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ABSTRACT. We prove nonlinear lower bounds and commutator estimates for the Dirichlet fractional Lapla-

cian in bounded domains. The applications include bounds for linear drift-diffusion equations with nonlocal

dissipation and global existence of weak solutions of critical surface quasi-geostrophic equations.

1. Introduction

Drift-diffusion equations with nonlocal dissipation naturally occur in hydrodynamics and in models of

electroconvection. The study of these equations in bounded domains is hindered by a lack of explicit infor-

mation on the kernels of the nonlocal operators appearing in them. In this paper we develop tools adapted

for the Dirichlet boundary case: the Córdoba-Córdoba inequality ([3]) and a nonlinear lower bound in the

spirit of ([2]), and commutator estimates. Lower bounds for the fractional Laplacian are instrumental in

proofs of regularity of solutions to nonlinear nonlocal drift-diffusion equations. The presence of boundaries

requires natural modifications of the bounds. The nonlinear bounds are proved using a representation based

on the heat kernel and fine information regarding it ([4], [7], [8]). Nonlocal diffusion operators in bounded

domains do not commute in general with differentiation. The commutator estimates are proved using the

method of harmonic extension and results of ([1]). We apply these tools to linear drift-diffusion equations

with nonlocal dissipation, where we obtain strong global bounds, and to global existence of weak solutions

of the surface quasi-geostrophic equation (SQG) in bounded domains.

We consider a bounded open domain Ω ⊂ R
d with smooth (at leastC2,α) boundary. We denote by ∆ the

Laplacian operator with homogeneous Dirichlet boundary conditions. ItsL2(Ω) - normalized eigenfunctions

are denoted wj , and its eigenvalues counted with their multiplicities are denoted λj :

−∆wj = λjwj . (1)

It is well known that 0 < λ1 ≤ ... ≤ λj → ∞ and that −∆ is a positive selfadjoint operator in L2(Ω) with

domain D (−∆) = H2(Ω) ∩H1
0 (Ω). The ground state w1 is positive and

c0d(x) ≤ w1(x) ≤ C0d(x) (2)

holds for all x ∈ Ω, where

d(x) = dist(x, ∂Ω) (3)

and c0, C0 are positive constants depending on Ω. Functional calculus can be defined using the eigenfunc-

tion expansion. In particular

(−∆)α f =

∞∑

j=1

λαj fjwj (4)

with

fj =

∫

Ω
f(y)wj(y)dy

1
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for f ∈ D ((−∆)α) = {f | (λαj fj) ∈ `2(N)}. We will denote by

Λs
D = (−∆)α , s = 2α (5)

the fractional powers of the Dirichlet Laplacian, with 0 ≤ α ≤ 1 and with ‖f‖s,D the norm in D (Λs
D):

‖f‖2s,D =

∞∑

j=1

λsjf
2
j . (6)

It is well-known and easy to show that

D (ΛD) = H1
0 (Ω).

Indeed, for f ∈ D (−∆) we have

‖∇f‖2L2(Ω) =

∫

Ω
f (−∆) fdx = ‖ΛDf‖2L2(Ω) = ‖f‖21,D.

We recall that the Poincaré inequality implies that the Dirichlet integral on the left-hand side above is equiv-

alent to the norm in H1
0 (Ω) and therefore the identity map from the dense subset D (−∆) of H1

0 (Ω) to

D (ΛD) is an isometry, and thus H1
0 (Ω) ⊂ D (ΛD). But D (−∆) is dense in D (ΛD) as well, because finite

linear combinations of eigenfunctions are dense in D (ΛD). Thus the opposite inclusion is also true, by the

same isometry argument.

Note that in view of the identity

λα = cα

∫ ∞

0
(1− e−tλ)t−1−αdt, (7)

with

1 = cα

∫ ∞

0
(1− e−s)s−1−αds,

valid for 0 ≤ α < 1, we have the representation

((−∆)α f) (x) = cα

∫ ∞

0

[
f(x)− et∆f(x)

]
t−1−αdt (8)

for f ∈ D ((−∆)α). We use precise upper and lower bounds for the kernel HD(t, x, y) of the heat operator,

(et∆f)(x) =

∫

Ω
HD(t, x, y)f(y)dy. (9)

