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Abstract
We theoretically investigate the non-equilibriumdynamics in a quenched pair of one-dimensional
Bose gases with density imbalance.We describe the systemusing its low-energy effective theory, the
Luttinger liquidmodel. In this framework the system shows strictly integrable relaxation dynamics via
dephasing of its approximatemany-body eigenstates. In the balanced case, this leads to thewell-
known light-cone-like establishment of a prethermalized state, which can be described by a
generalizedGibbs ensemble. In the imbalanced case the integrable dephasing leads to a state that,
counter-intuitively, closely resembles a thermal equilibrium state. The approach to this state is
characterized by two separate light-cone dynamics with distinct characteristic velocities. This behavior
is a result of the fact that in the imbalanced case observables are not alignedwith the conserved
quantities of the integrable system.We discuss a concrete experimental realization to study this effect
usingmatterwave interferometry andmany-body revivals on an atom chip.

1. Introduction

Non-equilibriumdynamics of isolated quantum systems play a central role inmany fields of physics [1]. An
important question in this context is whether the unitary evolution can lead to the emergence of thermal
properties. For example, the eigenstate thermalization hypothesis conjectures that dephasing can lead to
thermalization in systemswith a chaotic classical limit [2–5]. On the other hand, integrable ormany-body
localized systems are expected not to thermalize at all [6], but instead relax to generalized thermodynamical
ensembles [7–10]. An important role in both cases is played by the signal propagation during the non-
equilibriumdynamics. It has been shown formany systems [11–13] that this propagation follows a light-cone-
like linear evolution in timewith a characteristic velocity. This behavior has important consequences for the
growth of entanglement in such systems [5, 14].

In thismanuscript, we study the dynamics in a pair of bosonic 1Dquantumgases with number imbalance
using the Luttinger liquid formalism. The dynamics of such quantumwires has recently been studied in great
detail using atom chips [10, 13, 15–17] or in optical lattices [18–22]. In particular, 1DBose gases have been
established as a prime experimental realization of a nearly integrable systemwith strongly suppressed
thermalization [6, 15, 21]. So far, the consequences of this integrable behavior havemainly been studied for
individual gases or sets of nearly identical gases. Here, we show that for imbalanced pairs of gases, i.e. gases that
differ in theirmean density, integrable dephasing can establish a state that closely resembles thermal
equilibrium. The dynamics towards this state are found to be exceptionally rich, including ametastable thermal-
like state described by a generalizedGibbs ensemble and two distinct light-cone dynamics, each exhibiting their
individual characteristic velocity. Beyond the fundamental interest in thermalization dynamics, our study is of
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high relevance for ongoing experiments, where density imbalances are often unavoidable and can thus
fundamentally affect the interpretation of the results.

2.Model

In the followingwe consider an initial 1DBose gas in thermal equilibrium that is coherently split into two gases
(figure 1). This scenario ismotivated by experiments with 1DBose gases on atom chips, which have recently
been established as an importantmodel system to study non-equilibriumdynamics [10, 13, 15, 23, 24]. In these
experiments gases are confined in two radial directions using a strong potential characterized by the trapping
frequency ŵ , such that m w< ^k T, B and they behave effectively one-dimensional. Here,μ is their chemical
potential andT their temperature.

The effective low-energy description for each of the gases is given by the Luttinger liquidHamiltonian


ò

r
f=  +

⎡
⎣⎢

⎤
⎦⎥ˆ ( ˆ ( )) ( ˆ ( )) ( )H z
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z

g
n zd

2 2
. 1i

i
i i

2
2 2

Here, the index i= 1, 2 labels the individual gases withmean densities ρi independent of z (homogeneous case).
We denote the density fluctuations around thismean densities by ˆ ( )n zi , the phase fluctuations by f̂ ( )zi . Phase
and density fluctuations represent conjugate variables. The 1D interaction strength is characterized by

 w= ^g a2 s , with the 3D scattering length as.

