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Understanding quantum dynamics away from equilibrium is
an outstanding challenge in the modern physical sciences. Out-
of-equilibrium systems can display a rich variety of phenomena,
including self-organized synchronization and dynamical
phase transitions'?. More recently, advances in the controlled
manipulation of isolated many-body systems have enabled detailed
studies of non-equilibrium phases in strongly interacting quantum
matter®%; for example, the interplay between periodic driving,
disorder and strong interactions has been predicted to result
in exotic ‘time-crystalline’ phases’, in which a system exhibits
temporal correlations at integer multiples of the fundamental
driving period, breaking the discrete time-translational symmetry
of the underlying drive®~!2. Here we report the experimental
observation of such discrete time-crystalline order in a driven,
disordered ensemble of about one million dipolar spin impurities in
diamond at room temperature'*~'>. We observe long-lived temporal
correlations, experimentally identify the phase boundary and find
that the temporal order is protected by strong interactions. This
order is remarkably stable to perturbations, even in the presence
of slow thermalization!®!”. Our work opens the door to exploring
dynamical phases of matter and controlling interacting, disordered
many-body systems!'8-20,

Conventional wisdom holds that the periodic driving of isolated,
interacting systems inevitably leads to heating and the loss of
quantum coherence. In certain cases, however, fine-tuned driving
can actually decouple quantum degrees of freedom from both their
local environment!'* and each other?!. Recently, it has been shown that
strong disorder, which leads to many-body localization®*??, allows a
system to retain memory of its initial state for long times, enabling the
observation of novel, out-of-equilibrium quantum phases>>?%, One
example is the discrete time crystal’~'2—a phase that is nominally
forbidden in equilibrium?>2?%, The essence of the discrete time-
crystalline (DTC) phase is an emergent, collective, subharmonic
temporal response. Although this phenomenon resembles the
coherent revivals associated with dynamical decoupling'?, its nature
is fundamentally different because it is induced and protected by
interactions rather than by fine-tuned control fields. It is especially
intriguing to investigate the possibility of DTC order in systems that
are not obviously localized?’. This is the case for dipolar spins in three
dimensions, where the interplay between interactions and disorder can
lead to critical subdiffusive dynamics'”%.

We experimentally investigate the formation of DTC order in an
ensemble of nitrogen-vacancy spin impurities in diamond. Each
nitrogen-vacancy centre has an electronic S =1 spin, from which we
isolate an effective two-level system by applying an external magnetic

field. These isolated spin states can be optically initialized, detected and
manipulated via microwave radiation'*!° (see Fig. la and Methods).
Our sample has a high concentration (45 p.p.m.) of nitrogen-vacancy
centres, giving rise to strong long-range magnetic dipolar interactions'”.
The spins are also subject to multiple sources of disorder, owing to
lattice strain, paramagnetic impurities and the random positioning of
nitrogen-vacancy centres. A strong, resonant microwave field is used
to control spin orientations, resulting in an effective Hamiltonian
(in the rotating frame)!”

H(t) =22 Q)87 + 2,()S] + AS?

+ 22 (Ju/r)(SiST + 818) = 883)
ij

Here, S (1t € {x, y, z}) are Pauli spin-1/2 operators acting on the
effective two-level system spanned by the spin states |m,=0) and
|m; = —1), {2, is the Rabi frequency of the microwave driving, 4; is
a disordered on-site field with approximate standard deviation
W =27 x 4.0 MHz, r;; is the distance between spins i and j (average
nearest-neighbour separation 7o~ 8 nm), and Jj; are the orientation-
dependent coefficients of the dipolar interaction. The average
interaction, J;;/ rg ~ 27 x 105 kHz (ref. 17), is much faster than typical
spin coherence times'®.

To probe the existence of time-crystalline order, we monitor the spin
dynamics of an initial state that is polarized along the 4+ direction. We
begin by applying continuous microwave driving (spin locking) along
X with Rabi frequency (2, =27 x 54.6 MHz for a duration 7, (Fig. 1a).
Next, we rotate the spin ensemble by an angle § around the y axis using
a strong microwave pulse with {2, =2mn x 41.7 MHz for duration
7, =0/2, < 7. This two-step sequence defines a Floquet unitary with
atotal period T=7; + 7, and is repeated n times before the polarization
P(nT) along the % axis is measured. The resulting polarization dynamics
are analysed in both the time and frequency (v) domain. Repeating
these measurements with various values of 7, and 6 allows us to inde-
pendently explore the effect of interactions and global rotations.

