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Understanding quantum dynamics away from equilibrium is 
an outstanding challenge in the modern physical sciences. Out-
of-equilibrium systems can display a rich variety of phenomena, 
including self-organized synchronization and dynamical 
phase transitions1,2. More recently, advances in the controlled 
manipulation of isolated many-body systems have enabled detailed 
studies of non-equilibrium phases in strongly interacting quantum 
matter3–6; for example, the interplay between periodic driving, 
disorder and strong interactions has been predicted to result 
in exotic ‘time-crystalline’ phases7, in which a system exhibits 
temporal correlations at integer multiples of the fundamental 
driving period, breaking the discrete time-translational symmetry 
of the underlying drive8–12. Here we report the experimental 
observation of such discrete time-crystalline order in a driven, 
disordered ensemble of about one million dipolar spin impurities in 
diamond at room temperature13–15. We observe long-lived temporal 
correlations, experimentally identify the phase boundary and find 
that the temporal order is protected by strong interactions. This 
order is remarkably stable to perturbations, even in the presence 
of slow thermalization16,17. Our work opens the door to exploring 
dynamical phases of matter and controlling interacting, disordered 
many-body systems18–20.

Conventional wisdom holds that the periodic driving of isolated, 
interacting systems inevitably leads to heating and the loss of 
quantum coherence. In certain cases, however, fine-tuned driving 
can actually decouple quantum degrees of freedom from both their 
local environment14 and each other21. Recently, it has been shown that 
strong disorder, which leads to many-body localization22,23, allows a 
system to retain memory of its initial state for long times, enabling the 
observation of novel, out-of-equilibrium quantum phases3,5,24. One 
example is the discrete time crystal9–12—a phase that is nominally  
forbidden in equilibrium25,26. The essence of the discrete time-
crystalline (DTC) phase is an emergent, collective, subharmonic 
temporal response. Although this phenomenon resembles the 
coherent revivals associated with dynamical decoupling13, its nature 
is fundamentally different because it is induced and protected by 
interactions rather than by fine-tuned control fields. It is especially 
intriguing to investigate the possibility of DTC order in systems that 
are not obviously localized27. This is the case for dipolar spins in three 
dimensions, where the interplay between interactions and disorder can 
lead to critical subdiffusive dynamics17,28.

We experimentally investigate the formation of DTC order in an 
ensemble of nitrogen–vacancy spin impurities in diamond. Each 
nitrogen–vacancy centre has an electronic S =​ 1 spin, from which we 
isolate an effective two-level system by applying an external magnetic 

field. These isolated spin states can be optically initialized, detected and 
manipulated via microwave radiation13,15 (see Fig. 1a and Methods). 
Our sample has a high concentration (45 p.p.m.) of nitrogen–vacancy 
centres, giving rise to strong long-range magnetic dipolar interactions17. 
The spins are also subject to multiple sources of disorder, owing to  
lattice strain, paramagnetic impurities and the random positioning of 
nitrogen–vacancy centres. A strong, resonant microwave field is used 
to control spin orientations, resulting in an effective Hamiltonian  
(in the rotating frame)17
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Here, μSi  (μ ∈​ {x, y, z}) are Pauli spin-1/2 operators acting on the 
effective two-level system spanned by the spin states = 〉m 0s  and 

=− 〉m 1s , Ωx(y) is the Rabi frequency of the microwave driving, Δi is 
a disordered on-site field with approximate standard deviation 
W =​ 2π​ ×​ 4.0 MHz, rij is the distance between spins i and j (average 
nearest-neighbour separation r0 ≈​ 8 nm), and Jij are the orientation-
dependent coefficients of the dipolar interaction. The average 
interaction, / ≈ π×J r 2 105 kHzij 0

3  (ref. 17), is much faster than typical 
spin coherence times15.

To probe the existence of time-crystalline order, we monitor the spin 
dynamics of an initial state that is polarized along the +x̂ direction. We 
begin by applying continuous microwave driving (spin locking) along 
x̂ with Rabi frequency Ωx =​ 2π​ ×​ 54.6 MHz for a duration τ1 (Fig. 1a). 
Next, we rotate the spin ensemble by an angle θ around the ŷ axis using 
a strong microwave pulse with Ωy =​ 2π​ ×​ 41.7 MHz for duration 
τ θ Ω τ= / �y2 1. This two-step sequence defines a Floquet unitary with 
a total period T =​ τ1 +​ τ2, and is repeated n times before the polarization 
P(nT) along the x̂ axis is measured. The resulting polarization dynamics 
are analysed in both the time and frequency (ν) domain. Repeating 
these measurements with various values of τ1 and θ allows us to inde-
pendently explore the effect of interactions and global rotations.

