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Probing many-body dynamics on a
51-atom quantum simulator

Hannes Bernien', Sylvain Schwartz!?, Alexander Keesling!, Harry Levine', Ahmed Omran'!, Hannes Pichler"3, Soonwon Choi',
Alexander S. Zibrov!, Manuel Endres*, Markus Greiner?, Vladan Vuleti¢? & Mikhail D. Lukin?

Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter,
enable the realization of new quantum phases and could ultimately lead to computational systems that outperform
existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body
quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with
strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum
spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions
into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states
and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-
body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a
sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a
programmable quantum simulator and could enable realizations of new quantum algorithms.

The realization of fully controlled, coherent many-body quantum
systems is an outstanding challenge in science and engineering. As
quantum simulators, they can provide insights into strongly correlated
quantum systems and the role of quantum entanglement!, and ena-
ble realizations and studies of new states of matter, even away from
equilibrium. These systems also form the basis of the realization of
quantum information processors®. Although basic building blocks of
such processors have been demonstrated in systems of a few coupled
qubits®=°, the current challenge is to increase the number of coherently
coupled qubits to potentially perform tasks that are beyond the reach
of modern classical machines.

Several physical platforms are currently being explored to reach these
goals. Systems composed of about 10-20 individually controlled atomic
ions have been used to create entangled states and to explore quantum
simulations of Ising spin models®’. Similarly sized systems of pro-
grammable superconducting qubits have been implemented recently®.
Quantum simulations have been carried out in larger ensembles of
more than 100 trapped ions without individual readout®. Strongly
interacting quantum dynamics has been explored using optical lattice
simulators'?. These systems are already addressing computationally
difficult problems in quantum dynamics'' and the fermionic Hubbard
model'?. Larger-scale Ising-like machines have been realized in super-
conducting!® and optical'* systems, but these realizations lack either
coherence or quantum nonlinearity, which are essential for achieving
full quantum speedup.

Arrays of strongly interacting atoms

A promising avenue for realizing strongly interacting quantum matter
involves coherent coupling of neutral atoms to highly excited
Rydberg states'>!® (Fig. 1a). This results in repulsive van der Waals
interactions (of strength V;;= C/ Rfj) between Rydberg atom pairs at a
distance R;; (ref. 15), where C > 0 is the van der Waals coefficient. Such
interactions have recently been used to realize quantum gates'’ "%, to
implement strong photon—photon interactions® and to study quantum
many-body physics of Ising spin systems in optical lattices*!2* and in

probabilistically loaded dipole trap arrays®*. Our approach combines
these strong, controllable interactions with atom-by-atom assembly of
arrays of cold neutral ¥’Rb atoms®~?’. The quantum dynamics of this
system is governed by the Hamiltonian

5= O At ) Vi (1)
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where A; are the detunings of the driving lasers from the Rydberg
state (Fig. 1b), o, = |g,)(r}| + |r;)(g,| describes the coupling between
the ground state |g;) and the Rydberg state |r;) of an atom at position i,
driven at Rabi frequency (2;, n;=|r;)(ri|, and # is the reduced
Planck constant. Here, we focus on homogeneous coherent coupling
(]42:] = £2, A;= A), controlled by changing laser intensities and
detunings in time. The interaction strength Vj; is tuned either by
varying the distance between the atoms or by coupling them to a
different Rydberg state.

The experimental protocol that we implement is depicted in Fig. 1c
(see also Extended Data Fig. 1). First, atoms are loaded from a magneto-
optical trap into a tweezer array created by an acousto-optic deflector.
We then use a measurement and feedback procedure that eliminates
the entropy associated with the probabilistic trap loading and results
in the rapid production of defect-free arrays with more than 50 laser-
cooled atoms, as described previously?®. These atoms are prepared
in a preprogrammed spatial configuration in a well-defined internal
ground state |g) (Methods). We then turn off the traps and let the
system evolve under the unitary time evolution U({2, A, t), which is
realized by coupling the atoms to the Rydberg state |r) =|70S;/,) with
laser light along the array axis (Fig. 1a). The final states of individual
atoms are detected by turning the traps back on and imaging the recap-
tured ground-state atoms via atomic fluorescence; the anti-trapped
Rydberg atoms are ejected. The atomic motion in the absence of traps
limits the time window for exploring coherent dynamics. For a typical
sequence duration of about 1 s, the probability of atom loss is less than
1% (see Extended Data Fig. 2).
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Figure 1 | Experimental platform. a, Individual *Rb atoms (green) are
trapped using optical tweezers (vertical red beams) and arranged into
defect-free arrays. Coherent interactions Vj; between the atoms (arrows)
are enabled by exciting them (horizontal blue and red beams) to a
Rydberg state with strength (2 and detuning A (inset). b, A two-photon
process couples the ground state |g) = |55/, F=2, mp= —2) to the
Rydberg state |r) =|70815, ] = 1/2, m;= —1/2) via an intermediate

state |e) = |6Ps/y, F=3, mp= —3) with detuning ¢, using circularly
polarized 420-nm and 1,013-nm lasers with single-photon Rabi
frequencies of {25 and (2, respectively. Typical experimental values are
O~ 2w x 560 MHz > ({23, {2r) ~ 21 X (60, 36) MHz. ¢, The experimental
protocol consists of loading the atoms into a tweezer array (1) and then
rearranging them into a preprogrammed configuration (2). After this, the
system evolves under U(t) with tunable parameters A(t), £2(t) and Vj;. This
evolution can be implemented in parallel on several non-interacting
sub-systems (3). We then detect the final state using fluorescence

imaging (4). Atoms in state |g) remain trapped, whereas atoms in state |r)
are ejected from the trap and detected as the absence of fluorescence
(indicated with red circles). d, For resonant driving (A =0), isolated atoms
(blue circles) display Rabi oscillations between |g) and |r). Arranging the
atoms into fully blockaded clusters of N=2 (green circles) and N=3

(red circles) atoms results in only one excitation being shared between the
atoms in the cluster, while the Rabi frequency is enhanced by ~/N. The
probability of detecting more than one excitation in the cluster is <5%.
Error bars indicate 68% confidence intervals and are smaller than the
marker size.

The strong, coherent interactions between Rydberg atoms provide
an effective coherent constraint that prevents simultaneous excitation
of nearby atoms into Rydberg states. This is the essence of the so-called
Rydberg blockade'®, demonstrated in Fig. 1d. When two atoms are
sufficiently close that that their Rydberg-Rydberg interactions Vj;
exceed the effective Rabi frequency (2, multiple Rydberg excitations are
suppressed. This defines the Rydberg blockade radius Ry, at which
Vij= 2 (Ry=9pm for |r) =708, ) and £2= 27 x 2 MHz, as used here).
In the case of resonant driving of atoms separated by a =23 um, we
observe Rabi oscillations associated with non-interacting atoms (blue
curve in Fig. 1d). However, the dynamics changes substantially as we
bring multiple atoms close to each other (a=2.87 um < Ry). In this case,
we observe Rabi oscillations between the ground state and a collective
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state with exactly one excitation (W= (1/+/N) ¥, |g, ... 7i... gy)) with
the characteristic /N scaling of the collective Rabi frequency?42%%,
These observations enable us to quantify the coherence properties of
our system (see Methods and Extended Data Fig. 3). In particular, the
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state
detection fidelity (93% for |r) and about 98% for |g); Methods). The
individual Rabi frequencies are controlled to better than 3% across the
array, whereas the coherence time is limited ultimately by the small
probability of spontaneous emission from the intermediate state |e)
during the laser pulse (scattering rate 0.022 s~ '; Methods).

