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Abstract

We theoretically investigate the non-equilibrium dynamics in a quenched pair of one-dimensional
Bose gases with density imbalance. We describe the system using its low-energy effective theory, the
Luttinger liquid model. In this framework the system shows strictly integrable relaxation dynamics via
dephasing of its approximate many-body eigenstates. In the balanced case, this leads to the well-
known light-cone-like establishment of a prethermalized state, which can be described by a
generalized Gibbs ensemble. In the imbalanced case the integrable dephasing leads to a state that,
counter-intuitively, closely resembles a thermal equilibrium state. The approach to this state is
characterized by two separate light-cone dynamics with distinct characteristic velocities. This behavior
is aresult of the fact that in the imbalanced case observables are not aligned with the conserved
quantities of the integrable system. We discuss a concrete experimental realization to study this effect
using matterwave interferometry and many-body revivals on an atom chip.

1. Introduction

Non-equilibrium dynamics of isolated quantum systems play a central role in many fields of physics [1]. An
important question in this context is whether the unitary evolution can lead to the emergence of thermal
properties. For example, the eigenstate thermalization hypothesis conjectures that dephasing can lead to
thermalization in systems with a chaotic classical limit [2—5]. On the other hand, integrable or many-body
localized systems are expected not to thermalize at all [6], but instead relax to generalized thermodynamical
ensembles [7-10]. An important role in both cases is played by the signal propagation during the non-
equilibrium dynamics. It has been shown for many systems [11-13] that this propagation follows a light-cone-
likelinear evolution in time with a characteristic velocity. This behavior has important consequences for the
growth of entanglement in such systems [5, 14].

In this manuscript, we study the dynamics in a pair of bosonic 1D quantum gases with number imbalance
using the Luttinger liquid formalism. The dynamics of such quantum wires has recently been studied in great
detail using atom chips [10, 13, 15-17] or in optical lattices [18—22]. In particular, 1D Bose gases have been
established as a prime experimental realization of a nearly integrable system with strongly suppressed
thermalization [6, 15, 21]. So far, the consequences of this integrable behavior have mainly been studied for
individual gases or sets of nearly identical gases. Here, we show that for imbalanced pairs of gases, i.e. gases that
differ in their mean density, integrable dephasing can establish a state that closely resembles thermal
equilibrium. The dynamics towards this state are found to be exceptionally rich, including a metastable thermal-
like state described by a generalized Gibbs ensemble and two distinct light-cone dynamics, each exhibiting their
individual characteristic velocity. Beyond the fundamental interest in thermalization dynamics, our study is of
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Figure 1. Relaxation dynamics in a pair of quantum wires. A phase-fluctuating 1D Bose gas in thermal equilibrium is coherently split
into a pair of gases using a double well potential. This leads to almost identical phase profiles ¢;(z) and ¢,(z) (indicated by the solid
black lines) for the two resulting gases and to a binomial distribution of atoms between them. We study here the relaxation of this
highly correlated state. If the two gases after the split have the same densities p; = p,, there is no coupling between the anti-symmetric
or relative degrees of freedom (d.o.f.), which contain only small fluctuations after the quench, and the symmetric or common degrees
of freedom of the total system, which contain large fluctuations after the quench. In the dynamics, these fluctuations of the relative and
common d.o.f. reach thermal-like steady states with different temperatures. If, however, the two gases after the split have different
densities, relative and common degrees of freedom are coupled and their fluctuations equilibrate over a second, much slower
timescale.

high relevance for ongoing experiments, where density imbalances are often unavoidable and can thus
fundamentally affect the interpretation of the results.

2.Model

In the following we consider an initial 1D Bose gas in thermal equilibrium that is coherently split into two gases
(figure 1). This scenario is motivated by experiments with 1D Bose gases on atom chips, which have recently
been established as an important model system to study non-equilibrium dynamics [10, 13, 15, 23, 24]. In these
experiments gases are confined in two radial directions using a strong potential characterized by the trapping
frequency wy, such that p, kg T < /i, and they behave effectively one-dimensional. Here, 1 is their chemical
potential and T their temperature.

