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Abstract

Gravitational waves (GWs) from binary black hole (BBH) mergers provide a new probe of massive-star evolution
and the formation channels of binary compact objects. By coupling the growing sample of BBH systems with
population synthesis models, we can begin to constrain the parameters of such models and glean unprecedented
knowledge about the inherent physical processes that underpin binary stellar evolution. In this study, we apply a
hierarchical Bayesian model to mass measurements from a synthetic GW sample to constrain the physical
prescriptions in population models and the relative fraction of systems generated from various channels. We
employ population models of two canonical formation scenarios in our analysis—isolated binary evolution
involving a common-envelope phase and dynamical formation within globular clusters—with model variations for
different black hole natal kick prescriptions. We show that solely with chirp mass measurements, it is possible to
constrain natal kick prescriptions and the relative fraction of systems originating from each formation channel with
O(100) of confident detections. This framework can be extended to include additional formation scenarios, model
parameters, and measured properties of the compact binary.
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1. Introduction

Recent observations of gravitational waves (GWs) have
launched a new branch of observational astronomy. The
confident detections of binary black hole (BBH) mergers GW
150914, GW 151226, and GW 170104, as well as BBH
candidate LVT 151012 by the advanced LIGO (aLIGO)
detectors marked the discovery of BBH systems in our
universe, and enticed deeper exploration of massive-star
evolution (Aasi et al. 2013; Abbott et al. 2016a, 2016b,
2016¢; The LIGO Scientific Collaboration et al. 2017). The
final stages of BBH evolution enable the measurement of their
physical properties, which connects us to their preceding
history and can potentially constrain the environments
responsible for facilitating BBH formation, the relative fraction
of systems produced through various formation channels, and
the physical processes underlying binary stellar evolution. With
expected BBH merger rates ranging from 12 to 213 Gpe > yr~ !
(The LIGO Scientific Collaboration et al. 2016, 2017), it is
an opportune time to develop methods for utilizing all existing
and future observations to constrain and inform astrophysical
models.

Two canonical formation channels are generally considered
for contributing to the full population of BBHs: isolated binary
evolution (i.e., “the field’) and dynamical formation (i.e.,
“clusters”). In the isolated evolution scenario, binaries are
predicted to evolve and tighten through a common-envelope
phase (e.g., Voss & Tauris 2003; Dominik et al. 2013;
Belczynski et al. 2014), or through chemically homogeneous
evolution of close binaries that attain rapid rotation (de Mink &
Mandel 2016; Marchant et al. 2016; Mandel & de Mink 2016).
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Alternatively, the dynamical channel predicts BBHs that
become bound and tighten through three-body encounters in
dense star clusters such as globular clusters (e.g., Portegies
Zwart & Mcmillan 2000; Downing et al. 2010, 2011;
Rodriguez et al. 2015, 2016a), galactic nuclei, and AGN disks
(Antonini & Rasio 2016; Bartos et al. 2017; Stone et al. 2017),
or young stellar clusters (Ziosi et al. 2014; Chatterjee et al.
2017). In addition to these canonical scenarios, more exotic
formation channels have been suggested for facilitating BBH
mergers, such as field triples tightened by Lidov—Kozai cycles
(Antonini et al. 2017; Silsbee & Tremaine 2017), primordially
formed black holes (Bird et al. 2016), or remnants of
population III stars (Inayoshi et al. 2016). While these models
maintain the ability to predict heavy BBHs such as GW 150914
(e.g., Belczynski et al. 2016; Rodriguez et al. 2016b; Stevenson
et al. 2017b), the rates and property distributions predicted
from population synthesis simulations are highly sensitive to
the prescriptions chosen for uncertain physical processes such
as black hole natal kick prescriptions, wind mass-loss, and
common envelope physics (Dominik et al. 2012; Stevenson
et al. 2015).