These are as follows ([4],[7],[8]). There exists a time T > 0 depending on the domain Ω and constants c,
C, k, K, depending on T and Ω such that

cmin
(
w1(x)
|x−y| , 1

)
min

(
w1(y)
|x−y| , 1

)
t−

d
2 e−

|x−y|2
kt ≤

HD(t, x, y) ≤ Cmin
(
w1(x)
|x−y| , 1

)
min

(
w1(y)
|x−y| , 1

)
t−

d
2 e−

|x−y|2
Kt

(10)

holds for all 0 ≤ t ≤ T . Moreover

|∇xHD(t, x, y)|
HD(t, x, y)

≤ C

{ 1
d(x) , if

√
t ≥ d(x),

1√
t

(
1 + |x−y|√

t

)
, if

√
t ≤ d(x)

(11)

holds for all 0 ≤ t ≤ T . Note that, in view of

HD(t, x, y) =
∞∑

j=1

e−tλjwj(x)wj(y), (12)
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elliptic regularity estimates and Sobolev embedding which imply uniform absolute convergence of the series

(if ∂Ω is smooth enough), we have that

∂β1HD(t, y, x) = ∂β2HD(t, x, y) =
∞∑

j=1

e−tλj∂βywj(y)wj(x) (13)

for positive t, where we denoted by ∂β1 and ∂β2 derivatives with respect to the first spatial variables and the

second spatial variables, respectively.

Therefore, the gradient bounds (11) result in

|∇yHD(t, x, y)|
HD(t, x, y)

≤ C

{ 1
d(y) , if

√
t ≥ d(y),

1√
t

(
1 + |x−y|√

t

)
, if

√
t ≤ d(y).

(14)

2. The Córdoba - Córdoba inequality

PROPOSITION 1. Let Φ be a C2 convex function satisfying Φ(0) = 0. Let f ∈ C∞
0 (Ω) and let 0 ≤ s ≤

2. Then

Φ′(f)Λs
Df − Λs

D(Φ(f)) ≥ 0 (15)

holds pointwise almost everywhere in Ω.

Proof. In view of the fact that both f ∈ H1
0 (Ω) ∩ H2(Ω) and Φ(f) ∈ H1

0 (Ω) ∩ H2(Ω), the terms in the

inequality (15) are well defined. We define

[(−∆)α f ]ε (x) = cα

∫ ∞

ε

[
f(x)− et∆f(x)

]
t−1−αdt (16)

and approximate the representation (8):

((−∆)α f) (x) = lim
ε→0

[(−∆)α f ]ε (x). (17)

The limit is strong in L2(Ω). We start the calculation with this approximation and then we rearrange terms:

Φ′(f(x))
[
Λ2α
D f

]
ε
(x)−

[
Λ2α
D (Φ(f))

]
ε
(x)

= cα
∫∞
ε
t−1−αdt

∫
Ω

{
Φ′(f(x))

[
1
|Ω|f(x)−HD(t, x, y)f(y)

]
− 1

|Ω|Φ(f(x)) +HD(t, x, y)Φ(f(y))
}
dy

= cα
∫∞
ε
t−1−αdt

∫
ΩHD(t, x, y) [Φ(f(y))− Φ(f(x))− Φ′(f(x))(f(y)− f(x))] dy

+cα
∫∞
ε
t−1−αdt

∫
Ω [f(x)Φ′(f(x))− Φ(f(x))] ( 1

|Ω| −HD(t, x, y))dy

= cα
∫∞
ε
t−1−αdt

∫
ΩHD(t, x, y) [Φ(f(y))− Φ(f(x))− Φ′(f(x))(f(y)− f(x))] dy

+ [f(x)Φ′(f(x))− Φ(f(x))] cα
∫∞
ε
t−1−α(1− et∆1)dt

Because of the convexity of Φ we have

Φ(b)− Φ(a)− Φ′(a)(b− a) ≥ 0, ∀ a, b ∈ R,

and because Φ(0) = 0 we have

aΦ′(a) ≥ Φ(a), ∀ a ∈ R.

Consequently f(x)Φ′(f(x))− Φ(f(x)) ≥ 0 holds everywhere. The function

θ = et∆1

solves the heat equation ∂tθ − ∆θ = 0 in Ω, with homogeneous Dirichlet boundary conditions, and with

initial data equal everywhere to 1. Although 1 is not in the domain of −∆, et∆ has a unique extension to

L2(Ω) where 1 does belong, and on the other hand, by the maximum principle 0 ≤ θ(x, t) ≤ 1 holds for

t ≥ 0, x ∈ Ω. It is only because 1 /∈ D(−∆) that we had to use the ε approximation. Now we discard the

nonnegative term
[
f(x)Φ′(f(x))− Φ(f(x))

]
cα

∫ ∞

ε

(1− θ(x, t))t−1−αdt
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in the calculation above, and deduce that

Φ′(f(x))
[
Λ2α
D f

]
ε
(x)−

[
Λ2α
D (Φ(f))

]
ε
(x) ≥ 0 (18)

as an element of L2(Ω). (This simply means that its integral against any nonnegative L2(Ω) function is

nonnegative.) Passing to the limit ε→ 0 we obtain the inequality (15). If Φ and the boundary of the domain

are smooth enough then we can prove that the terms in the inequality are continuous, and therefore the

inequality holds everywhere.