The effective low-energy description for each of the gases is given by the Luttinger liquid Hamiltonian

N h*p; g
Hi= de[—(Vfb,»(Z))2 + _(ni(z))2]~ (1
2m 2

Here, the index i = 1, 2 labels the individual gases with mean densities p; independent of z(homogeneous case).
We denote the density fluctuations around this mean densities by 7;(z), the phase fluctuations by ¢A7i (z). Phase
and density fluctuations represent conjugate variables. The 1D interaction strength is characterized by
g = 2/m;wy, with the 3D scattering length a.

The resulting total Hamiltonian of the system is given by H = 3 i 1,ZI-AII-. To analyze this Hamiltonian we
transfer it into a basis formed by the symmetric and anti-symmetric superpositions of the individual
fluctuations:

Au(2) = [Al(2) + ix(2)]/2
0:(2) = [0,(2) + H,(2)]. )

This basis transformation allows us to directly connect our results to experiments, which probe the relative
phase 6 (z) (i.e. the anti-symmetric degrees of freedom) between the gases through matterwave interference
[13, 15, 25]. After this basis transformation we can write the total Hamiltonian as [26]

H=H +H, +H, 3)
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where A_and H, are again LL Hamiltonians
+ - R
= [a [ 02 iy + g(ni<z))2]. 4)

We note the change in pre-factors, i.e. the factor 1/2 that appears in addition to the mean density (p; + p,)/2 in
the first term and the appearance of ginstead of ¢/2 in the second term of H.., as compared to the original
Luttinger Hamiltonians describing the individual gases (equation (1)). These changes arise due to our specific
definition of the symmetric and anti-symmetric degrees of freedom in equation (2). Coupling between the new
degrees of freedom is mediated by

A= [ [ 20 = P 9,y v (z))] 5)

All these Hamiltonians are still quadratic and integrable and we thus do not expect any thermalization.

At this point there are two distinct cases to study. If the mean densities p; of the two wires are identical, i.e.
there is no imbalance A = (p; — p,) /(p; + p,) = 0, wehave H,;x = 0and symmetric and anti-symmetric
degrees of freedom decouple. In this case, fluctuations in the individual gases evolve in exactly the same way.
However, if the mean densities of the two wires are different (A = 0), we have I—AIc = 0,whichleadstoa
coupling between symmetric and anti-symmetric degrees of freedom. In the latter case, the fluctuations in the
two condensates evolve differently causing a relative dephasing of the two gases over time.

We note in passing that this scenario holds promise as a platform to study spin-charge physics within the
Luttinger liquid framework [27, 28], with F, describing the spin and charge degrees of freedom, respectively. In
experiments the relevant parameters can be made fully tunable by imbalancing both the densities and also the
coupling constants (see appendices A and B).

Previously, the corresponding dynamics were obtained by diagonalizing H_ [26, 29-31]. However, this is
not sufficient to capture the full dynamics if H,ix = 0.Instead we diagonalize H and H, individually. This is
possible, as their excitations are conserved independently of the imbalance. Assuming periodic boundary
conditions for the gases of length L, we can expand the phase and density fluctuations into their Fourier
components

~ L . ~
= %fo dz e7* §(2)

1 L :
=— dz e * fi(z 6
N I (2) ©)
leading to
ﬁz 2 A, R .
H Z pl 1k¢1k g ’k”i,k- 7

2

Using this Hamiltonian to solve the equation of motion for the phase operator we find

(1) = ¢y (t = 0)cos(cikt) — ﬁf it = O)sin(eike). (8)
1

Here, the speed of sound in the individual gases is given by ¢; = /gp;/m, while ¢; 1(t = 0)and 71;  (t = 0)
denote the initial values for the phase and density fluctuations, respectively. We can transfer this result into the
familiar symmetric/anti-symmetric basis using 0 ; = ‘%1, £ &2, K

Our aim is to investigate the dynamics after a single 1D gas in thermal equilibrium (with temperature Tj,) is
split into two parts. The Hamiltonian of this initial gas is of the form given by equation (7) with 1D density
p = p1 + p2. The thermal expectation values for the second moments in classical field approximation are
therefore

. kg T
(A i) = =2 - 6§ g
gin
AoA mkg Tiy
(O Opyh = —5——— * Ok -k
R R (o) + py)
<ﬁk qgk'>th =0, (9)

where we have used (25; =¢ yand i} = fi_. All first moments vanish. Note that experimentally the splitting
often results in a change in radial trapping frequency, such that the gases before and after splitting will differ in
their 1D interaction strength g ~ w) . In the following, we will denote the interaction strength before splitting
with g;,, and after splitting with g¢to include this possibility in our calculations.