The analysis of compact binary populations through GW
observations provides a unique and powerful mechanism for
determining the models that describe the true underlying BBH
population. By pairing measured BBH properties from the
growing sample of GW observations with population synthesis
models that account for various formation scenarios and
physical prescriptions, constraints can be placed on the relative
fraction of systems produced by each formation channel (i.e.,
“branching ratio”) and the inherent physical processes that
underpin binary stellar evolution. As the merger rates predicted
by various channels are highly uncertain and overlapping, this
approach to astrophysical model selection in the context of
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GWs primarily explores the distributions of the BBH source
parameters. Neglecting eccentricity and finite size effects, the
masses and spins of component black holes primarily
determine the GW signal during the evolution of the BBH
through inspiral, merger, and ringdown (Abbott et al. 2016d),
allowing for parameter estimation of these quantities by
comparing a measured GW signal with template waveforms
generated from a sample of the physical parameters (Cutler &
Flanagan 1994; Poisson & Will 1995; Veitch et al. 2015).

One confounding aspect of this model selection problem is
the uncertain physical mechanisms underlying population
modeling of binary compact objects. To circumvent the
intricacies and uncertainties of binary evolution modeling,
studies such as Mandel et al. (2017) have taken an agnostic,
model-independent approach toward model selection by
developing methods for distinguishing populations through
clustering of source parameters, such as black hole masses.
Though such an approach can help to identify multiple
populations, it lacks the ability to directly identify the physical
processes inherent to stellar evolution models. To this end,
Stevenson et al. (2015) assessed the potential of using GW
observations for differentiating population synthesis models
that have various prescriptions for common envelope binding
energy, maximum neutron star mass, black hole natal kick
prescriptions, and stellar winds, finding that certain models
could be ruled out in the near-future given expected merger
rates. However, the inclusion of alternative formation channels
would complicate this process.

Several studies, such as Vitale et al. (2017) and Stevenson
et al. (2017a), have performed model selection to infer
branching ratios using BBH spin distributions, finding that
one may converge upon the branching ratio between field and
cluster formation channels with dozens to hundreds of
detections. Though spin distributions for differing population
models can be constructed purely by geometrical arguments,
isolated binary evolution and dynamical formation rely on
vastly different procedures for compact binary formation and
evolution, and physically motivated modeling is therefore
required for accurate and comparable distributions in mass and
redshift. Using such models, Rodriguez et al. (2016¢) found
that certain combinations of masses and spins can be produced
exclusively by dynamical formation channels, and the detection
of such an outlier could be a clear indication of this formation
process. Furthermore, Farr et al. (2017) demonstrated that the
clustering of effective spin measurements in the current catalog
of GW observations hints at an isotropic spin angle distribution
rather than an aligned one. However, there is still much work to
be done in utilizing population synthesis and catalogs of GW
observations to infer properties of the true compact binary
populations.

In this paper, we present an approach of hierarchical model
selection that utilizes physically motivated models of BBH
populations from multiple environments to infer underlying
physical prescriptions and branching ratios between formation
channels. In particular, we focus on the utility of chirp mass
measurements for inferring black hole natal kick prescriptions
and the branching ratio between isolated binary evolution and
dynamical formation models. However, this approach can
easily scale to include more measured BBH properties,
additional population models, and submodels accounting for
different uncertain physical prescriptions.
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The outline for the paper is as follows. In Section 2, we
discuss the BBH population models used in this analysis,
which model field binaries (Section 2.1) and cluster binaries
(Section 2.2), accounting for selection biases (Section 2.3).
Section 3 outlines the algorithm for hierarchical model
selection (Section 3.1), the mock observations and analytical
approximations for measurement uncertainty (Section 3.2), and
sampling procedure (Section 3.3). In Section 4, we discuss our
inference on branching ratio (Section 4.1) and kick prescription
(Section 4.2) through this methodology. We conclude in
Section 5 with a discussion of the analysis and future prospects.

2. BBH Population Models

In this section, we describe the population models used in
our analysis. These models are identical to those used in
Rodriguez et al. (2016c), except that the various natal kick
prescriptions used as submodels of the field population are also
incorporated into the globular cluster models. Our inference
relies on output parameter distributions of BBHs that merge as
potential LIGO sources, such as component masses, spin-tilts,
and redshifts.