Figure 1b–d depicts representative time traces and the corresponding 
Fourier spectra, ν ≡∑ νπS P nT( ) ( )en

i n2 , for various values of τ1 and θ. 
For relatively short interaction times (τ1 =​ 92 ns) and nearly perfect  
π​ pulses (θ ≈​ π​), we observe that the spin polarization P(nT) alternates 
between positive and negative values, resulting in a subharmonic peak 
at ν =​ 1/2 (Fig. 1b). In our experiment, the microwave pulses have an 
intrinsic uncertainty of 0.9% stemming from a combination of spatial 
inhomogeneity in the microwave fields, on-site potential disorder and 
the effect of dipolar interactions (see Methods). These effects eventually 
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cause the oscillations to decay, after approximately 50 periods. 
Although such temporal oscillations nominally break discrete 
time-translation symmetry, their physical origin is trivial. To see this, 
we note that for sufficiently strong microwave driving, Ω /�W J r,x ij 0

3, 
the dynamics during τ1 are governed by an effective polarization-
conserving Hamiltonian17, Ω≈∑ +∑ /( )H S J r S Si x i

x
ij ij ij i

x
j
x

eff
3 . During 

τ2, the evolution can be approximated as a global spin rotation 
θ≈ − ∑θR i Sexp( )y i i

y  . When θ =​ π​, this pulse simply flips the sign of the 

x̂ polarization during each Floquet cycle, resulting in the ν =​ 1/2 peak. 
However, this 2T-periodic response originates from the fine tuning of 
θ and should not be robust against perturbations. Indeed, a systematic 
change in the average rotation angle to θ =​ 1.034π​ causes the 
2T-periodicity to completely disappear, resulting in a modulated, 
decaying signal with two incommensurate Fourier peaks at 
ν =​ 1/2 ±​ (θ −​ π​)/(2π​) (Fig. 1c). Remarkably, we find that a rigid 
2T-periodic response is restored when interactions are enhanced by 
increasing τ1 to 989 ns, suggesting that the ν =​ 1/2 peak is stabilized by 
interactions. In this case, we observe a sharp peak in the spectrum at 
ν =​ 1/2 and the oscillations in P(nT) continue beyond n ≈​ 100 (Fig. 1d), 
indicating a persistent subharmonic temporal response.

The robustness of this apparent periodic order is further explored in 
Fig. 2. With an interaction time τ1 =​ 790 ns and θ =​ 1.034π​, the 
polarization exhibits an initial decay followed by persistent oscillations 
over the entire time window of our experimental observations (Fig. 2a). 
We perform a Fourier transform on subsections of the time trace with 
a sweeping window of size of m =​ 20 (Fig. 2a) and extract the intensity 
of the ν =​ 1/2 peak as a function of the sweep position, nsweep (Fig. 2b). 
The intensity of the ν =​ 1/2 peak clearly exhibits two distinct decay 
timescales. At short times, we observe a rapid initial decay that 
corresponds to non-universal dephasing dynamics, whereas at late 
times we observe a slow decay. Only near the phase boundary 
(θ =​ 1.086π​) is the lifetime substantially decreased. We fit the slow 
decay to an exponential to extract a lifetime for the periodic order.  
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Figure 1 | Experimental set-up and observation of discrete time-
crystalline order. a, Nitrogen–vacancy centres (blue spheres) in a 
nanobeam fabricated from black diamond are illuminated by a focused 
green laser beam and irradiated by a microwave source. Spins are prepared 
in the | = 〉+ | =− 〉 /m m( 0 1 ) 2s s  state using a microwave −π​/2 pulse along 
the ŷ axis. Subsequently, within one Floquet cycle, the spins evolve under a 
dipolar interaction and microwave field Ωx aligned along the  
x̂ axis for duration τ1, immediately followed by a global microwave θ pulse 
along the ŷ axis. After n repetitions of the Floquet cycle, the spin 
polarization along the x̂ axis is read out. We choose τ1 to be an integer 
multiple of 2π​/Ωx to minimize accidental dynamical decoupling14.  
b–d, Representative time traces of the normalized spin polarization P(nT) 
measured at even (green) and odd (blue) integer multiples of T, and 
respective Fourier spectra S v( ) 2 for different values of the interaction time 
τ1 and θ: τ1 =​ 92 ns, θ =​ π​ (b); τ1 =​ 92 ns, θ =​ 1.034π​ (c); and τ1 =​ 989 ns, 
θ =​ 1.034π​ (d). Dashed lines in c indicate ν =​ 1/2 ±​ (θ −​ π​)/(2π​). Data are 
averaged over more than 2 ×​ 104 measurements.
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Figure 2 | Long-time behaviour of discrete time-crystalline order.  
a, Representative time trace of the normalized spin polarization P(nT) in 
the crystalline phase (τ1 =​ 790 ns and θ =​ 1.034π​). The time-dependent 
intensity of the ν =​ 1/2 peak (inset) is extracted from a short-time Fourier 
transformation with a time window of length m =​ 20 shifted from the 
origin by nsweep. b, Peak height at ν =​ 1/2 as a function of nsweep for different 
pulse imperfections at τ1 =​ 790 ns. Lines indicate fits to the data using  
a phenomenological double-exponential function. The noise floor 
corresponds to 0.017, which is extracted from the mean value plus the 
standard deviation of ν∑ν S( ) 2, excluding the ν =​ 1/2 peak. c, Extracted 
lifetime of the time-crystalline order as a function of the interaction  
time τ1, for θ =​ 1.034π​. The shaded region indicates the spin lifetime 