3
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In the limit of fast splitting no information can propagate along the axis of the gases and we can assume that
they both have the same phase profile after the splitting, which is identical to the profile of the initial gas.
Moreover, we want to assume that in this case the probability for each atom to go into well 1 is p; /(o1 + p2)
independently from where the other atoms go (binomial splitting) [26]. With these assumptions, we find for the
fluctuations of the individual gases right after splitting

S P1P2 kg T PiP;
(g ) (= 0) = [(p, + py) - ———— - 2&; — 1) + : - Sk ks (10)
! 1 ? (,01 + Pz)z ! 8in (p1 + /02)2
<<Aﬁk A'k’>(t =0) = <<?>k &k’>th = M - Ok k' (11)
o PG+ )
(Gix i) (£ = 0) = 0. (12)

The first term in equation (10) represents the shot noise from the binomial splitting process, which is anti-
correlated, as expressed by the factor 26; ; — 1. The second term in equation (10), as well as equation (11), stem
from the thermal fluctuations of the initial condensate, and describe correlated fluctuations. Again, all first
moments vanish. Assuming Gaussian fluctuations, the second moments are sufficient to fully describe the
system. This assumption is justified for long enough length scales containing a large number of particles. Note
that the same assumption has to be made for the validity of the Luttinger liquid model and, also, typically only
such length scales are accessible in experiments.

3. Results

We can now investigate the dynamics by combining equations (10)—(12) with equation (8). To clearly reveal the
relevant dynamics we use the approximation of small imbalance (A < 1) between the two gases, and obtain

kg Tin : § § 2mg; .
0 (DOP) = — Bl G2 k)| 2 + 2L |2 — 2 cosekt) | + £ sin?(c. kt)cos®(c_kt),
(6400} = i s )l . o |costaeudy | + Z2sint(e.ke)cosck
(13)
with the average velocity ¢, = (¢; + ¢,)/2 and and the velocity difference c. = (¢;—c,)/2. For a derivation

without the small imbalance approximation see appendix C.

In the following discussion of the dephasing dynamics we first focus on the case when the length scales under
consideration are much smaller then the system size (large/infinite system limit). Finite system sizes and the
occurrence of revivals are discussed in section 4.

If thereis no imbalance (i.e. A = 0Oandc_ = 0,c,. =c¢; = ¢, = ¢) the terms proportional to sin*(c_kt)
vanish and we obtain the well known dephasing dynamics

(10-4) = 25 siv k) (14)
where thermal correlations are established with a light-cone [31]. In this process thermal correlations
instantaneously emerge locally within a certain horizon, while they remain non-thermal outside of the horizon.
This horizon spreads through the system with a characteristic velocity that is given by c = ¢; = ¢, [13, 30, 31].
One can see this from equation (14) by realizing that at a certain time f all modes down to a lower bound given by
2¢t - Kiower = 27 have dephased (note that the factor 2 comes from the square of the sine). The bound kjoyer
therefore corresponds to the length-scale 2¢t. The result of the dephasing dynamics is a prethermalized state with
atemperature

g (py + pa)
4kg

This temperature can be identified directly from equation (13) in the dephased limit, i.e. by averaging over kt and
comparing to the result for a pair of gases (each with 1D density (p; + p,)/2) in thermal equilibrium
(16:*)n = % (classical field approximation). It corresponds to the energy kg Te(f? ) that is added to the
relative degrees of freedom during the splitting quench [15, 29].