2.1. Isolated Binary Populations

Populations of field binaries are generated using an upgraded
version of the binary evolution code BSE (Hurley et al. 2002).
This code rapidly models stellar populations using metallicity-
dependent fits for single-star evolution, while also modeling
binary interactions such as mass transfer and changes in orbital
angular momentum from black hole natal kicks. Furthermore,
BSE now uses a radius-dependent fitting formula for the
common envelope binding energy parameter A (Claeys et al.
2014). Our modifications to this code implement physical
prescriptions from more recent work related to stellar winds
and supernova prescriptions. These include mass-loss prescrip-
tions for O and B stars known as the “Vink prescription” (Vink
et al. 2001), metallicity dependence to the evolution of Wolf-
Rayet stars (Vink & de Koter 2005), and prescriptions for the
supernova mechanism developed in Fryer et al. (2012). Despite
these upgrades, many of the physical mechanisms governing
binary stellar evolution are still poorly constrained, and
incorrect physical prescriptions may propagate inaccuracies to
the physical parameter distributions of our populations. We
evolve 10° binaries in 11 metallicity bins ranging from 0.005 to
1.5 Z, with masses from 18 to 150 M., drawn from an initial
mass function of p(m)dm oc m=23dm (see, e.g., Kroupa
2001). Mass ratios are drawn from a uniform distribution on the
interval [0, 1], and initial semimajor axes are drawn from a
distribution flat in log space on the interval 10-10° R,. All
binaries that evolve into BBHs are maintained as GW
candidates, scaled appropriately by their merger time.

While the following scenarios may not cover all the physical
uncertainties in population models, they do provide a
representative sample of possibilities. As such, we consider
12 permutations of physical assumptions that all affect the final
population parameters:

1. Three different natal kick prescription models, imparting
different amounts of linear velocity to the newly formed
black holes in the binary. One model, the fallback kick
prescription, assumes that some fraction of the mass
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Figure 1. Chirp mass distributions for the field and cluster population models. Each panel shows the independently normalized distributions of sources generated
(filled histogram) and sources weighted by detectability (unfilled histogram). For reference, the chirp masses of the four likely gravitational-wave events (GW 150914,
GW 151226, GW 170104, and LVT 151012) are plotted, with the outer lines representing the 90% credible region. The top, middle, and bottom panels show the
distributions for fallback, proportional, and full natal kick prescriptions, respectively. We construct each model using one kick magnitude prescription, comprised of
equal abundances from the four submodels described in items 2 and 3 of Section 2.1.

ejected during core collapse will “fallback” on the black
hole:

Vlgg =1 - ﬁallback)vlz\i]csk' (1

The fraction of material that falls back is proportional to
the core mass of the black hole progenitor. The second
model, the proportional kick prescription, assumes that
the kick imparted to the black hole is reduced by the ratio
of the neutron star mass to the black hole mass:

VR = TRV @)

MBH

where we assume mys = 2.5 M, for all systems, as this
value represents the hypothetical “boundary” between
neutron stars and black holes in most population synthesis
codes. The final kick prescription, called the full kick
prescription, assumes that the black hole kick is equal to the
full kick velocity imparted on the neutron star:

Vi = Vo A3)

2. Two differing kick directions. In one model we assume
kicks are isotropically distributed in solid angle around
the exploding star, which is the common assumption in
population models. However, observations of pulsars
have suggested a correlation between the kick direction
and spin axis (Kaplan et al. 2008), motivating the
inclusion of a polar kick prescription where the kicks are

confined to 10° cones about the rotational axis of the
progenitor star.

3. Two different methods of accounting for uncertainties in
the realignment of the component spin axes after the first
supernova. One model allows for realignment of the
binary after the first kick, whereas the other model does
not realign. Though this does not have an effect on the
mass distributions of the field population models, it has a
substantial effect on the spin distributions of the
resultant BBHs.

