting with the gas. In that state, the 
dynamics of the fermions is described by the Hamiltonian Ĥ  
where the scattering center at r = 0 is present; i.e. g > 0 in 
equation  (5). The final states in equation  (7) are then given 
by | f 〉 = |↑〉 ⊗ |ψα〉, where the fermionic states are defined 
by Ĥ|ψα〉 = Eα|ψα〉. Note that we set the energy splitting 
between hyperfine levels to zero. Basic manipulations (for 
details see appendix B) lead to the reverse RF response

A(ω) = 2Re
∫ ∞

0
dteiωtTr[eiĤ0te−iĤtρ̂FS].� (9)

The reverse RF scheme had been implemented for the obser-
vation of the full impurity spectral function by Kohstall et al 
[67], and found multiple applications in the observation 
of polaronic physics with ultracold atoms [31, 58, 67, 70, 
91–94].

3.2.  Real-time responses

Information about the many-body dynamics can also be 
obtained from real-time observables. Here we give two exam-
ples for real-time responses, namely Ramsey and spin-echo 
interferometry [73, 95].

3.2.1.  Ramsey interferometry.  In many-body Ramsey inter-
ferometry, the impurity is initially prepared in a non-interact-
ing spin state |↓〉. Then using a π/2 rotation a superposition of 
the two impurity states, (|↓〉+ |↑〉)/

√
2 is prepared, where in 

the state |↑〉 the impurity interacts with the Fermi gas. After 
a finite interaction time t a second π/2 pulse with variable 
phase ϕ is applied. Measuring σ̂z then yields the Ramsey sig-
nal S(t) [71, 73]. Throughout this work we assume infinitely 
fast π/2 rotations that leave the Fermi sea unperturbed. While 
the implementation is experimentally challenging directly in 
the strongly interacting regime, it has been shown [31] that 
such protocols can indeed be realized by quenching interac-
tions using the optical resonance shifting technique developed 
in [71]. A straightforward calculation shows that the Ramsey 
signal is given by

S(t) = 〈eiĤ0te−iĤt〉 ≡ Tr[eiĤ0te−iĤtρ̂FS].� (10)

From this expression it is evident that the reverse RF absorp-
tion signal equation  (9) is determined by the Fourier trans-
form of the Ramsey signal. Hence both signals contain the 
same physical information and can be used as complementary 
experimental tools (for more details see appendix B).

3.2.2.  Spin-echo interferometry.  In addition to the Ramsey 
response, more complicated interferometric protocols can be 
chosen which do not have simple conjugate observables in the 
frequency domain. One example is spin-echo interferometry, 
which defines a more involved spin trajectory by augmenting 
the Ramsey sequence by an additional instantaneous spin-flip 
at half of the evolution time. This leads to the expression [73]

SSE(t) = 〈eiĤ0t/2eiĤt/2e−iĤ0t/2e−iĤt/2〉.� (11)

In typical applications in the context of nuclear magnetic reso-
nance (NMR) spectroscopy such protocols are employed to 
echo-out external, quasi-static perturbations. However, such 
protocols can also yield additional information about the sys-
tem dynamics and we will contrast the spin-echo and Ramsey 
response in the thermal and quantum regimes in section 5.

3.3.  Functional determinant approach

In order to calculate the absorption spectra A(ω) and the 
time-dependent many-body response such as the Ramsey and 
spin-echo signal, we use the functional determinant approach 
(FDA) [19–21]. The FDA provides an exact numerical solu-
tion for systems which are described by fermionic bilinear 
Hamiltonians. Extensions to bosonic systems are possible 
[20] and have been recently employed for the description of 
Rydberg impurity systems [93, 94, 97]. The FDA reduces 
expectation values of many-body operators to determinants in 
single-particle Hilbert space by virtue of the formula
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〈eŶ1 . . . eŶN 〉 = det[1− n̂+ n̂eŷ1 . . . eŷN ].� (12)

Here Ŷi are arbitrary, fermionic, bilinear many-body opera-
tors and ŷi their single-particle representatives. Furthermore, 
n̂ denotes the single-particle occupation number operator. The 

identity (12) allows us to solve the time-dependent many-
body problem exactly by using the analytical solutions for the 
single-particle states obtained for the model equation (5), see 
appendix A.

4.  Universal many-body response: radio-frequency 
spectra

We now turn to RF absorption spectra. Our results are obtained 
by evaluating equation (8) and (9) using the FDA. While there 
has been much theoretical effort to predict the properties of 
impurities immersed in Fermi gases at zero temperature using 
approximate techniques [32–40, 46, 49–51, 53–55, 59, 60, 
69, 98–124], our calculations are to our knowledge the first to 
predict corresponding spectra at arbitrary temperature, which 
are exact in the limit of infinitely heavy impurities (for com-
parison to recent ultracold atom experiments see also [31]). 
Studying the frequency resolved response provides insight 
about the relevant many-body states and allows us to identify 
the excitation branches which will become of importance in 
finding the analytical solution of the many-body dynamics in 
section 5.

In this section, we focus mostly on the low-frequency 
response which is universally determined by the scattering 
phase shift close to the Fermi surface. The high-frequency 
response is discussed in more detail in section 6.

4.1.  Reverse RF spectra

First we consider the reverse RF absorption spectrum, where 
the system is initially prepared in the non-interacting impurity 
spin state and then driven into an interacting final state. In 
the reverse RF scheme the measured response is identical to 
the impurity spectral function [31, 32, 53, 67] and as such it 
reveals the spectrum of the Hamiltonian (5). In figure 4(a) we 
show a density plot of the predicted absorption spectrum as a 

Figure 4.  Finite temperature RF absorption spectra – theory and experiment [67]. (a) Reverse RF absorption spectrum A(ω) as function 
of frequency ω/εF and inverse interaction strength 1/kFa in the ‘attractive’, ‘mixed’, and ‘repulsive’ interaction regime as obtained from 
an FDA calculation (throughout this work absorption spectra A(ω) are shown in units of εF). The temperature T/TF = 0.16 and range 
parameter kFr∗ = 0.71 are chosen as in the experiment by Kohstall et al [67]. Their experimental results are shown for comparison: in (b) 
for a weak RF drive and (c) for a strong RF drive which saturated the signal and hence was beyond linear response. The dashed and dot-
dashed lines, shown in ((a)–(c)) correspond to the energy of the onset of the attractive and repulsive excitation branch. They are calculated 
from Fumi’s theorem [96] which relates the sum over phase shifts to the ground state energy of the system, see also [1, 36, 60] and 
appendix C.

Figure 5.  Finite temperature radio-frequency absorption 
spectra. RF response in the reverse scheme where the impurity 
is initially in a hyperfine state non-interacting with the Fermi 
gas and driven to a state interacting with the gas (see inset in 
(b) for an illustration). The spectra are shown for temperatures 
T/TF = (0.01, 0.16) (dashed, solid), for interaction strengths 
1/kFa = (−0.91, −0.1, 1.0) ranging from the attractive to the 
repulsive side of the Feshbach resonance, and for a fixed Feshbach 
range parameter kFr∗ = 0.71. For T/TF = 0 the spectral onset of 
features will be replaced by sharp edges.
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function of frequency ω/εF and inverse interaction strength 
1/kFa for the temperature T/TF = 0.16 and range param
eter kFr∗ = 0.71. In figure 5 corresponding spectral cuts are 
shown for each of the interaction regimes realized by the 
specific interaction strengths 1/(kFa) = −0.91, −0.1, and 1, 
respectively, which range from the ‘attractive’ (a < 0) to the 
‘repulsive’ side (a > 0) of the Feshbach resonance. We show 
results for both low (T/TF = 0.01, dashed) and high temper
atures (T/TF = 0.16, solid). Note that the results are shown 
for the finite value T/TF = 0.01 as we discuss this case also 
when considering the real-time response in section 5.

The reverse RF spectra are dominated by two main exci-
tations. The ‘attractive excitation branch’ appears as a pro-
nounced response at negative detuning ω/εF < 0. It is 
dominant in the attractive and mixed regime for kFa < 0. As 
the resonance is crossed to positive values of 1/kFa (figures 
5(a)–(c)) the attractive branch loses weight and the ‘repulsive 
excitation branch’ emerges at positive energies and carries 
most of the spectral weight. As can be seen from the spec-
tral cuts in figure 5, at ultralow temperatures both excitation 
branches exhibit a non-analytical onset in frequency. These 
absorption edges are a key signature of the Anderson orthog-
onality catastrophe (OC) [10–12, 73], and they are a conse-
quence of the absence of quasiparticles at zero temperature for 
an infinitely heavy impurity.

4.1.1.  From Fermi polarons to the orthogonality catastro-
phe.  Before we turn to the case of an infinitely heavy 

impurity, which is the focus of this report, let us briefly con-
sider the general case of an impurity of arbitrary mass M. 
The formation of a polaron is associated with the dressing of 
the impurity by fluctuations in the many-body environment. 
These fluctuations correspond to various ways in which the 
fermions reoccupy their single-particle energy levels due to 
the interaction with the impurity. This reoccupation becomes 
apparent when expanding the many-body eigenstates of the 
system in particle-hole fluctuations [33, 36]:

|ψα〉 =
√
Zαd̂

†
0 |FS〉+

∑
kq

αkqd̂
†
q−kĉ

†
kĉq|FS〉+ . . . .

� (13)

Here we consider the case of zero total momentum, the opera-
tors d̂†p create an impurity in the momentum state p, and |FS〉 
represents the non-interacting Fermi sea in its ground state. 
The second term in this expression corresponds to the genera-
tion of a single particle-hole fluctuation from the Fermi sea, 
but to obtain the exact eigenstates of the system the complete 
expansion (indicated by the dots) has to be considered.

While all eigenstates of the many-body Hamiltonian can 
be described by equation (13), of particular interest are often 
those states |ψα〉 that have finite overlap with the non-inter-
acting state of the system |ψ0〉 ≡ d̂†0 |FS〉. States with a finite 
quasiparticle weight Zα ≡ |〈ψ0|ψα〉|2 represent quasiparti-
cles, called polarons, that bear close resemblance to their non-
interacting counterparts. As outlined in the introduction, for 
a mobile impurity in three dimensions two of these polaron 

Figure 6.  Illustration of the excitation branches dominating the OC dynamics. In the upper panels we illustrate typical absorption spectra 
realized in the respective interaction regimes. The middle panel shows representatives of many-body states constituting the respective 
excitation branch. In this panel we illustrate typical rearrangements of atoms (solid red spheres) from their non-interacting single-particle 
states (small solid, horizontal lines) into interacting states (small dashed, horizontal lines). Dependent on the interaction, those states are 
either shifted upwards or downwards in energy, and their wave function overlap with the non-interacting states is modified as well. In this 
panel εF is the Fermi energy, εB the binding energy of the molecule present for a > 0, ∆ε the energy shift of single-particle levels due to 
interactions with the impurity, and |FS〉 represents the Fermi sea in its non-interacting ground state. The combined effect of the processes 
shown in the middle panel leads to the characteristic features in the absorption spectra shown in the upper panels where shaded regions 
highlight the corresponding contributions. The characteristic excitations of each branch are summarized in the lowest panel where FS, FB, 
and BS are short-hand for Fermi-surface, bottom-of-the-Fermi-sea, and bound-state contributions, respectively.

Rep. Prog. Phys. 81 (2018) 024401



Report on Progress

11

states dominate the absorption response: the ‘attractive Fermi 
polaron’ |ψpol

att 〉 exists at negative energy for sufficiently weak 
attractive interactions, while the ‘repulsive Fermi polaron’ 
|ψpol

rep〉 appears at positive energy in the repulsive interaction 
regime (in addition to a dressed molecular state existing in this 
regime at negative frequencies).

Polaron states can only exist when the particle-hole fluc-
tuations generated by the higher-order terms in equation (13) 
are moderate enough to allow for a finite quasi-particle 
weight Zα. Although particle-hole fluctuations close to the 
Fermi surface come with no energy cost, they lead to a finite 
recoil energy experienced by an impurity of finite mass. For 
the leading term shown in equation (13), this energy is given 
by Erec = (k− q)2/2M . In a simple picture, this energy cost 
suppresses particle-hole fluctuations and leads to a finite 
Fermi polaron quasiparticle weight Z > 0.

This is different for impurities of infinite mass and from 
our simple argument it is apparent that something remarkable 
must happen in this limit. Here the recoil energy vanishes and 
the energetic suppression of high-order particle-hole fluctua-
tions is absent. As it turns out the fluctuations become indeed 
so dominant that they lead to the complete disintegration of 
the quasiparticle and the weight Z = 0 vanishes identically. 
Hence the many-body ground state |ψGS〉, which for a mobile 
impurity at weak interactions had been |ψpol

att 〉, becomes now 
completely orthogonal to its non-interacting counterpart, 
Z = |〈ψ0|ψGS〉|2 = 0, and one encounters the ‘orthogonality 
catastrophe’ (OC) [10]: no quasiparticles exist [11].

Describing the OC requires the inclusion of the higher-
order terms in the expansion (13) which poses a challenge for 
theory that attracted intensive interest starting with the work 
of Anderson [10]. Among other approaches [11, 125–134], for 
overviews we refer to [1, 9, 135, 136], the FDA provides an 
efficient tool to address this problem and yields exact results 
for infinitely heavy impurities, also in the case of finite temper
ature where thermal averages have to be performed.

4.1.2.  Single-particle interpretation.  The fluctuations in equa-
tion  (13) correspond to the various ways in which fermions 
can occupy their single-particle energy levels. The analysis of 
this reoccupation of states becomes particularly simple in the 
limit of an infinitely heavy impurity, where it corresponds to a 
static scattering center and the exact single-particle states are 
thus easily calculated.

Our analysis is illustrated in figure 6. In the upper panels 
we show typical absorption spectra in the various interaction 
regimes, while in the middle panel we illustrate the single-
particle energies of Ĥ  and Ĥ0 as dashed and dotted lines, 
respectively. We show here only s-wave states; for short-range 
interactions, higher partial waves are not renormalized and 
hence irrelevant. In the initial state where the impurity as a 
scattering center is absent, the atoms fill up all these levels up 
to the Fermi energy εF and build a perfect Fermi sea |FS〉 (left 
subfigures). To the right, we show the single-particle ener-
gies when the impurity scattering center is present (dashed 
horizontal lines). We illustrate various occupations of those 
single-particle states which correspond to dominant features 
in the absorption spectrum A(ω).

The specific structure of the absorption spectra can be 
understood in a simple single-particle picture when express-
ing the spectral function as

A(ω) = 2π
∑
α

|〈ψα|FS〉|2δ[ω − (Eα − EFS)].� (14)

Here |ψα〉 denotes the many-body eigenstates of the interacting 
Hamiltonian Ĥ  with eigenenergies Eα, and EFS is the energy 
of the initial non-interacting Fermi sea |FS〉. Equation (14) is 
given for T = 0 and, as discussed in section 3, it can straight-
forwardly be extended to finite temperature by an additional 
summation over initial states weighted by the thermal density 
matrix.