Figure 1b-d depicts representative time traces and the corresponding
Fourier spectra, S(v) =3, P(nT)e?™", for various values of 7 and 6.
For relatively short interaction times (7 =92 ns) and nearly perfect
7 pulses (f =~ ), we observe that the spin polarization P(nT) alternates
between positive and negative values, resulting in a subharmonic peak
at v=1/2 (Fig. 1b). In our experiment, the microwave pulses have an
intrinsic uncertainty of 0.9% stemming from a combination of spatial
inhomogeneity in the microwave fields, on-site potential disorder and
the effect of dipolar interactions (see Methods). These effects eventually
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Figure 1 | Experimental set-up and observation of discrete time-
crystalline order. a, Nitrogen-vacancy centres (blue spheres) in a
nanobeam fabricated from black diamond are illuminated by a focused
green laser beam and irradiated by a microwave source. Spins are prepared
in the (|m=0) + |m; = —1))//2 state using a microwave —m/2 pulse along
the y axis. Subsequently, within one Floquet cycle, the spins evolve under a
dipolar interaction and microwave field (2, aligned along the

X axis for duration 7, immediately followed by a global microwave 6 pulse
along the y axis. After n repetitions of the Floquet cycle, the spin
polarization along the X axis is read out. We choose 7, to be an integer
multiple of 27/2, to minimize accidental dynamical decoupling'.

b-d, Representative time traces of the normalized spin polarization P(nT)
measured at even (green) and odd (blue) integer multiples of T, and
respective Fourier spectra|S(v)[? for different values of the interaction time
7rand 0: 71=92ns, =7 (b); 7, =92ns, § =1.0347 (c); and 7, =989 ns,

0 =1.0347 (d). Dashed lines in ¢ indicate v=1/2 £ (6 — ©)/(27). Data are
averaged over more than 2 x 10* measurements.

cause the oscillations to decay, after approximately 50 periods.
Although such temporal oscillations nominally break discrete
time-translation symmetry, their physical origin is trivial. To see this,
we note that for sufficiently strong microwave driving, 2, > W, J;/r,
the dynamics during 7, are governed by an effective polarization-
conserving Hamiltonian'’, H ~ 37, £2,S7 + )OF (],-j / rZ)Sj‘Sj‘ During
75, the evolution can be approximated as a global spin rotation
Rf, ~ exp(—i03;S}). When 0=, this pulse simply flips the sign of the
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Figure 2 | Long-time behaviour of discrete time-crystalline order.

a, Representative time trace of the normalized spin polarization P(nT) in
the crystalline phase (71 =790 ns and 6 = 1.034w). The time-dependent
intensity of the »=1/2 peak (inset) is extracted from a short-time Fourier
transformation with a time window of length m = 20 shifted from the
origin by #1gyeep. b, Peak height at = 1/2 as a function of rgyecp for different
pulse imperfections at 7y =790 ns. Lines indicate fits to the data using

a phenomenological double-exponential function. The noise floor
corresponds to 0.017, which is extracted from the mean value plus the
standard deviation of 3_ |S(v) 2, excluding the v= 1/2 peak. ¢, Extracted
lifetime of the time-crystalline order as a function of the interaction

time 7y, for  =1.034w. The shaded region indicates the spin lifetime

T{ = 6042 ps (extracted from a stretched exponential®®) due to coupling
with the external environment. d, Extracted decay rate of the time-
crystalline order (in Floquet units) as a function of 0 for different
interaction times: 7; = 385 ns (circles), 586 ns (squares) and 788 ns
(triangles). Only very weak dependence on ¢ — w is observed within the
DTC phase, contrary to a dephasing model (Methods). In ¢ and d, the
vertical error bars display the statistical error (s.d.) from the fit and empty
symbols mark data near the time-crystalline phase boundary.

X polarization during each Floquet cycle, resulting in the = 1/2 peak.
However, this 2T-periodic response originates from the fine tuning of
6 and should not be robust against perturbations. Indeed, a systematic
change in the average rotation angle to f = 1.034w causes the
2T-periodicity to completely disappear, resulting in a modulated,
decaying signal with two incommensurate Fourier peaks at
v=1/2+ (0 — w)/(2n) (Fig. 1c). Remarkably, we find that a rigid
2T-periodic response is restored when interactions are enhanced by
increasing 7, to 989 ns, suggesting that the = 1/2 peak is stabilized by
interactions. In this case, we observe a sharp peak in the spectrum at
v=1/2 and the oscillations in P(nT) continue beyond n~ 100 (Fig. 1d),
indicating a persistent subharmonic temporal response.