3. The Nonlinear Bound

We prove a bound in the spirit of ([2]). The nonlinear lower bound was used as an essential ingredient

in proofs of global regularity for drift-diffusion equations with nonlocal dissipation.

THEOREM 1. Let f ∈ L∞(Ω) ∩ D(Λ2α
D ), 0 ≤ α < 1. Assume that f = ∂q with q ∈ L∞(Ω) and ∂ a

first order derivative. Then there exist constants c, C depending on Ω and α such that

fΛ2α
D f − 1

2
Λ2α
D f2 ≥ c‖q‖−2α

L∞ |fd|2+2α (19)

holds pointwise in Ω, with

|fd(x)| =





|f(x)|, if |f(x)| ≥ C‖q‖L∞(Ω)max
(

1
diam(Ω) ,

1
d(x)

)
,

0, if |f(x)| ≤ C‖q‖L∞(Ω)max
(

1
diam(Ω) ,

1
d(x)

)
.

(20)

Proof. We start the calculation using the inequality

fΛ2α
D f − 1

2
Λ2α
D f2 ≥ 1

2
cα

∫ ∞

0
ψ

(
t

τ

)
t−1−αdt

∫

Ω
HD(t, x, y)(f(x)− f(y))2dy (21)

where τ > 0 is arbitrary and 0 ≤ ψ(s) ≤ 1 is a smooth function, vanishing identically for 0 ≤ s ≤ 1 and

equal identically to 1 for s ≥ 2. This follows repeating the calculation of the proof of the Córdoba-Córdoba

inequality with Φ(f) = 1
2f

2:

f(x)
[
Λ2α
D f

]
ε
(x)− 1

2

[
Λ2α
D f2

]
ε
(x)

= cα
∫∞
ε
t−1−α

∫
Ω

{[
1
|Ω|f(x)

2 − f(x)HD(t, x, y)f(y)
]
− 1

2|Ω|f
2(x) + 1

2HD(t, x, y)f
2(y)

}
dy

= cα
∫∞
ε
t−1−αdt

∫
Ω

{
1
2

[
HD(t, x, y)(f(x)− f(y))2

]
+ 1

2f
2(x)

[
1
|Ω| −HD(t, x, y)

]}
dy

= cα
∫∞
ε
t−1−αdt

∫
Ω

{
1
2

[
HD(t, x, y)(f(x)− f(y))2

]
dy + 1

2f
2(x)

[
1− et∆1

]
(x)

}

≥ cα
∫∞
ε
t−1−αdt

∫
Ω

1
2HD(t, x, y) (f(x)− f(y))2 dy

where in the last inequality we used the maximum principle again. Then, we choose τ > 0 and let ε < τ . It

follows that

f(x)
[
Λ2α
D f

]
ε
(x)− 1

2

[
Λ2α
D f2

]
ε
(x) ≥ 1

2
cα

∫ ∞

0
ψ

(
t

τ

)
t−1−αdt

∫

Ω
HD(t, x, y) (f(x)− f(y))2 dy.

We obtain (21) by letting ε→ 0. We restrict to t ≤ T ,
[
fΛ2α

D f − 1

2
Λ2α
D f2

]
(x) ≥ 1

2
cα

∫ T

0
ψ

(
t

τ

)
t−1−αdt

∫

Ω
HD(t, x, y) (f(x)− f(y))2 dy (22)

and open brackets in (22):
[
fΛ2α

D f − 1
2Λ

2α
D f2

]
(x)

≥ 1
2f

2(x)cα
∫ T

0 ψ
(
t
τ

)
t−1−αdt

∫
ΩHD(t, x, y)dy − f(x)cα

∫ T

0 ψ
(
t
τ

)
t−1−αdt

∫
ΩHD(t, x, y)f(y)dy

≥ |f(x)|
[
1
2 |f(x)|I(x)− J(x)

]