A pronounced response in the spectrum is due to family of 
states {|ψα〉} which, for a finite size system, have  a signifi-
cant many-body Frank-Condon overlap |〈ψα|FS〉|2 with the 
initial state |FS〉. Together with the density of states the over-
laps |〈ψα|FS〉|2 determine the specific shape of the absorption 
spectrum. These dominant families of states are called excita-
tion branches in the following.

Attractive excitation branch.  When the microscopic inter-
action is weakly attractive, i.e. 1/kFa � −1, the dressing of 
the impurity by fermionic fluctuations leads to a reduction of 
energy. This leads to the formation of an attractive dressed 
impurity state |ψatt〉 constituting the new ground state of the 
system. In the spectral cut shown in figure 5(a) the attractive 
ground state can be identified as the pronounced edge feature 
at negative detuning ω/εF. The onset of this feature at negative 
frequency is determined by eigenenergy Eatt of the attractive 
state |ψatt〉. This state is constructed by filling all interacting 
single-particle states up to the Fermi energy and it has zero 
quasiparticle weight Z = |〈FS|ψatt〉|2 = 0 in the limit of infi-
nite system size.

As illustrated by the horizontal dashed lines in figure  6, 
each single-particle level is subject to a small, negative energy 
shift ∆ε which is determined by the scattering phase shift 
δ(E) ≡ δk=

√
2mE evaluated at the respective single-particle 

energy E (see equation  (A.5) in appendix A). Each fermion 
occupying these single-particle states acquires this energy 
shift and the summation over all ∆ε determines the energy 
Eatt, shown as a dashed line in figure 4(a). This summation 
reflects Fumi’s theorem [96], which states that the ground 
state energy is determined by the sum over the single-particle 
phase shifts [1, 4, 36, 60], see also appendix C.

We emphasize once more that for T = 0 the immobile 
impurity in its attractive ground state has zero quasiparticle 
weight Z = |〈FS|ψatt〉|2 = 0 in the thermodynamic limit, 
signaling the breakdown of the polaron picture. This is dif-
ferent for a mobile impurity in three dimensions10: here |ψatt〉 
corresponds to the attractive polaron state |ψpol

att 〉 with a finite 
quasiparticle weight Z that leads to a delta-peak response in 
absorption spectroscopy at T = 0. This is in contrast to the 
infinite-mass impurity where the finite weight in the delta 
function is fully redistributed into the asymmetric wing 
attached to the onset of the spectrum at Eatt.

10 The case of a mobile impurity in a Fermi gas in two dimension is still not 
fully understood [9]; see also the recent work [134].
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This asymmetric continuum, visible on top of the attractive 
ground-state excitation in figure 5, is due to the excitation of 
an arbitrary number of low-energy particle-hole excitations 
close to the Fermi surface. One representative member of this 
family of states, massively contributing to the sum in equa-
tion (14), is illustrated in the third column in the center panel 
in figure 6(a). The whole family of states, including |ψatt〉, con-
tributing to the edge and the attached ‘wing’ in the absorption 
spectrum (red shaded area in the spectrum in figure 6(a)) con-
stitutes the ‘attractive excitation branch’.

For weak attraction each of the slightly renormalized sin-
gle-particle states has a large overlap with its non-interacting 
counter part (dotted versus solid lines in the center panels of 
figure  6) and hence, by moving all fermions ‘down’ to the 
attractive ground-state configuration, the largest many-body 
overlap |〈ψα|FS〉|2 can be achieved. This leads to the attractive 
branch as the dominant feature in the spectrum in the attrac-
tive interaction regime and it almost saturates the spectral sum 
rule.

This changes as attraction is increased. As illustrated in fig-
ure 6(b), for stronger attraction the single-particle states are 
shifted further down in energy and the attractive ground state 
becomes more deeply bound. At the same time the overlaps 
of the single-particle states with their corresponding non-
interacting counterparts become progressively smaller so that 
the spectral feature of the attractive excitation branch loses 
weight.

Bottom-of-the-band excitation branch.  Related to this loss 
of spectral weight is the appearance of an additional feature 
in the absorption spectrum as unitary scattering close to the 
Fermi surface, i.e. δF = π/2, is approached. In this strong-
coupling regime, the overlap of single-particle levels is such 
that a new pronounced excitation is favored at an energy εF 
above the attractive ground-state excitation. As illustrated in 
the second column of the center panel in figure 6(b), this fea-
ture corresponds to the distribution of the fermions into sin-
gle-particle levels such that the lowest scattering state at the 
bottom of the Fermi sea remains empty. Hence the feature is 
termed the ‘bottom-of-the-band excitation’ [73].

First let us consider contact interactions. Here, at unitarity, 
where interactions are resonant, the phase shift is δ(E) = π/2 
for all scattering energies. From equation (A.5) of appendix 
A it then follows that the single-particle levels are located at 
half-way of their non-interacting counterparts (see second 
column in the middle panel of figure 6(b)). As a consequence 
of this symmetry, the same overlap |〈ψα|FS〉|2 is achieved for 
moving all particles ‘up’ in energy to build the bottom-of-
band excitation state or ‘down’ into the attractive ground state 
|ψatt〉 where all low-energy levels are filled. Furthermore, the 
energies of the attractive and the bottom-of-band feature are 
given by −εF/2 and +εF/2, respectively.

In the mixed regime, realized for kFr∗ > 0, the phase shift 
at the Fermi surface δF exceeds π/2. We find that this leads 
to the bottom-of-the-band excitation acquiring a larger spec-
tral weight compared to the attractive excitation branch while 
both excitations remain separated by approximately the Fermi 
energy. This behavior makes the bottom-of-band excitation 

distinct from the repulsive state excitation to be discussed 
below.

Similarly to the attractive ground state, also the bottom-
of-the-band feature can be dressed by particle-hole excita-
tions. This effect leads to the characteristic enhancement of 
response on both sides of the bottom-of-the-band excitation 
(see shaded area in the upper panel of figure 6(b)). This col-
lection of states defines the ‘bottom-of-the-band excitation 
branch’ and it dominates the spectrum in the mixed interac-
tion regime, see figure  6(b). In a contact interaction model 
(kFr∗ = 0), where the mixed interaction regime is absent, 
the bottom-of-the-band branch still exists, but it does nei-
ther dominate the spectrum in weight, nor—as discussed in 
the following section—does it represent the so-called leading 
branch in the real-time dynamics.

Molecular excitation branch.  When the attractive interac-
tion becomes sufficiently strong, a single-particle bound state 
appears at zero energy as the Feshbach resonance at 1/kFa = 0 
is crossed to the repulsive interaction regime where a > 0. 
This bound state with binding energy εB = −�2/2ma2  close to 
unitarity is energetically separated from the scattering states. 
By filling all particles into the low-lying states including the 
bound state one constructs the dressed ‘molecular ground 
state’ |ψmol〉 (see figure 6(c)). This state, which becomes the 
new ground state of the system after crossing the Feshbach 
resonance to a > 0, is reflected in the sharp spectral onset at 
its negative eigenenergy Emol. Additional particle-hole exci-
tations lead to a continuum of states attached to it, together 
constituting the ‘molecular excitation branch’. However, the 
molecular excitation branch does not represent the dominant 
branch in the absorption response (see figure 5(c)). In fact, the 
bound state has a wave function which decays exponentially 
in space as  ∼e−r/a and hence it has decreasing overlap with 
the low-energy scattering states as a > 0 becomes smaller. In 
consequence, the weight of the molecular branch diminishes 
as one moves further away from the Feshbach resonance.

Repulsive excitation branch.  In contrast, a many-body state 
with a much larger many-body overlap |〈ψα|FS〉|2 can be con-
structed by leaving the bound state empty, and instead filling 
the lowest scattering states with all the atoms. This excited 
‘repulsive state’ |ψrep〉 is illustrated in the second column of 
the middle panel in figure 6(d) and leads to the spectral edge at 
positive energies observed on the ‘repulsive’ side of the Fes-
hbach resonance.

The existence of the repulsive state originates from the fact 
that the emergence of the bound state for a > 0 is tied to a 
reassignment of scattering states. While for a < 0 the single-
particle levels are shifted downwards in energy, for a > 0 the 
scattering states are effectively shifted upwards in energy (see 
figures  6(c)–(e)). This reassignment of states becomes par
ticular apparent when considering the limit a → 0+ far away 
from resonance. Here the positive energy shifts of the scatter-
ing states approach zero from above. Indeed it is this upward 
shift of single-particle scattering states that motivates the term 
‘ repulsive’ interaction regime although the microscopic inter-
action of course still remains attractive.
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The repulsive state can again be ‘dressed’ by fluctuations 
around the Fermi surface leading to the continuous spectrum 
directly attached to the repulsive state (illustrated as red shaded 
area in figure  6(d)). In contrast to the bottom-of-the-band 
excitation, however, only dressing towards energies above the 
edge of the repulsive state is efficient due to the finite bind-
ing energy of the molecule. The energy of the repulsive state 
can again be calculated analytically by a summation over the 
single-particle energy shifts reflecting Fumi’s theorem, here 
applied to an excited many-body state. The resulting energy 
Erep is shown as dashed-dotted line in spectrum in figure 4.

While for an infinitely heavy impurity the repulsive state 
has zero quasiparticle weight, for an impurity of finite mass 
the repulsive state becomes the repulsive Fermi polaron exten-
sively discussed in literature [51, 53, 59, 60, 73, 107] and 
observed in cold atoms [67, 68, 70] as well as two-dimensional 
semiconductors [30]. Its analog for impurities immersed in 
a Bose-Einstein condensate was recently observed as well  
[91, 92] following intensive theoretical studies [137–152].

Molecule-hole excitation branch.  The bound state can be 
filled by any state from the Fermi sea which leads to the broad 
excitation band of width εF above the molecular ground state 
called the ‘molecule-hole continuum’ [53, 60, 67]. The upper 
edge of that band at Emol + εF is again dressed by particle-
hole excitations. The collection of these states constitutes the 
‘molecule-hole excitation branch’ and it represents the ana-
log of the bottom-of-the-band branch for a > 0. Note that at 
energies ω < 0 but above Emol + εF we find that a spectral 
gap appears where the weight is exponentially suppressed, 
a phenomenon that is reminiscent of the ‘dark continuum’ 
found in diagrammatic Monte Carlo studies of mobile impuri-
ties by Goulko [56].

4.1.3.  Comparison to experiments.  The reverse RF absorp-
tion spectrum of impurities has been measured in LiK mix-
tures [31, 67]. In these experiments the K impurity atoms are 
mobile. However, as shown in [31], by appropriately identi-
fying the scattering parameters in our model, our theory can 
also be applied also in this case to obtain an approximate 
solution due to the large mass imbalance between K and Li 
atoms and the relatively high temperatures T/TF � 0.1. Spe-
cifically, our reduced mass differs by a factor (40/46) from 
the experimental one [31, 67, 71]. According to equation (6) 
this difference in the effective mass affects the coupling 
strength g between the open-channel atoms and the closed-
channel molecule. In order to achieve the same coupling 
g as realized in experiments we have to choose a rescaled 
Feshbach range parameter kFr∗ = kFr∗exp(40/46)

2 which is 
reduced with respect to the experimental value kFr∗exp (for a 
detailed discussion see [31]).

In figure 4 we show the comparison of the FDA predic-
tion of the reverse RF spectrum to the experimental data 
obtained in [67] taken at low (b) and high (c) RF power for the 
experimentally realized range kFr∗exp = 0.95 and temperature 
T/TF = 0.16. In all subfigures we also show as dashed and 
dot-dashed lines the analytically calculated energies of the 

attractive and repulsive state obtained from Fumi’s theorem as 
also discussed in [36, 60] and appendix C. Our finite temper
ature spectra are in excellent agreement with the experimental 
data not only in energy but also spectral line shapes (see also 
[31]) without any free parameters or artificial broadening of 
spectral lines.

The good agreement in spectral line shapes when apply-
ing our theory to the finite mass case, where it becomes an 
approximation, has two origins. First, although for the infi-
nitely heavy impurity the ground state—e.g. |ψatt〉 with 
energy Eatt—loses all its quasiparticle weight, this weight is 
predominately redistributed to a continuum of states that are 
energetically close to Eatt. Hence the integrated weight taken 
from a sufficiently large energy window around the attractive 
state can gain an integrated strength that is comparable to the 
finite mass case. Therefore, for experiments that are subject to 
broadening of spectral lines due to external factors (such as 
trap average, laser lines width, etc), observed line shapes and 
weights for the finite and infinite-mass case can appear quite 
similar and distinguishing both cases remains a challenge for 
frequency-domain measurements. Second, temperature has 
the effect of broadening spectral lines. As we will show in the 
following section  5, for finite temperature one can assign a 
thermal weight to the dominant attractive and repulsive state 
even for impurities of infinite mass. This leads to an absorp-
tion profile of Lorentzian line shape that is similar to the case 
of a mobile impurities and which further contributes to the 
good agreement between infinite-mass theory and experiment.

Figure 7.  Radio-frequency absorption spectra in the standard RF 
scheme. In the standard scheme, the system is prepared in its many-
body ground state where the impurity is initially interacting with the 
Fermi gas. It is then driven to a state non-interacting with the gas 
(see inset in (b) for an illustration). The spectra are shown for the 
same parameters as in figure 5, i.e. T/TF = (0.01, 0.16) (dashed, 
solid), interaction strengths 1/kFa = (−0.91, −0.1, 1.0), and 
Feshbach range parameter kFr∗ = 0.71.
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4.2.  Standard RF spectra

The attractive Fermi polaron has been observed first in a two-
component 6Li Fermi gas using the ‘standard’ RF scheme [57], 
and its quasi-particle properties, such as its energy and residue 
were measured. To illustrate the impact of the different RF 
protocols we show in figure 7 our prediction for the absorp-
tion spectrum as obtained in the standard RF scheme for the 
same parameters as in figure 5. As discussed in section 3, in 
the standard RF scheme the system is initially prepared in the 
interacting many-body ground state and then driven to a non-
interacting final state.

The spectra are distinctly different from the reverse RF 
scheme. Since in the standard RF scheme the ground state, 
e.g. |ψatt〉 for a < 0, is prepared initially, one has always to 
pay its energy, e.g. Eatt, to ‘break’ this state. This leads to a 
shift to positive energies in the absorption spectrum, which 

increases as the interactions are tuned across the Feshbach 
resonance. This shift has been observed by Schirotzek [57]. 
In particular, as kFa > 0 and the bound state appears in the 
spectrum, the ‘break-up energy’ involves the binding energy 
of the molecule. Note that the repulsive state |ψrep〉, that corre-
sponds to the repulsive Fermi polaron for finite-mass impuri-
ties, cannot be revealed using the standard RF scheme, unless 
it is prepared as an excited, non-equilibrium initial state of the 
system [68].