The corresponding expression to equation (13) for the common phase variance (|0, i (¢)|?) is derived in

appendix C. One observes that the symmetric degrees of freedom exhibit the temperature

T§§)2§1+l'&’ (16)
2 2 gin

T = (15)
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which is coming from the initial thermal fluctuations. However, the initial temperature is decreased through an
interaction quench (second term in the brackets). In the splitting not only the density but also the density
fluctuations are halved [32—34]. As they enter quadratically in the Hamiltonian, this leads to a decrease of a factor
2 in energy, which can be further modified by the aforementioned change in the interaction constant g.

While the individual correlation functions of relative and common degrees of freedom are thus thermal, the
state of the total system is non-thermal and has to be described by a generalized Gibbs ensemble with the two
temperatures Te(fjft) , respective [10, 15].

With imbalance ((A| > 0) the dephasing dynamics changes significantly. The aforementioned light-cone
dynamics to the prethermalized state still proceeds with the average velocity c, . In addition, examining the
additional terms in equation (13) we identify a second dephasing timescale characterized by the slower velocity
c_. After complete dephasing (with the fast as well as the slow velocity), we end up with a second thermal-like
state. Following the same procedures as before we can identify the temperature of this state to be identical for
both relative and common degrees of freedom and given by"

N T
T = Ly L8| Ter (17)
4 2g. 2

Again, this result can be interpreted intuitively in terms of the corresponding energies kz T{™. The first term
corresponds to half the energy that is initially contained in the common degrees of freedom (equation (16)), the
second term to half the energy introduced to the relative degrees of freedom during the quench (equation (15)).
Equation (17) hence describes an equipartition of energy that is dynamically established by the coupling term H...
Note that equation (17) remains true, even without the assumption of small imbalance’, which was used to

obtain equation (13). For typical parameters in atom chip microtraps the change in confinement leads to

N - (=)
? ~ l/ﬁandweﬁnde ~ % + T‘%

" Tovisualize the corresponding dephasing dynamics leading to this equipartition in detail, we calculate the
two-point phase correlation function [13]

PCF(z, 2') = (cos(B(z) — B(2"))). (18)

This function measures the correlation between the relative phases 6(z) at two arbitrary points zand z’ along the
length of the system and can directly be measured in the experiments [13]. An alternative but related probe, the
interference contrast, is discussed in appendix D.

As discussed in the previous section, the initial fluctuations in our model are Gaussian and of course remain
so during the evolution with the quadratic Hamiltonian. Therefore, the phase correlation function can be
rewritten in the form PCF (z, ) = e+ {10@~0G)P) In the limit of an infinitely large system this leads to

PCF(z, z') = exp[—fooo %(IO,,k(t) I2Y(1 — cosk(z — z’))]. (19)

In figure 2 we plot equation (19) for increasing evolution times, revealing a double light-cone. First, the system
relaxes to the prethermalized state with exponentially decaying (thermal) correlations. For longer evolution
times, the system relaxes further to the second thermal-like steady state. As in the previous light-cone-like
relaxation to the prethermalized state, the system reaches this new final state for a given time only up to a certain
horizon, but then follows a different shape beyond that point. The position of this horizon moves with a second
characteristic velocity that is given by the (typically small) velocity difference c_of the individual gases.

While both symmetric and anti-symmetric degrees of freedom reach a thermal-like state with temperature
Tf(i), the complete system still differs from the thermal equilibrium of two condensates with equal density
(p1 + p2)/2 inthe aspect that cross-correlations (6, f_ i) between symmetric and anti-symmetric degrees of
freedom do not vanish (see appendix C). Note that for the thermal equilibrium of two gases with unequal
densities, the cross-correlations between common and relative degrees of freedom also do not vanish. However,
they are still of different magnitude than in the completely dephased case.

Another way to discuss the question of whether the system dephases to thermal equilibrium is to have alook
at the quantities for the individual gases. These could e.g. be studied in experiments using density fluctuations in
time of flight [35] or by probing the density fluctuations in situ [36]. The phase variance of the individual gases is
given by

4 Note that this temperature is obtained by comparison with the thermal equilibrium of two gases of equal density (p; + p,)/2. When
comparing to two gases with unequal density p; and p,, the effective temperature is given by 4p, p, / (o + py)* ¥ Tfi.