= ± μρT 60 2 s1  (extracted from a stretched exponential28) due to coupling 
with the external environment. d, Extracted decay rate of the time-
crystalline order (in Floquet units) as a function of θ for different 
interaction times: τ1 =​ 385 ns (circles), 586 ns (squares) and 788 ns 
(triangles). Only very weak dependence on θ −​ π​ is observed within the 
DTC phase, contrary to a dephasing model (Methods). In c and d, the 
vertical error bars display the statistical error (s.d.) from the fit and empty 
symbols mark data near the time-crystalline phase boundary.
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As shown in Fig. 2c, for θ =​ 1.034π​, this lifetime increases with the 
interaction time (τ1) and eventually approaches the independently 
measured spin depolarization time ≈ μρT 60 s1  . This demonstrates that, 
for sufficiently long interaction times, the observed periodic order is 
limited by only coupling to the environment28. We associate this with 
DTC order9–12. Within the DTC phase, the lifetime is essentially  
independent of θ, indicating exceptional robustness (Fig. 2d).

We examined whether the observed periodic order could arise from 
an accidental XY sequence14 or from inhomogeneous dephasing  
resulting from the effective single-particle disorder in the dressed state 
basis. To avoid the former, τ1 is always chosen as an integer multiple of 
2π​/Ωx. For the latter, although it has been shown that disorder  
alone is insufficient for stabilizing a DTC phase in the absence of 
interactions9–12, we verified this experimentally; implementing a rotary 
echo sequence that reduces such dephasing, we find no change in the 
lifetime of the DTC order and an enhancement in the subharmonic 
response at late times (see Methods and Extended Data Fig. 1). In 
principle, fast Markovian dephasing could also lead to apparent 
periodic order at extremely small values of θ −​ π​ by eliminating 
coherences along both ŷ and ẑ, leaving only x̂ polarization dynamics. 
In such a case, the decay rate of periodic order should increase 
quadratically with θ −​ π​. However, this explanation is inconsistent with 
the observed robustness of the lifetime of DTC order for a range of 
θ −​ π​ values (Fig. 2d) and the independently measured dephasing rate  
(see Methods).

To experimentally determine the DTC phase boundary, we focus on 
the long-time behaviour of the polarization time traces (50 <​ n ≤​ 100) 
and compute the ‘crystalline fraction’, which is defined as the  
ratio of the ν =​ 1/2 peak intensity to the total spectral power, 

ν ν= = / /∑νf S S( 1 2) ( )2 2  (see Methods). Figure 3a shows f as a 
function of θ for two different interaction times. For weak interactions 
(τ1 =​ 92 ns), f has a maximum at θ =​ π​ and rapidly decreases as θ 
deviates by approximately 0.02π​. However, for stronger interactions 
(τ1 =​ 275 ns), we observe a robust DTC phase, which manifests as a 
large crystalline fraction over a wide range 0.86π​ <​ θ <​ 1.13π​. We 
associate a phenomenological phase boundary with f =​ 10% and 
observe that the boundary enlarges with τ1, eventually saturating at 
τ1 ≈​ 400 ns (Fig. 3b). The phase boundary can also be visualized as the 
vanishing of the ν =​ 1/2 peak and the simultaneous emergence of two 
incommensurate peaks (Fig. 3c).

The rigidity of the ν =​ 1/2 peak can be qualitatively understood by 
constructing effective eigenstates of 2T Floquet cycles, including spin–
spin interaction. We approximate the unitary time evolution over a 
single period as = θ τ−U R eT y

iHeff 1 and solve for a self-consistent evolution 
using product states as a variational ansatz. To this end, we consider 
the situation in which a typical spin returns to its initial state after 2T, 
ψ ψ ψ〉∝ 〉= 〉θ φ θ φ− − −T(0) (2 ) e e e e (0)i S i S i S i Sy

i
x y

i
x , and self-consistently 

determine the interaction-induced rotation angle φ τ≡∑ /J r Si j ij ij j
x3

1  
τ ψ ψ≈J S(0) (0)i

x
1 , where ψ 〉(0)  is the initial spin state and 

=∑ /J J ri j ij ij
3  (see Methods). We expect φi to change sign after each 

Floquet cycle, because the average polarization ψ ψ〈 〉S(0) (0)x  should 
be flipped. Intuitively, the self-consistent solution can be visualized as 
a closed path on the Bloch sphere (Fig. 3d), where each of the four arcs 
corresponds to one portion of the 2T-periodic evolution. When θ =​ π, 
such a solution always exists. More surprisingly, even for θ ≠​ π​ a closed 
path can still be found for sufficiently strong interactions, 
τ θ> −πJ 2i i1 ; in such cases, the deviation in θ away from π​ is com-

