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ABSTRACT. We consider the vanishing viscosity limit of the Navier-Stokes equations in a half space,
with Dirichlet boundary conditions. We prove that the inviscid limit holds in the energy norm if the
Navier-Stokes solutions remain bounded in LZLS° independently of the kinematic viscosity, and if
they are equicontinuous at z2 = 0. December 26, 2015

1. Introduction

Consider the 2D Navier-Stokes equations

Oul® + ™ - V'S 4+ Vp™ = vAUN (1.1)
V-u™ =0 (1.2)
ur®lom = u3®|om = 0 (1.3)
with kinematic viscosity v, in the half space H = {(z1,z2): 2 > 0}, and the Euler equations
Opu® + u" - VuF + Vpt =0 (1.4)
V-u"=0 (1.5)
u5or = 0 (1.6)

with asymptotically matching initial conditions
. NS E _
il_r)% |ug™ — ugll L2 = 0. (1.7)
We denote by
ullom(x1,t) = US(z1, 1)

the trace on OH of the Euler tangential flow. We omit v in the notation for «™°. Throughout this
paper we consider 0 < v < 1y, and 0 < ¢t < T, where 1 is an arbitrary fixed kinematic viscosity,
and 7 is an arbitrary fixed time. We assume that the Euler initial datum is smooth, u§ € H*(H) for
some s > 2, so that there exists an unique H*® smooth solution u* of (1.4)—(1.6) on [0, T7].

This paper establishes sufficient conditions for the family of Navier-Stokes solutions {u™} ve(0,v0]
to ensure that the inviscid limit holds in the energy norm:

. NS E _
L f|u™ — ™ oo (0,722 (a)) = 0- (1.8)

Our main results are given in Theorems 1.1, 1.3, and 1.4. The main assumptions are the uniform
boundedness of the Navier-Stokes solutions in L2(0, T'; L°°(H)) and their equicontinuity at zo = 0.
1
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The conditions imposed imply that the Lagrangian paths originating in a boundary layer, stay
in a proportional boundary layer during the time interval considered. The physical interpretation
of our result is that, as long as there is no separation of the boundary layer, the inviscid limit is
possible.

1.1. Known finite time, inviscid limit results. The question of whether (1.8) holds in the case
of Dirichlet boundary conditions has a rich history. Kato proved in [Kat84] that the inviscid limit
holds in the energy norm if and only if

v—0

T
lim 1// / ]VuNs(azl,xg,t)|2dx1da:2dt =0, (1.9)
0 J]z|<Cv

i.e. that the energy dissipation rate is vanishing in a thin, O(v), layer near the boundary. Kato’s
criterion was revisited and sharpened by many authors. For instance, in [TW97] and [Wan01] it is
shown that the condition on the full gradient matrix Vu™® may be replaced by a condition on the
tangential gradient of the Navier-Stokes solution alone, at the cost of considering a thicker boundary
layer, of size d(v), where lim,, o §(v) /v = 0. In [Kel07] it is shown that || V™ || 12( |z, <) may
be replaced by v~ 1{|uNS|| L2(|zs|<Cv) Which has the same scaling in the Kato layer. In [Kel08] it is
shown that (1.8) is equivalent to the weak convergence of vorticities

W = W —uf gy in (HY(H))* (1.10)

where pgy is the Dirac measure on OH, and (H 1)* is the dual space to H L (not HS). In fact, it is
shown in [BT13] that the weak convergence of vorticity on the boundary

v — 0 in D'([0,T] x OH) (1.11)

is equivalent to (1.8) (see also [Kel08, CKV15] in the case of stronger convergence in (1.11)).

The idea to introduce a boundary layer corrector like Kato’s, which is not based on power series
expansions, and to treat the remainders with energy estimates has proven to be very fruitful. See
for instance: [Mas98] in the case of anisotropic viscosity; [BSJW14, BTW12] in the context of
weak-strong uniqueness; [GN14] for a steady flow on a moving plate; [BN14] for the compressible
Navier-Stokes equations; [LFNLTZ14] for the vanishing « limit of the 2D Euler-o model.