> This can be best seen from the dephased state for the phase variances of the individual condensates (equation (20)) and the crossterms
dephasing to 0 (equation (25)).
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Figure 2. Dynamics of the two-point phase correlation function in the theoretical model. (a) The two-point phase correlation function
reveals a fast light-cone-like decay with the average velocity c, to the prethermalized state (dashed red line), followed by a much slower
second light-cone-like decay with the difference velocity c_to the final relaxed state (dash-dotted green line). Evolution times increase
in steps of 2 ms from top to bottom until the prethermalized state is reached, followed by steps of 25 ms in the approach to the final
state. Parametersarea, = 5.24 nmandm = 1.44 x 107> kgfor 8 Rb, w| i, = 27 x 2.1 kHz, p, + p, = 100 yum~,
corresponding to an initial Luttinger parameter K = /mr,/(p, + p,) /mg ~ 74.Theimbalanceis A = (p; — p,)/(p, + p,) = 0.1
and T, = 70 nK. The trap frequency after splittingis w ¢ = 27 x 1.4 kHz. (b) Phase correlation function evaluated for a distance of
z — 7 =25 pm ~105 X &, asafunction of time, highlighting the distinct timescales of the relaxation to the prethermalized and final
states, respectively. Here, §, = /2 /mc is the healing length.

(16,4P) = 22 [T - (cos%c,»kt) - ﬁLsinZ(cikt)] + ”"—gf(l - L)shﬁ(akt) (20)
) e Sin 1+ Py ks Pt P

which describes a relaxation towards a temperature

ro EL[I ., g_L) . %(1 . L) @
2 ptp, & P1 T P2 2kp Pt P,

This expression is different from the results for the symmetric/anti-symmetric basis, highlighting how the
observed dynamics and, in particular, also their timescales, are indeed intimately connected to the choice of
observable.

In detail, the timescale for the dynamics within a single gas is, as expected, given by their speed of sound c;.
However, the cross-correlations of the form (¢, ¢, ;) dephase to zero with the slow velocity c_(see appendix C).
After complete dephasing we therefore end up with two independent gases, which independently appear to be in
thermal equilibrium with their respective temperatures Tf(i). However, for all the dynamics described only
dephasing and no true thermalization has taken place. The intuitive reason for this complex behavior is that the
two imbalanced gases are non-identical and dephase with respect to each other. Therefore, their individual

6
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excitations are still conserved, but the symmetric and anti-symmetric modes are no longer connected to these
conserved quantities.

As an example, for the parameters used in figure 2 (A = 0.1, 8 Rb atoms with T}, = 70 nK and
p, + p, = 100 um™") these final temperatures are Tf(l) = 43.8 nKand Tf(z) = 35.1 nK. Note that in the limit
of vanishing imbalance we have p,/(p, + p,) ~ 1/2 and the difference between the T{” tends to zero and they
approach the final temperature of the symmetric and anti-symmetric degrees of freedom given by equation (17).
Also, already in the approach of this limit the small difference in final temperatures can be challenging to
measure in an experiment. In both cases the system would thus appear completely thermalized independent of
the choice of basis, with symmetric, anti-symmetric and individual degrees of freedom all exhibiting the same
temperature. However, with imbalance going to zero, this approach of the final temperature would become
infinitely slow.

4. Influence on many-body revivals

While the double light-cone dynamics are clearly visible in the correlation functions calculated for an infinite
system, observing them directly in an experiment with a finite size system, in particular when a typically
harmonic longitudinal confinement is present, is challenging. In particular, due to the nonlinear excitation
spectrum in harmonic traps [30] the effect is severely scrambled by highly irregular many-body revivals.
Examples of this behavior are shown in the appendix E.

However, regular and well controlled many-body revivals have recently been observed for the first time in
homogeneous trapping potentials [24], demonstrating their power to probe the dephasing and higher-order
interactions of phonon modes. In the following we thus illustrate the influence of our effect on such many-body
revivals.

To this end, we first repeat our calculations for a system with periodic boundary conditions, but with a
typical experimental finite size of 100 um ~400 x &,.In figure 3(a) we show the corresponding results for the
phase correlation function. Due to the finite number of momentum modes they show clear rephasing behavior,
as experimentally observed in [24]. However, due to the imbalance the two velocities in the system can be
observed through the presence of two different types of revivals—slow revivals resulting from ¢_and fast revivals
coming from ¢ . The value of the phase correlation function reached in the slow revivals depends on how well
slow and fast revivals coincide.