The resulting totalHamiltonian of the system is given by = å =
ˆ ˆH Hi i1,2 . To analyze thisHamiltonianwe

transfer it into a basis formed by the symmetric and anti-symmetric superpositions of the individual
fluctuations:

q f f

= 

= 
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ˆ ( ) [ ˆ ( ) ˆ ( )]
ˆ ( ) [ ˆ ( ) ˆ ( )] ( )
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. 2
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This basis transformation allows us to directly connect our results to experiments, which probe the relative
phase q-̂( )z (i.e. the anti-symmetric degrees of freedom) between the gases throughmatterwave interference
[13, 15, 25]. After this basis transformationwe canwrite the totalHamiltonian as [26]

= + +- +ˆ ˆ ˆ ˆ ( )H H H H , 3c

Figure 1.Relaxation dynamics in a pair of quantumwires. A phase-fluctuating 1DBose gas in thermal equilibrium is coherently split
into a pair of gases using a double well potential. This leads to almost identical phase profilesf1(z) andf2(z) (indicated by the solid
black lines) for the two resulting gases and to a binomial distribution of atoms between them.We study here the relaxation of this
highly correlated state. If the two gases after the split have the same densities ρ1=ρ2, there is no coupling between the anti-symmetric
or relative degrees of freedom (d.o.f.), which contain only small fluctuations after the quench, and the symmetric or common degrees
of freedomof the total system,which contain largefluctuations after the quench. In the dynamics, these fluctuations of the relative and
common d.o.f. reach thermal-like steady states with different temperatures. If, however, the two gases after the split have different
densities, relative and common degrees of freedom are coupled and theirfluctuations equilibrate over a second,much slower
timescale.
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where -Ĥ and +Ĥ are again LLHamiltonians
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Wenote the change in pre-factors, i.e. the factor 1/2 that appears in addition to themean density (ρ1+ρ2)/2 in
thefirst term and the appearance of g instead of g/2 in the second termofH±, as compared to the original
LuttingerHamiltonians describing the individual gases(equation (1)). These changes arise due to our specific
definition of the symmetric and anti-symmetric degrees of freedom in equation (2). Coupling between the new
degrees of freedom ismediated by
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All theseHamiltonians are still quadratic and integrable andwe thus do not expect any thermalization.
At this point there are two distinct cases to study. If themean densities ρi of the twowires are identical, i.e.

there is no imbalance r r r rD = - + =( ) ( ) 01 2 1 2 , we have =Ĥ 0mix and symmetric and anti-symmetric
degrees of freedomdecouple. In this case, fluctuations in the individual gases evolve in exactly the sameway.
However, if themean densities of the twowires are different (D ¹ 0), we have ¹Ĥ 0c , which leads to a
coupling between symmetric and anti-symmetric degrees of freedom. In the latter case, the fluctuations in the
two condensates evolve differently causing a relative dephasing of the two gases over time.

Wenote in passing that this scenario holds promise as a platform to study spin-charge physics within the
Luttinger liquid framework [27, 28], with Ĥ describing the spin and charge degrees of freedom, respectively. In
experiments the relevant parameters can bemade fully tunable by imbalancing both the densities and also the
coupling constants (see appendices A andB).

Previously, the corresponding dynamics were obtained by diagonalizing -Ĥ [26, 29–31]. However, this is
not sufficient to capture the full dynamics if ¹Ĥ 0mix . Insteadwe diagonalize Ĥ1 and Ĥ2 individually. This is
possible, as their excitations are conserved independently of the imbalance. Assuming periodic boundary
conditions for the gases of length L, we can expand the phase and density fluctuations into their Fourier
components
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Using thisHamiltonian to solve the equation ofmotion for the phase operatorwe find


f f= = - =ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( ) ( )t t c kt

g

c k
n t c kt0 cos 0 sin . 8i k i k i

i
i k i, , ,

Here, the speed of sound in the individual gases is given by r=c g mi i , whilefi, k(t=0) and =ˆ ( )n t 0i k,

denote the initial values for the phase and density fluctuations, respectively.We can transfer this result into the
familiar symmetric/anti-symmetric basis using q f f= 

ˆ ˆ ˆ
k k k, 1, 2, .