All these variations in model assumptions largely affect the
resultant spin-tilt distributions of the binaries. However, only
kick magnitudes play a substantial role in the final distribution
of BBH chirp masses. As seen in Figure 1, stronger kick
prescriptions flatten out the relative abundance of low-mass
binaries in field models; these systems acquire larger linear
velocities from the kicks, allowing the kinetic energy of the
binary component to more easily overcome the gravitational
potential and become unbound. As this paper focuses on chirp
mass measurements, we construct each model using one kick
magnitude prescription, and equal abundances from the four
submodels that are described in items 2 and 3 of Section 2.1.
Furthermore, we expect only one kick magnitude to be true,
whereas kick direction and binary realignment prescriptions
may be dependent on processes such as stellar rotation. Future
work will incorporate spin measurements in the inference and
address these submodels with more detail.
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Figure 2. Example realization of the sampling, where 5000 samples are drawn
from the RIMCMC chain. This particular realization is for 100 observations
from the fallback model, with a cluster branching ratio of 3 = 0.4. 5¢ and [F
are the fraction of systems that are drawn from the cluster and field populations,
respectively. The left panels show the value of 3 inferred for each step in the
sampling, with colors indicating the model chosen. The right panels show the
total binned histograms.

2.2. Cluster Binary Populations

In this study, we consider the “classical” channel of
dynamical formation in old, metal-poor globular clusters.
Cluster binaries are drawn from a few dozen globular cluster
models generated using the Cluster Monte Carlo (CMC) code
(see, e.g., Chatterjee et al. 2010). Black holes sink to the
centers of globular clusters due to dynamical friction, fostering
mass segregation through energy equipartition and turning the
globular cluster cores into dynamical factories for forming
heavy stellar-mass BBHs. Though these models are sensitive to
initial conditions, dynamically formed binaries rely on single-
star evolution and N-body dynamics rather than binary stellar
evolution and therefore maintain fewer uncertainties in the
physical processes (e.g., common envelope evolution, mass
transfer) involved in generating BBHs (Rodriguez et al. 2016a).
However, as the choice of kick magnitude prescription may
alter the distribution of black holes within a cluster or eject
black holes entirely, we include cluster submodels with the
same variations in kick prescription presented for the field
models in Section 2.1. This ensures a putative population
mixing has a consistent kick prescription. As seen in Figure 1,
the stronger kick magnitude prescriptions tend to flatten out
peaks in the normalized chirp mass distributions for the cluster
population as well as the field population. Note that in the
cluster case the natal kicks do not act to disrupt individual
binary systems, as the final partners are usually found long after
the components have evolved into compact objects.

The globular cluster models generated in Rodriguez et al.
(20164a) used the fallback prescription for black hole natal kicks
described above. To create equivalent populations using the
proportional and full kick prescriptions, we implement the
following approximate procedure: for each of the 48 globular
cluster models from Rodriguez et al. (2016a), we take the initial
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(t=0) snapshot of the cluster, and evolve the massive stars
(above 18 M) forward with BSE until the stars have completed
their evolution and the initial population of black holes has
formed. We then record the velocity of the natal kick, and only
retain those black holes for which Vi < —2®(r), where ®
is the gravitational potential of the cluster, and r is the initial
radial position of the star in the cluster.*

Once we have an initial population of black holes for each
cluster model, we proceed to eject black holes and BBHs from
our synthetic population, assuming that the rate at which black
holes are ejected is identical to that found with CMC.” We
select black hole masses without replacement from a list of
Nblack holes, according to

p(di oc i*di forl <i <N/3, 4)