A scenario more relevant for an experimental realization is the one of fixed boundary conditions
(0¢/0z = 0), which corresponds to the case of a hard walled box. This boundary conditions guarantee that the
particle current at the box walls vanishes. The corresponding results are shown in figures 3(c), (d). Again, a clear
distinction between slow and fast revivals can be observed, which can directly be connected to the two
characteristic velocities.

Our observations have important practical consequences for the experimental study of integrability
breaking in 1D Bose gases [37-42]. As the effect described here and true thermalization through integrability
breaking would essentially lead to the same experimental signatures (i.e. thermal correlations corresponding to a
temperature given by equation (17)) they would be very challenging to disentangle from measurements of
correlation functions alone. In particular, any experimental effort clearly has to take both effects into account
simultaneously. The many-body revivals presented in figure 3 provide additional tools for such studies.

5. Discussion

We have observed how the dephasing of an imbalanced pair of 1D Bose gases can result in states which are, for all
practical purposes, indistinguishable from thermal equilibrium. This is due to a coupling of the relative and
common degrees of freedom that is mediated by the relative dephasing of the individual gases. It is important to
note that this observation of an apparent thermalization relies on the thermal-like initial conditions that were
imposed on the system by the coherent splitting process. The system always retains a strong memory of the
initial conditions and thus has not truly reached global thermal equilibrium. For example, if the system was
initialized with other non-thermal initial conditions like the ones demonstrated in [10], it would equilibrate, but
never appear thermal in its correlation functions [43].

Interestingly, the observed dynamics are closely related to the measurement process. In experiments,
fluctuations of the anti-symmetric degrees of freedom are probed. These degrees of freedom exhibit a rapid
relaxation with a single timescale if there is no imbalance, and a relaxation with two distinct timescales if there is
imbalance. The same timescales govern the relaxation of the symmetric degrees of freedom. In contrast to that, if
the properties of a single gas were accessible in experiment, their individual correlations would already look
completely relaxed after the first, rapid timescale. This highlights how even in integrable systems, observables

7
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Figure 3. Many-body revivals. (a) Many-body revivals in a homogeneous system with L = 100 ym ~465 x &, and periodic boundary
conditions. The initial temperature is 50 nK, the density p; + p, = 120 / umand K = 81. All other parameters are the same as in
figure 2. We observe fast and slow revivals which are connected with the different characteristic velocities ¢, and c_. The
corresponding revival times are givenby t, = n x L/(2cy) ~n x 25 msandt. =n X L/(2c.) ~n x 496 ms,withn
integer. The initial coherence is restored completely if fast and slow revivals coincide. Between the slow revivals, the fast revivals only
restore coherence up to a value corresponding to a temperature T, /4 X g;/g;, (see equation (13)). The minima of coherence between
the fast revivals oscillate between T';) and T{®. (b) By plotting the PCF at the times of the fast revivals only, one directly observes a
revival light-cone with characteristic velocity c_. The correlation functions for the first ten fast revivals are plotted with time increasing
from top to bottom. For example, (i)—(iii) label the first, second and third fast revival in (a) and the corresponding correlation function
in (b). Experimental box potentials are approximately described by fixed boundary conditions (6p/6z = 0, corresponding to a hard-
walled box). In this case, the fast and slow revival times are doubled. Also, correlations are not translation invariant anymore. In (c)
and (d) we plot the corresponding PCF and revival light-cone for an ideal box trap of the same length as in (a). They exhibit essentially
the same physics as in the case with periodic boundary conditions. Again, (i)—(v) label fast revivals and correlation functions at
increasing evolution times. Note the existence of fast and slow anti-revivals, which are a result of choosing the coordinates zand 2/
symmetrically around the center of the trap.

need to be properly aligned with (i.e. chosen such that they are sensitive to) the integrals of motion to reveal the
integrable nature of the complex many-body dynamics. We note that the experiment in [24] recently revealed
related behavior, where many-body revivals could be observed in certain correlation functions but not in others.
This points to a general connection between the choice of measurement basis and the observed relaxation
dynamics and will thus be an interesting topic for future research.
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Appendix A. Spin-charge coupling in 1D Bose gases