Our aim is to investigate the dynamics after a single 1D gas in thermal equilibrium (with temperatureTin) is
split into two parts. TheHamiltonian of this initial gas is of the formgiven by equation (7)with 1Ddensity
ρ=ρ1+ρ2. The thermal expectation values for the secondmoments in classicalfield approximation are
therefore
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wherewe have used f f= -
ˆ ˆ†
k k and = -ˆ ˆ†n nk k. All firstmoments vanish.Note that experimentally the splitting

often results in a change in radial trapping frequency, such that the gases before and after splittingwill differ in
their 1D interaction strength w~ ^g . In the following, wewill denote the interaction strength before splitting
with gin and after splittingwith gf to include this possibility in our calculations.
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In the limit of fast splitting no information can propagate along the axis of the gases andwe can assume that
they both have the same phase profile after the splitting, which is identical to the profile of the initial gas.
Moreover, wewant to assume that in this case the probability for each atom to go intowell 1 is ρ1/(ρ1+ρ2)
independently fromwhere the other atoms go (binomial splitting) [26].With these assumptions, wefind for the
fluctuations of the individual gases right after splitting
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Thefirst term in equation (10) represents the shot noise from the binomial splitting process, which is anti-
correlated, as expressed by the factor 2δi, j−1. The second term in equation (10), as well as equation (11), stem
from the thermal fluctuations of the initial condensate, and describe correlated fluctuations. Again, allfirst
moments vanish. AssumingGaussian fluctuations, the secondmoments are sufficient to fully describe the
system. This assumption is justified for long enough length scales containing a large number of particles. Note
that the same assumption has to bemade for the validity of the Luttinger liquidmodel and, also, typically only
such length scales are accessible in experiments.

3. Results

Wecannow investigate the dynamics by combining equations (10)–(12)with equation (8). To clearly reveal the
relevant dynamics we use the approximation of small imbalance (D  1) between the two gases, and obtain
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with the average velocity c+= (c1+c2)/2 and and the velocity difference c−=(c1−c2)/2. For a derivation
without the small imbalance approximation see appendix C.

In the following discussion of the dephasing dynamics wefirst focus on the case when the length scales under
consideration aremuch smaller then the system size (large/infinite system limit). Finite system sizes and the
occurrence of revivals are discussed in section 4.

If there is no imbalance (i.e.Δ=0 and c−=0, c+= c1=c2=c) the terms proportional to -( )c ktsin2

vanish andwe obtain thewell knowndephasing dynamics


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k
ckt

2
sin , 14k,

2 f
2 2

2

where thermal correlations are establishedwith a light-cone [31]. In this process thermal correlations
instantaneously emerge locally within a certain horizon, while they remain non-thermal outside of the horizon.
This horizon spreads through the systemwith a characteristic velocity that is given by c=c1=c2 [13, 30, 31].
One can see this from equation (14) by realizing that at a certain time t allmodes down to a lower bound given by
2ct·klower=2π have dephased (note that the factor 2 comes from the square of the sine). The bound klower
therefore corresponds to the length-scale 2ct. The result of the dephasing dynamics is a prethermalized state with
a temperature

r r
=

+- ( )
( )( )T

g

k4
. 15

B
eff

f 1 2

This temperature can be identified directly from equation (13) in the dephased limit, i.e. by averaging over kt and
comparing to the result for a pair of gases (eachwith 1Ddensity (ρ1+ρ2)/2) in thermal equilibrium


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(classical field approximation). It corresponds to the energy -( )k TB eff that is added to the

relative degrees of freedomduring the splitting quench [15, 29].
The corresponding expression to equation (13) for the commonphase variance qá ñ+∣ ( )∣tk,

2 is derived in
appendix C.One observes that the symmetric degrees of freedom exhibit the temperature
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which is coming from the initial thermal fluctuations.However, the initial temperature is decreased through an
interaction quench (second term in the brackets). In the splitting not only the density but also the density
fluctuations are halved [32–34]. As they enter quadratically in theHamiltonian, this leads to a decrease of a factor
2 in energy, which can be furthermodified by the aforementioned change in the interaction constant g.