The robustness of this apparent periodic order is further explored in
Fig. 2. With an interaction time 7, =790 ns and # = 1.034, the
polarization exhibits an initial decay followed by persistent oscillations
over the entire time window of our experimental observations (Fig. 2a).
We perform a Fourier transform on subsections of the time trace with
a sweeping window of size of m =20 (Fig. 2a) and extract the intensity
of the v=1/2 peak as a function of the sweep position, #gyeep (Fig. 2b).
The intensity of the = 1/2 peak clearly exhibits two distinct decay
timescales. At short times, we observe a rapid initial decay that
corresponds to non-universal dephasing dynamics, whereas at late
times we observe a slow decay. Only near the phase boundary
(0=1.086m) is the lifetime substantially decreased. We fit the slow
decay to an exponential to extract a lifetime for the periodic order.
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As shown in Fig. 2¢, for f = 1.034, this lifetime increases with the
interaction time (7;) and eventually approaches the independently
measured spin depolarization time T ~ 60 pus. This demonstrates that,
for sufficiently long interaction times, the observed periodic order is
limited by only coupling to the environment®®. We associate this with
DTC order’ 2. Within the DTC phase, the lifetime is essentially
independent of 6, indicating exceptional robustness (Fig. 2d).

We examined whether the observed periodic order could arise from
an accidental XY sequence'* or from inhomogeneous dephasing
resulting from the effective single-particle disorder in the dressed state
basis. To avoid the former, 7, is always chosen as an integer multiple of
27/S2,. For the latter, although it has been shown that disorder
alone is insufficient for stabilizing a DTC phase in the absence of
interactions®'2, we verified this experimentally; implementing a rotary
echo sequence that reduces such dephasing, we find no change in the
lifetime of the DTC order and an enhancement in the subharmonic
response at late times (see Methods and Extended Data Fig. 1). In
principle, fast Markovian dephasing could also lead to apparent
periodic order at extremely small values of # — w by eliminating
coherences along both y and 2, leaving only % polarization dynamics.
In such a case, the decay rate of periodic order should increase
quadratically with # — . However, this explanation is inconsistent with
the observed robustness of the lifetime of DTC order for a range of
0 — w values (Fig. 2d) and the independently measured dephasing rate
(see Methods).

To experimentally determine the DTC phase boundary, we focus on
the long-time behaviour of the polarization time traces (50 < n < 100)
and compute the ‘crystalline fraction’, which is defined as the
ratio of the v =1/2 peak intensity to the total spectral power,
f=18(w=1/2) />, |S@)] (see Methods). Figure 3a shows fas a
function of 6 for two different interaction times. For weak interactions
(71=192ns), fhas a maximum at f =« and rapidly decreases as ¢
deviates by approximately 0.02w. However, for stronger interactions
(71=275ns), we observe a robust DTC phase, which manifests as a
large crystalline fraction over a wide range 0.86m < 6 < 1.137. We
associate a phenomenological phase boundary with f=10% and
observe that the boundary enlarges with 74, eventually saturating at
71~ 400ns (Fig. 3b). The phase boundary can also be visualized as the
vanishing of the »=1/2 peak and the simultaneous emergence of two
incommensurate peaks (Fig. 3c).

The rigidity of the = 1/2 peak can be qualitatively understood by
constructing effective eigenstates of 2T Floquet cycles, including spin-
spin interaction. We approximate the unitary time evolution over a
single period as Uy = Rze*"Heffr 1and solve for a self-consistent evolution
using product states as a variational ansatz. To this end, we consider
the situation in which a typical spin returns to its initial state after 27,
[1(0)) o [1h(2T)) = e~ ei05"e =057 =105 |4)(0)), and self-consistently
determine the interaction-induced rotation angle ¢, = il / r;}(S N
~Jmi(¥(0)|S*[4(0)), where [1(0)) is the initial spin state and
=3 i/ rf} (see Methods). We expect ¢; to change sign after each
Floquet cycle, because the average polarization (1)(0)|S,|¢(0)) should
be flipped. Intuitively, the self-consistent solution can be visualized as
a closed path on the Bloch sphere (Fig. 3d), where each of the four arcs
corresponds to one portion of the 2T-periodic evolution. When =,
such a solution always exists. More surprisingly, even for § = 1 a closed
path can still be found for sufficiently strong interactions,
|Ji|>2|6; — w|; in such cases, the deviation in # away from T is com-
pensated by the dipolar interactions (Fig. 3d). We obtain a theoretical
phase boundary by numerically averaging the self-consistent solution
over both disordered spin positions and local fields. The resultant
phase boundary is in reasonable agreement with the experimental
observations for short to moderate interaction times 7}, but overesti-
mates the boundary at large 7, (dashed line, Fig. 3b; see Methods).