There are three classes of functions for which there exist unconditional inviscid limit results,
that is, theorems whereby conditions imposed solely on initial data guarantee that (1.8) is true for
a time interval independent of viscosity (but possibly depending on initial data). The first class
is that of real analytic initial data in all space variables [SC98b], the second is that of initial data
with vorticity supported at an O(1) distance from the boundary [Mael4], and the third class is
data with certain symmetries or special restrictions [LFMNL08, LFMNLT08, MT08, Kel09]). It
is worth noting that in these three cases the Prandtl expansion of the Navier-Stokes equation is
valid in a boundary layer of thickness 1/v. Moreover, in all these results, the Kato criteria also
hold [BT13, Kel14]. However, to date, there is no robust connection between the well-posedness of
the Prandtl equations, and the vanishing viscosity limit in the energy norm.

It is known that for a class of initial conditions close to certain shear flows the Prandtl equations
are ill-posed [GYVD10, GN11, GVN12] and even that the Prandtl expansion is not valid [Gre00,
GGN14b, GGN14c, GGN14a]. These results do not imply that the inviscid limit in the energy norm
is invalid, but rather just that the Prandtl expansion does not describe the leading order behavior
near the boundary. It would be natural to expect that working in a function space for which the local
existence of the Prandtl equations holds (see, e.g. [Ole66, MW14, AWXY14], [SC98a, LCS03,
KV13], [KMVW14], [GVM13]), there is a greater chance for (1.8) to be true. An instance of such
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a result is given in [CKV15], where a one-sided Kato criterion in terms of the vorticity is obtained,
connecting Oleinik’s monotonicity assumption and the inviscid limit: if

(UE(% 0 (wNS(wl, o t) 4 5(:;)))_ 2

holds, where fOT d(vt)dt — 0 as v — 0, then (1.8) holds. In particular, if there is no back-flow in
the underlying Euler flow, UF > 0, and the Navier-Stokes vorticity w™® is larger than —d(vt) /v (for
instance if it is non-negative as in Oleinik’s setting) in a boundary layer that is slightly thicker than
Kato’s, then the inviscid limit holds.

In contrast to the works (1.9)—(1.12) mentioned above, the goal of this paper is to establish
sufficient conditions for (1.8) to hold, which do not rely on any assumptions concerning derivatives
of the Navier-Stokes equations. Alternately, we establish conditions which require only L' uniform
integrability of tangential derivatives near the boundary. Our proofs keep the idea of Kato of build-
ing an ad-hoc boundary layer corrector, but its scaling is dictated by the heat equation in 2 (with
Prandtl scaling). No explicit convergence rates are obtained with our assumptions. The main results
of this paper are:

T

dt =0 (1.12)
L2(|ea|<vt/6(vt))

lim
v—0 0

1.2. Results.

THEOREM 1.1. Assume that there exists a constant Cys > 0 such that

T
sup / S (8) |2 e syt < Crs (113)
ve(0,vp] /0
and moreover that the family
{ut*ud}ye(0,0y) IS equicontinuous at - x5 = 0. (1.14)

Then (1.7) implies that the inviscid limit holds in the energy norm.

Specifically, in view of the Dirichlet boundary condition (1.3), by condition (1.14) we mean that
there exists a function

0 < v(z1,t) € Li,, ([0,T] x R) (1.15)
with the property that for any € > 0, there exists p = p(g) > 0 such that
|ulS (21, 22, )ud® (21, T2, )| < ey(x1,t), forall z € (0,p], (1.16)

and all (t,z1) € [0, 7] x R, uniformly in v € (0, vp].

The quantity in condition (1.13) is natural to consider: it is scale invariant under the Navier-
Stokes isotropic scaling, and it appears in three dimensions as well. The same quantity was used
in [BSJW14] to establish conditional weak-strong uniqueness of weak solutions in Holder classes.

REMARK 1.2 (Open problem). Removing the equicontinuity assumption (1.14) of u}u}® at

the boundary of the domain is a natural and very interesting question.
The L! integrability (uniform in v) of one component of Vu™ is related to condition (1.14):

THEOREM 1.3. Assume that (1.13) holds, and that the tangential component of the Navier-
Stokes flow satisfies:

{81u1f5},,€(07l,0] is uniformly integrable near 1o =0, (1.17)
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meaning that for any € > 0 and any L > 0, there exists p = p(e, L) > 0 such that