5.  Universal many-body response: dephasing 
dynamics

In typical condensed matter experiments, real-time observ-
ables such as the many-body overlap S(t) in equation  (10) 
are challenging to measure due to the large size of the Fermi 

Figure 8.  Real-time evolution of Ramsey and spin-echo response. At finite temperature, the real-time Ramsey and spin-echo response of 
the impurity atom unveil a quantum-to-classical crossover from short to long times. Here, the effective range, temperature, and scattering 
length are given by kFr∗ = 0.8, T = 0.01TF, and kFa = −1.1, respectively. The vertical dashed line indicates the thermal time scale 
τth = �/kBT . While for t < τth the spin-echo signal exhibits a three times faster power-law decay than the Ramsey signal, both signals 
are governed the same exponential decay rate in the thermal regime for t > τth. The dashed and dotted lines on top of the FDA data show 
the analytical result for the OC-characteristic power-law decay at early times and thermal exponential decay of coherence at long times, 
respectively.

Figure 9.  Finite temperature decoherence rate of Ramsey and spin-echo signal. (a) The long-time decoherence rate γ, as extracted from 
a fit to the long-time exponential decay of the Ramsey and spin-echo signal computed by FDA, is shown as a function of the inverse 
scattering length for T/TF = 0.1. The decoherence rate γ of the two-channel model with kFr∗ = 0.8 (solid line) is compared with the results 
from a contact interaction model (dashed line). The decay rate of the Ramsey and spin-echo protocol are identical. (b) Decoherence rate 
γ as a function of temperature evaluated at the interactions specified as circle and stars in (a). In (b) the interaction parameters are chosen 
such that in the attractive and repulsive regime both zero and finite range give the same s-wave scattering phase shift δF at the Fermi energy. 
Specifically, in the attractive regime (δF = 0.95): 1/kFa = −0.72, kFr∗ = 0 (dashed blue), and 1/kFa = −1.5, kFr∗ = 0.8 (solid blue); 
repulsive regime (δF = −0.66): 1/kFa = 1.28, kFr∗ = 0 (dashed red), and 1/kFa = 0.5, kFr∗ = 0.8 (solid red).
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energy εF. For instance, in typical solid state materials the 
corresponding Fermi time τF = h/εF is on the order of atto-
seconds [153]. In contrast, in ultracold atomic gases the Fermi 
energy is lower by many orders of magnitude due to the 
diluteness of ultracold atomic gases and large atomic masses, 
which leads to Fermi times on the order of μs to ms. The com-
bination with interferometric techniques available in atomic 
experiments makes it then possible to study many-body cor-
relation functions in fermionic systems in real time and to 
observe striking far-from-equilibrium many-body dynamics.

5.1.  Exact numerical solution

The time-dependent impurity problem represents an instance 
where intriguing dynamics can be observed in an exactly solv-
able many-body system. In figure 8 we show the Ramsey sig-
nal (solid, red line) and the spin-echo response (solid, green 
line) for a system in the attractive interaction regime charac-
terized by kFr∗ = 0.8, T = 0.01 TF  and interaction strength 
kFa = −1.1, as calculated by the FDA. Again, we assume 
infinitely fast π/2 spin rotations both in the Ramsey and spin-
echo sequence.

At times that are short compared to the inverse temper
ature, quantum mechanics governs the evolution: due to the 
sudden switch-on of interactions at t = 0 the many-body 
wave function dephases, leading to a power-law decay of 
the Ramsey response with the exponent (δF/π)2, being the 
universal real-time signature of the Anderson orthogonality 
catastrophe [10, 11].

When time becomes comparable to the inverse temperature, 
t � τth ∼ �/kBT , thermal fluctuations disrupt the coherent 
and time-reversal symmetric quantum many-body dynam-
ics, and a crossover from quantum to predominantly thermal 
dynamics takes place, see figure 8. The precise time scale for 
this crossover depends on the microscopic details, such as the 
scattering length and the effective range. However, this time 
scale depends also on the chosen observable: for instance, in 
the Ramsey signal a crossover to exponential dephasing sets 
in earlier as compared to the spin-echo signal.

One key signature of the asymptotic finite-temperature 
behavior is an exponential decay of coherence, |S(t)| ∼ e−γt. 
Remarkably, while in the quantum regime at early times, before 
thermal decoherence sets in, the dephasing rate is sensitive to 
the specific spin rotation protocol chosen (e.g. the spin-echo 
response decays faster than the Ramsey signal), using the the-
ory of Toeplitz determinants [19, 154], we prove (see appendix 
E) that at finite temperature the long-time decoherence rate γ 
is identical for Ramsey and spin-echo interferometry—even 
though in the spin-echo sequence the impurity spin is flipped in 
the middle of the time evolution. This fact is of particular rele-
vance for recent experiments which inferred the long-time decay 
of the impurity Green’s function from the spin-echo and not the 
Ramsey signal [71] (see also the discussion in section 5.4).

In figure 9(a), we show the interaction dependence of the 
finite-temperature decoherence rates γ at T/TF = 0.1 which 
are identical for both Ramsey and spin-echo interferometry. 
The rates are extracted from a fit to the very long-time decay 
of the numerically evaluated S(t) and SSE(t) response, such 

as shown in figure 8. We compare the decoherence rate for 
finite kFr∗ = 0.8 and for zero range kFr∗ = 0 corresponding 
to a model with contact interactions.

As expected, for zero-range interactions, the maximum 
decoherence rate arises at kFa → ∞. The inclusion of a finite 
range has the consequence of shifting this maximum of the 
decoherence rate away from the center of the Feshbach reso-
nance. This shift can be understood from an analysis of the 
most relevant scattering processes which, due to Pauli block-
ade, take place close to the Fermi surface. The impurity-par-
ticle scattering rate is determined by the scattering amplitude 
f (k) and hence the scattering phase shift δF, see equation (1), 
evaluated at the Fermi energy E = εF.

For finite range r∗ > 0, the magnitude of the scattering 
amplitude becomes maximal not at kFa = ∞ but when the 
phase shift δF equals π/2. The corresponding critical scatter-
ing length acr marks the transition from the attractive to the 
mixed interaction regime. The shift in the decoherence rate 
can be seen in figure 9(a) where the maximum decoherence is 
reached at 1/kFacr = −kFr∗ = −0.8. The finite effective range 
in (1) hence leads to the, at first sight, counterintuitive effect 
that, in the mixed regime, decoherence can slow down as the 
magnitude of the scattering length a increases. Remarkably 
this also implies that the position of the decoherence maxi-
mum can be used to determine the few-body effective range 
from thermal many-body observables.

In figure  9(b), we show the temperature dependence of 
the exponential decay rate obtained from exact calculations 
of S(t). In this figure, we compare the thermal decay rate γ 
on both sides of the Feshbach resonance for zero and finite-
range interactions. To highlight the universality of our results, 
we choose interaction parameters so that for both scenarios 
the phase shifts δF are equal. We find that only at temper
atures T/TF � 0.15 deviations become visible. This signifies 
the highly universal character of the physics which is domi-
nated by the low-energy scattering phase shift alone and does 
not depend on the microscopic details of interactions. For 
low temperatures, we prove below that the maximal thermal 
dephasing rate for heavy impurities interacting with a Fermi 
gas with short-range interactions is in the long-time limit uni-
versally given by

γmax =
π

4
T .� (15)

This value is saturated at the transition from the attractive to 
the mixed interaction regime.

As the temperature goes to zero, the thermal decoherence 
rate γ vanishes. In this limit, the asymptotic exponential 
form of the decay breaks down and logarithmic corrections 
start to dominate. Those lead to the power-law decay of S(t) 
as the key signature of the Anderson orthogonality catastro-
phe with an exponent given by (δF/π)2. In contrast to the 
long-time exponential decay at finite temperature, at zero 
temperature the power law exponent does depend on the 
trajectory of the impurity spin on the Bloch sphere which 
are different for Ramsey or spin-echo interferometry. In 
particular, quantum interference effects enhance the expo-
nent at each spin flip in an interferometric sequence [73]. 
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Using the theoretical techniques of [13, 73], we prove that 
the spin-echo exponent is enhanced by a factor three; details 
are given in appendix E.2.

We note that for very narrow Feshbach resonances with 
kFr∗ � 1 the deviations from the contact interaction model, 
visible in figure  9(b), set in at lower temperatures. This is 
due to the fact that for such resonances the phase shift δ(E) 
close to the Fermi surface becomes strongly energy depend-
ent. The thermal softening of the Fermi distribution function 
allows fermions to probe this energy dependence which leads 
to the deviations of dephasing rate from the contact interac-
tion model.

5.2.  Analytical results

While the previous subsection focused on an exact numer
ical evaluation of the Ramsey signal at all times, we will now 
derive analytical expressions at intermediate and long times. 
Analytical results for the short-time dynamics will be dis-
cussed in section 6.

In this section, we are interested in the many-body 
regime of quantum dynamics where tεF � 1 and study the 
crossover from the ‘low-T’ regime (with tT � 1), where 
S(t) exhibits power-law dephasing [10, 11, 126, 136], to the 
‘high-T’ regime (tT � 1) showing exponential decay (fig-
ure 8) [127]. While analytic understanding of the Ramsey 
response has been developed in [73] in the low-T regime 
for zero-range interactions, below we focus on the high-T 
regime.

5.2.1.  Excitation branches.  Similarly to the absorption spec-
trum A(ω) discussed in section 4, the time-dependent overlap 
S(t) can be decomposed into the sum

S(t) =
∑

{|ψα〉}

|〈ψα|FS〉|2eiEFSte−iEαt,
� (16)

where {|ψα〉} denotes the complete set of many-body eigen-
states of the ‘interacting’ Hamiltonian Ĥ  with eigenenergies 
Eα, and |FS〉 the non-interacting Fermi sea.

Being directly related by Fourier transforms, A(ω) and S(t) 
carry the same physical information (for details see appendix 
B). Depending on the interaction regime, different ‘excitation 
branches’ {|ψα〉} dominate the dynamics of S(t). In section 4 
we identified five such branches (summarized in figure 6), and 
to make the discussion in this section self-contained we repeat 
here our main findings.

In the attractive and mixed regimes (a) and (b), the absorp-
tion spectra are dominated by the attractive state together with 
particle-hole (p/h) excitations around the Fermi surface (FS); 
this collection of states constitutes the ‘attractive excitation 
branch’ (branch A). Another relevant class of excitations in 
regimes (a) and (b) is the bottom-of-the-band contribution (FB, 
for ‘Fermi bottom’). Together with p/h excitations it forms the 
‘bottom-of-the-band branch’ (branch B), see figure 6(b). We 
find that these two branches describe accurately the long-time 
many-body dynamics and S(t) can be approximated as

S(t) ≈ SA(t) + SB(t) ,� (17)

where SA(t) accounts for the attractive branch A, and SB(t) 
accounts for the bottom-of-the-band branch B.

The two branch contributions can be written as

SA(t) = CA S(FS)0 (t), SB(t) = CB S(FS)1 (t) S(FB)−1 (t) .� (18)

Here S(FS)n (t) and S(FB)n (t) represent excitations around the 
Fermi level and the creation of a hole at the bottom of the 
Fermi sea, respectively. The subscript n specifies the number 
of particles added or removed from the Fermi surface or bot-
tom of the Fermi sea. Note that the total particle number is 
conserved in each of the branches. For instance, in SB(t) one 
particle is removed from the bottom of the band and inserted 
close to the Fermi surface.

In the ‘repulsive regime’ (c), where δF < 0 and a bound 
state (BS) is present, three relevant branches can be identified 
and S(t) approximated as

S(t) ≈ SA1(t) + SB1(t) + SB2(t) .� (19)

The three branches, denoted as ‘molecular excitation branch’ 
A1, the ‘repulsive excitation branch’ B1, and the ‘molecule-
hole branch’ B2 correspond to the most relevant spectral fea-
tures discussed in section 4. As illustrated in figure 6(c), SA1(t) 
represents the attractive ground state ‘dressed’ by p/h excita-
tions. In the spectral function those states correspond to the 
absorption edge at negative frequencies, while SB1(t) accounts 
for p/h excitations close to the Fermi surface on top of the 
repulsive state, see figure  6(d). Finally, SB2(t) describes the 
edge of the molecule-hole continuum and represents the fam-
ily of states where the bound state is filled by an atom from 
the bottom of the Fermi sea again dressed by p/h fluctuations 
at the Fermi surface, see figure 6(e). Accordingly, the branch 
contributions can be expressed in terms of the processes (FS), 
(BS), and (FB),

SA1(t) = CA1 S
(FS)
−1 (t) S(BS)1 (t) ,

SB1(t) = CB1 S
(FS)
0 (t) ,

SB2(t) = CB2 S
(FS)
0 (t) S(FB)−1 (t) S(BS)1 (t) .

� (20)

While the contributions Sα(t) can be analytically evalu-
ated as we will now demonstrate, the coefficients Cα in 
equations  (18) and (20) depend on the microscopic details, 
and have to be determined from a numerical evaluation of 
equation (12).

5.2.2. Temperature independent contributions.  First, we 
turn to the contributions from the bottom of the Fermi sea 

S(FB)−1 (t) and the bound state S(BS)1 (t). Both involve states deep 
under the Fermi sea and hence yield temperature-independent 
contributions to the dynamics. The bound-state contribution is 
simply given by the phase accumulation of the form

S(BS)1 (t) ∝ e−iεBt ,� (21)

where εB < 0 is the energy of the bound state.
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For the bottom-of-the-band feature an analysis of the rel-
evant many-body states yields (for details see appendix D)

S(FB)−1 (t) ∝
∫ ∞

0

dE√
εFE

sin2 δ(E) eiEt .� (22)

Equation (22) has a power-law decay with time t−1/2 at 
1/εF � t � 1/ε∗B and t−3/2 at 1 � tε∗B, where we define the 
energy scale ε∗B = 1/(2m|a|2) for both positive and negative 
a. A similar result for the bottom-of-the-band and bound-state 
contributions was reported in [73].

5.2.3.  Fermi-surface contributions.  In contrast to the (BS) 
and (FB) processes, p/h excitations around the Fermi surface 
(FS) involve arbitrarily low energies. Hence these processes 
are influenced by finite temperature and they become respon-
sible for the exponential dephasing of the Ramsey signal.

The behavior of the contributions S(FS)n (t) can be under-
stood analytically using two approaches. First, bosonization, 
valid at low temperatures, allows us to describe a crossover 
from short-time power-law decay to long-time exponential 
decoherence and allows us to reveal corrections to the temper
ature dependence of the decoherence rate. Second, the theory 
of Toeplitz determinants provides analytical expressions for 
the decoherence rate of the various excitation branches at rela-
tively high temperatures.