where i is the index of the list of black holes, sorted in order of
decreasing mass. Equation (4) is physically motivated by the
fact that globular clusters preferentially eject the most massive
black holes first, continuing to eject black holes until depletion
(Morscher et al. 2015). The functional form of p(i) was found
through trial-and-error to reproduce the masses and mass ratios
of ejected BBHs from the CMC simulations. For every BBH,
we also remove four single black holes from the list (see, e.g.,
Heggie & Hut 1993). The reasoning for this is that once a
binary is nearing the hardness necessary to eject it from the
cluster, the scatterings it undergoes will eject single objects
with the same strong three-body encounters responsible for
hardening and ejecting the BBH. However, since the binary is
about twice as massive as the single objects that are scattered,
there are a few scatterings where the velocity of the single
object surpasses the cluster escape speed, while the velocity of
the binary does not. Numerical tests indicate that on average
3—4 single black holes are ejected for each binary that is
ejected. Finally, at the time of ejection, we set the eccentricity
and semimajor axis of the binary using the half-mass—radius
and mass of the cluster at the time of ejection, according to:

P(e)de = 2e de, (@)
1
P(alMgc, Ry, ppy)da = ——
GCs Iy [y, ao2r
M inRh * 2
(log TEM@C —a )
X exp| — da, (6)

where p;, = (mymy)/(m; + m,) is the reduced mass of the
binary, and a" and o are the parameters of a log-normal
distribution with mean a* = 3.98 and o = 0.59 (see Rodriguez
et al. 2016a, Equations (7) and (8)). The merger time of each
binary is computed by adding the time each binary is ejected
(assuming all globular clusters to be 12 Gyr old) to the GW

4 Because the black hole-formation timescale for massive stars (~5 Myr) is
significantly smaller than the mass-segregation timescale (~100 Myr, see
O’Leary et al. 2006), we can safely ignore the change in position of the star
between birth and black hole-formation.

> This assumption is well justified, as it is the total energy flux of the cluster,
not of the black hole sub-system, that determines the ejection rate of black
holes from a globular cluster (Breen & Heggie 2013). However, for clusters
where there are not sufficiently many black holes to meet the energy
requirements of the cluster (e.g., the full kick prescription), this assumption will
overestimate the early ejection rate of black holes.
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merger time from Peters (1964). The redshift assigned to each
merger is the redshift at that cosmological lookback time,
assuming a flat ACDM cosmology with €, = 0.306 and
Hy = 67.9km s~! Mpc~! (Planck Collaboration et al. 2016).

Once we have a population of ejected BBHs from clusters
with different kick prescriptions, we resample the population of
BBHs to better represent what we expect to see from globular
clusters in the local universe. First, we draw a population of
binaries from our effective globular cluster models by
preferentially selecting binaries from globular clusters closer
to the peak of the observed globular cluster mass function (i.e.,
massive globular cluster models that more-closely resemble the
population of observed globular clusters in the local universe;
see Rodriguez et al. 2016a). We then take this population of
BBHs from globular clusters, where we have assumed a
universal globular cluster mass function and constant spatial
density of globular clusters, and create a 3D kernel-density
estimate (KDE) of the binary mergers in m,, m,, and redshift.
We then draw as many binaries as we want from this
distribution using an MCMC (Foreman-mackey et al. 2013),
with the KDE as our likelihood and a prior on the redshift,
which is uniform in comoving volume.

The stronger kick prescriptions (i.e., full kicks) retain more
low-mass binaries relative to their high-mass counterparts. This
is because in the full kick case the natal kick velocity does not
decrease with increasing black hole mass, contrary to fallback
and proportional kicks (see Equations (1)—(3)). Therefore, the
full kick prescription will kick out all black holes from the
cluster with equal likelihood regardless of the black hole mass,
whereas the velocity of the kick is stifled for higher-mass
objects in the fallback and proportional cases, allowing more of
these objects to be retained relative to their lower-mass analogs.
However, as the stronger kick prescriptions will cause more
newly formed black holes to be ejected from the cluster, it also
results in a decrease to the overall merger rate. The above
procedure is necessary to generate new BBH populations
without having to generate new, computationally expensive
models of massive globular clusters. We use this approximate
method for all three populations, including the fallback
prescription (for which we do have complete CMC models
from Rodriguez et al. 2016a). This was done to avoid any
systematic differences that our approximate technique may
have introduced, and it was found that this method matched
well with the true fallback population generated from CMC.
Finally, we assume that the isotropic and polar kick models for
clusters should be identical, since BH retention in clusters
should be independent of kick angle.