10103 L | <0<z <pll L20,7L1 (1)) < €- (1.18)
Then (1.8) holds.
Condition (1.17) requires that the family of measures
oy (dxy dao) = |01u5 (¢, 21, 22)|dx dxo

is uniformly absolutely continuous at o = 0 with values in L?(0, 7). Note that d;u}s vanishes
identically on OH, which is not the case for the Navier-Stokes vorticity w™ = Gul® — 91u}®,
which is expected to develop a measure supported on the boundary of the domain in the inviscid
limit [Kel08]. Thus, the vorticity is not expected to be uniformly integrable in L2 L!. Therefore, in
(1.18) it is important that instead of a uniform integrability condition on w™ or equivalently doul®,
we have only assumed a uniform integrability condition on d;u}®. Also, note that (uniform in v)
higher integrability of the Navier-Stokes vorticity, such as L? for p > 2 cannot hold unless U* = 0,
as is shown in [Kel14].

A similar result to the one in Theorem 1.3, has been obtained independently in [GKLF™15],
where the authors prove that if Vu™S is uniformly in v bounded in L>(0, T; L*(€2)), for a domain
€2 such that the embedding W(Q) C L? is compact, then the vanishing viscosity limit holds in
L>=(0,T; L*()).

We conclude the introduction by noting that a similar proof to that of Theorem 1.1 yields the
following:

THEOREM 1.4. Assume that there exists a function M (t) > 0 such that

T
sup ¥ (@) < M(t)  with / M2(t)dt < oo (1.19)
ve(0,1] 0

and that

hH(l) ul® (21, 5(vt) wo, t)u’ (21, 8(vt) wa,t) = 0 (1.20)
v—

holds for a.e. (t,x1,x2) € [0,T] x H, where § is an increasing non-negative function such that

. T
llg%y/o 6(yt) =0. (1.21)

Then (1.8) holds.

Condition (1.21) for the boundary layer thickness d(vt), emerges for reasons which are similar
to those in [Wan01, Kel14, CKV15].

1.3. Organization of the paper. In Section 2 we lay out the scheme of the proof for the above
mentioned theorems, by identifying the principal error terms in the energy estimate for the corrected
u™S — 4 flow. In Section 3 we build a caloric lift of the Euler boundary conditions, augmented by
an O(1) correction at unit scale. In Section 4 we conclude the proof of Theorem 1.1, in Section 5
we give the proof of Theorem 1.3, while in Section 6 we show why Theorem 1.4 holds.
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2. Setup of the Proof of Theorem 1.1

We consider a boundary layer corrector u* (to be constructed precisely later) which for now
obeys three properties

V-uk=0 2.1)
uf|on = —U® (2.2)
uls|om = 0. (2.3)

The main difference between the corrector X we consider, and the one considered in [Kat84], is its
characteristic length scale: we let u* obey a Prandtl /vt scaling. Roughly speaking, u¥ is a lift of
the Euler boundary condition which obeys the heat equation (9; — v0y, 4, )ulf = 0 to leading order
in v. In view of (2.1)—~(2.3) we then obtain u§ from u¥ as

us (11, m9,t) = — /0362 ol (xq,y,t)dy. 2.4)
The function
v=u" —uF —uf
is divergence free
V-v=0

and obeys Dirichlet boundary conditions
v|om = 0.
The equation obeyed by v is
0w — vAv +v - Vut +u™ - Vo + Vg

= vAuF — (8tUK — VAU + ™V 4 ok VUE) (2.5)
where ¢ = p™8 — pE. Multiplying (2.5) with v and integrating by parts, yields
1d
gallv\liz + | VolZe < IVuF|pe vl 72 + vI[Au®|| 2 |v] 2
+T+ T+ T5+Ty+T5+ T (2.6)
where we have denoted
T =— / (Opu® — vAUS) v (2.7)
H
B:/wwvﬁyﬁ (2.8)
H
T3 = — / (u® - VuF) v (2.9)
H
ﬂz—/u%@&@ (2.10)
H
n:_/«ﬂW—m%%&ﬁ (2.11)
H

n:—/uﬁy@ﬁ (2.12)
H
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The corrector uX is designed to eliminate the contribution from 77 to leading order in v. In turn,
this leads to ||u®||z2 + [|01u®||2 — 0 as v — 0, so that the terms 75,75, and T} are harmless.
Such is the case if uX is localized in a layer near the boundary, which is vanishing as v — 0. The
assumptions (1.13)—(1.14) only come into play in showing that 75 and T are bounded conveniently.
The next section is devoted to the construction of an X with these properties, and the conclusion of
the proof is given in Section 4 below.