Finally, Fig. 4 demonstrates that the discrete time-translation
symmetry can be further broken down to Z; (refs 10-12, 29), resulting
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Figure 3 | Phase diagram and transition. a, b, Crystalline fraction f (a)
and its associated phase diagram (b) as a function of # and 7 obtained
from a Fourier transform at late times (50 < 7 < 100). The red diamonds
mark the phenomenological phase boundary, identified as a 10%
crystalline fraction; horizontal error bars denote the statistical error (s.d.)
from a super-Gaussian fit. In a, vertical error bars of data points (circles)
are limited by the noise floor (see Methods) and horizontal error bars
indicate the pulse uncertainty of 1%. Grey lines denote the fit to extract the
phase boundary (see Methods). In b, the colours of the data points (circles)
represent the extracted crystalline fraction at the associated parameter set.
The dashed line corresponds to a disorder-averaged theoretical prediction
for the phase boundary. Asymmetry in the boundary arises from an
asymmetric distribution of rotation angles (see Methods). ¢, Evolution of
the Fourier spectra as a function of ¢ for two different interaction times:
71=2385ns (top) and 7, =92 ns (bottom). d, Bloch sphere indicating a
single spin trajectory of the 2T-periodic evolution under the long-range
dipolar Hamiltonian (red) and global rotation (blue).

in DTC order at v=1/3. Here, we utilize all three spin states of the
nitrogen-vacancy centre. We begin with all of the spins polarized in
the|m, = 0) state and evolve under the bare dipolar Hamiltonian for a
duration 7; (see Methods). Next, we apply two resonant microwave
pulses, each of duration 7, first on the transition |m; = 0) — |m; = —1)
and then on the transition |m; = 0) — |m; = +1). In combination, this
sequence of operations defines a single Floquet cycle with period
T'=17,+ 27,. As before, we measure the polarization P(nT), which is
defined as the population difference between the |m;=0) and
|m, = —1) states (Fig. 4a). When each of the applied microwaves cor-
responds to an ideal © pulse, this sequence realizes a cyclic transition
with Z; symmetry (Fig. 4b), which is explicitly broken by any change
in the pulse duration. The Fourier spectra of P(nT) for various pulse
durations and for two different values of 7, are shown in Fig. 4c. With
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Figure 4 | Z; discrete time-crystalline order. a, Experimental sequence
demonstrating 3T-periodic DTC order. A single Floquet cycle is
composed of three operations: time evolution under a long-range dipolar
Hamiltonian, and rapid microwave pulses for two different transitions.
b, Visualization of the 3T-periodicity in the polarization dynamics for
the case of 0 = . ¢, Fourier spectra of the polarization dynamics for

two different interaction times and for three different rotation angles:
0=1.007 (red),  =1.0867 (blue) and  =1.177 (yellow). Dashed lines
indicate v=1/3 and v=2/3.

weak interactions (77 = 35ns), the position of the peaks is extremely
sensitive to perturbations, but with sufficiently strong interactions
(71 =387 ns) the peaks are pinned to a value of v=1/3 despite large
perturbations, indicating the observation of a v=1/3 DTC order. The
lifetime of the observed = 1/3 DTC order is shorter than that of the
v=1/2 DTC order, consistent with the presence of additional dynamics
in the full dipolar Hamiltonian (see Methods). The ability for our
system to exhibit stable period-tripling distinguishes it from bifurca-
tions in driven, classical systems, in which period-tripling is typically
accompanied by regions of chaos®.

Our observation of DTC order cannot be simply explained within
current theoretical frameworks based on either localization®™'2 or
pre-thermalization®*?’. In particular, our system with long-range dipo-
lar interactions is not expected to be localized in either the static or the
driven case. In the static case, it has previously been demonstrated that
our system exhibits slow thermalization associated with critical
dynamics'. In the driven case, the long-time evolution is governed by
the average Hamiltonian D ~ 3™, (],j/rfjs;‘s;‘ +(0—=)/Ty; S}, which
likewise does not yield localized dynamics'®>!. We further note that
the effective Hamiltonian of the Z; DTC phase includes not only Ising-
type interactions but also spin exchange interactions, providing
additional channels for thermalization (see Methods).