Programmable quantum simulator

In the case of homogeneous coherent coupling considered here, the
Hamiltonian in equation (1) resembles closely the paradigmatic Ising
model for effective spin-1/2 particles with variable interaction range.
Its ground state exhibits a rich variety of many-body phases that break
distinct spatial symmetries (Fig. 2a). Specifically, at large negative
values of A/{2, its ground state corresponds to all atoms in the state |g),
corresponding to the paramagnetic or disordered phase. As A/(2is
increased towards large positive values, the number of atoms in |r)
increases and interactions between them become important. This gives
rise to spatially ordered phases in which Rydberg atoms are arranged
regularly across the array, resulting in ‘Rydberg crystals’ with different
spatial symmetries®®?!, as illustrated in Fig. 2a. The origin of these
correlated states can be understood intuitively by first considering the
situation in which V; ;1> A > 2>V, ;,, that is, with blockade for
neighbouring atoms but negligible interaction between next-nearest
neighbours. In this case, the ground state corresponds to a Rydberg
crystal that breaks Z, translational symmetry in a manner analogous
to antiferromagnetic order in magnetic systems. Moreover, by
tuning the parameters so that V;;;1, Vi; 12> A> 2> V,;.; and
Viiep Viies Vi3> A 2>V, 4, we obtain arrays with broken Z;
and Z, symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning A(%)
of the driving lasers dynamically to transform the ground state of the
Hamiltonian adiabatically from a product state of all atoms in |g) to
crystalline states®>*!. In contrast to previous work where Rydberg
crystals are prepared via a sequence of avoided crossings®>*!*2, the
operation at a finite {2 and well-defined atom separation enables us to
move across a single phase transition into the desired phase directly®.

In the experiment, we first prepare all atoms in state |g) =58/, F=2,
mp=—2) by optical pumping. We then switch on the laser fields and
sweep the two-photon detuning from negative to positive values using
the functional form shown in Fig. 3a. Figure 2b displays the resulting
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning A. In each of these instances,
we observe a clear transition from the initial state |g, ..., g13) to an
ordered state of different broken symmetry. The distance between the
atoms determines the interaction strength, which leads to different
crystalline order for a given final detuning. To achieve Z, order,
we arrange the atoms with a spacing of 5.74 pm, which results
in a measured nearest-neighbour interaction strength (see Extended
Data Fig. 4) of V; ;1 =21 X 24 MHz>> {2 =27 x 2 MHz, while the
next-nearest-neighbour interaction is small (27 x 0.38 MHz). This
results in a build-up of antiferromagnetic order whereby every other
trap site is occupied by a Rydberg atom (Z, order). By reducing the
spacing between the atoms to 3.57 pum and 2.87 pum, Z3 and Z4 order is
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z, order with theoretical predictions
for a N=7 atom system, obtained via exact numerical simulations. As
shown in Fig. 3, this fully coherent simulation without free parameters
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in
Fig. 3¢ shows that we measure the perfect antiferromagnetic state with
54(4)% probability (here and elsewhere, unless otherwise specified, the
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Figure 2 | Phase diagram and build-up of crystalline phases. a, A schematic
of the ground-state phase diagram of the Hamiltonian in equation (1)
displays phases with various broken symmetries depending on the
interaction range Ry/a (Ry, blockade radius; a, trap spacing) and detuning
A (see main text). Shaded areas indicate potential incommensurate
phases®. Here we show the experimentally accessible region; further
details can be found in refs 30, 33 and 36. b, The build-up of Rydberg
crystals on a 13-atom array is observed by slowly changing the laser
parameters, as indicated by the red dashed arrows in a (see also Fig. 3a).
The bottom panel shows a configuration in which the atoms are

error denotes the 68% confidence interval). When corrected for the
known detection infidelity, we find that the desired many-body state
is reached with probability P=77(6)%.

To investigate the way in which the preparation fidelity depends on
system size, we perform detuning sweeps on arrays of various sizes
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Figure 3 | Comparison with a fully coherent simulation. a, The laser
driving consists of a square-shaped pulse {2(¢) (blue) with a detuning A(t)
(red) that is chirped from negative to positive values. b, The data show
the time evolution of the Rydberg excitation probability for each atom

in a 7-atom cluster (coloured points), obtained by varying the stopping
time £y, Of the laser-excitation pulse £2(¢). The corresponding curves are
theoretical single-atom trajectories obtained from an exact simulation of
quantum dynamics with equation (1), the functional form of A(t) and (2(¢)
used in the experiment, and finite detection fidelity. ¢, Evolution of the
seven most probable many-body states (data). The target state is reached
with 54(4)% probability (77(6)% when corrected for finite detection
fidelity). Solid lines are theoretical (simulated) many-body trajectories.
Error bars in b and ¢ denote 68% confidence intervals.

Detuning (MHz) Rydberg probability

a=>5.74 pum apart, which results in a nearest-neighbour interaction of
Viit1=27 x 24 MHz and leads to Z, order whereby every other atom

is excited to the Rydberg state |r). The bar plot on the right displays the
final, position-dependent Rydberg probability (error bars denote 68%
confidence intervals). The configuration in the middle panel (a=3.57 um,
Viit1=27 x 414.3 MHz) results in Z; order and the top panel
(a=2.87pm, V;;y1 =27 x 1,536 MHz) in Z,4 order. For each configuration,
we show a single-shot fluorescence image before (left) and after (right) the
pulse. Red circles highlight missing atoms, which are attributed to Rydberg
excitations.

(Fig. 4a). We find that the probability of observing the system in the
many-body ground state at the end of the sweep decreases as the system
size is increased. However, even at system sizes as large as 51 atoms,
the perfectly ordered crystalline many-body state is obtained with
P=0.11(2)% (P=0.9(2)% when corrected for detection fidelity). These
probabilities compare favourably with those measured previously for
smaller systems”>* (see also Extended Data Fig. 5) and are remarkably
large in view of the exponentially large, 2°!-dimensional Hilbert space
of the system. Furthermore, we find that the state with perfect Z, order
is by far the most commonly observed many-body state (Fig. 4b). The
observations of perfectly ordered states resulting from the dynamical
evolution across the phase transition indicate that a substantial degree
of quantum coherence is preserved in our 51-atom system over the
entire evolution time.

Quantum dynamics across a phase transition

We next present a detailed study of the transition into the Z, phase in an
array of 51 atoms, which allows us to minimize edge effects and study
the properties of the bulk. We first focus on analysing the atomic states
that result from a slow sweep of the laser detuning across the resonance,
as described in the previous section (Fig. 5). In single instances of the
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Figure 4 | Scaling behaviour. a, Preparation fidelity of the crystalline
ground state as a function of cluster size. The red circles are the measured
values and the blue circles are corrected for finite detection fidelity
(Methods). Error bars denote 68% confidence intervals. b, Number of
observed many-body states per number of occurrences out of 18,439
experimental realizations in a 51-atom cluster. The most frequently
occurring state, |r1€>73...7a9¢50751), is the ground state of the many-body
Hamiltonian.
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Figure 5 | Quantifying Z, order in a 51-atom array after a slow detuning
sweep. a, Single-shot fluorescence images of a 51-atom array before
applying the adiabatic pulse (top row) and after the pulse (bottom three
rows correspond to three separate instances). Red circles mark missing
atoms, which are attributed to Rydberg excitations. Domain walls are
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue
ellipses. Long Z,-ordered chains between domain walls are observed.
b, Blue circles show the mean domain-wall density as a function of
detuning during the sweep. Error bars show the standard error of the mean
and are smaller than the marker size. The red circles are the corresponding
variances, and the error bars represent one standard deviation. The onset
of the phase transition is indicated by a decrease in the domain-wall

experiment, after such a slowly changing laser pulse, we observe long
ordered chains where the atomic states alternate between the Rydberg
and ground states. These ordered domains can be separated by domain
walls that consist of two neighbouring atoms in the same electronic
state (Fig. 5a)*. These features cannot be observed in the average
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition
from the disordered phase to the ordered Z, phase as a function of
detuning A. As the system enters the Z, phase, ordered domains
grow in size, leading to a substantial reduction in the domain-wall
density (blue points in Fig. 5b). Consistent with expectations for an
Ising-type second-order quantum phase transition®®, we observe
domains of fluctuating length close to the transition point between
the two phases, which is reflected by a pronounced peak in the
variance of the domain-wall density. Consistent with predictions from
finite-size scaling analysis®*?, this peak is shifted towards positive
values of A/(2. The measured position of the peak is A ~ 0.5f2. The
observed domain-wall density is in excellent agreement with fully
coherent simulations of the quantum dynamics based on 51-atom
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended
Data Fig. 6b).