Throughout the text we shall denote by Cg any constant that depends on [|u®|| ;.o (0,1, 75 (B1))-
Various other positive constants shall be denoted by C'; these constants do not depend on v, but
they are allowed to implicitly depend on the fixed length of the time interval 7", and on the largest
kinematic viscosity vg.

3. A pseudo-caloric lift of the boundary conditions

3.1. The tangential component of the lift u¥. Let
x2

VAavt

be the self-similar variable for the heat equation in x5, with viscosity v. Let n be a non-negative
bump function such that

z = z(x9,t) =

2
supp(n) € [1,2] and / n(r)dr = — (3.1)
1

which in addition obeys that [1)'| oo + ||« < Cy, for some constant C,.
We let u¥ consist of a caloric lift of the Euler boundary conditions, augmented with a localiza-
tion factor at large values of 3. We define

uf(z1, 20,t) = —U"(21,1) (erfc(z(mg,t)) — \/Zrutn(mg)> (3.2)

where
erfe(z) =1 —erf(z) = \QF/ exp(—y*)dy.
m z

The normalization of the mass of  was chosen precisely so that

/000 ulf (21, w9, t)dre = —U"(21,1) /000 (erfc(z(azg,t)) — \/M’I’](LUQ)) dzo

- _UE(xl,t)\/zryt (/OOO erfe(z)dz — /000 n(xz)dm)
—0. 3.3)

Property (3.3) of uf allows the uf defined in (2.4) (see also below) to decay sufficiently fast as
x9 — oco. This decay of u§ will be used essentially later on in the proof.
Note that u¥ is pseudo-localized to scale zo =~ v/4vt. Indeed, we have that

[ erfe(z(w2, 1))l 2 (0,00) = (4vt) /|1 — exf(2)| £2(0.00)
< C(Vt)l/(Qp)
and
102, exfe(z(2, )2, 0,0) = (400D exfe(z) | 20,0
< C(Vt)l/(Qp)*l/Q
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forall 1 < p < oo, where C' > 0 is a constant. The above bounds yield

leflize, .y < CIURD gz, (4002 + Cy(avt)?) < Cout)/® (3.4)
181811, .. 1) < CollOrUE ()], (1) @) < C(wt) Y/ (3.5)
1820811, .. sy < CallUE() 1, () CP7Y2 < Cy(ot) /2112 (3.6)

|12t zp, @y < CollrUS(0)| pp, (vt) /P72 < () /P72 (3.7

forall 1 < p < oo, where Cg > 0 is a constant that depends on the Euler flow, on p, the cutoff
function 7, through the constant C;, on v and 7. We emphasize however only the dependence on
the Euler flow.

We moreover have that

Do — v K = — (O (1, 1) — w0 U (a1, 1)) (exfe(e(ea, 1)) — Vavtn(as)
4 U1, £)(9, — vOan) (\/M n(zg))
and thus
0k — v AWl < Cy (10UF g2 + VIION T 12) (1) + Cy[ U] o212
< Cq ((yt)1/4 + 1/1/275_1/2) (3.8)

where as before the dependence of all constants on v and 7' is ignored.

3.2. The normal component of the lift ©X. Combining (2.4) with (3.2), we arrive at

WK (21,00, 1) = U (21, 1) < /O " exte(2(y, 1))dy — VAVL /0 " n(y)dy)

z(x2,t) To
= Vvt O,U(z1,1t) (/ erfe(z)dz — / n(y)dy)
0 0

=: Vvt 01U"(x1,t)R(w2, 1). (3.9)

An explicit calculation shows that

R(z2,t) = (\/177 - /1352 n(y)dy) - \}%exp (—2(z2,1)?) + z(w2, 1) erfe(z(wa, t)).

Moreover, note that in view of the choice of 7 in (3.1), the first term on the right side of the above
is identically vanishing for all x5 > 2. It is clear that R obeys
R(0,t) =0= lim R(=z9,t),
T2 —r 00

and thus we may hope that R is integrable with respect to x2, which is indeed the case. To see this,
first we note that
1
IR 25 < —=.