5.2.4.  Bosonization.  In the bosonization approach (for 
details see appendix D and [4, 29]), the energy dependence 
of the phase shift δ(E) is neglected and the dispersion relation  
is linearized around the Fermi surface. Hence, the approach is 
only applicable at low temperatures where the Fermi surface is 
sharply defined. Following standard bosonization techniques 
one can extract the power-law decay of coherence at T = 0,

S(FS)0 (t) ∝ e−i∆Et t−(δF/π)
2
,� (23)

which represents the well-known result for the Fermi-edge 
singularity [11]. Here the energy ∆E determines the spectral 
onset of the attractive and repulsive polaron feature, which is 
given by Fumi’s theorem [1, 4],

∆E = −
∫ εF

0

dE
π
δ(E) ,� (24)

as a sum over all phase shifts up to the Fermi energy (see 
appendix C).

At finite temperature, a conformal mapping of com-
plex time onto a cylinder with the periodicity i/T  leads to  
(see appendix D and [29, 155, 156])

S(FS)0 (t) ∝ e−i∆Et
(

πT
sinhπTt

)(δF/π)
2

,� (25)

which generalizes equation (23) to finite temperature.
Now we turn to the Fermi-surface branch contrib

utions S(FS)n (t) for n �= 0 . These contributions appear when 
atoms are transferred from the bottom of the Fermi sea 
to the Fermi surface (n = 1) or from the Fermi surface 
to the bound state (n = −1). As derived in the theory of 
the Fermi-edge singularity [128], and as also discussed in 
the context of full counting statistics (see, e.g. [22, 157] 
and references therein), the contributions Sn(t) with n �= 0 
are accounted for by a shift δF → δF ± π. Furthermore, as 
a particle is removed or added to the Fermi surface, the 
energy ∆E  is modified as well, and ∆E → ∆E ± εF. This 
leads to the general expression for the various Fermi-
surface contributions,

S(FS)n (t) ∝ e−i(∆E+nεF)t
(

πT
sinhπTt

)(
δF
π −n

)2

.� (26)

This equation  describes the full crossover from the low-
temperature regime with power-law behavior

S(FS)n (t) ∝ e−i(∆E+nεF)t t−
(

δF
π −n

)2

� (27)
to the finite temperature regime where, at sufficiently long 
times tT � 1, the Fermi-surface contributions decay expo-
nentially according to

S(FS)n (t) ∝ T
(

δF
π −n

)2

e−γnte−iωnt .� (28)

Here, we introduced the exponential decay rates and 
frequencies

γn = T
(δF − nπ)2

π
,

ωn = ∆E + nεF.
� (29)

Table 1.  Summary of the interaction regimes and branches. The various branches contributing to the dephasing of S(t). The leading 
branches, leading dephasing rates, as well as references to the high temperature corrections are indicated for the different interaction 
regimes (a)–(c).

Interaction regime Parameters Branch Leading
Contribution  
to S(t)

Low-T decay 
rate γ

High-T  
correction

(a) ‘Attractive’ a < 0, δ(E) > 0, A yes S(FS)0 (t) γ0 = Tδ2F/π Equation (34)

δF < π/2 B no S(FS)1 (t) S(FB)−1 (t) γ1 = T(δF − π)2/π Equation (38)

(b) ‘Mixed’ a < 0, δ(E) > 0, A no S(FS)0 (t) γ0 = Tδ2F/π Equation (38)

δF > π/2 B yes S(FS)1 (t) S(FB)−1 (t) γ1 = T(δF − π)2/π Equation (34)

(c) ‘Repulsive’ a > 0, δ(E) < 0 A1 no S(FS)−1 (t) S(BS)1 (t) γ−1 = T(δF + π)2/π Equation (38)

B1 yes S(FS)0 (t) γ0 = Tδ2F/π Equation (34)

B2 yes S(FS)0 (t) S(FB)−1 (t) S(BS)1 (t) γ0 = Tδ2F/π Equation (34)
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Remarkably, equation (28) predicts a prefactor of the expo-
nential decay which features a power-law dependence on 
temperature with an exponent governed by the OC (δF/π)2.

According to equations  (17) and (19), S(t) is given by a 
sum over various branch contributions. Out of those, the 
branch exhibiting the smallest decay coefficient γn, as deter-
mined by equation (29), will survive at long evolution times. 
This branch, which we call the ‘leading’ branch, determines 

the temperature scaling of the prefactor ∝ T
(

δF
π −n

)
2

 in 
equation (28).

In table  1 we summarize our findings. In the column 
‘low-T decay rate’ we list the decay rates γn which are appli-
cable in the limit T/εF � 1 (provided tT � 1 and tεF � 1). 
Furthermore we show the definitions of the interaction regimes 
as well as the various contributions to the dephasing dynamics 
of the Ramsey signal S(t).

For instance, according to equation  (18), in the attrac-

tive regime (a) both S(FS)0 (t) and S(FS)1 (t) contribute. Since in 
this regime δF < π/2, we find that γ0 < γ1. Therefore SA(t), 
which represents the attractive excitation branch, is leading. 
In contrast, in the mixed regime (b) γ1 < γ0 and hence the 
bottom-of-the-band contribution SB(t) is the leading branch. 
Finally, in the repulsive regime (c) both SB1(t) and SB2(t) are 
leading branches. They represent the dressed repulsive state 
branch and the edge of the molecule-hole continuum, respec-
tively (see figure 6).

The actual time scale from which on the leading branch 
observably dominates the dynamics depends on the relative 
magnitudes of its coefficients Cα(T). For instance, in the 
mixed regime (b) the ‘bottom-of-the-band branch’ B is lead-
ing. However, its coefficient CB can be numerically so small 
that for experimentally observable times the attractive branch 
A actually dominates the dynamics. This effect is shown in 
figure  10. Here a crossover between two exponential decay 

rates can be seen in the Ramsey signal S(t). For short and 
intermediate times, S(t) exhibits an exponential decay with 
the ‘fast’, subleading decay rate γ0 (dotted line). Only at long 
times S(t) crosses over to the slower, leading decay rate γ1 
(dot-dashed line).

The fact that the fast decay of the subleading branch can 
dominate the short-time behavior demonstrates that, although 
the observed dynamics may naively seem to have reached 
quasi-classical behavior, quantum effects can still lead to 
long-time interference effects. The small signal at long times 
makes the experimental observation of this crossover between 
multiple exponential decoherence rates a challenge, simi-
lar to competing T2 decay coefficients encountered in NMR 
spectroscopy [158, 159]. We note that in figure 10 we have 
chosen interaction parameters that allow us to demonstrate 
the crossover at long times. This choice leads to a very small 
Ramsey contrast in the crossover regime. In experiments more 
favorable interaction parameters can be chosen that lead to a 
substantially higher Ramsey contrast (as an example see fig-
ure F1 in appendix F).

Power-law temperature dependence.  The power-law 
temperature dependence of the Fermi surface contributions 
given by equation (28) can be observed experimentally. One 
means to do so is to fit the asymptotic forms of S(t) in equa-
tions  (17) and (19) to the measured data of S(t). To obtain 
unbiased results, the prefactor T

(
δF
π −n

)
2

 is absorbed in a res-
caled definition of the coefficients

C̃α(T) = CαT
(

δF
π −n

)2

� (30)

where Cα is a temperature independent constant. Studying the 
fit parameters C̃α(T) as a function of temperature then allows 
one to reveal the intricate OC power-law dependence.

We demonstrate this fitting procedure for the three interac-
tion regimes by numerically calculating the exact signal S(t) 
shown in the upper panels of figure 11. This data is then fit 
by the respective asymptotic forms (17) and (19) using equa-
tions (21), (22) and (26) with rescaled coefficients C̃α(T). The 
resulting fits of the complex S(t) are shown as solid lines in 
figures 11(a)–(c) and they compare remarkably well with the 
exact data (symbols) down to relatively short times.

The scaling of the extracted coefficients C̃α with temper
ature is shown in the lower panels of figure 11. Specifically, in 
figure 11(d) we study the attractive regime where the attractive 
branch A is leading. We find that the corresponding coefficient 
C̃A universally follows the predicted power-law dependence. 
Furthermore, our analysis shows that the subleading coeffi-
cient |C̃B(T)| is numerically smaller than |C̃A(T)| so that the 
leading branch A will also dominate the decay of S(t).

As an alternative to a fit of the full complex signal of S(t), 
one may also fit directly the absolute value |S(t)| to obtain the 
temperature scaling of C̃α. In such a procedure, illustrated 
in figure 12, |C̃α| as well as the decay exponent serve as fit 
parameters. The corresponding results are illustrated as open 
symbols in figure  11(d). This alternative procedure reveals 
that the temperature scaling of C̃A, that is governed by the OC 

Figure 10.  Crossover from subleading to leading branch dynamics. 
Absolute value of the Ramsey contrast S(t) as function of time. 
Interaction parameters are chosen to correspond to the mixed 
regime (b) with T/TF = 0.1, 1/kFa = −0.61, and kFr∗ = 0.8. The 
solid line shows the exact numerical evaluation of the dynamical 
overlap S(t) using the FDA, while the dotted (dashed) line shows 
exponentials with exponents γ1 (γ0), respectively, which correspond 
to the leading (subleading) branch dynamics in this interaction 
regime. For the detailed dependence of the decoherence rates on 
1/(kFa), see figure 15.
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exponent 
(
δF
π

)
2, can be observed up to temperatures as large 

as T/TF ≈ 0.2, making it accessible to current experimental 
technology.

Figure 11(e) shows the results in the mixed regime 
(kFr∗ = 0.8, 1/kFa = −0.5) for both coefficients C̃A(T) 
and C̃B(T). The dashed and solid curves show the predicted 
asymptotic power law behavior  ∼T

(
δF
π

)
2

 and  ∼T
(

δF
π −1

)
2

, 
respectively. Although in this regime the bottom-of-the-band 

branch B is formally leading, the corresponding coefficient 
|C̃B(T)| is numerically substantially smaller than |C̃A(T)|. 
This finding reflects the crossover of exponential decay rates 
shown in figure  10: for limited observation time the decay 
with the subleading, and hence larger decay rate γ0 will domi-
nate. This demonstrates that in experiments performed in the 
mixed interaction regime one has to be careful in assigning 
thermal decoherence rates from early-time dynamics.

In the repulsive interaction regime the presence of the 
bound state leads to additional oscillations in the Ramsey 
signal. As can be seen in the upper panel figure 11(c) these 
oscillations are captured with remarkably high accuracy by 
the analytical expression equation  (19) even at short times. 
In the lower panel figure  11(f) the temperature dependence 
of the corresponding rescaled Ramsey coefficients C̃α(T) is 
shown. We find that up to high temperatures T/TF = 0.2 the 
coefficient C̃A1 follows the power-law prediction (solid line). 
Similarly to the mixed interaction regime, it is again not the 
leading branches B1 and B2 which have the numerically larg-
est values |C̃α(T)|. Instead, for the chosen interactions we 
find that the subleading bound-state branch A1 dominates the 
dephasing at short and intermediate times.

Relation to ion mobility in 3He.  Our results on the scaling of 
the coefficients C̃α(T) allow us to draw connections to early 
work by Kondo and Soda [160] on ion mobility in 3He. In 
their work Kondo and Soda studied the renormalization of a 
heavy ion due to its interaction with the fermionic quasipar-
ticles in liquid 3He. In this case, the ion Green’s function can 
be expressed as G(q,ω) = Z(T)/[ω − Eq + iΓ(T)], which in 
the time domain becomes

G(q, t) = Z(T)e−ΓteiEqt.� (31)

Figure 11.  Power-low temperature dependence of dephasing dynamics. The upper panels (a-c) show the real and imaginary part of 
the Ramsey signal as calculated exactly using the FDA (symbols). The data, shown for the exemplary temperature T/TF = 0.012, is 
fitted by the analytical expressions (17) and (19) (solid lines). The results are shown for parameters (a) 1/kFa = −0.1, kFr∗ = 0, (b) 
1/kFa = −0.5, kFr∗ = 0.8 (c) 1/kFa = 2, kFr∗ = 0. In (d-f) the temperature dependence of the rescaled coefficients C̃α(T) is shown 
where α = (A,B,A1, B1, B2) specifies the excitation branch. The parameters are: (d) 1/kFa = −0.1, kFr∗ = 0 (black) and 1/kFa = −2, 
kFr∗ = 0.8 (red), (e) 1/kFa = −0.5, kFr∗ = 0.8, (f) 1/kFa = 0.1, kFr∗ = 0. The open symbols in (d) correspond to an alternative fitting 
procedure, where the absolute value of |S(t)| is fit by a single exponential decay function.

Figure 12.  Thermal decay of the Ramsey signal and thermal 
weight. The Ramsey contrast |S(t)| is shown for various 
temperatures at fixed interaction parameters kFa = −1.1 and 
kFr∗ = 0.8. While at T = 0 the contrast decays to zero as a power-
law, the decay is exponential at finite temperature. The dashed 
lines are exponential fits to the data and the points on the y-axis 
indicate the scaling behavior of the ‘thermal weights’ C̃A (the fit for 
T/TF = 0.01 involves data at times not shown in the plot). For an 
impurity of finite mass (e.g. mimp/m = 40/6 for a 40K impurity in 
a 6Li Fermi gas), the decay of the Ramsey contrast would saturate 
at the finite polaron quasi-particle weight Z = |S(t → ∞)| at zero 
temperature (illustrated by the dot-dashed line).
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Here Ep is the renormalized ion dispersion relation and Γ(T) 
its quasiparticle lifetime. Z(T) is the quasiparticle weight that 
determines the ion mobility µ ∝ Z(T)2 [160].

Using a perturbative expansion, Kondo and Soda predicted 
the ion quasiparticle weight to scale as

Z(T) ∝
(

T
TF

)2V2
0ρ

2

.� (32)

Here V0 is the microscopic contact coupling constant between 
the ion impurity and fermions of mass m, and ρ is the density 
of states at the Fermi surface. This scaling was predicted to be 
valid for temperatures T0 � T � TF, where T0 ≡ (m/M)TF 
approaches zero as the ion mass M goes to infinity.

The expression for the ion Green’s function equa-
tion  (31) suggests a comparison with our prediction for the 
Fermi surface contribution to the impurity Green’s function 
equation  (28). Remarkably, the scaling of the prefactor, see 
equation  (30) for n = 0, reproduces Kondo’s scaling of the 
impurity quasiparticle weight in equation  (32), in our case 
derived from an exact calculation.