pensated by the dipolar interactions (Fig. 3d). We obtain a theoretical 
phase boundary by numerically averaging the self-consistent solution 
over both disordered spin positions and local fields. The resultant 
phase boundary is in reasonable agreement with the experimental 
observations for short to moderate interaction times τ1, but overesti-
mates the boundary at large τ1 (dashed line, Fig. 3b; see Methods).

Finally, Fig. 4 demonstrates that the discrete time-translation 
symmetry can be further broken down to Z3 (refs 10–12, 29), resulting 

in DTC order at ν =​ 1/3. Here, we utilize all three spin states of the 
nitrogen–vacancy centre. We begin with all of the spins polarized in 
the = 〉m 0s  state and evolve under the bare dipolar Hamiltonian for a 
duration τ1 (see Methods). Next, we apply two resonant microwave 
pulses, each of duration τ2, first on the transition = 〉→ =− 〉m m0 1s s  
and then on the transition = 〉→ =+ 〉m m0 1s s . In combination, this 
sequence of operations defines a single Floquet cycle with period 
T =​ τ1 +​ 2τ2. As before, we measure the polarization P(nT), which is 
defined as the population difference between the = 〉m 0s  and  

=− 〉m 1s  states (Fig. 4a). When each of the applied microwaves cor-
responds to an ideal π​ pulse, this sequence realizes a cyclic transition 
with Z3 symmetry (Fig. 4b), which is explicitly broken by any change 
in the pulse duration. The Fourier spectra of P(nT) for various pulse 
durations and for two different values of τ1 are shown in Fig. 4c. With 
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Figure 3 | Phase diagram and transition. a, b, Crystalline fraction f (a) 
and its associated phase diagram (b) as a function of θ and τ1 obtained 
from a Fourier transform at late times (50 <​ n ≤​ 100). The red diamonds 
mark the phenomenological phase boundary, identified as a 10% 
crystalline fraction; horizontal error bars denote the statistical error (s.d.) 
from a super-Gaussian fit. In a, vertical error bars of data points (circles) 
are limited by the noise floor (see Methods) and horizontal error bars 
indicate the pulse uncertainty of 1%. Grey lines denote the fit to extract the 
phase boundary (see Methods). In b, the colours of the data points (circles) 
represent the extracted crystalline fraction at the associated parameter set. 
The dashed line corresponds to a disorder-averaged theoretical prediction 
for the phase boundary. Asymmetry in the boundary arises from an 
asymmetric distribution of rotation angles (see Methods). c, Evolution of 
the Fourier spectra as a function of θ for two different interaction times: 
τ1 =​ 385 ns (top) and τ1 =​ 92 ns (bottom). d, Bloch sphere indicating a 
single spin trajectory of the 2T-periodic evolution under the long-range 
dipolar Hamiltonian (red) and global rotation (blue).
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weak interactions (τ1 =​ 35 ns), the position of the peaks is extremely 
sensitive to perturbations, but with sufficiently strong interactions 
(τ1 =​ 387 ns) the peaks are pinned to a value of ν =​ 1/3 despite large 
perturbations, indicating the observation of a ν =​ 1/3 DTC order. The 
lifetime of the observed ν =​ 1/3 DTC order is shorter than that of the 
ν =​ 1/2 DTC order, consistent with the presence of additional dynamics 
in the full dipolar Hamiltonian (see Methods). The ability for our 
system to exhibit stable period-tripling distinguishes it from bifurca-
tions in driven, classical systems, in which period-tripling is typically 
accompanied by regions of chaos30.

Our observation of DTC order cannot be simply explained within 
current theoretical frameworks based on either localization9–12 or 
pre-thermalization24,27. In particular, our system with long-range dipo-
lar interactions is not expected to be localized in either the static or the 
driven case. In the static case, it has previously been demonstrated that 
our system exhibits slow thermalization associated with critical 
dynamics17. In the driven case, the long-time evolution is governed by 
the average Hamiltonian θ≈∑ / + −π / ∑( )D J r S S T S( )i ij ij i

x
j
x

i i
y3   , which 

likewise does not yield localized dynamics16,31. We further note that 
the effective Hamiltonian of the Z3 DTC phase includes not only Ising-
type interactions but also spin exchange interactions, providing 
additional channels for thermalization (see Methods).