NG
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Then, we have that

2 )
IR, < [ == [ ntwpa

<Cy+ \/7/ exp(—22) + z(1 — erf(2))dz
< 077

dx2+/ exp(—2z(2,t)%) + 2(x2, t) erfc(z(xa, t))drs

where the dependence of all constants on 1y and 7' is ignored. By interpolation it then follows that
IRz, < Cy (3.10)

for all 1 < p < oo. In view of (3.10) and (3.2), we have that the bounds

lusllze, @) < CoVArt|01UR|| e, < Cr(vt)'/? (3.11)
oSl < CoVAVE|OLT®|| s, < Ce(vt)'/? (3.12)

hold for 1 < p < oo, where we have as before suppressed the dependence on C;, and p of the
constant C'g.
Lastly, we obtain from (2.4) and (3.9) that

(0 — vA)uS (11, w9, ) = V012Ul (11, 22, 1) — vVAuvt 011U (21, t) R(xo, 1)
+ V27129, U (2, t) R, t)
+ VAt 0,U% (21, t) 0, R (w2, t)
= vOoul (z1, v, t) — vVAavt 011U (21, t) R(wa, t)
+ V27129, U (2, £) R(20, t)
V212 91U (21, 1) 20, t) exfe(z(xo, 1))

where we have used that
OtR(x2,t) = —%Z(:L’g,t) erfc(z(xa,t)).
Using (3.7) and (3.10) we conclude that
10— vAYuSllzz, ) < Cor 220t 40U ()] 12,
+ C’,71/(1/t)1/2||3111UEHL351 + C’nul/Qt_l/2 |81UEHL%1
< Ce <y1/2t_1/2 + (Vt)1/2> (3.13)

holds.

4. Conclusion of the Proof of Theorem 1.1

Having constructed the corrector function X, we estimate the terms on the right side of (2.6).
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4.1. Bounds for 71, 75, T3, and T,. Using (3.8) and (3.13) we arrive at
7] < flollp2 (0 — vA)u"| 2
< Cgllv|| 2 (,/1/275—1/2 + (ut)1/4) . @.1)
In order to bound 75 we first estimate
T < VUl ool [l g2 u™ |l 2
< IVuf|lpee ull 2 ug® [ 2

where we have used the L? energy inequality for the Navier-Stokes solution. Combining the above
with (3.4) and (3.11) we arrive at

|To] < Ce(vt)'/* (4.2)

since |[ud®||z2 < C(|lugllzz + 1), for all v < vy, as we assume ||uh® — uf||z2 — 0asv — 0.
Similarly to 75, we may estimate

T3] < ([V®|| oo ][ 2 0] 2
< Ce(vt)?[|v]| 2 43)

Then, similarly to 75 we estimate Ty. We appeal to the energy inequality for the Navier-Stokes
solution and estimate (3.12), which is valid also for p = oo, to conclude that

I Ta] < |72 0105 Lo
< [lug® 122 19 || Lo

< C(vt)'/2. (4.4)
4.2. Bound for 7. We estimate T5 as
5 < [ (92 + (592) 10vuldedas
< [ (@2 + ) o
< S @)1 o0 010" 1 N exfe(z(a, 1) — VaAvtn(z2)| s,

< Ce(wt) /2™ () |7 (4.5)

Using assumption (1.13), it then immediately follows that

erfc(z(xze,t)) — VAvtn(xs)| dxidrs

T
/ IT5(8)|dt < CivoCus (VT2 4.6)
0
for all v € (0, vp].

REMARK 4.1. In order to show that lim, g fOT |T5(t)|dt = 0, instead of using (1.13), it would
have been sufficient to assume that

T
sup [ 0Ol 1, < o0
ve(0,00] J0 !

for some ¢ > 2. This follows along the lines of (4.5), by using the energy inequality ||u™S(t)|| ;2 <
|ud®|| 12, and estimate (3.5) with p = 2¢/(g — 2).



10 P. CONSTANTIN, T. ELGINDI, M. IGNATOVA, AND V. VICOL
4.3. Bound for Tg. First we note that by the definition of Y in (3.2) we have

I Ts| < (4vt)/?