Having this relation in mind, one may interpret the coef-
ficients C̃α as wave-function renormalizations that determine 
the temperature-dependent spectral weight of the respective 
excitation branches. As temperature goes to zero we predict 
this thermal weight to vanish according to a power law that is 
governed by the OC exponent, see figure 11. This behavior is 
illustrated in figure 12, where we show Ramsey contrast curves 
at various temperatures. Exponential fits to the long-time 
decoherence data, shown as dashed lines in figure 12, indicate 
that the weights of the exponential decays, shown as green 
dots, decrease with decreasing temperature. Simultaneously, 
the regime of quantum dephasing extends to longer times. In 
the limit of zero temperature, the thermal weight goes to zero 
and the thermal exponential decay of the Ramsey contrast is 
replaced by a power law with exponent (δF/π)2, characteristic 
of the Anderson OC. Remarkably, we find that each excita-
tion branch is governed by its unique scaling exponent. While 

in liquid Helium the measurement of subleading excitation 
branches is difficult, ultracold atoms allow not only for the 
verification of the power-law scaling equation  (30) but also 
for the observation of subleading excitation branch dynamics.

We note that, while for an infinitely heavy impurity the 
thermal weight C̃A goes to zero at T = 0, for a mobile impu-
rity in three dimensions the Ramsey contrast will saturate at a 
finite quasi-particle weight Z(T = 0) = S(t → ∞) (illustrated 
by horizontal dash-dotted line in figure 12 [31, 32, 53, 60]). 
Here, the time scale for the crossover to many-body dynam-
ics that is greatly affected by the impurity mass is expected 
to be approximately given by the inverse impurity recoil 
energy Erec ∼ (2kF)2/(2M). However, both a detailed study 
of the behavior of the quasiparticle weight as function of the 
inverse impurity mass 1/M as well as the related many-body 
dynamics remain open questions which need to be addressed 
in future studies.

5.2.5. Toeplitz-determinant approach.  In figure 13 we com-
pare the temperature dependence of the leading branch deco-
herence rate γn as obtained from bosonization (dotted lines) 
with the exact numerical result (solid lines). We find that 
for sufficiently low temperatures both agree. However, as 
T/TF is increased to values realized in current experiments, 
T/TF ≈ 0.2, deviations appear. The reason for the failure of 
the bosonization approach lies in the fact that at high temper
atures, on the one hand, the energy dependence of the phase 
shift δ(E) has to be taken into account, and, on the other hand, 
the assumption of a linearized dispersion relation becomes 
invalid.

These effects can be taken into account in a quasi-classical 
approach motivated by the theory of the Toeplitz determinants 
[19, 161–165]. In this approach, many-body overlaps such as 
equation (12) are evaluated in a quasi-classical basis of wave 
packets localized both in coordinate space and momentum; 
for details we refer to appendix E. In this basis, the evolution 
operator in equation (10) is of a Toeplitz form, i.e. the kernel 
depends only on a time difference and, consequently, S(t) can 

Figure 13.  Decoherence rate at high temperatures. We compare 
theoretical predictions from bosonization and the Toeplitz-
determinant approach to the numerically exact long-time 
decoherence rate of the Ramsey signal as function of temperature 
in the attractive and repulsive regime for kFr∗ = 0.8. The Toeplitz 
determinant approach gives very accurate results up to high 
temperatures, while bosonization starts to fail at T/TF ≈ 0.15.

Figure 14.  Evaluation of the Toeplitz determinant. For the 
evaluation of the Toeplitz determinant according to equation (33) 
the branch of the logarithm has to be analytically continued as 
illustrated by the black solid line. Here the imaginary part of 
the integrand lnσ(E) is shown as function of E for interaction 
parameters in the mixed interaction regime (b) with 1/kFa = −0.5, 
kFr∗ = 0.8, and T/TF = 0.114.
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be expressed as a Toeplitz determinant. Such determinants 
were studied in various physical and mathematical context, 
and, applying these techniques, the asymptotic behavior of 
the Fermi-surface contributions at long times can be obtained 
(see, e.g. [22] for a related discussion in the context of full 
counting statistics).

Leading branch decoherence.  The leading asymptotic 
behavior of Toeplitz determinants is given by the so-called 
Szegő formula, which allows us to map the calculation of the 
asymptotic Toeplitz determinant onto contour integrations, 
see e.g. [165]. By going to the frequency representation, in 
which the kernel operator in equation  (10) is diagonal, one 
finds for the Fermi sea contributions (see appendix E)

S(t) = exp

(
t
∫ ∞

0

dE
2π

ln
[
1− nF(E) + nF(E)e2iδ(E)

])
,

� (33)
where nF(E) is the Fermi occupation number.

In the evaluation of equation (33) the branch of the loga-
rithm must be chosen so that the integrand analytically contin-
ues along the integration contour and tends to zero as E → ∞. 
While in the attractive and repulsive interaction regime (a) and 
(c) one can remain in the principal branch of the logarithm, 
the mixed interaction regime (b) requires more care. Here the 
phase shift at the Fermi surface exceeds π/2 which requires to 
evaluate the integrand in equation (33) starting at low energies 
in the lower Riemann sheet and then analytically continue to 
the principal branch at high energies. This is illustrated in fig-
ure 14 where we show the imaginary part of the integrand of 
equation (33) along the integration contour.

Using this integration procedure, one obtains the oscilla-
tion frequency ωL  and the decay rate γL  from

iωL + γL = −
∫ ∞

0

dE
2π

ln [σ(E)] ,� (34)

where we defined the so-called ‘symbol’ of the Toeplitz 
determinant

σ(E) = 1− nF(E) + nF(E)e2iδ(E).� (35)

However, the values of ωL  and γL  as obtained from equa-
tion (34) correspond only to the leading branch of the respec-
tive interaction regime (see figure  6): in regime (a) this is 
branch A, in regime (b) it is branch B, and in regime (c) these 
are the branches B1 and B2. Note that in the limit T → 0, the 
integral (34) is easily computable and reproduces the results 
derived in the bosonization approach, equation (29).

Subleading branch decoherence.  Calculating the frequen-
cies and the decay rates for the subleading branch requires 
more effort. In the context of the theory of Toeplitz determi-
nants, subleading branches were studied in the case of singular 
symbols σ(E). In that case, the theory of subleading branches is 
known under the name of the generalized Fisher-Hartwig con-
jecture and all branches decay as power laws [162, 166, 167].  
However, in our finite-temperature case, the decay is expo-
nential, and the theory of Fisher-Hartwig singularities does 
not directly apply.

Still, the contribution of different excitation branches 
can be found from the following argument. Each branch 
contribution corresponds to a specific configuration of fermi-
ons (see figure 6) and should be an analytical functional of 
δ(E). Consequently, the subleading branch may be obtained 
as an analytical continuation from the regime where the corre
sponding contribution constitutes the leading branch and is 
given by equation  (33). This analytical continuation techni-
cally amounts to a continuous deformation of the leading inte-
gration contour in equation (33) into a new contour CSL in the 
complex energy plane so that it never crosses any singularities 
of the integrand.

As discussed in detail in appendix G, we find that for each 
interaction regime an integration contour CSL can be chosen to 
give the desired subleading frequency and decay rate

iωSL + γSL = −
∫

CSL

dE
2π

ln [σ(E)] .� (36)

Figure 15.  Dependence of decoherence rate on the interaction 
strength. The interaction dependent decoherence rate of S(t) 
obtained from the exact FDA and Toeplitz determinant approach  
at T/TF = 0.1 and kFr∗ = 0.8.

Figure 16.  Universal scaling relations of decoherence rates. At low 
temperatures the decoherence rates of the leading and subleading 
branch obey the universal scaling relations equation (39) (solid 
line) which are independent of interaction strength and hold up to 
temperature T/TF ≈ 0.2 as can be seen from the comparison to 
the result from the Toeplitz determinant theory for three different 
interaction strengths and fixed kFr∗ = 0.8.
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The specific contours are derived from an analysis of the ana-
lytical structure of the integrand lnσ(E) which is determined 
by the roots Er of the symbol σ(E),

σ(Er) = 0 ,� (37)

in the complex energy plane. By choosing the appropriate 
integration contours one can show that the subleading decay 
rate and frequency are given by (see appendix G)

γSL = γL + |ImEr|
ωSL = ωL − sign(ImEr) ReEr .

� (38)

In the low temperature limit T → 0, Er = εF + iT(±π + 2δF) 
where the  −  applies to the attractive and mixed regime (a) and 
(b) and + holds for the repulsive regime (c). Then the result 
equation (38) indeed reproduces equation (29).

The analytical Toeplitz approach is in remarkable agree-
ment with exact numerical results. In figure 13 we compare 
the temperature dependence of decoherence rate as obtained 
from the Toeplitz approach and the exact FDA calculation. 
The predicted rates, shown for two interaction regimes, are in 
excellent agreement up to temperatures as high as T/TF ≈ 1, 
where bosonization completely fails.

The virtue of the Toeplitz approach is further demonstrated 
in figure  15 where we show the interaction dependence of 
the decoherence rate. The rate of the leading (solid) and sub-
leading branch (dashed) obtained from the Toeplitz approach 
compare remarkably well with the exact FDA results (sym-
bols). But most importantly it also analytically predicts the 
rate of the subleading branch which can dominate the inter-
mediate time evolution, see figure  10. As discussed below, 
this becomes particularly relevant for experiments in which 
very long time scales are inaccessible due to small Ramsey 
contrast.

5.3.  Universal scaling relations

Within the bosonization approximation, the decay rates and 
frequencies for the leading and subleading branches obey 
simple scaling relations,

√
γL +

√
γSL =

√
πT ,� (39)

|ωL − ωSL| = εF.� (40)

These relations are universal and do not depend on the par
ticular form of the phase shift δ(E). Being derived from 
bosonization, they are valid in the limit of low temperature T, 
but remarkably, we find that finite-T corrections remain small 
up to rather high temperatures compared to TF. This is illus-
trated in figure 16, where we compare the scaling of the decay 
rates obtained from the Toeplitz determinant approach to the 
prediction equation (39) for the various interaction regimes.

5.4.  Comparison to experiments

The long-time thermal decoherence rate of impurities 
immersed in a Fermi gas has recently been measured [71]. 
The experiment was performed using a dilute sample of  
40K impurities immersed in a 6Li Fermi gas, and the spin-echo 
decoherence rate was determined. The interaction between the 
impurities and the Fermi gas was characterized by a narrow 
Feshbach resonance of range kFr∗exp = 0.93 and the temper
ature was T/TF = 0.16. For relatively ‘weak’ interactions 
with 1/kFa < −1.4 and 1/kFa > 0.8 the loss in spin-echo con-
trast |E(t)| was recorded up to long times tεF ≈ 220 and was 
fit to an exponential decay. In figure 17(a) the experimentally 
determined finite temperature decoherence rate is shown as 

Figure 17.  Decoherence rate: theory and experiment [71]. (a) 
Decoherence rate as function of interaction strength 1/kFa. The 
black symbols represent the experimentally measured decoherence 
rate of the spin-echo signal at long times while the red data points 
were extracted from exponential fits to the short-time dynamics. 
The theoretical predictions from FDA and Toeplitz determinant 
theory are shown as solid and dashed lines. They are obtained for 
experimental temperature T/TF = 0.16 and rescaled resonance 
parameter kFr∗ = (40/46)2kFr∗exp = 0.7 [31]. (b) FDA simulation of 
the time-resolved responses (lines) and experimental data (symbols) 
for the interaction strength 1/kFa = −2.1, indicated by the open 
square in (a). The Ramsey and spin-echo response lead to the same 
exponential decay rate. (c) FDA simulation of the experimental 
spin-echo sequence at T/TF = 0.2 and 1/kFa = −0.15, including 
finite pulse duration and initial state interaction. The dotted line is 
an exponential fit to the experimental data that leads to the open red 
circle in (a). The inset shows a zoom into short evolution times on a 
linear scale. The experimental data is taken from [71].
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black squares. In this figure we also show our prediction from 
the FDA with the appropriately rescaled resonance parameter 
kFr∗ = (40/46)2kFr∗exp = 0.7 (see [31]) as the blue solid line. 
In this temperature regime the exact FDA agrees with the the-
ory of Toeplitz determinants and we find full agreement with 
the experimental data (black squares).

In a complementary approach in [71, 115], the thermal 
decoherence rate of the spin-echo signal was calculated 
using Fermi liquid theory. In these works, which relied on an 
a priori assumed equivalence of the spin-echo and Ramsey 
signal, good agreement with experimental observation was 
found away from the Feshbach resonance. In the theoretical 
description, which applies to the weakly interacting regime 
[71], the inclusion of the decay of the repulsive polaron into 
the weakly bound molecular state was found to be important 
in the repulsive regime. This decay process was captured by 
adding a semi-phenomenological decay rate to the quasipar-
ticle collision rate, obtained from Fermi liquid theory. Our 
results which are based on an exact solution, fully include all 
conversion processes between the repulsive polaron excita-
tion branch and the molecular state. The excellent agreement 
of our prediction with the experimental data hence confirms 
the previous conjecture [71] that the inclusion of higher-order 
processes is crucial for an accurate description of the impurity 
dephasing dynamics.

Close to the Feshbach resonance, the experiment could not 
access the very long-time dynamics due to fast loss of spin-
echo contrast. As a consequence, the data was measured only 
up to small times of tεF ≈ 10 and again fit to an exponential 
decay. The resulting, experimentally measured rates are shown 
as the red dots in figure 17(a). We find that in the mixed, as 
well as in the repulsive regime at strong interactions, it devi-
ates from the FDA prediction.

Based on our previous discussion this discrepancy does, 
however, not come as a surprise, and we can identify two pos-
sible explanations for the deviations. First, in the repulsive and 
mixed regime, very long times have to be reached to observe 
the leading long-time decoherence rate, as here the sublead-
ing branch dominates the intermediate-time dynamics. In 
figure 17(a) we show the decoherence rate of the subleading 
branch as obtained from the theory of Toeplitz determinants 
as dashed line. We find that it agrees reasonably well with 
the observed enhanced decay rate in the mixed regime. This 
makes it plausible that the experiment may have observed 
the intermediate-time dynamics governed by the subleading 
branch. A second explanation for the deviations may be found 
in the fact that at the times accessible in the experiment oscil-
lations originating from bottom-of-the-band excitations still 
influence the dynamics of the Ramsey and spin-echo contrast. 
Indeed these oscillations dominate the short and intermedi-
ate time dynamics in the strongly interacting regime, see e.g. 
figure  F1 in appendix F. Only far beyond the thermal time 
scale τth = 1/T  a pure exponential decay can be expected, 
and hence the experimental data may have been still strongly 
influenced by non-thermal quantum dynamics. Furthermore, 
while the Ramsey- and spin-echo response lead to equivalent 
decoherence rates at very long times, their signals can show 
very distinct behavior at short and intermediate times.