At the end of the sweep, deep in the Z, phase (A/§2>> 1) we can
neglect {2 so that the Hamiltonian in equation (1) becomes essentially
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are
created when crossing the phase transition. From 18,439 experimental
realizations we obtain the distribution depicted in Fig. 5¢ with an
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see
Extended Data Fig. 7), which corresponds to a state that has on
average 5.4 domain walls. These domain walls are probably created
as a result of non-adiabatic transitions from the ground state when
crossing the phase transition®’, where the energy gap depends on the
system size (and scales as 1/N). In addition, the preparation fidelity
is limited by spontaneous emission during the laser pulse (an average
of 1.1 photons are scattered per microsecond for the entire array; see
Methods).
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Number of domain walls

Position, i

density and a peak in the variance (see main text for details). Each point is
obtained from about 1,000 realizations. The solid blue curve is a fully
coherent matrix product state (MPS) simulation without free parameters
(bond dimension D = 256), taking measurement fidelities into account.

¢, Domain-wall number distribution for A = 2w x 14 MHz, obtained from
18,439 experimental realizations (blue bars, top). Error bars indicate 68%
confidence intervals. Owing to the boundary conditions, only even
numbers of domain walls appear (Methods). Green bars (bottom) show
the distribution obtained by correcting for finite detection fidelity using a
maximum-likelihood method (Methods), which results in an average of
5.4 domain walls; red bars show the distribution of a thermal state with the
same mean domain-wall density (Methods). d, Measured correlation
function gsz) (equation (2)) in the Z, phase.

To further characterize the Z,-ordered state that is created, we eva-
luate the correlation function

g = (nimy) — (ni)(n;) 2)

where the average (...) is taken over experimental repetitions. We find
that the correlations decay exponentially over distance with a decay
length of £=3.03(6) sites (see Fig. 5d and Methods; the error denotes
the uncertainty in the fit). We note that this length does not characterize
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study
of coherent dynamics of many-body systems far from equilibrium.
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z,-ordered phase, as we change the detuning
A(t) suddenly to the single-atom resonance A =0 (Fig. 6a). After such
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are
robust, persisting over several periods with a frequency that is largely
independent of the system size. This is confirmed by measuring the
dynamics of the domain-wall density, which signals the appearance
and disappearance of the crystalline states, shown in Fig. 6b for arrays
of 9 and 51 atoms. We find that the initial crystal repeatedly revives
with a period that is slower by a factor of 1.38(1) (error denotes the
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion

Several important features of these experimental observations should
be noted. First, the Z,-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is
estimated on the basis of the experimentally determined, corrected
domain-wall density of 0.1, then the corresponding thermal ensemble
predicts a correlation length of {, =4.48(3), which is significantly longer
than the measured value of {=3.03(6) (Methods). Such a discrepancy
is also reflected in distinct probability distributions for the number of
domain walls (Fig. 5¢). These observations suggest that the system does
not thermalize within the timescale of the Z, state preparation.
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Figure 6 | Emergent oscillations in many-body dynamics after sudden
quench. a, A schematic of the sequence (top, showing A(#)), which
involves adiabatic preparation and then a sudden quench to single-atom
resonance. The single-atom trajectories are shown (bottom) for a 9-atom
cluster, with the colour scale indicating the Rydberg probability. We
observe that the initial crystal with a Rydberg excitation at every odd trap
site (left inset) collapses after the quench, and a crystal with an excitation
at every even site builds up (middle inset). At a later time, the initial crystal
revives with a frequency of 2/1.38(1) (right inset). Error bars denote

68% confidence intervals. b, Domain-wall density after the quench. The
dynamics decay slowly on a timescale of 0.88 pis. Shaded region represents

Even more striking is the coherent and persistent oscillation
of the crystalline order after the quantum quench. With respect
to the quenched Hamiltonian (A =0), the energy density of our
Z,-ordered state corresponds to that of an infinite-temperature
ensemble within the manifold constrained by Rydberg blockade.
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist
well beyond the natural timescale of local relaxation (1/42) and the
fastest timescale (1/V; ;).

To understand these observations, we consider a simplified model
in which the effect of long-range interactions is neglected, and nearest-
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states®. In this limit, the qualitative
behaviour of the quench dynamics can be understood in terms of
dimerized spins (Fig. 6¢); owing to the blockade constraint, each dimer
forms an effective spin-1 system with three states (|rg), |gg) and |gr)),
in which the resonant drive ‘rotates’ the three states over the period
/2 (2w /£2), which is close to that observed experimentally. Although
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended
by considering a minimal variational ansatz for the many-body wave
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we
derive analytical equations of motion and obtain a crystalline-order
oscillation with a frequency of about (2/1.51 (see Extended Data
Fig. 9), which is within 10% of the experimental observations. These
considerations are supported by various numerical simulations. The
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy
grows at a rate much smaller than (2, indicating that the oscillation
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a

Time after quench (us)

the standard error of the mean. Solid blue line is a fully coherent matrix
product state (MPS) simulation with bond dimension D = 256, taking into
account measurement fidelity. ¢, Toy model of non-interacting dimers
(see main text). Blue (white) circles represent atoms in state |g) (|)).

d, Numerical calculations of the dynamics after a quench, starting from an
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall
density (red) and the growth of entanglement entropy of the half chain
(13 atoms; blue) are shown as functions of time after the quench. Dashed
lines take into account only the nearest-neighbour (NN) blockade
constraint. Solid lines correspond to the full 1/R® interaction potential.

timescale that is determined by 1/V;.,, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected,
because our Hamiltonian, with or without long-range interactions, is
far from any known integrable system>, and features neither strong
disorder nor explicitly conserved quantities®®. Instead, our observations
are probably associated with constrained dynamics due to Rydberg
blockade and large separations of timescales (V ;1> 2>V, ;125
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio (1 + +/5)" /2N (refs 40, 41). The evolution
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics*>.
Although these considerations provide important insights into the
origin of robust emergent dynamics, our results challenge conventional
theoretical concepts and so warrant further studies.

Outlook

Our observations demonstrate that Rydberg excitation of arrays of
neutral atoms is a promising way of studying quantum dynamics and
quantum simulations in large systems. Our method can be extended
and improved in several ways. Individual qubit rotations around the z
axis could be implemented using light shifts associated with trap light,
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding
qubits into hyperfine sublevels of the electronic ground state and using
state-selective Rydberg excitation?’. Implementing two-dimensional
arrays could provide a path towards realizing thousands of traps.
Such two-dimensional configurations could be realized by using a
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two-dimensional acousto-optic deflector directly or by creating a static
two-dimensional lattice of traps and sorting atoms with an independent
acousto-optic deflector, as demonstrated recently?®. With increased
loading efficiencies*’, the robust creation and control of arrays of
hundreds of atoms is feasible.