(23)
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with

I(x) = cα

∫ T

0
ψ

(
t

τ

)
t−1−αdt

∫

Ω
HD(t, x, y)dy, (24)

and

J(x) = cα

∣∣∣
∫ T

0 ψ
(
t
τ

)
t−1−αdt

∫
ΩHD(t, x, y)f(y)dy

∣∣∣
= cα

∣∣∣
∫ T

0 ψ
(
t
τ

)
t−1−αdt

∫
Ω ∂yHD(t, x, y)q(y)dy

∣∣∣ .
(25)

We proceed with a lower bound on I and an upper bound on J . For the lower bound on I we note that

θ(x, t) =

∫

Ω
HD(t, x, y)dy ≥

∫

|x−y|≤ d(x)
2

HD(t, x, y)dy

because HD is positive. Using the lower bound in (2) we have that |x− y| ≤ d(x)
2 implies

w1(x)

|x− y| ≥ 2c0,
w1(y)

|x− y| ≥ c0,

and then, using the lower bound in (10) we obtain

HD(t, x, y) ≥ 2cc20t
− d

2 e−
|x−y|2

kt .

Integrating it follows that

θ(x, t) ≥ 2cc20ωd−1k
d
2

∫ d(x)

2
√
kt

0
ρd−1e−ρ2dρ

If
d(x)

2
√
kt

≥ 1 then the integral is bounded below by
∫ 1
0 ρ

d−1e−ρ2dρ. If
d(x)

2
√
kt

≤ 1 then ρ ≤ 1 implies that the

exponential is bounded below by e−1 and so

θ(x, t) ≥ c1min

{
1,

(
d(x)√
t

)d
}

(26)

for all 0 ≤ t ≤ T where c1 is a positive constant, depending on Ω. Because

I(x) =

∫ T

0
ψ

(
t

τ

)
t−1−αθ(x, t)dt

we have

I(x) ≥ c1
∫ min(T,d2(x))
0 ψ

(
t
τ

)
t−1−αdt

= c1τ
−α

∫ τ−1(min(T,d2(x)))
1 ψ(s)s−1−αds

Therefore we have that

I(x) ≥ c2τ
−α (27)

with c2 = c1
∫ 2
1 ψ(s)s

−1−αds, a positive constant depending only on Ω and α, provided τ is small enough,

τ ≤ 1

2
min(T, d2(x)). (28)

In order to bound J from above we use the upper bound (14) which yields
∫

Ω
|∇yHD(t, x, y)|dy ≤ C1t

− 1
2 (29)

with C1 depending only on Ω. Indeed,
∫
d(y)≥

√
t
|∇yHD(t, x, y)|dy

≤ C2t
− 1

2

∫
Rd

(
1 + |x−y|√

t

)
t−

d
2 e−

|x−y|2
kt dy

= C3t
− 1

2
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and, in view of the upper bound in (2), 1
d(y)w1(y) ≤ C0 and the upper bound in (10),

∫
d(y)≤

√
t
|∇yHD(t, x, y)|dy

≤ C4

∫
Rd

1
|x−y| t

− d
2 e−

|x−y|2
Kt dy = C5t

− 1
2

Now

J ≤ ‖q‖L∞(Ω)

∫ T

0
ψ

(
t

τ

)
t−1−αdt

∫

Ω
|∇yHD(t, x, y)|dy

and therefore, in view of (29)

J ≤ C1‖q‖L∞(Ω)

∫ T

0
ψ

(
t

τ

)
t−

3
2
−αdt

and therefore

J ≤ C6‖q‖L∞(Ω)τ
− 1

2
−α (30)

with

C6 = C1

∫ ∞

1
ψ(s)s−

3
2
−αds

a constant depending only on Ω and α. Now, because of the lower bound (23), if we can choose τ so that

J(x) ≤ 1

4
|f(x)|I(x)

then it follows that [
fΛ2α

D f − 1

2
Λ2α
D f2

]
(x) ≥ 1

4
f2(x)I(x). (31)

Because of the bounds (27), (30) the choice

τ(x) = c3
‖q‖2L∞

|f(x)|2 (32)

with c3 = 16C2
6c

−2
2 achieves the desired bound. The requirement (28) limits the possibility of making this

choice to the situation

c3
‖q‖2L∞

|f(x)|2 ≤ 1

2
min(T, d2(x)) (33)

which leads to the statement of the theorem. Indeed, if (32) is allowed then the lower bound in (31) becomes
[
fΛ2α

D f − 1

2
Λ2α
D f2

]
(x) ≥ c‖q‖−2α

L∞ |fd|2+2α (34)

with c = 1
4c2c

−α
3 .