In principle, even in the absence of localization, time-crystalline 
order can persist for a long, but finite, pre-thermal timescale24,27. 
Within this timescale, the spin system relaxes to a pre-thermalized state, 
defined as the thermal ensemble of D with a temperature determined 
by the energy density of the initial state. Because our initially polarized 
state is effectively at infinite temperature with respect to D (owing to 
the anisotropy of the dipolar couplings), we do not expect to observe 
pre-thermal DTC order. This is in contrast to our actual observations, 

which show that the lifetime of the DTC order is limited by the depo-
larization time ρT1, owing to coupling with the environment28 (Fig. 2c). 
We have explicitly verified that the DTC order is not greatly affected by 
varying the initial polarization (see Methods). One possible explanation 
is that, owing to slow critical thermalization17, the spins in our system 
do not reach even a pre-thermal state. Finally, the interplay between 
coherent interactions and dephasing in open systems at long times 
could also have a role. Detailed understanding of such mechanisms 
requires further theoretical investigation.

A number of remarkable phenomena in quantum dynamics have 
recently been observed in engineered many-body systems consisting 
of ten to a few hundred particles3–6. The observations that we have 
presented here indicate that robust DTC order can occur in large 
systems without fine-tuned interactions and disorder, even in the 
regime in which localization is nominally not expected to occur. 
Our work raises important questions about the role of localization, 
long-range interactions and coupling to the environment in driven 
systems, and opens up several new avenues for fundamental studies 
and potential applications. In particular, it should be possible to extend 
these studies to realize novel dynamical phases in more complex driven 
Hamiltonians, and to explore whether such phases can be used to create 
and stabilize coherent quantum superposition states for applications 
such as quantum metrology18–20.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Experimental details. Our sample and experimental set-up have been previously 
described17. We utilize a diamond sample containing a high concentration (about 
45 p.p.m.) of nitrogen–vacancy (NV) centres, corresponding to an average NV–NV 
separation of 5 nm. For a single crystalline orientation of NV centres, selected by 
applying an external magnetic field, this corresponds to an average separation of 
8 nm, resulting in a typical dipolar interaction strength of 2π × 105 kHz. The system 
exhibits strong on-site energy disorder, owing to the effects of lattice strain, the 
random position of NV centres and the presence of scattered paramagnetic 
impurities (consisting mainly of P1 centres and 13C nuclear spins). For each NV, 
the effective random field Δi is therefore a function of its local environment, 
including interaction effects of neighbouring NV centres. This results in an 
approximately Gaussian distribution with standard deviation W =​ 2π​ ×​ 4.0 MHz. 
We extract W by measuring the linewidth of an electron spin resonance (ESR) 
spectrum with sufficiently weak microwave driving strength to avoid power 
broadening. To control the experimental probe volume, we fabricate a diamond 
nanobeam structure (about 300 nm ×​ 300 nm ×​ 20 μ​m) and confocally address a 
region of approximately 300-nm diameter using a green laser (532 nm). This 
realizes an effective three-dimensional excitation volume containing about 106 NV 
centres. By applying an external magnetic field along one of the diamond crystal 
axes, we spectrally isolate one group of NV centres and selectively address an 
effective two-level system between the =−m 1s  and =m 0s  spin states via  
coherent microwave radiation. The addition of a microwave in-phase/quadrature 
(IQ) mixer allows for arbitrary rotations around any linear combination x̂ and ŷ.
Experimental sequence. Initial polarization of NV centres into =m 0s   
is performed via laser illumination at a wavelength of 532 nm, a power of  
50 μ​W and a duration of 100 μ​s. Subsequent application of a microwave −​π​/2 pulse 
along the ŷ  axis is used to coherently rotate the spin ensemble into 
+ = = + =− /m m( 0 1 ) 2s s . The spins are then subjected to continuous 
driving at a Rabi frequency of 2π​ ×​ 54.6 MHz along the x̂ axis for a duration τ1. 
This so-called spin-locking technique suppresses two-spin (flip-flip and flop-flop) 
processes, owing to energy conservation, and decouples spins from their 
environment17. In our sample, this technique leads to spin lifetimes of ≈ μρT 60 s1  
(ref. 28). Finally, we apply a short microwave pulse along the ŷ axis over an angle 
θ ≈​ π​. We repeat this Floquet cycle with various values of θ, controlled by changing 
the Rabi driving strength and the pulse duration. The imperfection in microwave 
manipulations (for initialization into +  and rotation angles θ) amounts to 0.9% 
and arises from a combination of spatial inhomogeneity of the driving field (0.8%) 
and on-site potential disorder (0.6%). Following a coherent time evolution, the 
spin state of the NV ensemble is optically detected by applying a final π​/2 pulse 
along the ŷ  axis and measuring the population difference in the =m 0s  and 

=−m 1s  basis. The polarization is defined as = − −P PP 0 1, with Pa denoting the 
population in spin state a, and is determined by calibrating the NV fluorescence 
using a Rabi oscillation contrast measurement. To avoid heating of the sample, 
which would result in drifts in the Rabi frequency, a waiting time of 600–900 μ​s is 
implemented before the sequence is repeated. The minimum spacing between 
microwave pulses is maintained at 1 ns.