In principle, even in the absence of localization, time-crystalline
order can persist for a long, but finite, pre-thermal timescale**?’.
Within this timescale, the spin system relaxes to a pre-thermalized state,
defined as the thermal ensemble of D with a temperature determined
by the energy density of the initial state. Because our initially polarized
state is effectively at infinite temperature with respect to D (owing to
the anisotropy of the dipolar couplings), we do not expect to observe
pre-thermal DTC order. This is in contrast to our actual observations,
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which show that the lifetime of the DTC order is limited by the depo-
larization time T, owing to coupling with the environment®® (Fig. 2c).
We have explicitly verified that the DTC order is not greatly affected by
varying the initial polarization (see Methods). One possible explanation
is that, owing to slow critical thermalization'?, the spins in our system
do not reach even a pre-thermal state. Finally, the interplay between
coherent interactions and dephasing in open systems at long times
could also have a role. Detailed understanding of such mechanisms
requires further theoretical investigation.

A number of remarkable phenomena in quantum dynamics have
recently been observed in engineered many-body systems consisting
of ten to a few hundred particles®-. The observations that we have
presented here indicate that robust DTC order can occur in large
systems without fine-tuned interactions and disorder, even in the
regime in which localization is nominally not expected to occur.
Our work raises important questions about the role of localization,
long-range interactions and coupling to the environment in driven
systems, and opens up several new avenues for fundamental studies
and potential applications. In particular, it should be possible to extend
these studies to realize novel dynamical phases in more complex driven
Hamiltonians, and to explore whether such phases can be used to create
and stabilize coherent quantum superposition states for applications
such as quantum metrology'®-2C.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Experimental details. Our sample and experimental set-up have been previously
described!”. We utilize a diamond sample containing a high concentration (about
45p.p.m.) of nitrogen-vacancy (NV) centres, corresponding to an average NV-NV
separation of 5nm. For a single crystalline orientation of NV centres, selected by
applying an external magnetic field, this corresponds to an average separation of
8nm, resulting in a typical dipolar interaction strength of 2 x 105kHz. The system
exhibits strong on-site energy disorder, owing to the effects of lattice strain, the
random position of NV centres and the presence of scattered paramagnetic
impurities (consisting mainly of P1 centres and '*C nuclear spins). For each NV,
the effective random field A; is therefore a function of its local environment,
including interaction effects of neighbouring NV centres. This results in an
approximately Gaussian distribution with standard deviation W=2x x 4.0 MHz.
We extract W by measuring the linewidth of an electron spin resonance (ESR)
spectrum with sufficiently weak microwave driving strength to avoid power
broadening. To control the experimental probe volume, we fabricate a diamond
nanobeam structure (about 300 nm x 300 nm x 20 um) and confocally address a
region of approximately 300-nm diameter using a green laser (532 nm). This
realizes an effective three-dimensional excitation volume containing about 10° NV
centres. By applying an external magnetic field along one of the diamond crystal
axes, we spectrally isolate one group of NV centres and selectively address an
effective two-level system between the |m; = —1) and |m, = 0) spin states via
coherent microwave radiation. The addition of a microwave in-phase/quadrature
(IQ) mixer allows for arbitrary rotations around any linear combination % and .

Experimental sequence. Initial polarization of NV centres into |ms = 0)
is performed via laser illumination at a wavelength of 532 nm, a power of
50 W and a duration of 100 pis. Subsequent application of a microwave —/2 pulse
along the y axis is used to coherently rotate the spin ensemble into
[4) = (|ms=0) 4 |ms=—1))/ /2 . The spins are then subjected to continuous
driving at a Rabi frequency of 2 x 54.6 MHz along the X axis for a duration 7.
This so-called spin-locking technique suppresses two-spin (flip-flip and flop-flop)
processes, owing to energy conservation, and decouples spins from their
environment'”. In our sample, this technique leads to spin lifetimes of T ~ 60 ps
(ref. 28). Finally, we apply a short microwave pulse along the y axis over an angle
0~ . We repeat this Floquet cycle with various values of ¢, controlled by changing
the Rabi driving strength and the pulse duration. The imperfection in microwave
manipulations (for initialization into H) and rotation angles #) amounts to 0.9%
and arises from a combination of spatial inhomogeneity of the driving field (0.8%)
and on-site potential disorder (0.6%). Following a coherent time evolution, the
spin state of the NV ensemble is optically detected by applying a final ©/2 pulse
along the y axis and measuring the population difference in the |m, = 0) and
|ms = —1)basis. The polarization is defined as P = Py — -1, with 7, denoting the
population in spin state a, and is determined by calibrating the NV fluorescence
using a Rabi oscillation contrast measurement. To avoid heating of the sample,
which would result in drifts in the Rabi frequency, a waiting time of 600-900 s is
implemented before the sequence is repeated. The minimum spacing between
microwave pulses is maintained at 1 ns.