Although our observations already provide insights into the physics
associated with transitions into ordered phases and enable us to
explore new many-body phenomena in quantum dynamics, they
can be extended along several directions'®. These include studies of
various aspects of many-body coherence and entanglement in large
arrays**, investigation of quantum critical dynamics and tests of the
quantum Kibble-Zurek hypothesis*’, and the exploration of stable non-
equilibrium phases of matter®®. Further extension may enable studies of
the interplay between long-range interactions and disorder, of quantum
scrambling®, of topological states in spin systems*’, of the dynamics of
Fibonacci anyons**#! and of chiral clock models associated with transi-
tions into exotic Z; and Z, states*®. Finally, we note that our approach
is well suited for the realization and testing of quantum optimiza-
tion algorithms***° with system sizes that cannot be simulated using
modern classical machines.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Trapping set-up and experimental sequence. Our set-up consists of a linear
array of up to 101 evenly spaced optical tweezers. The tweezers are generated
by feeding a multi-tone radio-frequency signal into an acousto-optic deflector
(AA Opto-Electronic model DTSX-400-800.850), generating multiple deflections
in the first diffraction order and focusing them into the vacuum chamber using
a 0.5 numerical aperture objective (Mitutoyo G Plan Apo 50X). The beams have
a wavelength of 808 nm and a waist of approximately 0.9 pm, forming traps of
approximate depth 1 mK.

A diagram of the experimental sequence is shown in Extended Data Fig. la.

The traps are loaded from a magneto-optical trap, leading to individual tweezer
single-atom loading probabilities of around 0.6. A fluorescence image of the array
is taken, and the empty traps are turned off; the filled traps are rearranged to
bring the atoms into their preprogrammed positions®®. After the rearrangement
procedure, another image of the array is taken to preselect on instances in which
the initial configuration is defect-free. After taking the second image, we apply a
magnetic field of about 1.5 G along the axis of the array and then optically pump
all atoms into the |[F =2, mp=—2) state using a o~ -polarized beam resonant to
the [581/2, F=2) — |5P3),, F=2) transition. We then turn off the traps, pulse the
Rydberg lasers on a timescale of a few microseconds, then turn the traps back on to
recapture the atoms that are in the ground state |g) while pushing away the atoms in
the Rydberg state |r), and finally take a third image. Because of their long lifetime,
most of the Rydberg atoms escape from the trapping region before they decay back
to the ground state. This provides a convenient way to detect them as missing atoms
on the third image (with finite detection fidelity discussed in Methods section ‘State
detection fidelity’). The entire experimental sequence, from magneto-optical trap
formation to the third image, takes approximately 250 ms.
Rydberg laser set-up. To introduce interactions within the array, we couple
the atomic ground state |g) = |58/, F=2, mp=—2) to a target Rydberg state
|r) =17081/2, mj=—1/2). The van der Waals interaction between two ¥’Rb 708
atoms follows a 1/R® power law and is of the order of 1 MHz at 10 jum (ref. 51),
making it the dominant energy scale in our system for up to several lattice sites.

The coupling between states |g) and |r) is induced by a two-photon transition,
with |6P5),) as the intermediate level. We drive the transition between |g) and |6P3,)
with a blue 420-nm laser (MOGLabs cat-eye diode laser CEL002) and the transition
between |6Ps,) and |r) with an infrared 1,013-nm laser injecting a tapered amplifier
(MOGLabs CEL002 and MOA002). The detuning 6 of the blue laser from
the |g) <> |6P52) transition is chosen to be much larger than the single-photon
Rabi frequencies (typically 6 &~ 2w x 560 MHz > ({23, {2r) &~ 27 x (60, 36) MHz,
where (25 and {2y are the single-photon Rabi frequencies for the blue and red lasers,
respectively), such that the dynamics can be safely reduced to a two-level transition
|g) <= |r) driven by an effective Rabi frequency 2= 25(2/(26) ~ 21 x 2MHz.

The blue and infrared beams are applied counter-propagating to one another
along the axis of the array. An external magnetic field is applied in addition, and the
beams are circularly polarized so that blue laser drives the o~ transition between
|¢) and |e) = |6P35, F=3, mp=—3), and the red laser drives the o transition
between |e) and |r). Such a stretched configuration minimizes the probability of
exciting unwanted states such as |708;,,, m;=+1/2). The two beams are focused
to waists of 20 pum (blue) and 30 pum (infrared) at the position of the atoms, to get
high intensity while still being able to couple all atoms in the array homogeneously
(see Methods section ‘Coherence limitations’).

The Rydberg lasers interact with the atoms during one experimental cycle for
a few microseconds. To maintain laser coherence, the line width must be much
smaller than a few tens of kilohertz. To achieve this, we use a fast Pound-Drever—
Hall scheme to lock our Rydberg lasers to an ultralow-expansion reference cavity
(ATF-6010-4 from Stable Laser Systems, with a finesse of >4,000 at both 420 nm
and 1,013 nm). The optical set-up used for this purpose is sketched in Extended
Data Fig. 1b. A fraction of the beam from the blue laser first goes through a
phase modulator (Newport 4005) driven by an 18-MHz sinusoidal signal, before
being coupled to a longitudinal mode of the reference cavity. The reflected beam
from the cavity is sent to a fast photodetector (Thorlabs PDA8A), whose signal
is demodulated and low-pass-filtered to create an error signal which is fed into
a high-bandwidth servo controller (Vescent D2-125). The feedback signal from
the servo controller is applied to the current of the laser diode using a dedicated
fast-input port on the laser headboard. The measured overall bandwidth of the
lock is of the order of 1 MHz. The other part of the blue laser beam goes through
an acousto-optic modulator (IntraAction ATM-1002DA23), whose first diffraction
order is used to excite atoms, providing frequency and amplitude control for the
Rydberg pulses.

A similar scheme is implemented for the 1,013-nm laser, with the notable differ-
ence that the beam used for the frequency lock first goes through a high-bandwidth
(>5GHz) fibre-based electro-optic modulator (EOSpace PM-0S5-05-PFA-
PFA-1010/1030). Rather than the carrier, we use a first-order sideband from the
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electro-optic modulator for the lock, which makes it possible to tune the frequency
of the red laser over a full free-spectral range of the reference cavity (1.5 GHz)
by tuning the driving frequency of the high-bandwidth electro-optic modulator.
Following refs 52 and 53, we estimate that the contribution to the line width of the
laser of the noise within the servo loop relative to the cavity is less than 500 Hz.
Measuring interaction strengths. We measure experimentally the 70§ — 70S van
der Waals interactions between atom pairs separated by 5.74 jum (identical to the
spacing used for observing the Z,-ordered phase) to confirm our estimate of inter-
action strengths and to provide independent (and more precise) estimates of the
exact atom spacing (Extended Data Fig. 4). At this spacing we expect the interac-
tion V to be about 27 x 20 MHz. We apply our two laser fields (420 nm and
1,013 nm) to couple each atom to the Rydberg state, with two-photon detuning A.
For A =0, we observe resonant coupling from |g, g) to| W) = (|g, ) + |, £))/~/2,
as expected for the blockaded regime in which {2 = 2w X 2 < V. However, there
is an additional resonance at A= V/2 in which we drive a four-photon process
from |g, g) to |r, r) through the off-resonant intermediate state | W). Using spec-
troscopy, we determine this four-photon resonance to be at A ~ 2w x 12.2 MHz,
from which we calculate V=2A=2n x 24.4 MHz. This is consistent with inde-
pendent measurements of our trap spacing of approximately 5.7 jum, from which
we additionally calibrate the spacing used in other arrangements (3.57 pm for Zs3
order and 2.87 pm for Z,4 order).