To understand the effect of different initial states on the DTC phase, we replaced 
the initial −​π​/2 pulse with a −​π​/3 pulse. This results in the preparation of a global 
spin state, which is rotated from the x̂ axis by π​/6. Despite this change, the 
measured lifetime of the DTC order (47.6 ±​ 2.4 μ​s) agrees well with that of the 
polarized spin state (49.2 ±​ 3.3 μ​s), demonstrating that DTC order is insensitive to 
the initial state.
Experimental identification of phase boundary. To identify the position of the 
phase boundary in our experiment, we define the crystalline fraction f as 

ν ν= = / /∑νf S S( 1 2) ( )2 2. Error bars in f are calculated via error propagation 
in consideration of the noise floor in the Fourier spectrum; each measured 
spectrum contains a background noise level σn, resulting in the following variation 
in f :
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where N =​ 50 is the number of points in the Fourier spectrum. This gives rise to 
an uncertainty in the crystalline fraction: f ∈​ [ f −​ δ​f, f +​ δ​f ] (Fig. 3a). To extract the 
phase boundary, we use a phenomenological, super-Gaussian function
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where σ±, θ0 and p are the characteristic width, central position and the power of 
the super-Gaussian fit, and 

τf
max
1

 is the maximum value of the crystalline fraction 

for a given duration τ1. The proposed function naturally captures the observed 
asymmetry in the phase boundary. We define the phase boundary as the rotation 

angle θ± at which θ = .τ ±F ( ) 0 11 ; that is, θ θ σ= ± 

 / . 


τ± ±
/( )f2ln 0 1
p

0
max 1

1
. Errors in 

the phase boundary are derived from the uncertainties in the fit.
Theoretical description. As a variational ansatz, we consider the time evolution 
of a homogeneous product state of the form Ψ ψ= ⊗N

0  with ψ θ= / +cos( 2)0 0   
θ+ / −φsin( 2)ei0 0 , where ± = = ± =− /m m( 0 1 ) 2s s . The qualitative 

behaviour does not change even if we allow spins to be oriented in different 
directions. An approximate eigenstate for the time evolution over two periods is 
obtained by solving the equation for a single spin, ψ ψ= θ φ θ φ− − −e e e ei S i S i S i S

0 0
y

i
x y

i
x  , 

with a self-consistently determined φ ψ ψ= J Si i
x

0 0 , where =∑ /J J ri j ij ij
3  is the 

total strength at site i. The sign of φi is flipped in the second evolution because the 
spin polarization along the x̂ direction alternates in each cycle. Note that we have 
ignored the effects of the on-site disorder potential Δi, interactions during global 
rotations and rotations induced by Ωx. This is justified because of the high micro-
wave driving strength Ω �Wx y( )  and Ωxτ1 being integer multiples of 2π​. (The 
effects of on-site disorder are fully included in the numerical computations.)  
A non-trivial solution (θ0 ≠​ ±​π​) is obtained if the first two rotations result in a 
vector that is rotated by π​ along the ŷ  axis (Fig. 3d), which is satisfied when 
φ0 =​ mπ​ −​ φi/2, with ∈Zm  and cot θ0 =​ −​(−​1)mtan(θ/2)sin(φi/2). Solving for 
cos2θ0 yields

θ
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Using φ τ θ= J cosi i 1 0 , it can be shown that a solution exists only when 
θ τ/ / >Jtan( 2) 4 1i 1 , implying that θ τ−π < /J 2i 1  in the vicinity of θ ≈​ π​. The 

linear dependence of the phase boundary is consistent with the numerically 
extracted phase diagram in ref. 12. As long as a solution exists, small variations in 
θ correspond to a smooth deformation of the closed trajectory. Therefore, the 
existence of such a closed path stabilizes the time-crystalline phase. We emphasize 
that such a 2T-periodic path is a consequence of interactions; without the change 
of sign in φi, the eigenstates of the unitary evolution over one or two periods coin-
cide and, therefore, unless the rotation angle is fine-tuned, T-periodic motion can-
not be broken into a 2T period. The eigenstates of unitary evolution over one period  
can be obtained as even and odd linear combinations, Ψ Ψ| 〉± | 〉 /− εU( e ) 2 ,i

1  
where =⊗ θ φ− −U (e e )i

i S i S
1 i

y
i i
x

 and the quasi-energy eigenvalue is given by 
Ψ Ψ=± 〈 | | 〉 /ε Ue ( ( ) )i

1
2 1 2.