To understand the effect of different initial states on the DTC phase, we replaced
the initial — /2 pulse with a —x/3 pulse. This results in the preparation of a global
spin state, which is rotated from the % axis by n/6. Despite this change, the
measured lifetime of the DTC order (47.6 + 2.4 pis) agrees well with that of the
polarized spin state (49.2 + 3.3 ps), demonstrating that DTC order is insensitive to
the initial state.

Experimental identification of phase boundary. To identify the position of the
phase boundary in our experiment, we define the crystalline fraction f as
f=1S(v=1/2) /%, |SW)[*. Error bars in fare calculated via error propagation
in consideration of the noise floor in the Fourier spectrum; each measured
spectrum contains a background noise level o, resulting in the following variation
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where N=50 is the number of points in the Fourier spectrum. This gives rise to
an uncertainty in the crystalline fraction: fe [ f— of, f+ &f] (Fig. 3a). To extract the
phase boundary, we use a phenomenological, super-Gaussian function

06 \P
Xp—%(l {Lo\)

—5(7"’*9"‘)"] 0> 0,

ot

f:l‘axe 0<6,

F,(60) =

[ exp

where 0, 0y and p are the characteristic width, central position and the power of

the super-Gaussian fit, and f :‘“ is the maximum value of the crystalline fraction
1

for a given duration 7;. The proposed function naturally captures the observed
asymmetry in the phase boundary. We define the phase boundary as the rotation

max
21n(f71a /0. 1)
the phase boundary are derived from the uncertainties in the fit.
Theoretical description. As a variational ansatz, we consider the time evolution
of ahomogeneous product state of the form | &) = |1/;0>®N with|1)g) = cos(fo/2)|+)
+sin(90/2)ei‘7’°|—), where | £ ) = (|m; = 0) = |m; = —1))/ﬁ . The qualitative
behaviour does not change even if we allow spins to be oriented in different
directions. An approximate eigenstate for the time evolution over two periods is
obtained by solving the equation for a single spin, |¢,) = e %S¢ 57~ 105" ) ),
with a self-consistently determined ¢, = Ji(1,|S*|1)), where J; = i/ r?j is the
total strength at site 7. The sign of ¢; is flipped in the second evolution because the
spin polarization along the X direction alternates in each cycle. Note that we have
ignored the effects of the on-site disorder potential A;, interactions during global
rotations and rotations induced by (2,. This is justified because of the high micro-
wave driving strength {2(,)> W and §2,7| being integer multiples of 2. (The
effects of on-site disorder are fully included in the numerical computations.)
A non-trivial solution (0, = 4-7) is obtained if the first two rotations result in a
vector that is rotated by w along the y axis (Fig. 3d), which is satisfied when
po=mm — ¢;/2, with m € Z and cot = —(—1)"tan(6/2)sin(¢;/2). Solving for
cos*0, yields

P
angle 6+ at which F;(01) = 0.1; that is, 0. = 6ot 0y . Errors in

tan?(0/2)sin%(¢,/2)

20
cos*fy = 1+tan2(9/z)sin2(¢i/2)

Using ¢, = Jiricosty, it can be shown that a solution exists only when
[tan(8/2)J;71/4|>1, implying that |§ — wt| < |J;71/2| in the vicinity of § ~ 7. The
linear dependence of the phase boundary is consistent with the numerically
extracted phase diagram in ref. 12. As long as a solution exists, small variations in
0 correspond to a smooth deformation of the closed trajectory. Therefore, the
existence of such a closed path stabilizes the time-crystalline phase. We emphasize
that such a 2T-periodic path is a consequence of interactions; without the change
of sign in ¢;, the eigenstates of the unitary evolution over one or two periods coin-
cide and, therefore, unless the rotation angle is fine-tuned, T-periodic motion can-
not be broken into a 2T period. The eigenstates of unitary evolution over one period
can be obtained as even and odd linear combinations, (|¥) +e~Uj|¥)) /2,
where Uy = ®; (e~ #5{e~#S7) and the quasi-energy eigenvalue is given by
e = £ ((W|(U?|w))!/2.

To estimate the phase boundary, we numerically solve the self-consistency
equation. Here, we include the effects of on-site disorder potential 4; in all four
rotations and the disorder in J; that arises from the random positions of NV centres.
The distribution of J; is simulated for 1,000 spins, which are randomly distributed
in three dimensions with an average separation r, and minimum cutoff distance
Tmin=3nm (limited by NV-NV electron tunnelling?®). Instead of cosfl, we solve
for a self-consistent distribution for cosfl, where (§*) is defined as the mean of the
distribution. The average order parameter (cos2p) is computed for various values
of 71 and 0 and compared with a threshold value of 0.1 to identify the phase
boundary. The experimental and numerical phase boundaries are asymmetric
about = . We attribute this asymmetry to the inherently asymmetric distribution

of the effective rotation angle, 6; ~ 7, | Qi + Aiz + Ez, which causes the transition
to occur earlier for positive deviations § — .