/ WS (@1, o, 0 (1, 2, U (1, O () dardacs
H

+

/ ulfs (21, x2, t)ugls (21, w9, t)U" (21, )0y, erfc(z(xa, t))dw1das
H

< Cu(vt) 2 |u™)2, + | T,
< Cp(wt)? + [T, | 4.7

where we have used the energy inequality ||u™%|| 72 < ||uf®||z2 < C(1+]ugl|z2) . and have denoted

Tﬁyyz/UTS([ELCCQ,t)’ugs(il?l,xg,t)UE(Jil,t)axQ erfc(z(ze,t))dridzs
H

1 NS NS E 2
= uy(T1, T2, t)us (x1, o, t)U (21, t) exp(—z(x2,t)*)dx1dx
/7]//1(1 2)2(1 2) (1) p( (2)) 1442

= \f/ S (w1, Vavty, t)udS (z1, Vavty, t) Uz, t) exp(—y?)dz 1 dy. (4.8)

The goal is now to show that assumptions (1.13)—(1.14) imply

T
lim [ [Te,(t)|dt =0 (4.9)
v—0 0

which yields the desired Ty estimate.
In order to prove (4.9), we fix an € > 0, arbitrary, which in turn fixes a p = p(e) > 0 such that
(1.16) holds. We then have

/0  Tou )t
< % .
+ 75 /

9 T
< oo o0
< \fHU | oo (0,71 (R))/ | ()Hme(H) </y> )

— V4vt

’ulfs(xl, VAavty, t)ugs (21, Vavty, t) U (z1,t) ‘ exp(—yQ)dazldydt

ul (21, Vavty, t)ub® (z1, Vavty, ) U (xy, )’exp(—y2)dx1dydt

eXp(—yQ)dy> dt

+7||U HLOO(OT,LII(]R))// v(z1,t) exp(—y?)da 1 dydt

p
<||U®|| (0.1 C f
< U oo 0,751, ) NSVOerC(m)

+ e U oo 0,250 @y 1V 2075, (1)) (4.10)

where we have also appealed to (1.13). By passing v — 0 in (4.10), since p and T are fixed, and
erfc(z) — 0 as z — oo, we arrive at

T
lim ; | To, (t)ldt < ellU"[| o< (0,520 ) 1Vl 220,38, (R ) (4.11)

v—0

Since + is independent of ¢, and € > 0 is arbitrary, (4.11) implies (4.9) as desired.
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4.4. Proof of Theorem 1.1. From (2.6), (4.1), (4.2), (4.3), (4.4), (4.5), and (4.7) we conclude
that

d
T lvllZe < Cellolfs + Cev' 27 2 o]l 2 + Co(vt)  + Ca(vt) 2> ()7 + Ts (412)

where as usual Cg implicitly depends on vy and 7". Upon integrating (4.12) in time, using (1.7),
(4.6), and (4.9) we arrive at

L {[v]| oo (0,722 () = 0-

The above yields the proof of (1.8) once we recall that u™ — v = v 4+ X, and that cf. (3.4) and
(3.1 1) we have ]jmy_>0 HUKHLOO(O7T;L2(H)) = 0.

5. Proof of Theorem 1.3

The proof follows from the proof of Theorem 1.1, as soon as we manage to establish the limit
(4.9) for the Ty term. Recall that

VT
2
Since (1.13) holds, and

To.(t)] =

/ ul® (21, Vavty, t)ub® (z1, Vavty, t) U (21, t) exp(—yQ)dmldy' .
H

|U® (21, )| oo oryder  and — exp(—y?)dy

are finite measures on R respectively R, by Chebyshev’s inequality we have that for any L > 0:

/ ul® (21, Vvty, t)ugs (w1, Vavty, t) U (z1,t) exp(—yz)dxldy
ly|>L

< (1) 2 / UF (a1, )] exp(—y?)da1dy
ly|>L

T
< SO Ny, 1 erfe(L) 6.0

and

/| | UTS(U’Cl’ Vavty, t)ugs(xla \ 4I/ty,t)UE(.’E1,t) exp(—yQ)dxldy
x1|>L

< 1 (1)]3 / sup [U%(1, 1) dey
l1|>L te[0,T]

1
< S @)oo U2

T (5.2)

Combining (5.1)—(5.2) with (1.13) it follows that for a given € > 0, there exists a sufficiently large
L = L(e,Cg, Cys, 1p) > 0 such that

r

dt < e.