While the individual correlation functions of relative and commondegrees of freedomare thus thermal, the
state of the total system is non-thermal and has to be described by a generalizedGibbs ensemblewith the two
temperatures ( )Teff , respective [10, 15].

With imbalance (D >∣ ∣ 0) the dephasing dynamics changes significantly. The aforementioned light-cone
dynamics to the prethermalized state still proceeds with the average velocity c+. In addition, examining the
additional terms in equation (13)we identify a second dephasing timescale characterized by the slower velocity
c−. After complete dephasing (with the fast as well as the slow velocity), we end upwith a second thermal-like
state. Following the same procedures as beforewe can identify the temperature of this state to be identical for
both relative and commondegrees of freedom and given by4

= + +
-⎛

⎝⎜
⎞
⎠⎟ ( )( )

( )
T

T g

g

T

4
1

1

2 2
. 17f

in f

in

eff

Again, this result can be interpreted intuitively in terms of the corresponding energies ( )k TB f . Thefirst term
corresponds to half the energy that is initially contained in the common degrees of freedom (equation (16)), the
second term to half the energy introduced to the relative degrees of freedomduring the quench (equation (15)).
Equation (17) hence describes an equipartition of energy that is dynamically established by the coupling termHc.

Note that equation (17) remains true, evenwithout the assumption of small imbalance5, whichwas used to
obtain equation (13). For typical parameters in atom chipmicrotraps the change in confinement leads to

» 1 2
g

g
f

in

andwe find » +
-( )

T T T
f 3 2

in eff .

To visualize the corresponding dephasing dynamics leading to this equipartition in detail, we calculate the
two-point phase correlation function [13]

 q q¢ = á - ¢ ñ( ) ( ˆ ( ) ˆ ( )) ( )z z z z, cos . 18

This functionmeasures the correlation between the relative phases θ(z) at two arbitrary points z and z′ along the
length of the system and can directly bemeasured in the experiments [13]. An alternative but related probe, the
interference contrast, is discussed in appendixD.

As discussed in the previous section, the initialfluctuations in ourmodel are Gaussian and of course remain
so during the evolutionwith the quadraticHamiltonian. Therefore, the phase correlation function can be

rewritten in the form  ¢ = q q- á - ¢ ñ( ) [ˆ ( ) ˆ ( )]CF z z, e z z1
2

2
. In the limit of an infinitely large system this leads to
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d
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0
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2

Infigure 2we plot equation (19) for increasing evolution times, revealing a double light-cone. First, the system
relaxes to the prethermalized state with exponentially decaying (thermal) correlations. For longer evolution
times, the system relaxes further to the second thermal-like steady state. As in the previous light-cone-like
relaxation to the prethermalized state, the system reaches this new final state for a given time only up to a certain
horizon, but then follows a different shape beyond that point. The position of this horizonmoveswith a second
characteristic velocity that is given by the (typically small) velocity difference c−of the individual gases.

While both symmetric and anti-symmetric degrees of freedom reach a thermal-like state with temperature
( )Tf , the complete system still differs from the thermal equilibriumof two condensates with equal density

(ρ1+ρ2)/2 in the aspect that cross-correlations q qá ñ+ -k k, , between symmetric and anti-symmetric degrees of
freedomdo not vanish (see appendix C). Note that for the thermal equilibriumof two gaseswith unequal
densities, the cross-correlations between common and relative degrees of freedom also do not vanish. However,
they are still of differentmagnitude than in the completely dephased case.