Our scenario can also be interpreted as a possible experimental platform to explore spin-charge physics within
the Luttinger liquid framework [27, 28]. In this case, the symmetric degrees of freedom can be identified with the
charge degrees of freedom of a fermionic spin chain, while the anti-symmetric degrees of freedom play the role
of the spin. If the two gases are prepared with identical mean atom numbers, spin and charge degrees of freedom
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are separated. The mixing in the imbalanced case, on the other hand, can be identified as a coupling between spin
and charge.

For the system of two spatially separate 1D Bose gases the characteristic velocities ¢, = /g, .(p; + p,)/2m
of spin and charge degrees of freedom are identical, as g = g. = g where gis the 1D interaction strength.
Different tunable velocities for spin and charge can be achieved by replacing the two wells employed in this work
by two internal atomic states | 1) and |2) with different interaction constants g, 2, and g, [18, 26, 44, 45]. This
situation wouldlead to g, . = g, + &, F 2g;, and thus different velocities for spin and charge. These velocities
could be studied experimentally by probing the propagation of the i situ density fluctuations after a quench of
the radial confinement [36, 46].

Appendix B. Details of the proposed experimental realization

The splitting quench can be realized by applying near-field RF radiation via two wires on an atom chip
[25,47,48]. Previous experiments investigating a balanced splitting process [10, 13, 15,31, 49] have
demonstrated this to be a powerful scenario for non-equilibrium physics. The splitting process can be made
much faster than the speed of sound in the system, realizing the binomial distribution of atoms that is discussed
in the main text. In this case, no information about the quench can propagate along the system, leading to almost
perfectly correlated phase profiles of the two gases after the splitting [ 13]. The relative amplitude and phase of the
two RF currents defines the polarization of the RF radiation and therefore the orientation of the double well
potential [25,47]. A small imbalancing of in-phase RF currents in these wires creates a tilted double well
potential and thus a small atom number imbalance after the splitting process. For the trap parameters used in the
experiments we estimate that offsets below 250 Hz between the two minima of the tilted double well are
sufficient to realize the scenario of small imbalances (i.e. up to A = 0.1) discussed in the main text. In this case,
the trapping potential provided by the two wells can still be assumed to be identical. Residual small collective
excitations can be efficiently removed using optimal control [50]. For higher imbalances, the wells become
increasingly distorted until eventually also tunneling from one well across the barrier into excited states of the
other well becomes possible.

Appendix C. Evolution of the phase variance

Combining equations (10)—(12) with equation (8) we find for the time evolution of the relative phase variance

2
kg T; & P . .
0P = —8Tn11cosake) — cos(akt)P + L] [—P_ in(ake) + (okt)
1s0F) = 7%k (py + Pz)[ o e 8in l P+ Py T P2 e

m
ﬁzile [—2— 51n(c1kt) + sm(czkt):|
(22)
For small imbalances we can assume p, ,/(p; + p,) ~ 1/2, which gives
(10_x(O]}) = __ kT [cos(cikt) — cos(akt))? + 3 l[sin(clkt‘) + sin(gkt)J?
72k (py + ) in 2
1
+ - zifz —[sin(qkt) + sin(akt)]?. (23)

Simplifying this expression yields equation (13). Note that even for large imbalances the difference between the
approximation and the full formula is only quantitative, qualitatively they still give the same results. Similarly we
can obtain an expression for the phase variance of the symmetric degrees of freedom. Assuming small
imbalances we get the approximate result

(16, x D) = %m)cosz(ckt)k + Lia + ( i )cos(qut)} +
2 n

2mg; . )
sin?(c_kt)cos?(c kt).
R+ . < 7 (c_kt)cos*(c kt)

(24)

In analogy to equation (20) for the phase variances of the individual condensates, one can also calculate the
evolution of the crossterms (¢, ; ¢, ;). From equations (8) and (12) we find that they are of the form
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Figure D1. Contrast as another experimental probe. The slow and fast revivals that have been identified for the phase correlation
function are also observable using the mean squared contrast (C2). Here, we have used the same boundary conditions (0¢/dz = 0)
and parameters as in figure 3(c), i.e. a system size of 100 pm, initial temperature of Tj, = 50 nK, imbalance A = 0.1, trap frequencies
Wiin = 2m X 2.1 kHz, wy ¢ = 2 x 1.4 kHzand initial density p; + p, = 120 pm~1.