Timing limits imposed by turning off traps. Atoms can be lost unintentionally
owing to motion away from the trapping region during the Rydberg pulse when
the traps are off. This process depends on the atomic temperature and for how
long we turn off the traps. In particular, with our measured temperature of 12 pK
(Extended Data Fig. 2), the loss due to atomic motion for trap-off times of <4 pis
is at most only about 0.1%. For longer trap-off times, we see loss of up to 2% at 6 us
and 9% at 10 ps. To cap this infidelity at 3%, all experiments described here operate
with trap-off times of <7 s.

State detection fidelity. Each atom is identified as being in |g) (or |r)) at the end
of the Rydberg pulse by whether it is (or is not) present in the third fluorescence
image. Detection infidelity arises from accidental loss of atoms in |g) or accidental
recapture of atoms in |). For an atom in state |g), detection fidelity is set by the
finite trap lifetime (which causes baseline loss of 1%) and motion due to turning
the traps off (<3% for all experiments shown, see Methods section “Timing limits
imposed by turning off traps’). For the 7-atom data shown in Fig. 3 and the 51-atom
data shown in Figs 4 and 5, we measured ground-state detection fidelities of 98%
and 99%, respectively.

For an atom in state |r), the optical tweezer yields an anti-trapping potential, but
there is a finite probability that the atom will decay back to the ground state and
be recaptured by the tweezer before it can escape the trapping region. We quan-
tify this probability by measuring Rabi oscillations between |g) and |r) (Extended
Data Fig. 3) and extracting the maximum amplitude of the oscillation signal.
After accounting for the loss of ground-state atoms as an offset to the signal, we
obtain a typical effective detection fidelity of 93% for the |70S;,,) Rydberg state.
Furthermore, we observe a reduced detection fidelity at lower-lying Rydberg states,
which is consistent with the dependence of the Rydberg lifetime on the principal
quantum number™,

Correcting for finite detection fidelity. The number of domain walls is a metric
for the quality of preparing the desired crystal state. Boundary conditions make it
favourable to excite the atoms at the edges. Therefore, we define a domain wall as
any instance where two neighbouring atoms are found in the same state or where
an atom at the edge of the array is found in state |g). In systems composed of an
odd number of particles, this definition sets the parity of domain walls to be even.

The appearance of domain walls can arise from non-adiabaticity across the
phase transition, or from scattering from the intermediate 6P state, imperfect
optical pumping, atom loss or other processes (see Methods section ‘Coherence
limitations’). However, the observed number of domain walls is increased arti-
ficially owing to detection infidelity; any atom within a crystal domain that is
misidentified increases the number of measured domain walls by two. For this
reason, we use a maximum-likelihood routine to estimate the parent distribution,
which is the distribution of domain walls in the prepared state that best predicts
the measured distribution. We use two methods to correct for detection infidelity,
depending on whether we are interested in only the probability of generating the
many-body ground state or in the full probability distribution of the number of
domain walls.

Correcting detection infidelity. Many-body ground-state preparation. Having pre-
pared the many-body ground state, the probability of correctly observing it depends
on the measurement fidelity for atoms in the electronic ground state f,, the meas-
urement fidelity for atoms in the Rydberg state f;, and the size of the system N.
Assuming a perfect crystal state in the Z, phase, the total number of atoms in the
Rydberg state is 7, = (N + 1)/2 and in the ground state is r7,= (N — 1)/2. The proba-
bility of measuring the perfect state is then p_ = f"r x f"s. Therefore, if we observe
g
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the ground state with probability peyp, the probability of actually preparing this
state is inferred to be peyp/pm. The blue data points in Fig. 4a are calculated this way.
Maximum-likelihood state reconstruction. To correct for detection fidelity in the
entire distribution of domain walls, we use a maximume-likelihood protocol. For
this purpose, we assume that the density of domain walls is low, such that the
probability of preparing two overlapping domain walls, meaning three consecu-
tive atoms in the same state, is negligibly small. Under this assumption, misiden-
tifying an atom within a domain wall shifts its location, but does not change the
total number. However, misidentification of an atom within a crystal domain
increases the number of domain walls by two. For any prepared state with a num-
ber of domain walls n;, we calculate the probability of measuring ns domain walls,
p(ng| n;). We construct a matrix M, which transforms an initial probability
distribution for the number of domain walls, W; = (p(n;=0), p(n;=2), ...), into
the expected observed distribution Wy= MW,, where My = p(ns=k | n;=1). Given
an experimentally observed distribution of domain walls W, and a test
initial distribution Wi’, we can calculate the difference vector between them:
D' =W, — Wi =W, — MW,.

Using D’ and the 68% confidence intervals of the measured data o, obtained via
an approximate parametric bootstrap method>?, we define a cost function

7\2
W W) =% [ﬂ]

k \Tk

where the sum is taken over the elements of the vectors. We find the most likely
parent distribution W; by minimizing the cost function over the different possible
W/, under the constraints that that every element is between 0 and 1 and that the
sum of the elements is 1. For this purpose, we use a sequential least-square pro-
gramming routine. To reduce biases, we use a random vector as a starting point
for the minimization procedure. We checked that repeating the procedure several
times with different initial vectors converged to the same parent distribution and
that the distribution of domain walls predicted by this parent distribution was in
excellent agreement with the measured distribution. The result of such a procedure
on the dataset used for Fig. 5¢ is shown in Extended Data Fig. 7.

Adiabatic pulse optimization. To prepare the ordered phases, we use frequency-
chirped pulses by varying the two-photon detuning A across the bare |g) < |r)
resonance, corresponding to A =0. To perform these sweeps, we drive a high-
modulation-bandwidth voltage-controlled oscillator (Mini-Circuits ZX95-
850W-S+) according to either cubic or tangent functional forms

Viawie = alt =t + bt —to) +ela caca,, 3)

V(t)tangent = atan(b(t — to)) + C|Ami“§A§Amax
with programmable parameters a, b and c. The output from this voltage-controlled
oscillator is mixed (Mini-Circuits ZFM-2-S+) with a 750-MHz source to generate
the difference frequency, which is used to drive the acousto-optic modulator in the
420-nm-light path. The detuning A is set to truncate at minimum and maximum
values of Apin and Apay, respectively. The tangent adiabatic sweep was used for
datasets with 51 atoms (Figs 4 and 5) owing to improved performance, whereas
the cubic form was used for all smaller system sizes and for the data on crystal
dynamics (Fig. 6).

At the end of the sweep, the number of domain walls in the crystal provides a
metric for the quality of the crystal preparation. All parameters in equation (3) are
iteratively optimized to minimize the number of domain walls, or equivalently, to
maximize the crystal preparation fidelity. The optimization starts with the offset
¢, followed by the parameter b, the maximum and minimum detunings Amin/max
and finally the parameter a. Repeated optimization of these parameters often leads
to better crystal preparation fidelities®.

After passing through the acousto-optic modulator, the 420-nm light is cou-
pled into a fibre. The coupling is optimized for the voltage-controlled oscillator
frequency at which the light is resonant with the |g) — |r) transition (fop(), and
decreases as the voltage-controlled oscillator frequency deviates from fqp. The
power throughout all frequency sweeps is >75% of the power at fop.

Coherence limitations. When sweeping into the crystalline phase, the control
parameter A(f) must be varied slowly enough that the adiabaticity criterion is
sufficiently met. However, for long pulses, additional technical errors may become
limiting. Here, we summarize some key limitations.

State preparation fidelity. For all data analysed, we preselect defect-free atom arrays.
The preparation fidelity is therefore given by the probability that each atom in the
array is still present for the Rydberg pulse and that it is prepared in the correct
magnetic sublevel: |5S;/,, F=2, mp= —2). Including both factors, we estimate
that atoms are present and in the correct magnetic sublevel with fidelity f> 98%.
For experiments with 51 atoms, this leads to at most about one atom prepared
incorrectly.