Although we assumed ¢; to be a classical variable in this analysis, the

interaction-induced rotation angle is an operator ¢ that exhibits quantum fluctu-
ations and leads to non-trivial quantum dynamics. Under such dynamics, spins
get entangled, resulting in mixed-state density matrices. These effects cannot be
ignored in the case of long interaction times, effectively limiting the present
description. We believe that the diminished range of ¢ in the experimentally
obtained phase diagram (Fig. 3b) is related to this effect.
Rotary echo sequence. Certain features similar to DTC order could potentially
arise from spatially inhomogeneous microwave driving along the % axis during the
spin-locking sequence. This leads to variations in the effective, single-particle
disorder in the dressed state basis, which could give rise to an effective self-
correcting dynamical decoupling that might resemble DTC order!*. In particular,
in the spin-locking sequence, spins precess along the axis[(2.(r;) + J]% + A2 with
effective Rabi frequency fo’i = [[2:(r) + J2 + A%, where Q,(r) is the spatially
inhomogeneous Rabi frequency, J; is the mean-field Ising interaction and 4;
characterizes the quasi-static on-site disorder. In the case of strong driving
(2> A, J;) this precession axis is determined by {2, and spins undergo dephasing
dominated by global microwave inhomogeneities. If the net rotation during one
spin-locking cycle is an odd integer multiple of =, then this could accidentally lead
to an XY sequence' that may result in 2T-periodicity. In our measurements, we
always choose 7 as an integer multiple of 27/{2, to minimize such effects.
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Although it has been shown theoretically that disorder alone is insufficient

(in the absence of interactions) for stabilizing DTC order®™'2, to experimentally
demonstrate that the accidental decoupling is not responsible for the observed
DTC ordering, we implement a ‘rotary echo’ sequence, wherein after half the inter-
action time 7 the microwave driving is flipped from (2, to — 2, (Extended Data
Fig. 1a). In the limit of strong driving, such a sequence eliminates the phase
acquired between the two dressed states for each spin, regardless of the exact value
of £2,. As shown in Extended Data Fig. 1b, the lifetimes of the DTC order are nearly
identical between the cases of the rotary echo and continuous +% driving.
Moreover, the rotary echo spin polarization maintains a larger amplitude at late
times, excluding the possibility of self-correcting dynamical decoupling as the
origin of the observed DTC order.
Markovian dephasing effects on DTC order. The presence of the subharmonic
peak at »=1/2 at small values of § — w can, in principle, also be explained on the
basis of fast Markovian dephasing in the dressed state basis. Indeed, for sufficiently
fast dephasing, coherences along both y and Z will be eliminated after each rotation,
R’ Therefore, the only evolution that remains is the population dynamics along
X, which exhibits 2T-periodicity from the alternating sign. Microscopically, such
strong dephasing could potentially originate from either dipolar interactions
between the spins or from coupling to an external (Markovian) environment.

Intuitively, the result of such dephasing can be understood as an ‘effective’ pro-
jective measurement of polarization along X in each Floquet cycle, reminiscent of
the quantum Zeno effect. To quantify and distinguish such dephasing-induced
subharmonic rigidity, we consider the dynamics (over one Floquet period) of a
single spin undergoing Markovian dephasing, with super-operator
Dlp] = — v(p — 45*p§*) /2and dephasing rate . Assuming § — 7 < 1, evolution
falls into two well-known limits. In the under-damped limit (weak dephasing),
S(v) has two Lorentzian peaks at = =47 with a linewidth set by y7;, where 77 is
the spin-locking duration and cos(271) = cosf(1 + €') /2. In the over-damped
limit (strong dephasing), S(v) (at late times) has a peak at v=1/2 with a linewidth
(in Floquet units) of

(6 —m)?

- 2tanh(~y7i/2) M

These over-damped oscillations of the spin polarization exhibit sign flips between
the even and odd cycles, leading to a subharmonic Fourier response that is
reminiscent of DTC order.