4. Commutator estimates

We start by considering the commutator [∇,ΛD] in Ω = R
d
+. The heat kernel with Dirichlet boundary

conditions is

H(x, y, t) = ct−
d
2

(
e−

|x−y|2
4t − e−

|x−ỹ|2
4t

)

where ỹ = (y1, . . . , yd−1,−yd). We claim that
∫

Ω
(∇x +∇y)H(x, y, t)dy ≤ Ct−

1
2 e−

x2
d

4t . (35)

Indeed, the only nonzero component occurs when the differentiation is with respect to the normal direction,

and then

(∂xd
+ ∂yd)H(x, y, t) = ct−

d
2 e−

|x′−y′|2
4t

(
xd + yd

t

)
e−

(xd+yd)
2

4t
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where we denoted x′ = (x1, . . . , xd−1) and y′ = (y1, . . . , yd−1). Therefore

∫
Ω(∇x +∇y)H(x, y, t)dy ≤ Ct−

1
2

∫∞
0

(
xd+yd

t

)
e−

(xd+yd)
2

4t dyd

= Ct−
1
2

∫∞
xd√
t

ξe−
ξ2

4 dξ

= Ct−
1
2 e−

x2
d

4t .

Consequently

K(x, y) =

∫ ∞

0
t−

3
2 (∇x +∇y)H(x, y, t)dt

obeys ∫

Ω
K(x, y)dy ≤ C

∫ ∞

0
t−2e−

x2
d

4t dt =
C

x2d
.

The commutator [∇,ΛD] is computed as follows

[∇,ΛD]f(x) =
∫∞
0 t−

3
2

∫
Ω [∇xHD(x, y, t)f(y)−HD(x, y, t)∇yf(y)] dydt

=
∫∞
0 t−

3
2

∫
Ω(∇x +∇y)HD(x, y, t)f(y)dydt

=
∫
ΩK(x, y)f(y)dy.

We have proved thus that the kernel K(x, y) of the commutator obeys
∫

Ω
K(x, y)dy ≤ Cd(x)−2 (36)

and therefore we obtain, for instance, for any p, q ∈ [1,∞] with p−1 + q−1 = 1

∣∣∣∣
∫

Ω
g[∇,ΛD]fdx

∣∣∣∣ ≤ C

(∫

Ω
d(x)−2|f(x)|pdx

) 1
p
(∫

Ω
d(x)−2|g(x)|qdx

) 1
q

.

In general domains, the absence of explicit expressions for the heat kernel with Dirichlet boundary

conditions requires a less direct approach to commutator estimates.

We take thus an open bounded domain Ω ⊂ R
d with smooth boundary and describe the square root of

the Dirichlet Laplacian using the harmonic extension. We denote

Q = Ω× R+ = {(x, z) | x ∈ Ω, z > 0}
and consider the traces of functions in H1

0,L(Q),

H1
0,L(Q) = {v ∈ H1(Q) | v(x, z) = 0, x ∈ ∂Ω, z > 0}

V0(Ω) = {f | ∃v ∈ H1
0,L(Q), f(x) = v(x, 0), x ∈ Ω} (37)

where we slightly abused notation by referring to the images of v under restriction operators as v(x, z) for

x ∈ ∂Ω, and as v(x, 0) for x ∈ Ω. We recall from ([1]) that, on one hand,

V0(Ω) = {f ∈ H
1
2 (Ω) |

∫

Ω

f2(x)

d(x)
dx <∞} (38)

with norm

‖f‖2V0
= ‖f‖2

H
1
2 (Ω)

+

∫

Ω

f2(x)

d(x)
dx,

and on the other hand V0(Ω) = D(Λ
1
2
D), i.e.

V0(Ω) = {f ∈ L2(Ω) | f =
∑

j

fjwj ,
∑

j

λ
1
2
j f

2
j <∞} (39)
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with equivalent norm

‖f‖21
2
,D

=
∞∑

j=1

λ
1
2
j f

2
j = ‖Λ

1
2
Df‖2L2(Ω).