Spontaneous emission. The 70S Rydberg state has an estimated lifetime of 150 jus
(including blackbody radiation at 300 K)**. In addition, for the typical intermediate
detuning of A=27 x 560 MHz and the single-photon infrared and blue Rabi
frequencies of (£2g, {25) ~ 27 X (36, 60) MHz, spontaneous emission from the
intermediate state occurs on a timescale of 40 s for the ground state, and intro-
duces a combined effective lifetime of 50 ps for the Rydberg state. This leads to an
average scattering rate of 2 x 3.6 kHz.

Rabi frequency homogeneity. We aim to align our beams to globally address all
trapped atoms with a uniform Rabi frequency | (2| = (2. Experimentally, we achieve
homogeneity up to differences of about 3% (Extended Data Fig. 3b).

Intensity fluctuations. Primarily because of pointing instability, the global Rabi
frequency fluctuates by small amounts from shot to shot of the experiment. To
reduce slow drifts of the beams, we use a 1:1.25 telescope to image on a camera
their position on the plane of the atoms and feedback to stabilize their position to
a target every 500 repetitions (about 2 min).

Rydberg laser noise. The coherence properties of the Rydberg lasers over typical
experimental times are probed by measurements on single, non-interacting atoms.
In particular, spin echo measurements between |g) and |r) show no visible decay
of coherence over 5 s (Extended Data Fig. 3c). This measurement, along with the
measured noise contribution from the laser lock of <0.5kHz (see Methods section
‘Rydberg laser set-up’), indicates that the line widths of the laser are sufficiently
narrow. Additional phase noise is introduced by the laser lock around the lock
bandwidth of about 1 MHz. This phase noise may cause weak additional deco-
herence on the adiabatic sweep experiments shown in the main text.

Finite atomic temperature. Our finite atomic temperature of approximately 12 pK
introduces random Doppler shifts (of about 27 x 50kHz) and fluctuations in the
atomic positions (about 120 nm radially, 600 nm longitudinally) for each atom
in each cycle of the experiment. The Doppler shift is very small in magnitude
compared to the single-atom Rabi frequency (2. The position fluctuations can
introduce noticeable fluctuations in the interaction energy between a pair of
atoms from shot to shot. As an example, at our chosen lattice spacing of 5.9 pm, we
calculate an interaction energy of 2 x 24 MHz. However, if the distance fluctuates
by about 212 x 120 nm ~ 170 nm, then the actual interaction energy can range
from 2w x 21 MHz to 27 x 29 MHz. The longitudinal position fluctuations add in
quadrature, so they contribute less to fluctuations in distance.

Electric and magnetic fields. We observed that the Rydberg resonance can drift
over time, especially for states with high principal quantum number n, which we
attribute to uncontrolled fluctuations in the electric field. We can reduce these
fluctuations by shining 365-nm ultraviolet light on the glass cell in between experi-
mental sequences and during the magneto-optical trap loading period, which
stabilizes the charge environment on the glass cell surface. Although the fluctu-
ations for states n > 100 are still substantial, they become negligible (<100 kHz)
for our chosen state n=70.

The energy shifts of the initial state |¢) and final state |r) with magnetic fields
are identical. Differential shifts of the intermediate state are very small compared
to the detunings of the two laser beams from the 6P5), state. Therefore, we do not
expect magnetic fields to play a substantial part in fluctuations between experi-
mental runs.

We note that the use of deterministically prepared arrays allows us to optimize

the coherence properties efficiently. For example, for collective Rabi oscillations
of fully blockaded groups of up to three atoms, we observe an improvement in the
product {274 of about an order of magnitude compared to previous work?*, where
T4 is the decay time of the Rabi oscillations. In addition, the relatively high fide-
lity in the preparation of Z,-ordered states with 51 atoms (Extended Data Fig. 5)
indicates that a substantial amount of coherence is preserved over the entire
evolution. These considerations indicate that our approach is promising for near-
term coherent experiments with large-scale systems®’.
Comparison with a classical thermal state. To gain some insight into the states
obtained from our preparation protocol (Fig. 3a), we provide a quantitative com-
parison between experimentally measured quantities and those computed from a
thermal ensemble. In particular, we note that, deep in the ordered phase
(A/£2>> 1), the coherent coupling of the ground state to the Rydberg state can be
neglected owing to strong energetic suppression and that the effective Hamiltonian
becomes diagonal in the measurement basis. This allows us to calculate all prop-
erties of a thermal state even for systems of 51 atoms by computing the partition
function explicitly via the transfer matrix method®. Also, we may consider the
interactions only up to next-nearest neighbours because the coupling strengths for
longer distances are weak compared to the maximum timescale that is accessible
in our experiments. To this end, we consider the Hamiltonian

N N-1 N-2
Ha=—AY ni+ > Vimmi+ Y, Vaniniy,

i=1 i=1 i=1
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The eigenstates of this Hamiltonian are simply 2 classical configurations, where
each atom is in either |g) or |r). We label these configurations by a length-N vector
i= (i1, iy, ..., in) (ix € {g r}) and denote their energy by E;. In a thermal ensemble
p=-exp(—FHa)/Z, with Z = tr[exp(—/FHq)] and inverse temperature (3, the proba-
bility of finding a particular configuration i is p; = exp(—(3E;)/Z. Because E; can
be written as a sum of local terms involving interactions only up to a range of two,
the partition sum can be evaluated using a standard transfer matrix of size 4 x 4.
Moreover, using this approach, we can evaluate all measurable quantities for the
thermal ensemble, including the average number of domain walls (D) =tr(Dp),
where

N-1
D= 2. [mnip1+ (1= n)(1 = nip )] + (1= m) + (1 —ny)

i=

is an operator that counts the number of domain walls, the correlation function

1

2 2

and even the full counting statistics for the domain-wall distribution in the state p.
In particular, the probability of measuring exactly n domain walls p,, = tr(P,,p) can
be computed from a Fourier transform of the Kronecker delta function

N+1
1 +

v 5 R

Bi=dpn=

withn=0,1,2,..., N+ 1.

We can include the effect of imperfect detections in this formalism directly.
To that end, we denote the expectation value with measurement infidelities of an
observable O as

=2 Okup, @)
1Y)

where O; is the value of the observable in state i and A;; is the probability of detect-
ing state i when the system is in state j, accounting for finite detection fidelity.
Assuming detection errors occur independently from one another, we have

=TT Ain,

where \g o= f, is the probability of correctly detecting an atom in the ground state,
A= is the probability of correctly detecting an atom in the Rydberg state, and
Arg=1— Aggand A\g,=1 — ). Equation (4) can be evaluated usinga 16 x 16
transfer matrix for any observables of interest.

To obtain a quantitative comparison with our experiments, we determine the

inverse temperature (3 in such a way that the average number of domain walls,
including the effect of imperfect detections, matches the experimentally deter-
mined value, ((D))=9.01(2). For A=2n x 14MHz, V; =271 x 24 MHz and
V, =27 x 0.38 MHz, this leads to 5=3.44(1)/ A or equivalently to an entropy
per atom of s/kg = 0.286(1) (Extended Data Fig. 8a, b). Because 3 characterizes
the thermal state completely, we can extract the corresponding domain-wall dis-
tribution (Extended Data Fig. 8c) and the correlation function (Extended Data
Fig. 8d) as described above. We find that the correlation length in the correspond-
ing thermal state is &, = 4.48(3), which is significantly longer than the measured
correlation length £ =3.03(6), from which we deduce that the experimentally pre-
pared state is not thermal.
Dynamics after sudden quench. To understand the dynamics of the Z, Rydberg
crystal after quenching the detuning to A= 0, we first consider a simplified
model, in which interactions beyond nearest-neighbour are neglected. In addition,
we replace the nearest-neighbour interactions with the hard constraint that two
neighbouring atoms cannot be excited at the same time. Such an approximation
is well controlled in the limit V; ;> 2, as in the case of our experiments, for a
time exponentially long in V;; /{2 (ref. 39). In this limit, the Hamiltonian is
approximated by