/ ul® (21, VAvty, t)uy® (x1, Vavty, t) U (21, t) exp(—yQ)d:rldy
ly|>L Of |z1|>L

5.3)
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On the other hand, since dpul® = —d;u)S, by (1.18) we have that

/T /
0 lyl<L and |z |<L

T L VA4vtL
<z [ @Ol [ exn(-s?) [ | | oo, ) dradardyds
0 0 z1|<L Jo

ul (w1, Vavty, tyuh® (z1, Vavty, ) U (z1, t) exp(—y?)da1dy| dt <

IN

T
/0 eSS (8) e 01N (411 1, < gm vz ey

Ck
CeCnsto H81“Ts(t)1|x1|§L,0<z2<\/ML HLZ’(O,T;L1 (H))

IA A
)

54

assuming v is sufficiently small so that v/4vtL < p(e, L). Therefore, by adding (5.3) and (5.4) we
have that for a fixed y > 0

T
lim [ |Ts,(t)|dt < Ce
0

v—0

for any € > 0, as desired.

6. Proof of Theorem 1.4

The proof follows closely that of Theorem 1.1. To avoid redundancy, here we only point out
the main differences. Moreover, for the sake of simplicity, we first consider the case §(vt) = 2v/vt,
which clearly obeys condition (1.21).

Condition (1.19) implies that (1.13) holds. Therefore, it remains to show that (1.19) and (1.20)

imply

T
lim / /
v—0 0 H
i.e. that (4.9) holds. Once (6.1) is proven, the theorem follows with the same proof as Theorem 1.1.

For this purpose, notice that the function
A(zy, 2,t) = M (6)|U (21, t)| exp(—23)

udS (z1, VAvt zo, t)ul® (z1, VAvt 29, t) U (21, t) exp (—x%)‘ dridxodt =0, (6.1)

is independent of v, obeys
A € LY (dtdzydxs),

since the Euler trace U is bounded in L>(0,T’; L}, (R)), and we have that
‘ugs(ajl, Vvt zo, t)ulS (@1, Vavt 9, t)UE (21, t) exp (—x%)‘ < A(z1,x2,1)
fora.e. (x1,x2,t), and all v € (0, 1p]. Thus, in view of (1.20), which guarantees that
lil}% ‘ulfs(xl, S(vt) zo, t)us® (w1, 8(vt) 2o, t) U (21, 1) exp (—a:%)’ =0

we may apply the Dominated Convergence Theorem and conclude that (6.1) holds. This concludes
the proof of the theorem when 6(vt) = 2/vt.

To treat the more general case () which obeys (1.21), we need to define a different corrector.
For this purpose, we recall cf. [CKV15] that the function

o(x1,22,t) = (p1(x1, 22, 1), P2 (a1, 22, 1))
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where

p1(x1, w2, 1) = —U(x1,1) (6_% - 5(%)1/1(902)) (6.2)

oo(x1, w0, 1) = 6(vt)01U (21, 1) (<1 - /sz w(y)dy) — 6_‘52’2’5)> (6.3)

where 1): [0,00) — [0,00) is a C§° function supported in [1/2, 4], which is non-negative and has
mass [ 1(z)dz = 1, is divergence free and obeys the boundary conditions (2.2)—(2.3)

@1(1‘1, 0, t) = —UE(SL'l, t)

@2(1‘1, 0, t) =0.

We then consider the same argument as in the proof of Theorem 1.1, except that uX is replaced by
. In [CKV15], the bounds

el ey + 10l Loy + 10101l oy + 10110l o iy < Ced(vt)'/P

18201 | oy < Ced(vt) 1P
0102 Lr ) < Cré(v1)
were established. It then follows that the terms 77, . . ., T5 defined in (2.7)—(2.11) obey the estimates

T3] < Cob() 2ol + Cod(wt) ol 2 + 500l + vl + Cogrrs 64
|T| < Ced(vt)'/? (6.5)
T3] < Ced(vt)2[|v]| 2 (6.6)
Ty < Ced(vt) (6.7)
IT5| < M2(t)d(vt)'/? (6.8)

where M (t) is as given by condition (1.19). For the term T we proceed as above, by appealing to
the Dominated convergence theorem. Condition (1.21) is necessary in order to ensure that the time
integral of the last term on the right side of (6.4) vanishes as v — 0. The proof now follows. We
omit further details.
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