To estimate the phase boundary, we numerically solve the self-consistency 
equation. Here, we include the effects of on-site disorder potential Δi in all four 
rotations and the disorder in Ji that arises from the random positions of NV centres. 
The distribution of Ji is simulated for 1,000 spins, which are randomly distributed 
in three dimensions with an average separation r0 and minimum cutoff distance 
rmin =​ 3 nm (limited by NV–NV electron tunnelling28). Instead of cosθ0, we solve 
for a self-consistent distribution for cosθ0, where Sx  is defined as the mean of the 
distribution. The average order parameter θcos2 0  is computed for various values 
of τ1 and θ and compared with a threshold value of 0.1 to identify the phase 
boundary. The experimental and numerical phase boundaries are asymmetric 
about θ =​ π​. We attribute this asymmetry to the inherently asymmetric distribution 
of the effective rotation angle, θ τ Ω Δ≈ + + Ji y i i2

2 2 2 , which causes the transition 
to occur earlier for positive deviations θ −​ π​.

Although we assumed φi to be a classical variable in this analysis, the 
interaction-induced rotation angle is an operator φ̂ that exhibits quantum fluctu-
ations and leads to non-trivial quantum dynamics. Under such dynamics, spins 
get entangled, resulting in mixed-state density matrices. These effects cannot be 
ignored in the case of long interaction times, effectively limiting the present 
description. We believe that the diminished range of θ in the experimentally 
obtained phase diagram (Fig. 3b) is related to this effect.
Rotary echo sequence. Certain features similar to DTC order could potentially 
arise from spatially inhomogeneous microwave driving along the x̂ axis during the 
spin-locking sequence. This leads to variations in the effective, single-particle 
disorder in the dressed state basis, which could give rise to an effective self-
correcting dynamical decoupling that might resemble DTC order14. In particular, 
in the spin-locking sequence, spins precess along the axis Ω Δ+ +r J x z[ ( ) ]ˆ ˆx i i i , with 
effective Rabi frequency Ω Ω Δ= + +r J[ ( ) ]x i x i i i,

eff 2 2 , where Ωx(ri) is the spatially 
inhomogeneous Rabi frequency, Ji is the mean-field Ising interaction and Δi 
characterizes the quasi-static on-site disorder. In the case of strong driving 
Ω Δ� J( , )x i i , this precession axis is determined by Ωx and spins undergo dephasing 

dominated by global microwave inhomogeneities. If the net rotation during one 
spin-locking cycle is an odd integer multiple of π​, then this could accidentally lead 
to an XY sequence14 that may result in 2T-periodicity. In our measurements, we 
always choose τ1 as an integer multiple of 2π​/Ωx to minimize such effects.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Although it has been shown theoretically that disorder alone is insufficient  
(in the absence of interactions) for stabilizing DTC order9–12, to experimentally 
demonstrate that the accidental decoupling is not responsible for the observed 
DTC ordering, we implement a ‘rotary echo’ sequence, wherein after half the inter-
action time τ1 the microwave driving is flipped from Ωx to −​Ωx (Extended Data 
Fig. 1a). In the limit of strong driving, such a sequence eliminates the phase 
acquired between the two dressed states for each spin, regardless of the exact value 
of Ωx. As shown in Extended Data Fig. 1b, the lifetimes of the DTC order are nearly 
identical between the cases of the rotary echo and continuous +x̂  driving. 
Moreover, the rotary echo spin polarization maintains a larger amplitude at late 
times, excluding the possibility of self-correcting dynamical decoupling as the 
origin of the observed DTC order.
Markovian dephasing effects on DTC order. The presence of the subharmonic 
peak at ν =​ 1/2 at small values of θ −​ π​ can, in principle, also be explained on the 
basis of fast Markovian dephasing in the dressed state basis. Indeed, for sufficiently 
fast dephasing, coherences along both ŷ and ẑ will be eliminated after each rotation, 
θRy. Therefore, the only evolution that remains is the population dynamics along 

x̂, which exhibits 2T-periodicity from the alternating sign. Microscopically, such 
strong dephasing could potentially originate from either dipolar interactions 
between the spins or from coupling to an external (Markovian) environment.

Intuitively, the result of such dephasing can be understood as an ‘effective’ pro-
jective measurement of polarization along x̂ in each Floquet cycle, reminiscent of 
the quantum Zeno effect. To quantify and distinguish such dephasing-induced 
subharmonic rigidity, we consider the dynamics (over one Floquet period) of a 
single spin undergoing Markovian dephasing, with super-operator 

ρ γ ρ ρ=− − /D S Sˆ [ ] ( 4 ) 2x x  and dephasing rate γ. Assuming θ−π� 1, evolution 
falls into two well-known limits. In the under-damped limit (weak dephasing), 
S(ν) has two Lorentzian peaks at ν =​ ±​η with a linewidth set by γτ1, where τ1 is 
the spin-locking duration and η θπ = + /γτcos(2 ) cos (1 e ) 21 . In the over-damped 
limit (strong dephasing), S(ν) (at late times) has a peak at ν =​ 1/2 with a linewidth 
(in Floquet units) of

Γ θ
γτ

≈
−π

/
( )

2tanh( 2)
(1)

2

1

These over-damped oscillations of the spin polarization exhibit sign flips between 
the even and odd cycles, leading to a subharmonic Fourier response that is 
reminiscent of DTC order.