Another way to discuss the question of whether the systemdephases to thermal equilibrium is to have a look
at the quantities for the individual gases. These could e.g. be studied in experiments using density fluctuations in
time offlight [35] or by probing the density fluctuations in situ [36]. The phase variance of the individual gases is
given by

4
Note that this temperature is obtained by comparisonwith the thermal equilibriumof two gases of equal density (ρ1+ρ2)/2.When

comparing to two gases with unequal density ρ1 and ρ2, the effective temperature is given by r r r r+ ´ ( ) T4 f1 2 1 2
2 .

5
This can be best seen from the dephased state for the phase variances of the individual condensates(equation (20)) and the crossterms

dephasing to 0(equation (25)).
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which describes a relaxation towards a temperature

r
r r

r
r r

r r
r r

=
+

+
+

+ -
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )( )T

T g

g

g

k2
1

2
1 . 21i i i i

B

i
f

in

1 2

f

in 1 2

f

1 2

This expression is different from the results for the symmetric/anti-symmetric basis, highlighting how the
observed dynamics and, in particular, also their timescales, are indeed intimately connected to the choice of
observable.

In detail, the timescale for the dynamics within a single gas is, as expected, given by their speed of sound ci.
However, the cross-correlations of the form f fá ñk k1, 2, dephase to zerowith the slow velocity c−(see appendix C).
After complete dephasingwe therefore end upwith two independent gases, which independently appear to be in
thermal equilibriumwith their respective temperatures ( )T i

f . However, for all the dynamics described only
dephasing and no true thermalization has taken place. The intuitive reason for this complex behavior is that the
two imbalanced gases are non-identical and dephasewith respect to each other. Therefore, their individual

Figure 2.Dynamics of the two-point phase correlation function in the theoreticalmodel. (a)The two-point phase correlation function
reveals a fast light-cone-like decaywith the average velocity c+ to the prethermalized state (dashed red line), followed by amuch slower
second light-cone-like decay with the difference velocity c−to thefinal relaxed state (dash-dotted green line). Evolution times increase
in steps of 2 ms from top to bottomuntil the prethermalized state is reached, followed by steps of 25 ms in the approach to the final
state. Parameters are as=5.24 nmandm=1.44×10−25 kg for 87 Rb, w p= ´^ 2 2.1,in kHz, r r m+ = -100 m1 2

1,
corresponding to an initial Luttinger parameter p r r= + ~( )K mg 741 2 . The imbalance is r r r rD = - + =( ) ( ) 0.11 2 1 2

andTin=70 nK. The trap frequency after splitting is w p= ´^ 2 1.4,f kHz. (b)Phase correlation function evaluated for a distance of
z−z′=25 μm x~ ´105 h as a function of time, highlighting the distinct timescales of the relaxation to the prethermalized and final
states, respectively. Here, x = mch is the healing length.
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excitations are still conserved, but the symmetric and anti-symmetricmodes are no longer connected to these
conserved quantities.

As an example, for the parameters used in figure 2 (Δ=0.1 , 87 Rb atomswithTin=70 nK and
r r m+ = -100 m1 2

1) thesefinal temperatures are =( )T 43.8f
1 nK and =( )T 35.1f

2 nK.Note that in the limit

of vanishing imbalancewe have r r r+ ~( ) 1 2i 1 2 and the difference between the ( )T i
f tends to zero and they

approach thefinal temperature of the symmetric and anti-symmetric degrees of freedom given by equation (17).
Also, already in the approach of this limit the small difference infinal temperatures can be challenging to
measure in an experiment. In both cases the systemwould thus appear completely thermalized independent of
the choice of basis, with symmetric, anti-symmetric and individual degrees of freedomall exhibiting the same
temperature.However, with imbalance going to zero, this approach of the final temperature would become
infinitely slow.