He=3" p;‘;l[ga; - Ap;']p;l
i

| and P} = |r;)(ri|. We identify P:=° P’ NF1_ 1 at the boun-
daries. Within this approximation, the relevant Hllﬁert space consists of only states
with no neighbouring atoms in the Rydberg state; that is, P! P! = 0. The dimen-
sion of this constrained Hilbert space is still exponentially large and grows as ¢",
where ¢ =1.618... is the golden ratio.

where Py = |¢,)(g
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In the simplest approximation, we can treat the array of atoms as a collection of
independent dimers, |¥(t)) = ®; |¢(t))2i—1,2i» where for each pair of atoms only
three states are allowed owing to the blockade constraint: |, g), |g, g) and |g, 7). The
dynamics of each pair with initial state |$(0)) = |r,g) is then

|p(8)) = 1+cos(Qt/f) 1|7, g)+—51ﬂ(9t/f)|g’ )

NF
+ E[1 —cos(2t/+J2)]|g, 1)

This dimer model predicts that each atom flips its state with respect to its initial
configuration after a time 7 = /2 /(2. The corresponding oscillations between
two complementary crystal configurations are thus a factor of 2/ slower than an
independent spin model would predict, which is qualitatively consistent with the
experlmental observations. We note that this dimerized ansatz does not satisfy the
constraint P! P! = 0 between two neighbouring dimers, which is an artefact that
originates from the artificial partitioning of the array into non-interacting dimers.

To go beyond this approximation, we consider an ansatz for the many-body
wavefunction that treats each atom on an equal footing. The simplest such wave-
function that also allows for non-trivial entanglement between the atoms can be
written as a matrix product state with bond dimension 2 (ref. 59). In particular we
consider a manifold of states of the form

[Z{0)) = viA(O)1A(02)"2- - A(ON) N Vi, g, ...

{in}

LiN)
with matrices

A6,)¢ = cos(6,) 0 X
1

A0,) = 0 isin(6,)
0 0

and boundary vectors v, = (1, 1) and vg = (1, 0)". Here, the indices i, € {g, r} enu-
merate the state of the nth atom. This manifold satisfies the constraint that no two
neighbouring atoms are excited simultaneously. The many-body state within this
subspace is completely specified by the N parameters ¢, € [0, 2]. In particular, it
enables the initial crystal state to be represented by 6,,_; =w/2 for atoms on odd
sites and 6,,, = 0 for atoms on even sites, as well as its inverted version, 65, ;=0 for
odd and 6,, = w/2 for even sites. Using the time-dependent variational principle®,
we derive equations of motion for the wavefunction within this manifold. For
an infinite system with a staggered initial state 6, , = 0,,, such as the Z,-ordered
state, the wavefunction is at all times described by two parameters: 6, =6,,_; and
Oy = 0,, for even and odd sites. The corresponding nonlinear, coupled equations
of motion are

b= — %sec(ab) [sin(6,)cos?(6,)sin(fp) + cos?(Oy)]
(5)
Op=— %sec(@a) [sin(fp)cos?(Ay)sin(B,) + cos?(0,)]

A numerical solution of these variational equations for the crystalline initial state
predicts periodic motion with a frequency of approximately 2/1.51 (Extended
Data Fig. 9), with the many-body wavefunction oscillating between two staggered
configurations.

Decay of the oscillations and growth of entanglement after the quantum
quench. To obtain more insight into the dynamics of our system beyond these
variational models, we use exact numerical simulations to integrate the many-body
Schrédinger equation. In particular, we focus on the decay of oscillations and the
growth of entanglement entropy in our system. Owing to the exponentially grow-
ing Hilbert space, this method is limited to relatively small system sizes. We make
use of the constrained size of the Hilbert space (blockade of nearest-neighbouring
excitations of Rydberg states) and propagate the state vector of up to 25 spins using
a Krylov subspace projection method. In Extended Data Fig. 10a we show the
dynamics of the domain-wall density under the time evolution of the constrained
Hamiltonian H, with 2=2% x 2MHz and A= 0. We consider two different initial
states: the disordered state in which each atom is initially prepared in the ground
state |g) and the perfect crystalline state |r, g, 7, g ...). In both cases, the energy
density corresponds to that of an infinite-temperature thermal ensemble in the
constrained subspace with respect to H..

For the disordered initial state, the domain-wall density relaxes quickly to a
steady-state value. In contrast, if the system is initialized in the perfect crystalline
state, the domain-wall density oscillates for long times and decays at a rate much
slower than the oscillation period. We confirmed numerically that this initial
decay time is independent of the system size. We further note that for every
system size accessible in our numerical method, the domain-wall density does
not relax to a steady-state value even at very long times, but continues to oscillate
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with a reduced amplitude. Moreover, whereas the disordered initial state relaxes
to an average domain-wall density that is consistent with a thermal state of infinite
temperature corresponding to the energy density of the initial state, this is clearly
not the case for the crystalline initial state. This qualitatively distinct behaviour
for two different initial states is also reflected in the growth of entanglement
entropy after the quench (Extended Data Fig. 10c, dashed lines). Although in
both cases the entanglement entropy grows linearly initially, the rate of growth
is much lower for the crystalline initial state. Moreover, unlike the case of the
disordered initial state, in which the entanglement entropy saturates quickly to
its maximum value (limited by the finite system size and the constrained Hilbert
space), for the crystalline initial state the entanglement entropy does not seem to
approach the same value.

To understand the influence of the 1/R®-decaying interactions, we show the
corresponding dynamics and entanglement growth in Extended Data Fig. 10b, ¢
(solid lines). Numerically, we treat the strong nearest-neighbour interactions
perturbatively—by adiabatic elimination of simultaneous excitation of neigh-
bouring Rydberg states—and the weak interactions beyond nearest neighbours
exactly. For the disordered initial state, we find that the dynamics of the domain-
wall density and the entanglement growth remain similar to the previous case,
in which long-range interactions are neglected; in this case, the thermalization
time is barely affected. In contrast, for the crystalline initial state, the oscilla-
tions decay much faster when next-nearest-neighbour interactions are included.
We therefore attribute the thermalization in this case to interactions beyond the
nearest-neighbour blockade constraint. From the growth of the entanglement
entropy we see that the crystalline initial state still thermalizes more slowly than
the disordered initial state.

Numerical time evolution using a matrix product state algorithm. The numer-
ical data presented in Figs 5b and 6b were obtained by simulating the evolution
of the 51-atom array during the sweep across the phase transition and the subse-
quent sudden quench using a matrix product state algorithm with bond dimen-
sion D=256. We simulate the entire preparation protocol to generate the Rydberg
crystal (Fig. 5b) and use the resulting state as an initial state for the time evolution
after the sudden quench. To this end, we use a time-evolving block decimation
algorithm®6?, with a Suzuki-Trotter splitting of the Hamiltonian to update the
state. The time step used in this Trotterization is {2At=0.004. We take into account
only nearest-neighbour and next-nearest-neighbour interactions, neglecting the
small interactions for atoms that are separated by three or more sites (as discussed