The harmonic extension of f will be denoted vf . It is given by

vf (x, z) =

∞∑

j=1

fje
−z
√

λjwj(x) (40)

and the operator ΛD is then identified with

ΛDf = − (∂zvf )| z=0 (41)

Note that if f ∈ V0(Ω) then vf ∈ H1(Q). Note also, that vf decays exponentially in the sense that

‖vf‖ezlH1(Q) = ‖ezl∇vf‖L2(Q) + ‖ezlvf‖L2(Q) ≤ C‖f‖V0 (42)

holds with ` = λ1
4 . We use a lemma in Q:

LEMMA 1. Let F ∈ H−1(Q) (the dual of H1
0 (Q)). Then the problem

{
−∆u = F, in Q,
u = 0, on ∂Q

(43)

has a unique weak solution u ∈ H1
0 (Q). If F ∈ L2(Q) and if there exists l > 0 so that

‖ezlF‖2L2(Q) =

∫
e2zl|F (x, z)|2dxdz <∞

then u ∈ H1
0 (Q) ∩H2(Q) and it satisfies

‖u‖H2(Q) ≤ C‖ezlF‖L2(Q)

with C a constant depending only on Ω and l.

Proof. We consider the domain U = Ω× R and take the odd extension of F to U , F (x,−z) = −F (x, z).
The existence of a weak solution in H1

0 (U) follows by variational methods, by minimizing

I(v) =

∫

U

(
1

2
|∇v|2 + vF

)
dxdz

among all odd functions v ∈ H1
0 (U). The domain U has finite width, so the Poincaré inequality

‖∇v‖2L2(U) ≥ c‖v‖2L2(U)

is valid for functions in H1
0 (U). This allows to show existence and uniqueness of weak solutions. If F ∈

L2(U) we obtain locally uniform elliptic estimates

‖u‖H2(Uj) ≤ C‖F‖L2(Vj)

where Uj = {(x, z) | x ∈ Ω, z ∈ (j − 1, j + 1)}, Vj = {(x, z) | x ∈ Ω, z ∈ (j − 2, j + 2)}, and

j = ±1
2 ,±1,±3

2 , . . . , i.e. j ∈ 1
2Z. The constant C does not depend on j. Because of the decay assumption

on F , the estimates can be summed.

THEOREM 2. Let a ∈ B(Ω) where B(Ω) = W 2,d(Ω) ∩W 1,∞(Ω), if d ≥ 3, and B(Ω) = W 2,p(Ω)
with p > 2, if d = 2. There exists a constant C, depending only on Ω, such that

‖[a,ΛD]f‖ 1
2
,D ≤ C‖a‖B(Ω)‖f‖ 1

2
,D (44)

holds for any f ∈ V0(Ω), with

‖a‖B(Ω) = ‖a‖W 2,d(Ω) + ‖a‖W 1,∞(Ω)
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if d ≥ 3 and

‖a‖B(Ω) = ‖a‖W 2,p(Ω)

with p > 2, if d = 2.

Proof. In order to compute vaf , let us note that avf ∈ H1
0,L(Q), and

∆(avf ) = vf∆xa+ 2∇xa · ∇vf
and, because vf ∈ ezlH1(Q) and a ∈ B(Ω) we have that

‖∆(avf )‖L2(ezldzdx) ≤ C‖a‖B(Ω)‖vf‖ezlH1(Q).

Solving {
∆u = ∆(avf ) in Q,
u = 0 on ∂Q,

we obtain u ∈ H1
0 (Q) ∩H2(Q). This follows from Lemma 1 above. Note that ∂zu ∈ H1

0,L(Q). Then

vaf = avf − u

and

aΛDf − ΛD(af) = −a(∂zvf )| z=0 + ∂z(avf − u)| z=0 = −∂zu| z=0.

The estimate follows from elliptic estimates and restriction estimates

‖∂zu| z=0‖V0 ≤ C‖∂zu‖H1(Q) ≤ C‖a‖B(Ω)‖vf‖ezlH1(Q) ≤ C‖a‖B(Ω)‖f‖V0

THEOREM 3. Let a vector field a have components in B(Ω) defined above, a ∈ (B(Ω))d. Assume that

the normal component of the trace of a on the boundary vanishes,

a|∂Ω · n = 0

(i.e the vector field is tangent to the boundary). There exists a constant C such that

‖[a · ∇,ΛD]f‖ 1
2
,D ≤ C‖a‖B(Ω)‖f‖ 3

2
,D (45)

holds for any f such that f ∈ D
(
Λ

3
2
D

)
.

Proof. In order to compute va·∇f we note that

∆(a · ∇vf ) = ∆a · ∇vf +∇a · ∇∇vf ,
and because vf ∈ ezlH2(Q) and a ∈ B(Ω) we have that

‖∆(a · ∇vf )‖L2(ezldzdx) ≤ C‖a‖B(Ω)‖vf‖ezlH2(Q).

Then solving {
∆u = ∆(a · ∇vf ) in Q,
u = 0 on ∂Q,

we obtain u ∈ H2(Q) (by Lemma 1) and therefore ∂zu ∈ H1
0,L(Q). Consequently −∂zu| z=0 ∈ V0(Ω).