4. Influence onmany-body revivals

While the double light-cone dynamics are clearly visible in the correlation functions calculated for an infinite
system, observing themdirectly in an experiment with afinite size system, in particular when a typically
harmonic longitudinal confinement is present, is challenging. In particular, due to the nonlinear excitation
spectrum in harmonic traps [30] the effect is severely scrambled by highly irregularmany-body revivals.
Examples of this behavior are shown in the appendix E.

However, regular andwell controlledmany-body revivals have recently been observed for thefirst time in
homogeneous trapping potentials [24], demonstrating their power to probe the dephasing and higher-order
interactions of phononmodes. In the followingwe thus illustrate the influence of our effect on suchmany-body
revivals.

To this end, wefirst repeat our calculations for a systemwith periodic boundary conditions, but with a
typical experimental finite size of 100 μm x~ ´400 h. Infigure 3(a)we show the corresponding results for the
phase correlation function. Due to the finite number ofmomentummodes they show clear rephasing behavior,
as experimentally observed in [24]. However, due to the imbalance the two velocities in the system can be
observed through the presence of two different types of revivals—slow revivals resulting from c−and fast revivals
coming from c+. The value of the phase correlation function reached in the slow revivals depends on howwell
slow and fast revivals coincide.

A scenariomore relevant for an experimental realization is the one offixed boundary conditions
( f¶ ¶ =z 0), which corresponds to the case of a hardwalled box. This boundary conditions guarantee that the
particle current at the boxwalls vanishes. The corresponding results are shown infigures 3(c), (d). Again, a clear
distinction between slow and fast revivals can be observed, which can directly be connected to the two
characteristic velocities.

Our observations have important practical consequences for the experimental study of integrability
breaking in 1DBose gases [37–42]. As the effect described here and true thermalization through integrability
breakingwould essentially lead to the same experimental signatures (i.e. thermal correlations corresponding to a
temperature given by equation (17)) theywould be very challenging to disentangle frommeasurements of
correlation functions alone. In particular, any experimental effort clearly has to take both effects into account
simultaneously. Themany-body revivals presented infigure 3 provide additional tools for such studies.

5.Discussion

Wehave observed how the dephasing of an imbalanced pair of 1DBose gases can result in states which are, for all
practical purposes, indistinguishable from thermal equilibrium. This is due to a coupling of the relative and
commondegrees of freedom that ismediated by the relative dephasing of the individual gases. It is important to
note that this observation of an apparent thermalization relies on the thermal-like initial conditions that were
imposed on the systemby the coherent splitting process. The system always retains a strongmemory of the
initial conditions and thus has not truly reached global thermal equilibrium. For example, if the systemwas
initializedwith other non-thermal initial conditions like the ones demonstrated in [10], it would equilibrate, but
never appear thermal in its correlation functions [43].

Interestingly, the observed dynamics are closely related to themeasurement process. In experiments,
fluctuations of the anti-symmetric degrees of freedom are probed. These degrees of freedom exhibit a rapid
relaxationwith a single timescale if there is no imbalance, and a relaxationwith twodistinct timescales if there is
imbalance. The same timescales govern the relaxation of the symmetric degrees of freedom. In contrast to that, if
the properties of a single gas were accessible in experiment, their individual correlationswould already look
completely relaxed after thefirst, rapid timescale. This highlights how even in integrable systems, observables
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need to be properly alignedwith (i.e. chosen such that they are sensitive to) the integrals ofmotion to reveal the
integrable nature of the complexmany-body dynamics.We note that the experiment in [24] recently revealed
related behavior, wheremany-body revivals could be observed in certain correlation functions but not in others.
This points to a general connection between the choice ofmeasurement basis and the observed relaxation
dynamics andwill thus be an interesting topic for future research.
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AppendixA. Spin-charge coupling in 1DBose gases