To corroborate these arguments we have simulated the 
time-resolved signal for the experimental setup of [71] using 
the FDA and taking the experimental parameters as input. The 
results of our simulations for two representative interaction 
strengths (open symbols in figure 17(a)) are shown as curves 
in figures  17(b) and (c) where also the experimental, time-
resolved data (symbols) for the spin-echo signal, as given in 
[71], is shown. For weak interaction, see figure 17(b), long 
evolution times were experimentally accessible. Here the 
theoretical simulation of the time-resolved spin-echo signal 
reveals that the experimental data is well described by an 
exponential, thermal decay with a decay rate that agrees with 
the experimental data.

This is in contrast to strong interactions, analyzed in 
figure  17(c). Here we simulate in detail the experimental 
sequence employed to obtain the red open data point in fig-
ure  17(a). To this end, we include the finite pulse duration 
τπ/2 = τπ/2 ≈ 2.5/εF of the spin-rotation pulses. Moreover, 
we simulate the fact that these pulses were performed at weak 
initial interaction 1/kFain  followed by a quench to the final 
interaction strength 1/kFa = −0.15. The details of the proto-
col are described in [31]. The green shaded area in figure 17(c) 
shows the simulated response for varying initial state interac-
tions ranging from zero 1/kFain = −∞ (solid), to intermedi-
ate interactions 1/kFain = −2.25 (dashed). The dotted black 
line is an exponential fit to the experimental data (symbols). 
From the simulation we find that independent of the initial 
state interaction, the dynamics is strongly influenced by bot-
tom-of-the-band excitations that lead to pronounced oscil-
lations in the signal. The comparison with the experimental 

Figure 18.  RF spectra for finite initial and final state interactions. 
RF spectrum for fixed final state interaction 1/kFaf = 0.05 
while the initial state interaction between the static impurity and 
the Fermi gas is varied: (a) 1/kFai = −6, (b) 1/kFai = −2, (c) 
1/kFai = −0.05, (d) 1/kFai = 2. The temperature is given by 
T/TF = 0.1 and kFr∗i = kFr∗f = 0.8 in both the initial and the final 
state.
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data (symbols) in figure 17(c) makes it thus plausible that the 
experiment may have probed an intermediate time regime 
at which the pure exponential late-time decay has not yet 
become apparent.

6.  Universal short-time, high-frequency response

In the previous sections we have demonstrated that the com-
bined use of the FDA, bosonization, and the theory of Toeplitz 
determinants allows us to obtain a precise analytical understand-
ing of the dephasing dynamics of heavy impurities immersed 
in a Fermi gas at intermediate and long times. The analytical 
approaches provided an intuitive description of the universal 
long-time dynamics and hence low-frequency response in 
terms of a few relevant excitation branches. Here we turn to the 
short-time behavior of the Ramsey signal which is more conve-
niently studied in the corresponding high-frequency response. 
To this end we study the high-frequency absorption for a sys-
tem where the impurities are interacting with the Fermi gas in 
both the initial and final state. Considering this scenario allows 
us to connect our predictions to universal analytical results 
obtained from a short-time operator product expansion [23].

6.1.  RF response with finite initial and final state interactions

For many experimentally accessible atomic species interac-
tions between the impurity and the Fermi gas are present both 
in the initial and final impurity spin state [168]. In this case the 
absorption spectrum is given by

A(ω) = 2Re
∫ ∞

0
dteiωtTr[eiĤite−iĤf tρ̂i].

� (41)
Here Ĥi  (Ĥf ) is the initial (final) Hamiltonian of the system 
with initial (final) state scattering length ai (af) and range r∗i  
(r∗f ).

Based on equation  (41) we study the influence of initial 
state interactions on the RF response as shown in figure 18. 
In this figure, we keep the final state interactions fixed at 
1/kFaf = 0.05 while varying the interaction 1/kFai in the ini-
tial state. For weak initial state interactions (solid line in fig-
ure 18(a)), the spectrum is only slightly shifted with respect 
to the perfect reverse RF response (dashed line). However, 
as interactions in the initial state are increased, not only the 
spectrum is shifted further, but it also changes in shape, see 
figures 18(b)–(d).

When interactions in the initial and final state become 
comparably strong, see figure 18(c), the response approaches 
a δ-peak due to the symmetry between the initial and final 
state. Using this feature—when the initial and final state have 
the same scattering length, ai = af , yet differ in the Feshbach 
resonance width—RF measurements on impurities provide a 
tool for the experimental determination of r∗.

6.2.  Analytical high-frequency response

We now turn to the absorption response at high frequencies. 
As has been shown recently [23], the absorption behavior at 

high frequency can be related to seemingly unrelated quanti-
ties by so-called ‘Tan relations’ [25–28, 62, 169–176]. These 
relations apply to arbitrary two-component Fermi gases (the 
case of an impurity immersed in a Fermi gas is a special 
case), where the two fermion species interact with short-range 
potentials. For such gases the momentum distribution decays 
as [177]

n(k) → C
k4

� (42)

at large momenta k = |k|. A decade ago, Tan discovered 
theoretically that the coefficient C, which has been termed the 
‘contact’, is related to various quantities by simple, univer-
sal relations [25–27]. For instance, Tan’s adiabatic theorem 
states that the change of energy E of an arbitrary two-comp
onent Fermi gas interacting with contact interactions, due to a 
change of the interspecies scattering length a is determined by

dE
d(1/a)

= − C
8πµred

� (43)

where µred = m1m2/(m1 + m2) is the reduced mass, and m1,2 
are the masses of the two fermion species. Similar formulas 
relate the contact C to the pressure, the density-density cor-
relator, the virial theorem, and the inelastic two-body loss 
observed in such systems [25–28, 62, 172, 175, 176].

The contact C appears also in the RF absorption spectrum 
when final and initial state interactions are present. Using an 
operator product expansion (OPE) Braaten [23] predicted that 
at high frequencies the RF response follows

A(ω) → 1

4π(2µredω3)
1
2

(
1
ai

− 1
af

)2 C
a−2
f + 2µredω

� (44)

where we have set the Rabi coupling Ω = 1. The contact C 
depends on the initial state of the system, and hence in par
ticular on the initial state scattering length ai.

Figure 19.  RF high-frequency tail. RF spectrum on double-
logarithmic scale as function of frequency as obtained from FDA 
(blue solid) for contact interactions, kFr∗ = 0, where both finite 
initial and final state interactions are present with 1/kFai = −0.5, 
1/kFaf = −4. The black dotted (green dot-dashed) line shows 
the limiting ω−3/2 (ω−5/2) behavior. The red dashed line gives 
the analytical prediction from the operator product expansion, 
equation (44) [23], with the contact C calculated from the adiabatic 
theorem, equation (43). The inset shows the rf response including 
low frequencies.
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The Tan relations can be derived from operator identi-
ties and as such hold irrespectively of the state of the sys-
tem. Only the contact C itself then depends on the state and 
has either to be measured experimentally or determined from 
first principle calculations which are a challenge for generic 
many-body problems. However, being valid for an arbitrary two- 
component Fermi gas, the Tan relations apply also to our case 
of heavy impurities immersed in a Fermi gas.

In figure  19 we show the high-frequency response of an 
impurity on a double logarithmic scale as obtained from the 
FDA (solid line). In this figure, both initial and final state con-
tact interactions are present (kFai = −0.5 and kFaf = −4). 
The inset shows the response on a linear scale including the 
polaron ‘peak’ at low frequencies. We find that the signal 
undergoes a crossover from a non-analytical ω−3/2 to ω−5/2 
behavior. Having the exact numerical FDA solution we may 
now turn to the verification of equation (44). To this end, we 
first calculate the ground-state energy E ≡ ∆E  as function of 
the scattering length ai from equation (24). Using the adiaba-
tic theorem, equation (43), we then determine the contact as 
function of ai. The resulting function C(ai) serves as input 
into the OPE prediction equation  (44) which has hence no 
free parameter (for an infinitely heavy impurity µred = m, 
where m is the mass of the atoms in the Fermi gas). In fig-
ure 19 the resulting prediction is shown as red, dashed curve. 
We find that the analytical expression equation (44) describes 
with remarkable precision the exact RF response down to fre-
quencies of the order of the Fermi energy. We note that we 
discussed here only the high-frequency response for contact 
interactions. The inclusion of a finite characteristic range r∗ 
leads to the crossover to a modified power-law at frequencies 
ω ∼ 1/(mr∗2) [23, 172]. For a detailed discussion of the role 
of finite range interactions we refer to [32].

6.2.1.  Relation to the long-time evolution.  The RF absorp-
tion response A(ω) is related to the Ramsey signal S(t) by 
Fourier transformation (see also appendix B). Accordingly, 
the high-frequency behavior of A(ω) including the contact C 
as given by equation (44), is naturally reflected in the short-
time dynamics of S(t). The Tan relations connect the high- 
frequency behavior, however, also to the long-time behavior 
of S(t). To illustrate this, we focus on low temperatures and 
the attractive interaction regime.

As we have seen in section 5.2, in the attractive interaction 
regime the attractive polaron excitation branch A, and hence 

the Fermi surface contribution S(0)FS , dominates the long-time 
dynamics, see equations (17) and (18). Thus, at long times the 
phase evolution of the Ramsey signal follows S(t) ∼ e−i∆Et 
(see equation  (28)). Here ∆E is given by the attractive 
‘polaron’ ground-state energy, which follows from Fumi’s 
theorem, equation (24). According to equation (28) the long-
time phase evolution is approximately linear in time. Hence 
∆E can be extracted relatively easily as function of the scat-
tering length from experimental long-time data [31]. We note 
that a similar relation of the phase evolution of the Ramsey 
signal to the Tan contact C has recently been discussed also 
in an experimental study of the dephasing dynamics of the 
unitary Bose gas [178].

The ground-state energy of the system E ≡ ∆E  can 
be used to calculate the contact C from the adiabatic theo-
rem (43). Since the contact C is the only free parameter that 
enters the high-frequency tail in equation (44), one can pre-
dict the short-time (high-frequency) dephasing behavior of the 
corresponding Ramsey signal S(t) from long-time dephasing 
dynamics.

7.  Summary and outlook

We have studied the real-time and absorption response of 
impurities immersed in a Fermi sea. In cold atoms the inter-
action between the impurity and fermions can be controlled 
by Feshbach resonances and we showed that the system is 
described by an Anderson–Fano model. We found that three 
distinct interaction regimes can be identified that are univer-
sally determined by the phase shift at the Fermi surface. For 
each of these regimes we have computed the ‘standard’ and 
‘reverse’ radio-frequency absorption spectra at both zero and 
finite temperature and calculated the real-time interferometric 
responses of the system exactly.

In each interaction regime we identified analytically 
excitation branches in the many-body Hilbert space which 
dominate the dynamics. While in the attractive and repulsive 
regime polaron-type excitations govern the dynamics, narrow 
Feshbach resonances allow one to additionally address a novel 
‘mixed regime’ where ‘bottom-of-the-Fermi sea’ excitations 
dominate the dynamics. This regime is special in exhibiting 
a quantum-interference-induced crossover in the decoherence 
dynamics at times much larger than the thermal time scale 
�/kBT .

We have analyzed the competition between quantum 
dephasing and thermal decoherence in the real-time response 
of the system. The former leads to a power-law decay of coher-
ence up to a time scale set by the inverse temperature, while 
the latter gives rise to exponential decoherence. Using bosoni-
zation and Toeplitz determinant theory, we obtained analytic 
predictions for the intermediate to long-time response, which 
only depend on the scattering phase shift and temperature but 
not on the trajectory of the impurity spin. As a consequence, 
Ramsey and spin-echo interferometry exhibit the same deco-
herence rates at long times and we predicted that the maxi-
mum decoherence rate is given by πkBT/4.

Moreover, in analogy to earlier results on ion mobility in 
liquid 3He we find that at finite temperatures a finite spec-
tral weight can be assigned to the various excitation branches 
that depends as a power-law on temperature. As temperature 
approaches zero, this weight vanishes as ∝ Tα, with α being 
related to the OC critical exponent.

In the present work we have considered the problem of an 
infinitely heavy impurity coupled to a Fermi gas. Extending 
on our exact solution, one may study the fate of the Anderson 
orthogonality catastrophe as the mass of the impurity becomes 
finite. This problem is still lacking a definite solution in low 
dimensions [9, 179–182], and experiments with ultracold 
atoms, where the mass of the impurity can be tuned using state 
selective optical potentials [183, 184], may shed light on this 
outstanding problem. To address this question theoretically, the 
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functional determinant approach can be extended to account 
for Hamiltonians beyond bilinear order. In this way also inter-
actions in the bath can be accounted for, as of relevance for a 
wide set of impurity problems in condensed matter physics. 
The inclusion of higher-order terms is expected to become 
of particular relevance when considering low dimensional 
systems where enhanced quantum effects can lead to strik-
ing non-equilibrium dynamics [185–190], or when studying 
externally driven systems [191–195]. Similarly, higher-order 
effect will become important as the impurity concentration is 
increased. In this case bath-mediated interactions will modify 
the many-body dynamics of the system. The detailed study of 
such effects remains an open challenge.

While the real-time Ramsey interferometry signal corre-
sponds to the Fourier transform of the reverse radio-frequency 
response, more complicated interferometric measurements do 
not have a simple conjugate response [73]. As an example we 
discussed spin-echo interferometry, yet, more complex proto-
cols from nuclear-magnetic resonance can be envisioned, not 
only as a probe of many-body physics but also for controlling 
and manipulating many-body wave functions. Augmenting this 
technique with parameter ramps, one can adiabatically prepare 
many-body states and consequently probe them similar to 
pump-probe experiments in ultra-fast spectroscopy [196].

Moreover, in recent experiments exotic states of matter 
have been created in non-equilibrium transient regimes [191, 
192, 197, 198]. In these experiments, physics is probed on 
scales ranging from long times to short times on the order 
of the Fermi time ∼ �/εF. In light of these developments a 
detailed account of the short- to long-time dynamics becomes 
increasingly important for our theoretical understanding of 
new frontiers of condensed matter physics. In this respect 
cold atomic systems provide a well-controlled starting point 
where dynamics can find a universal description on extended 
time scales as compared to traditional solid state systems. The 
description of dynamics in terms of excitation branches, put 
forward in this work, may provide a means to devise powerful 
variational wave functions that take into account most relevant 
parts of Hilbert space, and allow one to account for the inter-
play of few- and many-body physics far from equilibrium.
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Appendix A.  Exact single-particle wavefunctions  
in the two-channel model

We calculate exactly the single-particle wavefunctions of 
model (5). We use the Ansatz |Ψ〉 = αm|m〉+ |ψ〉 to solve 
the Schrödinger equation  Ĥ|Ψ〉 = E|Ψ〉 which gives (in units 
� = 2m = 1)

εmαm + g
∫

d3rχ(r)ψ(r) = Eαm� (A.1a)

gχ(r)αm −∇2ψ(r) = Eψ(r),� (A.1b)

where χ(r) = e−r/ρ/4πρ2r is the form factor defined in the 
main text. These equations can be solved by choosing

αm = const.� (A.2a)

ψ(r) = A
sin kr + δk

r
+ B χ(r),� (A.2b)

where the phase shift δk is a function of k. This leads to the 
following equations

E = k2� (A.3a)

αm =
Ag
ρ

kρ cos δk + sin δk

(k2 − εm)(1+ k2ρ2)− g2
8πρ

� (A.3b)

while normalization requires

1 =α2
m + 2πA2R

(
1+

sin 2δk
2kR

)

+
g2ρα2

m

8π(1+ k2ρ2)2
+ 2Agραm

kρ cos δk + sin δk
(1+ k2ρ2)2

.