<g?)1,k &52’7,() = (- cos(gkt)cos(akt) + C, - sin(qkt)sin(gkt)

:% - (cos(2c_kt) + cos(2c,kt)) + % - (cos(2c_kt) — cos(2c kt)), (25)

where C, , are time-independent constants. This expression describes a dephasing of the cross terms to 0 with
the velocity difference c_.

Appendix D. Interference contrast

In experiments the expectation value in the definition of the phase correlation function is realized through an
average over many experimental runs. We have previously demonstrated [13] that the number of runs that is
required for a statistically meaningful determination of the correlation functions can dramatically increase for
evolution times ¢ >> 10 ms. However, for the parameters used in this work, the fully thermal state is not
expected before t ~ 100 ms or more. For longer evolution times it could thus be beneficial to probe the level of
coherence between the two gases using the mean squared interference contrast (C?) of the matterwave
interference pattern in time-of-flight [13, 15, 49]. It is well known from one of our previous experiments [49]
that this procedure involves an unknown factor that describes the finite resolution and other spurious
experimental effects. We thus suggest to extract the relative phase 0(z) = ¢, (z) — ¢g(2z) from every
longitudinal position z of the interference pattern and calculate the contrast via the identity

(CX(L)) = L LL//ZZ PCF(z, z,)dz1dz,. Here, PCF is the two-point phase correlation function discussed in the

main text (equation (19)) and L is a length scale over which the interference pattern is integrated. Because of the
integration this procedure can be more robust against statistical fluctuations than the phase correlation function
alone. With the identity given above, it is straight forward to generalize our predictions for the dynamics to the
contrast. An example is shown in figure D1.

Appendix E. Harmonic traps

The Luttinger Hamiltonian as written in equation (1) stays valid for inhomogeneous density profiles p(z). For
the calculation in the harmonic trap, we assume a Thomas—Fermi profile for the density distribution before
splitting, and rescaled density distributions for the evolution of the fluctuations after the quench. For the latter,
the initial density profile depending on the total atom number N; + N, and on the trap frequencies w,
(longitudinal) and w ;, (radial) is simply multiplied by the factor N; /(N; + Ny).

With this density distributions the Hamiltonian can be diagonalized with the help of Legendre-Polynomials
[30, 51]. Note that due to the density dependence of the shot noise fluctuations introduced in the splitting
process, the initial density fluctuations expanded in Legendre-Polynomials are not diagonal anymore [52].

The results of the calculation are shown in figure E1. The incommensurate excitation energies of the trapped
system lead to very complex dephasing and rephasing dynamics. As already discussed in the main text, such
complex dynamics make it very challenging to experimentally disentangle different competing integrable (such
as the one presented here) and non-integrable (such as thermalization) mechanisms.
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Figure E1. Dynamics in a harmonic trapping potential. (a) Dynamics of the phase correlation function, with time increasing in steps of
2 ms from 0 ms to 12 ms, and in steps of 25 ms from 35 ms to 160 ms. (b) The incommensurate mode energies of the trapped system
lead to complex dephasing dynamics with many irregularly spaced partial revivals. We have used 10000 87 Rb atoms with an initial
temperature of T;, = 70 nK, in aninitial trap with frequenciesw, = 27 x 11 Hzand wy j, = 27 x 2.1 kHz. The atom number
imbalance for the evolutionis A = (N; — N,) /(] + N,) = 0.1, the perpendicular trap frequencyis wy ¢ = 27 x 1.4 kHz. Note
that we do not need to specify a longitudinal trap frequency for the evolution after the quench as we simply assume rescaled density
profiles. The inset shows the corresponding evolution of the interference contrast. The coordinates zand z’ have been chosen
symmetrically around the center of the trap in both (a) and (b).
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