in Methods section ‘Comparison with a classical thermal state’). We account for
finite detection fidelities that are determined independently, but otherwise do not
include any incoherent mechanisms. Remarkably, for local quantities, such as the
domain-wall density, this fully coherent simulation agrees well with the experimen-
tally measured values. For higher-order correlation functions, such as the variance
of the number of domain walls, the fully coherent simulation and the experiment
agree only qualitatively (Extended Data Fig. 6). The quantitative difference is prob-
ably due to either limitations of the matrix product state simulations or various
incoherent processes being present in the experiment.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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Extended Data Figure 1 | Experimental sequence and Rydberg laser lasers are pulsed. After the traps are turned back on, a third EMCCD
set-up. a, The tweezer array is initially loaded from a magneto-optical image is taken to detect Rydberg excitations with single-site resolution.
trap (MOT). A single-site-resolved fluorescence image taken with an b, Schematic representation of the Rydberg laser set-up, which is used to
electron-multiplying CCD camera (EMCCD) is used to identify the stabilize two external cavity diode lasers to a reference optical cavity with
loaded traps. Using this information, a feedback protocol rearranges the a fast Pound-Drever-Hall lock. TA, tapered amplifier; AOM, acousto-
loaded atoms into a preprogrammed configuration, which is verified by optic modulator; EOM, electo-optic modulator; PD, photodetector; PBS,

the second EMCCD image. After that, all atoms are optically pumped into polarizing beam splitter; QWP, quarter-wave plate.
the |[F=2, mp= —2) state, the tweezers are turned off and the Rydberg
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Extended Data Figure 2 | Drop-recapture curve. Measurements of atom

loss probability as a function of trap-off time. For short times of up to 4 s,

the loss is dominated by finite trap lifetime (1% plateau). At larger trap-off

times, the atomic motion away from the tweezer introduces additional

losses. The solid line is a Monte Carlo simulation for a temperature of
11.8pK.
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Extended Data Figure 3 | Typical Rabi oscillation, homogeneity and
coherence for non-interacting atoms. a =23 pm, 2>V ;4 ~ 5 kHz.

a, Rabi oscillations. We observe a typical decay time of about 6 s, which is
limited mainly by intensity fluctuations from shot to shot. b, The fitted

Rabi frequency for each atom across the array (spatial extent of about

300 um) is homogeneous to within 3%. ¢, Measurement of the population
in the Rydberg state after a spin echo pulse sequence (inset). We find no
decay of coherence over typical measurement periods of several
microseconds, thereby ruling out fast sources of decoherence. Error bars
in a-c denote 68% confidence intervals.
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Extended Data Figure 4 | Spectroscopic measurement of Rydberg
interactions. Spectroscopy on pairs of atoms separated by approximately
5.74pum is shown. a, For single-atom losses, we observe a single peak at

A =0 corresponding to the two-photon coupling from |g, g) to |W). b, For
two-atom losses, we observe an additional peak at A =27 x 12.2 MHz.
This corresponds to the four-photon coupling from |g, g) to |r, r) through

Detuning (MHz)

the intermediate state | W), detuned by A. The interaction energy is then
V=2A. This four-photon resonance is broadened as a result of random
atom positions within the optical tweezers that result in fluctuations in
interaction strengths from shot to shot of the experiment. Solid lines are
fits with a single Lorentzian (a) and the sum of two Lorentzians (b). Error
bars denote 68% confidence intervals.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



100§ o5 0@ .
0.© o © This work (measured)
) o o © This work (corrected)
2 ) © Richerme et al.
= ¢
1014 ¢ °
o °
[o} [¢]
o é; i
©
+3 (<]
0 -
-g 10 24 ¢
: f
o
O]
103 ¢
0 10 20 30 40 50
System size

Extended Data Figure 5 | Ground-state preparation probability.

We compare the ground-state preparation probability obtained here
(measured, red circles; corrected for detection infidelity, blue circles)

with the most complete previous observations of a Z,-symmetry breaking
transition in a system of trapped ions (green circles)*. We note that the
interaction Hamiltonians for the two systems are not identical, owing to
the finite interaction range. In particular, the long-range interactions tend
to frustrate adiabatic transitions into Z,-ordered states in ref. 34 and, to
lesser extent, in this work. Error bars denote 68% confidence intervals.
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Extended Data Figure 6 | State preparation with 51-atom clusters. throughout the system, but the small system size prevents the study of bulk
a, Average position-dependent Rydberg probability in a 51-atom cluster properties. b, Variance of the domain-wall distribution during Z, state
after the adiabatic sweep. The Z, order is visible at the edges of the preparation. Points and error bars represent measured values. The solid
system, whereas the presence of domain walls leads to an apparently red line corresponds to a full numerical simulation of the dynamics using
featureless bulk throughout the centre of the system. Inset, average a matrix product state ansatz (see text and Fig. 5). Error bars in aand b
Rydberg probabilities in a 13-atom chain, in which the Z, order is visible denote 68% confidence intervals.
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Extended Data Figure 7 | State reconstruction. a, Reconstructed parent distribution. b, Comparison of measured domain-wall distribution (red) and
predicted observation given the parent distribution in a (blue). ¢, Difference between the two distributions in b.
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density for thermal states at different entropy per atom s/kg. The lower
line corresponds to the actual number of domain walls in a system of the
corresponding temperature; the upper line gives the domain-wall density
that would be measured at this temperature, given the finite detection
fidelity. The horizontal dashed line denotes the experimentally measured
domain-wall density, from which we infer a corresponding entropy per
atom, and equivalently temperature, in a thermal ensemble. b, Entropy
per atoms for a thermal state at given inverse temperature = 1/(kgT) in
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a 51-atom array. ¢, Expected distribution of the number of domain walls
for the thermal ensemble at 5= 3.44/ A, with (red) and without (blue)
taking into account finite detection fidelity. d, Experimentally measured
correlation function g(z)(d) (blue) and correlation function corresponding
to a thermal ensemble at = 3.44/A (grey). The inset shows the rectified
correlation function on a logarithmic scale, indicating that the measured
correlation function decays exponentially, but with a different correlation
length from that obtained from a thermal state with the measured number

of domain walls.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLE

0.8
— Variational ansatz — Exact numerics

>

% 067

c

9]

o

© J

204

c

©

§

8027

0 | | !
0 4 8 12
Time after quench Q¢

Extended Data Figure 9 | Oscillations in domain-wall density using (equation (5)) with initial conditions ¢, = /2, 6, = 0, that is, the
a variational matrix product state ansatz. The dynamics of the domain- crystalline initial state. The red line shows the exact dynamics of the
wall density in the bulk of the array under the constrained Hamiltonian domain-wall density at the centre of a system of 25 atoms initially in the
H.at A =0 is shown. The blue line shows the evolution of the domain- crystalline state under the constrained Hamiltonian H..

wall density obtained by integrating the variational equations of motion
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Extended Data Figure 10 | Decay of oscillations after a quench and
entropy growth. a, Dynamics of the domain-wall density under the
constrained Hamiltonian H, for different initial states. The red line shows
the domain-wall density for a system of 25 atoms initially prepared in

the electronic ground state. In this case, the domain-wall density relaxes
quickly to a steady value corresponding to thermalization. In contrast,
the blue line shows the dynamics if the system is initialized in the
Z,-ordered state. In this case, the domain-wall density oscillates over
several periods and even for very long times does not relax fully to a steady
value. b, Same as in a, but taking into account the full 1/R® interactions.
While the dynamics for an initial state [g)®" is very similar to the one

obtained in the constrained case, for the crystalline initial state the decay
of the oscillations is faster than in the constrained model. ¢, Growth of
entanglement entropy in a bipartite splitting of the 25-atom array for

the different cases displayed in a and b. The entropy is defined as the

von Neumann entropy of the reduced state of the first 13 atoms of the
array. The dashed lines correspond to dynamics under the constrained
Hamiltonian, neglecting the 1/R® tail, whereas the solid lines take the full
interactions into account. Red lines correspond to the initial state |g) ¥,
whereas blue lines correspond to crystalline initial states. In all panels we
chose {2=2m x 2 MHz and, where applicable, interaction parameters such
that the nearest-neighbour interaction evaluates to V;;; =21 x 25.6 MHz.
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