Our scenario can also be interpreted as a possible experimental platform to explore spin-charge physics within
the Luttinger liquid framework [27, 28]. In this case, the symmetric degrees of freedom can be identifiedwith the
charge degrees of freedomof a fermionic spin chain, while the anti-symmetric degrees of freedomplay the role
of the spin. If the two gases are preparedwith identicalmean atomnumbers, spin and charge degrees of freedom

Figure 3.Many-body revivals. (a)Many-body revivals in a homogeneous systemwith L=100 μm x~ ´465 h and periodic boundary
conditions. The initial temperature is 50 nK, the density ρ1+ρ2=120 /μmandK=81. All other parameters are the same as in
figure 2.We observe fast and slow revivals which are connectedwith the different characteristic velocities c+ and c−. The
corresponding revival times are given by = ´ ~ ´+ +( )t n L c n2 25 ms and = ´ ~ ´- -( )t n L c n2 496 ms, with n
integer. The initial coherence is restored completely if fast and slow revivals coincide. Between the slow revivals, the fast revivals only
restore coherence up to a value corresponding to a temperature ´T g g4in f in (see equation (13)). Theminima of coherence between
the fast revivals oscillate between -( )Teff and ( )Tf . (b)By plotting the  at the times of the fast revivals only, one directly observes a
revival light-conewith characteristic velocity c−. The correlation functions for thefirst ten fast revivals are plottedwith time increasing
from top to bottom. For example, (i)–(iii) label thefirst, second and third fast revival in (a) and the corresponding correlation function
in (b). Experimental box potentials are approximately described by fixed boundary conditions (δρ/δz=0, corresponding to a hard-
walled box). In this case, the fast and slow revival times are doubled. Also, correlations are not translation invariant anymore. In (c)
and (d)weplot the corresponding  and revival light-cone for an ideal box trap of the same length as in (a). They exhibit essentially
the same physics as in the casewith periodic boundary conditions. Again, (i)–(v) label fast revivals and correlation functions at
increasing evolution times. Note the existence of fast and slow anti-revivals, which are a result of choosing the coordinates z and z′
symmetrically around the center of the trap.
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are separated. Themixing in the imbalanced case, on the other hand, can be identified as a coupling between spin
and charge.

For the systemof two spatially separate 1DBose gases the characteristic velocities r r= +( )/c g m2s c s c, , 1 2

of spin and charge degrees of freedomare identical, as gs=gc≡g, where g is the 1D interaction strength.
Different tunable velocities for spin and charge can be achieved by replacing the twowells employed in this work
by two internal atomic states ñ∣1 and ñ∣2 with different interaction constants g11, g22 and g12 [18, 26, 44, 45]. This
situationwould lead to = + g g g g2s c, 11 22 12 and thus different velocities for spin and charge. These velocities
could be studied experimentally by probing the propagation of the in situ density fluctuations after a quench of
the radial confinement [36, 46].

Appendix B.Details of the proposed experimental realization

The splitting quench can be realized by applying near-field RF radiation via twowires on an atom chip
[25, 47, 48]. Previous experiments investigating a balanced splitting process [10, 13, 15, 31, 49] have
demonstrated this to be a powerful scenario for non-equilibriumphysics. The splitting process can bemade
much faster than the speed of sound in the system, realizing the binomial distribution of atoms that is discussed
in themain text. In this case, no information about the quench can propagate along the system, leading to almost
perfectly correlated phase profiles of the two gases after the splitting [13]. The relative amplitude and phase of the
twoRF currents defines the polarization of the RF radiation and therefore the orientation of the double well
potential [25, 47]. A small imbalancing of in-phase RF currents in thesewires creates a tilted doublewell
potential and thus a small atomnumber imbalance after the splitting process. For the trap parameters used in the
experiments we estimate that offsets below 250 Hz between the twominima of the tilted double well are
sufficient to realize the scenario of small imbalances (i.e. up toΔ=0.1) discussed in themain text. In this case,
the trapping potential provided by the twowells can still be assumed to be identical. Residual small collective
excitations can be efficiently removed using optimal control [50]. For higher imbalances, thewells become
increasingly distorted until eventually also tunneling fromonewell across the barrier into excited states of the
otherwell becomes possible.