Because vf vanishes on the boundary and a ·∇ is tangent to the boundary, it follows that a ·∇vf ∈ H1
0,L(Q)

(vanishes on the lateral boundary of Q and is in H1(Q)) and therefore

va·∇f = a · ∇vf − u.

Consequently

[a · ∇,ΛD]f = −∂zu| z=0.

The estimate (45) follows from the elliptic estimates and restriction estimates on u, as above:

‖∂zu| z=0‖V0 ≤ C‖∂zu‖H1(Q) ≤ C‖a‖B(Ω)‖vf‖ezlH2(Q) ≤ C‖a‖B(Ω)‖f‖ 3
2
,D
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5. Linear transport and nonlocal diffusion

We study the equation

∂tθ + u · ∇θ + ΛDθ = 0 (46)

with initial data

θ(x, 0) = θ0 (47)

in the bounded open domain Ω ⊂ R
d with smooth boundary. We assume that u = u(x, t) is divergence-free

∇ · u = 0, (48)

that u is smooth

u ∈ L2(0, T ;B(Ω)d), (49)

and that u is parallel to the boundary

u|∂Ω · n = 0. (50)

We consider zero boundary conditions for θ. Strictly speaking, because this is a first order equation, it is

better to think of these as a constraint on the evolution equation. We satrt with initial data θ0 which vanish

on the boundary, and maintain this property in time. The transport evolution

∂tθ + u · ∇θ = 0

and, separately, the nonlocal diffusion

∂tθ + ΛDθ = 0

keep the constraint of θ|∂Ω = 0. Because the operators u·∇ and ΛD have the same differential order, neither

dominates the other, and the linear evolution needs to be treated carefully. We start by considering Galerkin

approximations. Let

Pmf =

m∑

j=1

fjwj , for f =

∞∑

j=1

fjwj , (51)

and let

θm(x, t) =
m∑

j=1

θ
(m)
j (t)wj(x) (52)

obey

∂tθm + Pm (u · ∇θm) + ΛDθm = 0 (53)

with initial data

θm(x, 0) = (Pmθ0)(x). (54)

These are ODEs for the coefficients θ
(m)
j (t), written conveniently. We prove bounds that are independent of

m and pass to the limit. Note that by construction

θm ∈ D (Λr
D) , ∀r ≥ 0.

We start with
1

2

d

dt
‖θm‖2L2(Ω) + ‖θm‖2V0

= 0 (55)

which implies

sup
0≤t≤T

1

2
‖θm(·, t)‖2L2(Ω) +

∫ T

0
‖θm‖2V0

dt ≤ 1

2
‖θ0‖2L2(Ω). (56)

This follows because of the divergence-free condition and the fact that u|∂Ω is parallel to the boundary.

Next, we apply ΛD to (53). For convenience, we denote

[ΛD, u · ∇]f = Γf (57)

because u is fixed throughout this section. Because Pm and ΛD commute, we have thus

∂tΛDθm + Pm (u · ∇ΛDθm + Γθm) + Λ2
Dθm = 0. (58)
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Now, we multiply (58) by Λ3
Dθm and integrate. Note that

∫

Ω
Pm (u · ∇ΛDθm + Γθm) Λ3

Dθmdx =

∫

Ω
(u · ∇ΛDθm + Γθm) Λ3

Dθmdx

because Pmθm = θm and Pm is selfadjoint. We bound the term
∣∣∣∣
∫

Ω
ΓθmΛ3

Dθmdx

∣∣∣∣ ≤ ‖Γθm‖V0‖Λ2.5
D θm‖L2(Ω)

and use Theorem 3 (45) to deduce
∣∣∣∣
∫

Ω
ΓθmΛ3

Dθmdx

∣∣∣∣ ≤ C‖u‖B(Ω)‖ΛDθm‖V0‖Λ2.5
D θm‖L2(Ω).

We compute
∫
Ω(u · ∇ΛDθm)Λ3

Dθmdx =
∫
Ω Λ2

D(u · ∇ΛDθm)ΛDθm
=

∫
Ω [(−∆u) · ∇ΛDθm − 2∇u · ∇∇ΛDθm] ΛDθmdx+

∫
Ω(u · ∇Λ3

Dθm)ΛDθmdx
=

∫
Ω [(−∆u) · ∇ΛDθm − 2∇u · ∇∇ΛDθm] ΛDθmdx−

∫
Ω Λ3

Dθm(u · ∇ΛDθm)dx
=

∫
Ω [((−∆u) · ∇ΛDθm)ΛDθm + 2∇u∇ΛDθm∇ΛDθm] dx−

∫
Ω(u · ∇ΛDθm)Λ3

Dθmdx.