Although strong Markovian dephasing can indeed result in a ν =​ 1/2 sub-
harmonic peak, we observe three distinct experimental signatures that clearly 
show that our observations are not governed by this effect. First, the linewidth Γ 
(equation (1)) of the subharmonic peak should be quadratically sensitive to the 
deviation of θ from π​. This is in stark contrast with our experimental observations 
shown in Fig. 2d, wherein this linewidth Γ is essentially independent of θ within the 
DTC phase. Second, according to the dephasing model (equation (1)), the lifetime 
of the 3T-periodic DTC order is expected to be longer than that of the 2T-periodic 
DTC order owing to enhanced dephasing (from a lack of spin-locking) in the bare 
basis28. However, we observe the exact opposite behaviour. Finally, Markovian 
dephasing requires an effective environment with a relatively fast, sub-microsecond 
correlation time. This is also inconsistent with our experimental observations. In 
particular, we performed Rabi oscillation decay measurements with a rotary echo 
sequence, resulting in a lower bound of 1.5 μ​s on the Markovian dephasing time T2. 
This time scale includes contributions from static on-site disorder and interactions, 
so the Markovian dephasing rate is, in fact, much slower than this. Indeed, we 
independently extracted the typical timescales of disorder fluctuations in our 

system17, and found that they are similar (60 μ​s) to the depolarization timescale 
under spin-locking dynamics. Effects resulting from such slow dephasing should 
be completely negligible within a typical Floquet period. Therefore, we conclude 
that fast dephasing alone does not explain the observed DTC order.

At the same time, in the time crystalline order description based on interacting 
spin models9–12, the time-crystalline order is expected to be robust and is not 
expected to exhibit any functional dependence on the angle θ, in complete 
agreement with experimental observations. This is also the case for our self-
consistent description. We finally note that the interplay between coherent inter-
actions and dephasing could potentially have a role in stabilizing DTC order at 
longer interaction times. A detailed understanding of such mechanisms requires 
further theoretical investigation.
Derivation of effective Hamiltonian for the Z3 symmetry breaking phase. Using 
microwave driving resonant with two different transitions (Fig. 4a), we realize 
dynamics involving all three spin states and observe robust 3T-periodic time-
crystalline order. The unitary matrix of the time evolution during the fundamental 
period T is

∑ ∑
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s s,  for spin i and H2 =​ Hdis +​ Hint is the effective 
Hamiltonian of NV centres for all three spin states, including on-site disorder 
potentials Δ σ Δ σ=∑ ++
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This Hamiltonian is obtained in the rotating frame under the secular approximation. 
The Hamiltonian H2 conserves the total population in any of the three spin states: 

σ=∑Pa i aa
i  with a ∈​ {0, ±​1}. If each microwave pulse realizes a π​ pulse (θ =​ π​), 

then their combination results in a cyclic transition =+π �R m: 1s3  
− = − =− =+� �i m m m0 1 1s s s   and the population Pa becomes periodic 
over three periods. Under such evolution, the effective Hamiltonian over three 
periods is given by = 
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site disorders average to zero, and the interactions are modified to
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The first term describes Ising-like interactions that shift energy when any pair of 
spins are in the same state, and the second term corresponds to spin-exchange 
interactions that allow polarization transport. These additional exchange inter-
actions may lead to a shorter lifetime of the DTC order compared to that of the 
ν =​ 1/2 DTC order. For small perturbations in the microwave pulse angle ε =​ θ −​ π​,  
the effective dynamics, to leading order, are governed by

∑τ σ σ σ≈ + + + + . .π+ π
+ − + −

εεD D i
3

( h c )
j

j j j
3 3 1,0 1,0 1, 1

which explicitly breaks the conservation laws for Pa.
Data availability. The data generated during this study are available from the 
corresponding author on reasonable request.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LETTERRESEARCH

Extended Data Figure 1 | Effect of rotary echo sequence. a, Experimental 
sequence: during the interaction interval τ1, the phase of the microwave 
driving along x̂ is inverted after τ1/2. b, Comparison of time traces of 
P(nT), measured at even (green) and odd (blue) integer multiples of T, in 
the presence (left) and absence (right) of an /−x xˆ ˆ rotary echo sequence at 
similar τ1 and θ (left, τ1 =​ 379 ns, θ =​ 0.979π​; right, τ1 =​ 384 ns, θ =​ 0.974π​).  
The rotary echo leads to more pronounced 2T-periodic oscillations at long 
time. The microwave frequencies used in the rotary echo sequence are 
Ωx =​ 2π​ ×​ 52.9 MHz and Ωy =​ 2π​ ×​ 42.3 MHz.
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