�

(A.4)

Together these equations determine the unknown coefficients 
A, B, and αm.

Next, we calculate k and δk from the boundary conditions 
set by constraining the atoms to a spherical box of radius R 
which yields

kR+ δk = nπ.� (A.5)

This result is then compared to the scattering phase shift δk 
as obtained from continuum scattering solution for the two-
channel model (5) [84],

f (k) =
µred

2π�2
g2χ(k)2

[
− �2k2

2µred
+ εm − g2µred

4π�2ρ[1− ikρ]2

]−1

,

� (A.6)

where we made factors of � and the reduced mass µred explicit. 
Using the low energy expansion of f (k) one readily identifies 
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the microscopic parameters of our model as discussed in [31, 
84] and given in equation (6). Note within our model the effec-
tive range is given by re = −2r∗ + 3ρ− 4ρ2/a which reduces 
to re = −2r∗ for small values of ρ as stipulated in the main text.

Appendix B.  Relation between S(t) and A(ω)

In this appendix we prove the simple statement that the time-
dependent Ramsey signal S(t) and the frequency-resolved 
absorption spectrum A(ω) are related by Fourier transforma-
tion. The absorption response is given by Fermi’s Golden 
Rule equation (7) (see. also the T = 0 limit in equation (14)). 
After inserting the Fourier representation of the delta dis-
tribution and using that |ψi〉 and |ψα〉 are many-body eigen-
states of Ĥ0 and Ĥ , respectively (i.e. Ĥ0|ψi〉 = Ei|ψi〉 and 
Ĥ|ψα〉 = Eα|ψα〉) this equation can be rewritten as

A(ω) =
∫ ∞

−∞
dt
∑
i,α

〈ψi|ρ̂FSeiĤ0t|ψα〉〈ψα|e−iĤt|ψi〉eiωt

=

∫ ∞

−∞
dtTr

[
ρ̂FSeiĤ0te−iĤt

]
eiωt.

�

(B.1)

This can be conveniently reexpressed as

A(ω) = 2Re
∫ ∞

0
dt′Tr

[
ρ̂FSeiĤ0t′e−iĤt′

]
eiωt′� (B.2)

where we used that ρ̂FS, Ĥ , and Ĥ0 are hermitian. The inte-
grand contains the overlap S(t):

S(t) = Tr[ρ̂FSeiĤ0te−iĤt]� (B.3)

that is experimentally obtained for positive times t � 0 from 
the Ramsey signal. The function S(t) at negative times can 
be inferred from S(−t) = S∗(t). Hence the absorption spec-
trum is directly obtained from the Fourier transform of the 
Ramsey signal. From equation (B.1) now simply follows also 
the reverse statement: multiplication of equation  (B.1) by 
e−iωt/2π  and integration over all frequencies yields
∫ ∞

−∞

dω
2π

A(ω)e−iωt =

∫ ∞

−∞

dω
2π

∫ ∞

−∞
dt′eiω(t′−t)Tr[ρ̂FSeiĤ0t′e−iĤt′ ]

=

∫ ∞

−∞
dt′S(t′)δ(t′ − t) = S(t)

� (B.4)
which shows that the complex Ramsey signal S(t) can be 
directly calculated from the Fourier transform of the absorp-
tion spectrum A(ω).

Appendix C.  Fumi’s theorem

Here we give a short illustrative derivation of Fumi’s theo-
rem [1] for the case of an immobile impurity that interacts 
with contact interactions with a surrounding Fermi gas at zero 
temperature and in three dimensions. Specifically, we consider 
here the attractive ground state of the system at a < 0, but the 
generalization to the repulsive state as well as the inclusion of 
the bound state for a > 0 is straightforward.

Consider the impurity being localized at r = 0 in a spheri-
cal box of radius R (see appendix A). Only s-wave states 
have to be considered and the radial single-particle wave 
functions in absence of the impurity potential are given by 
un(r) ∼ sin(nπr/R) with n the nodal quantum number. In 
presence of the scattering potential the wave functions acquire 
a scattering phase shift and are given by vn(r) ∼ sin(knr + δn) 
where the wave number kn is determined from the boundary 
condition equation (A.5) and we introduced δn ≡ δkn.

The energy of the many-body state of interest is obtained 
by filling the single-particle states with fermions up to the 
Fermi energy. The single-particle energies in the non-interact-
ing case are εn =

( nπ
R

)
2/2m while in the presence of the scat-

tering potential they are given by ε̃n = 1
2m

( nπ−δn
R

)
2. In the 

attractive interaction regime this leads to a downward shift of 
single-particle levels. The ‘interacting’ ground state energy of 
the attractive state (with respect to the non-interacting ground 
state) is given by summing over all single-particle energy 
shifts ∆εn ≡ ε̃n − εn up to the Fermi energy

E =
∑
n

∆εn = −2π
R2

∑
n

n δn.� (C.1)

In the second equation we used the fact that δ2n � 2nπ|δn| is 
a good approximation since |δn| is bound by π. In the limit 
R → ∞ we may now replace the sum over n by an energy 
integration using ∆En ≡ εn − εn−1 = (2n− 1)(π/R)2. For 
large box sizes R, states with small n lie at very small ener-
gies for which the phase shift is negligible. Thus we can take 
∆En = 2n(π/R)2. From this follows now directly the contin-
uum limit of equation (C.1):

E = −2π
R2

∑
n

n δn = − 1
π

∑
n

2
(π
R

)2
n

∆En

δn

=
R→∞

−
∫ εF

0

dE
π
δ(E).

�

(C.2)

In ‘repulsive regime’ one has a > 0 and a molecular bound state 
with finite binding energy εB is present in the single-particle 
spectrum. If one is interested in the repulsive state the bound 
state remains unoccupied and equation (C.2) directly applies. To 
obtain, however, the energy Emol for the ground state in this regime 
in which the molecule is occupied with a fermion, the molecular 
binding energy εB < 0 has to be added to equation (C.2).

Appendix D. Technical details on bosonization

D.1.  Fermi-surface contribution

The problem of a three-dimensional Fermi sea coupled to a 
static impurity scattering potential reduces for s-wave scatter-
ing effectively to a one-dimensional problem in a semi-infinite 
space (r > 0). Furthermore, at sufficiently low temperatures 
one can linearize the spectrum near the Fermi surface so that 
one obtains right and left moving fermions. If one unfolds the 
coordinate axis one can map left moving fermions at r > 0 
onto right moving fermions at r < 0, thus arriving at the 
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model of one-dimensional ‘chiral’ fermions [4]. Denoting the 
annihilation operator of the chiral fermions as ψ(x), the effec-
tive Hamiltonian then can be expressed as

H0 = −ivF

∫
dx ψ†(x)∂xψ(x) ,� (D.1)

Hint =

∫
dx V0(x)ψ†(x)ψ(x) ,� (D.2)

where V0(x) is a scattering potential around x = 0 (we assume 
that the impurity is infinitely heavy). Using the standard 
bosonization approach, we rewrite the problem in terms of a 
bosonic field φ(x) [4, 19, 29],

ψ(x) ∝ eiφ(x) ,� (D.3)

with the commutator

[φ(x),φ(x′)] = iπ Sign(x− x′) .� (D.4)

At long times, the short-range structure of the potential V0(x) 
may be ignored, with the effect of the scattering incorporated 
in the scattering phase δF:

H0 =
vF
4π

∫
dx (∂xφ(x))2 ,� (D.5)

Hint = −vFδF
π

∂xφ(0) + ∆E ,� (D.6)

where

∆E = −
∫ εF

0

dE
π
δ(E)

� (D.7)
is the total energy shift due to the impurity (this relation is 
known as Fumi’s theorem, see appendix C). Then S(t) can be 
calculated as

S(t) = 〈eiH0te−i(H0+Hint)t〉 = e−i∆Et
〈
exp

[
i
vFδF
π

∫ t

0
dt′∂xφ(0, t′)

]〉

H0

= e−i∆Et
〈
exp

[
i
δF
π
(φ(0, t)− φ(0, 0))

]〉

H0

∝ e−i∆Et
(

πT
sinhπTt

)(
δF
π

)2

.

� (D.8)
In the second step we used the linearized dispersion and 
replaced the time derivative by a spacial derivative vFdt′ → dx, 
which allows us to easily evaluate the integral in the exponent.

D.2.  Bottom-of-the-band and bound-state contributions

The bottom-of-the-band and bound-state effects are associ-
ated with intermediate states where a particle is moved from 
the bottom of the Fermi sea (or from the bound state) to the 
Fermi level, see figure 6. Such contributions were discussed in 
[73, 128] and here we extend those results. We start with the 
case of the bottom-of-the-band contribution.

The contribution to S(t) from the intermediate states with 
one isolated hole deep inside the Fermi sea can be written as

S′(t) =
∫

dk
2π

∑
m̃′

∣∣∣
〈
FS|ψ̃k|m̃′

〉∣∣∣
2
e−iEm̃′ t+i(Ek−εF)t ,� (D.9)

where |FS〉 is the ground state of the free Hamiltonian H0, |m̃′〉 
are the eigenstates of the Hamiltonian with scattering H0 + Hint 
without any holes deep under the Fermi surface (only with 
particle-hole excitations around the Fermi level) and with one 
extra particle compared to the state |FS〉. Furthermore ψ̃k is 
the annihilation operator for the single-particle eigenstate of 
the scattering Hamiltonian with the momentum k close to the 
bottom of the Fermi sea, Em̃′ is the multi-particle energy of the  
state |m̃′〉 (relative to the ground-state energy of H0), Ek is  
the single-particle energy of ψ̃k measured from the bottom of 
the Fermi sea, and εF is the Fermi energy.

We can further expand ψ̃k in terms of the free-Hamiltonian 
states ψk:
〈
m̃′|ψ̃†

k |FS
〉
=

∫
dk′

2π

〈
m̃′|ψ†

k′ |FS
〉〈

ψk′ |ψ̃k

〉
.� (D.10)

The overlap matrix elements can be computed as
〈
ψk′ |ψ̃k

〉
= 4

∫ ∞

0
sin(k′x) sin(kx+ δ(Ek)) dx

=
4k′

k′2 − k2
sin δ(Ek) ≈

4
kF

sin δ(Ek) ,

� (D.11)
where δ(Ek) is the scattering phase at the energy Ek and we 
have used k � kF ≈ k′.

Combining everything together and performing integration 
over k′ in equation (D.10), we find

S′(t) =
16
k2F

∫
dk
2π

sin2 δ(Ek) eiEkt
〈
eiH0tψ(0)e−i(H0+Hint)tψ†(0)

〉
e−iεFt ,

� (D.12)
where the last average can now be understood in the linear-
ized model of chiral fermions discussed in the previous sec-
tion. The important property of the above expression is that it 
factorizes into the bottom-of-the-Fermi-sea and Fermi-surface 
contributions.

The first factor due to the bottom-of-the-Fermi-sea can 
be re-expressed, using the quadratic dispersion relation 
Ek = k2/(2m) as

S(FB)−1 (t) =
4
kF

∫ ∞

0

dk
2π

sin2 δ(Ek) eiEkt =
1
π

∫ ∞

0

dE√
EεF

sin2 δ(E) eiEt .

� (D.13)
Here we extended integration to infinity, assuming T � εF 
and t � ε−1

F . The time dependence of S(FB)−1 (t) at large t is 
determined by the behavior of the integrand around E = 0. 
Since δ(E) ∝ k ∝

√
E at E → 0, we find that

S(FB)−1 (t) ∝ t−3/2� (D.14)

at very large t. Close to the resonance (|εB| = (2m|a|2)−1 � εF), 
there is an intermediate regime ε−1

F � t � |εB|−1. At such 
times, we may approximate δ(E) ≈ π/2 in the integral, which 
gives

S(FB)−1 (t) ∝ t−1/2 .� (D.15)

The second factor in equation (D.12) is the Fermi-surface 
contribution. It can be calculated using the bosonization 
approach:
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S(FS)1 (t) =
4
kF

〈
eiH0tψ(0)e−i(H0+Hint)tψ†(0)

〉
e−iεFt

=
4
kF

e−i∆Et−iεFt
〈
exp

[
i
(
δF
π

− 1
)
(φ(0, t)− φ(0, 0))

]〉

H0

∝ e−i∆Et−iεFt
(

πT
sinhπTt

)(
δF
π −1

)2

.

� (D.16)
The case of the bound-state contribution can be treated in 

a similar way. The only difference will be the overlap matrix 

element 
〈
ψk′ |ψ̃BS

〉
 (here ψ̃BS is the wave function of the 

bound state), which will contribute to the overall prefactor in 
the bound-state term (21).

Appendix E.  Asymptotic long-time response

E.1.  Finite temperature

In this section, we derive the exponential decay of the Ramsey 
signal S(t) at finite temperature at long times tεF � 1:

S(t) ∼ exp(−γt − iωt) .� (E.1)

Furthermore, we will show that the decay rate is identical for 
the spin-echo and Ramsey protocols.

Our derivation is inspired by the Toeplitz-determinant 
technique used in full counting statistics for linearized dis-
persion relations [19, 164] and resembles the Szegő formula 
for Toeplitz determinants. However, here we go beyond the 
Toeplitz-determinant approximation and take into account 
both the energy-dependence of the scattering phase and the 
nonlinear dispersion relation.

The Ramsey overlap is given by

S(t) = det B̂ ; B̂ = 1− n̂+ n̂eiĥ0te−iĥt ,� (E.2)
where ĥ0 and ĥ are the single-particle Hamiltonians without 
and with scattering potential, respectively.

Since the scattering potential is spherically symmetric, we 
can perform a partial wave expansion, and due to the low ener-
gies involved, we need to consider s-wave scattering only. We 
then use the standard approach to express the radial part of the 
scattering wave function Ψ(r) by

u(r) = rΨ(r)� (E.3)

where r > 0 and u(r) fulfills the radial boundary condition 
u(0) = 0. Outside of the scattering potential u(r) takes the 
form

u(r) ∝ sin[kx+ δ(E)] ,� (E.4)

where δ(E) is the scattering phase shift and E = k2/2m the 
scattering energy.