In the first integration by parts we used the fact that Λ3
Dθm is a finite linear combination of eigenfunctions

which vanish at the boundary. Then we use the fact that Λ2
D = −∆ is local. In the last equality we

integrated by parts using the fact that ΛDθm is a finite linear combination of eigenfunctions which vanish at

the boundary and the fact that u is divergence-free. It follows that
∫

Ω
(u · ∇ΛDθm)Λ3

Dθmdx =
1

2

∫

Ω
[((−∆u) · ∇ΛDθm)ΛDθm + 2∇u∇ΛDθm∇ΛDθm] dx

and consequently ∣∣∣∣
∫

Ω
(u · ∇ΛDθm)Λ3

Dθmdx

∣∣∣∣ ≤ C‖u‖B(Ω)‖Λ2
Dθm‖2L2(Ω)

We obtain thus

sup
0≤t≤T

‖Λ2
Dθm(·, t)‖2L2(Ω) +

∫ T

0
‖Λ2

Dθm‖2V0
dt ≤ C‖Λ2

Dθ0‖2L2(Ω)e
C

∫ T

0 ‖u‖2
B(Ω)

dt
. (59)

Passing to the limit m→ ∞ is done using the Aubin-Lions Lemma ([6]). We obtain

THEOREM 4. Let u ∈ L2(0, T ;B(Ω)d) be a vector field parallel to the boundary. Then the equation

(46) with initial data θ0 ∈ H1
0 (Ω) ∩H2(Ω) has unique solutions belonging to

θ ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩ L2(0, T ;H2.5(Ω)).

If the initial data θ0 ∈ Lp(Ω), 1 ≤ p ≤ ∞, then

sup
0≤t≤T

‖θ(·, t)‖Lp(Ω) ≤ ‖θ0‖Lp(Ω) (60)

holds.

The estimate (60) holds because, by use of Proposition 1 for the diffusive part and integration by parts

for the transport part, we have for solutions of (46)

d

dt
‖θ‖p

Lp(Ω) ≤ 0,

1 ≤ p <∞. The L∞ bound follows by taking the limit p→ ∞ in (60).
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6. SQG

We consider now the equation

∂tθ + u · ∇θ + ΛDθ = 0 (61)

with

u = R⊥
Dθ (62)

and

RD = ∇Λ−1
D (63)

in a bounded open domain in Ω ⊂ R
2 with smooth boundary. Local existence of smooth solutions is

possible to prove using methods similar to those developed above for linear drift-diffusion equations. We

will consider weak solutions (solutions which satisfy the equations in the sense of distributions).

THEOREM 5. Let θ0 ∈ L2(Ω) and let T > 0. There exists a weak solution of (61)

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V0(Ω))

satisfying limt→0θ(t) = θ0 weakly in L2(Ω).

Proof. We consider Galerkin approximations, θm

θm(x, t) =

m∑

j=1

θj(t)wj(x)

obeying the ODEs (written conveniently as PDEs):

∂tθm + Pm

[
R⊥

D(θm) · ∇θm
]
+ ΛDθm = 0

with initial datum

θm(0) = Pm(θ0).

We observe that, multiplying by θm and integrating we have

1

2

d

dt
‖θm‖2 + ‖θm‖21

2
,D

= 0

which implies that the sequence θm is bounded in

θm ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V0(Ω))

It is known ([1]) that V0(Ω) ⊂ L4(Ω) with continuous inclusion. It is also known ([5]) that

RD : L4(Ω) → L4(Ω)

are bounded linear operators. It is then easy to see that ∂tθm are bounded in L2(0, T ;H−1(Ω)). Applying

the Aubin-Lions lemma, we obtain a subsequence, renamed θm converging strongly in L2(0, T ;L2(Ω)) and

weakly in L2(0, T ;V0(Ω)) and in L2(0, T ;L4(Ω)). The limit solves the equation (61) weakly. Indeed, this

follows after integration by parts because the product (R⊥
Dθm)θm is weakly convergent in L2(0, T ;L2(Ω))

by weak-times-strong weak continuity. The weak continuity in time at t = 0 follows by integrating

(θm(t), φ)− (θm(0), φ) =

∫ t

0

d

ds
θm(s)ds

and use of the equation and uniform bounds. We omit further details.
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