AppendixC. Evolution of the phase variance

Combining equations (10)–(12)with equation (8)we find for the time evolution of the relative phase variance
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For small imbalances we can assume r r r+ »( ) 1 21,2 1 2 , which gives
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Simplifying this expression yields equation (13). Note that even for large imbalances the difference between the
approximation and the full formula is only quantitative, qualitatively they still give the same results. Similarly we
can obtain an expression for the phase variance of the symmetric degrees of freedom. Assuming small
imbalances we get the approximate result
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In analogy to equation (20) for the phase variances of the individual condensates, one can also calculate the
evolution of the crossterms f fá ñ-

ˆ ˆ
k k1, 2, . From equations (8) and (12)wefind that they are of the form
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where 1,2 are time-independent constants. This expression describes a dephasing of the cross terms to 0with
the velocity difference c−.

AppendixD. Interference contrast

In experiments the expectation value in the definition of the phase correlation function is realized through an
average overmany experimental runs.We have previously demonstrated [13] that the number of runs that is
required for a statisticallymeaningful determination of the correlation functions can dramatically increase for
evolution times t?10 ms.However, for the parameters used in this work, the fully thermal state is not
expected before ~t 100 msormore. For longer evolution times it could thus be beneficial to probe the level of
coherence between the two gases using themean squared interference contrast á ñC2 of thematterwave
interference pattern in time-of-flight [13, 15, 49]. It is well known fromone of our previous experiments[49]
that this procedure involves an unknown factor that describes thefinite resolution and other spurious
experimental effects.We thus suggest to extract the relative phase q f f= -( ) ( ) ( )z z zL R from every
longitudinal position z of the interference pattern and calculate the contrast via the identity

òá ñ =
-

( ) ( )C L z z z z, d d
L

L2
2

2
1 2 1 2. Here,  is the two-point phase correlation function discussed in the

main text (equation (19)) and L is a length scale over which the interference pattern is integrated. Because of the
integration this procedure can bemore robust against statistical fluctuations than the phase correlation function
alone.With the identity given above, it is straight forward to generalize our predictions for the dynamics to the
contrast. An example is shown infigureD1.

Appendix E.Harmonic traps

The LuttingerHamiltonian aswritten in equation (1) stays valid for inhomogeneous density profiles ρi(z). For
the calculation in the harmonic trap, we assume aThomas–Fermi profile for the density distribution before
splitting, and rescaled density distributions for the evolution of the fluctuations after the quench. For the latter,
the initial density profile depending on the total atomnumberN1+N2 and on the trap frequenciesωz

(longitudinal) and ŵ ,in (radial) is simplymultiplied by the factor +( )N N Ni 1 2 .
With this density distributions theHamiltonian can be diagonalizedwith the help of Legendre-Polynomials

[30, 51]. Note that due to the density dependence of the shot noisefluctuations introduced in the splitting
process, the initial density fluctuations expanded in Legendre-Polynomials are not diagonal anymore [52].

The results of the calculation are shown infigure E1. The incommensurate excitation energies of the trapped
system lead to very complex dephasing and rephasing dynamics. As already discussed in themain text, such
complex dynamicsmake it very challenging to experimentally disentangle different competing integrable (such
as the one presented here) and non-integrable (such as thermalization)mechanisms.

FigureD1.Contrast as another experimental probe. The slow and fast revivals that have been identified for the phase correlation
function are also observable using themean squared contrast á ñC2 . Here, we have used the same boundary conditions ( f¶ ¶ =z 0)
and parameters as infigure 3(c), i.e. a system size of 100 μm, initial temperature ofTin=50 nK, imbalanceΔ=0.1, trap frequencies
w p= ´^ 2 2.1,in kHz, w p= ´^ 2 1.4,f kHz and initial density r r m+ = -120 m1 2

1.
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