The key observation for calculating the determinant (E.2) 
is that the operator B̂ acts nearly diagonally on quasiclassi-
cal wave packets localized both in momentum and coordinate 
space. For example we can use the Gaussian wave packets

u(0)k0,r0(r) = (2π)−1/4∆−1/2
r exp

[
ik0r −

(r − r0)2

4∆2
r

]
.� (E.5)

where ∆r  determines the width of the wave packet in real 
space. From its Fourier transform it follows that the wave 
packet is localized in momentum space around the momentum 
k0 with width ∆−1

r .
There are three time/energy scales in the problem: the 

inverse Fermi energy ε−1
F , the evolution time t, and the ‘col

lision time’ τcol = ∂δ(E)/∂E (this time is typically of the 
order of ε−1

F  or smaller, but becomes large at the bottom of 
the Fermi sea). Our further discussion assumes that the wave 
packets (E.5) propagate quasiclassically and simply acquire 
an extra phase when scattering. This requires that the wave 
packets are sufficiently localized in coordinate space so that 
the time t fulfills

E−1 � ∆r

v
� t� (E.6)

where v ≡ |v(k0)| is given by the group velocity v(k0) = ∂E
∂k

∣∣
k0

 
of the wave packet. We impose the condition (E.6) at the Fermi 
surface (with E = εF and v = vF), which implies t � ε−1

F . The 
condition (E.6) would break down close to the bottom of the 
Fermi sea, but we can make this region arbitrarily small for large 
t. Additionally, we require that the phase shift does not change 
much across the energy window of the wave packet, which 
implies

τcol �
∆r

v
.� (E.7)

For the same reason as above, we require this condition only 
at the Fermi energy (which, in turn, implies the applicability 
condition t � τcol).

To properly take into account the boundary conditions on 
the function u(r), we consider anti-symmetrized superposition 
of wave packets

uk0,r0(r) = u(0)k0,r0(r)− u(0)−k0,−r0(r).� (E.8)

These form an overcomplete set on r > 0 with the com-
pleteness relation (r, r′ > 0)
∫ +∞

−∞

dk0
2π

∫ ∞

0
dr0 uk0,r0(r)u

∗
k0,r0(r

′) = δ(r − r′).� (E.9)

The two time evolution operators in B̂ in equation  (E.2) 
propagate the wave packets forward and backward in time. 
Neglecting residual diffusion of the wave packet due to the 
short range interaction potential (which is a good approx
imation for small collision times, see (E.7)), B̂ acts approxi-
mately diagonally on the wave packets:

B̂ uk0,r0(r) ≈ uk0,r0(r)
{
1 −v(k0) t < r0 ,
1+ n(E(k0))(e2iδ(E(k0)) − 1) −v(k0) t > r0 .

� (E.10)

Here we made use of the condition (E.7), i.e. we assume the 
wave packet is sufficiently localized in momentum space 
around momentum k0, so that phase shift is approximately 
constant across the wave packet’s energy window.

Using the completeness relation (E.9) and equation (E.10), 
we can compute
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ln S(t) = tr ln B̂ =

∫ +∞

−∞

dk0
2π

∫ ∞

0
dr0 θ(−r0 − v(k0)t)

ln
[
1+ n(E(k0))(e2iδ(E(k0)) − 1)

]

=

∫ 0

−∞

dk0
2π

∂E
∂k0

t ln
[
1+ n(E(k0))(e2iδ(E(k0)) − 1)

]

= t
∫ ∞

0

dE
2π

ln
[
1+ n(E)(e2iδ(E) − 1)

]
,

� (E.11)
where a small correction due to the normalization of equa-
tion  (E.8) is assumed to be neglibible. The result (E.11) is 
equation (33) from the main text which determines γ and ω.

In particular,

γ = −Re
∫ ∞

0

dE
2π

ln
[
1+ n(E)(e2iδ(E) − 1)

]
.� (E.12)

Our derivation above generalizes the Toeplitz-determinant 
approach commonly used in full-counting statistics (see, e.g. 
[165] and references therein). The conventional Toeplitz-
determinant approach usually assumes a linearized spectrum, 
which results in the operator B̂ being a Toeplitz matrix, and 
equation (E.11) resulting from the Szegő theorem. In our deri-
vation, we relax the assumption of a linear dispersion rela-
tion, however B̂ may still be loosely thought of as a Toeplitz 
matrix, if we label states by their arrival time τ = r0/v(k0) at 
the scatterer. With this relation in mind, we continue to call 
our method the ‘Toeplitz-determinant approach’, keeping the 
corresponding terminology of the Szegő formula for equa-
tion  (E.11) and ‘symbol’ for the argument of the logarithm 
in it.

Repeating the same calculation for the case of the spin-
echo response,

E(t) = det Ĉ; Ĉ = 1− n̂+ n̂eiĥ0t/2eiĥt/2e−iĥ0t/2e−iĥt/2 ,�
(E.13)

we find

Ĉ uk0,r0(r) ≈ uk0,r0(r)



1 −v(k0) t < r0 ,
1+ n(E(k0))(e−2iδ(E(k0)) − 1) −v(k0) t/2 < r0 < −v(k0) t ,
1+ n(E(k0))(e2iδ(E(k0)) − 1) −v(k0) t/2 > r0 ,� (E.14)

which leads to

γSE + iωSE =− 1
2

∫ ∞

0

dE
2π

{
ln[1+ n(E)(e2iδ(E) − 1)]

+ ln[1+ n(E)(e−2iδ(E) − 1)]
}
.

�

(E.15)

It is straightforward to check that ωSE = 0 and γSE reduces to 
equation (E.12), i.e. the Ramsey and spin-echo decoherence 
rates are equal.

Generalizing these derivations, we find that the decoher-
ence rate γ does generally not depend on the trajectory of the 
impurity spin (on the Bloch sphere), i.e. arbitrarily many spin-
echos with corresponding time partitions as in equation (E.13) 

also yield the same result. Hence different trajectories give 
rise to the same exponential decay in the thermal long-time 
regime.

E.2.  Zero temperature

At zero temperature, dephasing of the many-body wave func-
tion leads to a power-law decay of the dynamic Ramsey and 
spin-echo response [73]. The power-law decay can be attrib-
uted to the creation of infinitely many particle-hole excitations 
at the Fermi level which gradually renders the many-body 
wave function orthogonal to the original Fermi sea. We note 
that the exponential decay rate γ which we evaluated in the 
previous section  for finite temperature tends asymptotically 
to zero with temperature, see equation (29). Approaching zero 
temperature logarithmic corrections to equation  (E.1) will 
emerge giving rise to the power-law decay. Using the map-
ping onto a Riemann–Hilbert problem, introduced in [13] to 
solve generic time-dependent perturbations to the Fermi sea, 
we calculate the power law exponent for both Ramsey and 
spin echo protocols, see also [73].

We first study the Ramsey response equation  (10) and 
define R(λ, τ) as the time diagonal element of equation (E.10), 
which dominates the asymptotic dynamics, to the power of an 
auxiliary parameter λ

R(λ, τ) =
{

1, if t < τ

e2iλδF , otherwise.� (E.16)

The asymptotic behavior of the Ramsey signal can be obtained 
from [13]

ln S(t) ∼ i
2π

∫ λ

0
dλ

∫ t

0
dτ

d ln Y(τ + i0)
dτ

d lnR(λ, τ)
dλ

,� (E.17)

where Y(z) solves the Riemann–Hilbert problem

Y(t − i0+)Y(t + i0+)−1 = R(λ, t).� (E.18)

The function Y(z) is analytic everywhere in the complex plane 
except for the interval [0, t] and can be obtained from

ln Y(z) =
1
2πi

∫
lnR(λ, z′)
z− z′

dz′.� (E.19)

For R(λ, τ) given by equation (E.16), we obtain

ln Y(z) =
λδF
π

ln
z

z− t
.� (E.20)

In the vicinity of the branch points of Y at 0 and t we cut 
off the integral equation (E.17) at the Fermi energy εF of the 
problem which amounts to replacing i0+ by iε−1

F . Computing 
the integral gives
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S(t) ∼ (iεFt)−δ2F/π
2
,� (E.21)

which is the well known result for the asymptotic behavior of 
S(t) [11, 13].

For the spin-echo response equation  (11), RSE(λ, τ) is 
obtained from equation (E.14)

RSE(λ, τ) =





e2iλδF t > 2τ
e−2iλδF 2τ > t > τ

1 otherwise
� (E.22)

yielding

ln YSE(z) =
λδF
π

ln
z(z− t)

(z− t/2)2
.� (E.23)

With that we can evaluate equation (E.17)

ln SSE(t) ∼ −1
2
δ2F
π2

(∫ t/2

0
dτ −

∫ t

t/2
dτ

)
d
dτ

ln
z(z− t)

(z− t/2)2
∼ −3

δ2F
π2 ln(iεFt)

� (E.24)
and thus we find for the asymptotic behavior of the spin-echo 
response

SSE(t) ∼ (iεFt)−3δ2F/π
2
.� (E.25)

At zero temperature, the spin-echo exponent is therefore enhanced 
by a factor 3 as compared to the Ramsey exponent, which dem-
onstrates the importance of quantum interference effects.

Appendix F.  Bi-exponential crossover

The measurement of the crossover of exponential decay rates 
of the Ramsey signal S(t) from subleading- to leading-branch 
dynamics can be an experimental challenge due to small Ramsey 
contrast. In figure 10 in the main text, we have shown an example 
where the crossover takes place at relatively long times t. There, 
the parameters were chosen so that oscillations due to bottom-of-
the band excitations at short times are damped out in the cross-
over regime. At the correspondingly long times, the Ramsey 
contrast |S(t)| became inaccessibly small for experiments.

However, the precise time at which the crossover takes 
place, as well as the corresponding magnitude of the Ramsey 
signal, is highly sensitive to the specific interaction param
eters chosen. Hence, more favorable Ramsey contrast can 
easily be achieved by choosing only slightly modified param
eters. For instance, in figure F1 we show the Ramsey contrast 
where, compared to figure  10, the temperature is increased 
from T/TF = 0.1 to T/TF = 0.2 and where kFr∗ is changed 
from 0.8 to 1.1. This slight variation already yields an increase 
of the Ramsey contrast in the interference region by six orders 
of magnitude. This demonstrates that parameters can be 
optimized to bring the observation of the subleading to lead-
ing branch dynamics within reach of experimental precision.

Appendix G.  Subleading branches of Toeplitz 
determinants

As outlined in section 5, analytical expressions for the differ-

ent branches of the Fermi-surface contribution S(FS)n (t) may 

be obtained by choosing different integration contours CSL in 
equation (36), which, for convenience, we state here again,

iωSL + γSL = −
∫

CSL

dE
2π

ln [σ(E)] ,� (G.1)

where, using the explicit form of Fermi distribution function, 
the symbol σ(E) is given by

σ(E) = 1− n(E) + n(E)e2iδ(E).� (G.2)

The derivation of the contours follows from an argument 
based on analytic continuation: the leading branch is given 
by the Szegő formula, leading to equation  (34), while the 
subleading branch can be obtained by analytically continu-
ing contours from a neighboring interaction regime where the 
corresponding branch is leading.

First, we consider the leading branches. In the upper panels 
of figure G1, we show as solid lines the contours for the evalu-
ation of the leading branch in the three interaction regimes 
(a)–(c) (according to table 1). The corresponding trajectories 
of σ(E) in the complex plane are shown in the lower panels of 
figure G1 as a function of the real variable E ranging from 0 
to ∞ (assuming low temperature T � εF). In the regimes (a) 
and (c), those trajectories do not encircle zero, and the asymp-
totics of the corresponding Toeplitz determinant follows from 
the conventional Szegő formula. In other words, the leading 

branch S(FS)0 (t) is given by equation (34) with the usual inte-
gration along the real axis.

At the transition between the regimes (b) and (c), only scat-
tering deeply below the Fermi surface is modified. Therefore 
we deduce that the leading branch in the regime (b) is also 
given by an integration along the real axis. As discussed in 
section  5.2.5, the branch of the logarithm is continued ana-
lytically along the contour, with the boundary condition 
log(σ(E→∞)) = 0. In the interaction regime (b) we denote 

Figure F1.  Crossover from subleading to leading branch dynamics. 
Ramsey contrast |S(t)| as function of time. Interaction parameters 
are chosen to correspond to the mixed regime (b). Compare to 
figure 10, we choose slightly different parameters, T/TF = 0.2, 
1/kFa = −0.61, and kFr∗ = 1.1. The solid line shows the exact 
numerical evaluation of the dynamical overlap S(t) using the 
FDA, while the dotted (dashed) line shows exponentials with the 
analytically predicted exponents γ1 (γ0), see equation (29).
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the leading branch as S(FS)1 (t). This change of notation with 
respect to the leading branch contribution S(FS)0 (t) in regimes 
(a) and (c) reflects that on passing from the regime (c) to the 
regime (b), we re-integrate the empty bound or bottom of  
the band state (see figure 6) into a hole near the bottom of the 
Fermi sea: as a consequence, the state without an extra particle 
at the Fermi surface in the regime (c) is interpreted as a state 
with one extra particle at the Fermi surface in the regime (b), 

hence the nomenclature S(FS)1 (t). Note that the physical oscilla-
tion frequency is indeed continuous across the transition: while 
the shift of δ(E) by π (see figure 3) leads to a decrease of ωL  by 
εF, this energy is compensated by an additional contribution of 
εF from the hole at the bottom of the Fermi sea.

We now turn to the subleading branches. In order to obtain 
the corresponding integration contours, we examine first the 
transition between the regimes (a) and (b). At this transition, 
a zero Er of σ(E) (and hence a logarithmic branching point of 
the integrand) crosses the real axis of E. The analytical con-
tinuity of the branches prescribes that they may be obtained 
by the same integrals (36), but with the contours deformed to 
accommodate for the shift of the zero of σ(E), so that the inte-
grand stays continuously on the same branch of the logarithm. 
In this way, we find the subleading branch in the regime (b) as 
a continuation of the leading branch in the regime (a) and the 
subleading branch in the regime (a) as a continuation of the 
leading branch in the regime (b). The corresponding integra-
tion contours for the subleading branches are shown in the 
upper panels of figure G1 as dashed lines: they deviate from 

the real axis to go around the zero of σ(E) (and end up on a 
different branch of the logarithm, with respect to the integrand 
for the leading branch of their respective interaction regime). 
Finally, the subleading branch in the regime (c) is given by 
the same type of contour as in the regime (b) for the same 
reason as for the leading branch. For the calculation of int
egrals for the subleading branches, leading to the expressions 
equation (38), the contour deviations from the real axis can be 
chosen to be perpendicular to it, so that the contour retraces 
itself on the way back, as shown in figure G1. The universal 
jump of the logarithm of 2πi between the two branches then 
yields the result (38).
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