Although strong Markovian dephasing can indeed result in a v=1/2 sub-
harmonic peak, we observe three distinct experimental signatures that clearly
show that our observations are not governed by this effect. First, the linewidth I
(equation (1)) of the subharmonic peak should be quadratically sensitive to the
deviation of f from . This is in stark contrast with our experimental observations
shown in Fig. 2d, wherein this linewidth I"is essentially independent of 6 within the
DTC phase. Second, according to the dephasing model (equation (1)), the lifetime
of the 3T-periodic DTC order is expected to be longer than that of the 2T-periodic
DTC order owing to enhanced dephasing (from a lack of spin-locking) in the bare
basis®®. However, we observe the exact opposite behaviour. Finally, Markovian
dephasing requires an effective environment with a relatively fast, sub-microsecond
correlation time. This is also inconsistent with our experimental observations. In
particular, we performed Rabi oscillation decay measurements with a rotary echo
sequence, resulting in a lower bound of 1.5 s on the Markovian dephasing time T5.
This time scale includes contributions from static on-site disorder and interactions,
so the Markovian dephasing rate is, in fact, much slower than this. Indeed, we
independently extracted the typical timescales of disorder fluctuations in our
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system'”, and found that they are similar (60 1s) to the depolarization timescale
under spin-locking dynamics. Effects resulting from such slow dephasing should
be completely negligible within a typical Floquet period. Therefore, we conclude
that fast dephasing alone does not explain the observed DTC order.

At the same time, in the time crystalline order description based on interacting

spin models®~!2, the time-crystalline order is expected to be robust and is not
expected to exhibit any functional dependence on the angle 6, in complete
agreement with experimental observations. This is also the case for our self-
consistent description. We finally note that the interplay between coherent inter-
actions and dephasing could potentially have a role in stabilizing DTC order at
longer interaction times. A detailed understanding of such mechanisms requires
further theoretical investigation.
Derivation of effective Hamiltonian for the Z; symmetry breaking phase. Using
microwave driving resonant with two different transitions (Fig. 4a), we realize
dynamics involving all three spin states and observe robust 3T-periodic time-
crystalline order. The unitary matrix of the time evolution during the fundamental
period T'is

Us = exp exp exp(—iH,T)

.0 i i .0 i i
_152 (Ut+1,0+UE>,+1) _152 (01—1,0"‘06,—1)
i i
where U;)bE |ms = a)(m; = b| for spin i and Hy = Hyis + Hin is the effective
Hamiltonian of NV centres for all three spin states, including on-site disorder
potentials Hyis =3, Ao, |+ A; o’ | and dipolar interactions for spin-1
particles'”

i i
_"+1,o‘70,+1+‘7—1,o‘70,—1+h~c~+( T S
2 O 1,417 0,04 11702

]..
Him=z _g

i i

This Hamiltonian is obtained in the rotating frame under the secular approximation.
The Hamiltonian H, conserves the total population in any of the three spin states:
=Y, afm with a € {0, £1}. If each microwave pulse realizes a © pulse (0 = ),
then their combination results in a cyclic transition R :|m,=+1)—
—i|ms = 0) — —|m; = —1) — |m, = +1) and the population 7, becomes periodic
over three periods. Under such evolution, the effective Hamiltonian over three

periods is given by D} = [Hz + (Rg)_leR;‘ n (R;—‘)_ZHZ (R;‘)Z /3,in which on-

site disorders average to zero, and the interactions are modified to

pj=y 4

i T

L gl
Z Oaa%aa 3 Z T at%ba

a a=b

The first term describes Ising-like interactions that shift energy when any pair of
spins are in the same state, and the second term corresponds to spin-exchange
interactions that allow polarization transport. These additional exchange inter-
actions may lead to a shorter lifetime of the DTC order compared to that of the
v=1/2 DTC order. For small perturbations in the microwave pulse angle =6 —,
the effective dynamics, to leading order, are governed by

DIt~ DI+ iz (@h1o+0lio+ioly 1 +he)
J
which explicitly breaks the conservation laws for 7.

Data availability. The data generated during this study are available from the
corresponding author on reasonable request.
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Extended Data Figure 1 | Effect of rotary echo sequence. a, Experimental
sequence: during the interaction interval 7, the phase of the microwave
driving along % is inverted after 71/2. b, Comparison of time traces of
P(nT), measured at even (green) and odd (blue) integer multiples of T, in
the presence (left) and absence (right) of an £/ — % rotary echo sequence at
similar 7, and 6 (left, 7, =379 ns, # =0.979; right, 7, =384 ns, §=0.974).
The rotary echo leads to more pronounced 2T-periodic oscillations at long
time. The microwave frequencies used in the rotary echo sequence are
£2,=2m x 52.9 MHz and §2, =27 x 42.3 MHz.
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