2.3. Incorporation of Selection Biases

The distributions described above represent all BBH systems
that are generated by these populations in the local universe. As
the detectability of a given source is dependent on both its
physical and orientation parameters (e.g., masses, spins,
redshift, frequency content, detector network antenna pattern,
inclination), the distribution of observed parameters will be
different from the true source distribution. Therefore, we
translate the raw source distributions into distributions of
detectable sources by the expected design-sensitivity power
spectrum and antenna pattern of a single detector assuming
isotropic sky location and inclination distributions. A signal-to-
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noise (S/N) threshold of 8 is applied, defined by
_ 49‘ifh (f)h(f) i %
Su(f)

where /i(f) is the gravitational waveform in the frequency
domain and S,(f) is the one-sided power spectral density of the
noise.® We then calculate the probability of a system with a
given mass and redshift passing this threshold and then weight
the distributions accordingly.” As seen in the right panel of
Figure 1, this tends to flatten out the low-mass peaks and
amplify the number of higher-mass systems.

3. Model Selection

With population models in hand, we leverage BBH mass
measurements to infer properties of the underlying distribution.
The two questions we aim to address in this paper are as
follows.

1. Given a catalog of N BBH chirp mass measurements
from GW observations that come from a population made
up of field and cluster binaries with a particular branching
ratio (3), how well can one discern the inherent black
hole natal kick prescription?

2. Assuming one prescription is correct, how many
observations are required to confidently converge on the
true value of this branching ratio?

We now describe the machinery behind this inference.

3.1. Hierarchical Modeling

As described by Mandel (2010) and Hogg et al. (2010),
among many others, the objective of hierarchical modeling is to
infer a set of model parameters A given N observations {x;},
which are characterized by a set of physical parameters {6;} and
constrained by prior assumptions {co;}. The astrophysical
model described by parameters A gives a probability distribu-
tion for physical parameters, in our case chirp masses. By
Bayes’ theorem, the posterior on A is

) = PENPX) g
] ®)

where p(0|\) is the likelihood of observing a particular set of
physical parameters, p () is the prior on the model parameters,
and p(0) is a normalization constant.

However, as we observe N independent GW signals rather
than the physical parameters directly, we rewrite the like-
lihood as

N N
U = [T pedn) =TT [d0pCxi)p@In). )
i=1 i=

5 Fors /N calculations, we assume non-spinning component black holes and

utilize the IMRPhenomPv2 waveform approximate (Khan et al. 2016).

7 Though the cluster models maintain redshift information, our field
populations do not. We assume for simplicity that field binaries are distributed
uniformly in comoving volume in the local universe and sample redshifts
accordingly.
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Again applying Bayes’ Theorem, we write p(x;|0) as
p(Blx)p(x;) /p(0) to get

N
A = ) [de M, 10
px)X) =TT pex) o £ (10)

where p(0) is the prior on the physical parameters that are used
to generate the posterior samples.

We approximate the integral as a discrete sum over posterior
samples

S
Jasp@rir@) ~ <3160 an
k=1

and ignore the multiplicative constant p(x;), as it is not a
function of @ or A and will not affect the sampling of the
posterior. Therefore, the full expression for the likelihood that
we wish to sample is

N S
Pty = ] Ly 2O

o1 S’

where, again, N is the number of observed events, S is the
number of posterior samples, 6; are the astrophysical
parameters, and A are the model parameters.

We aim to do model selection between different kick
prescriptions while simultaneously performing inference on
branching ratios between field and cluster formation channels.
The parameters of our astrophysical model are thus A = (¢, ),
where ¢ is an indexing parameter that indicates the kick
prescription (v € [0, 1, 2] where 0, 1, and 2 designate the
proportional, fallback, and full kick prescriptions, respectively)
and (3 is the branching ratio parameter, defined as the fraction of
observations that are drawn from cluster models (0 < 6 < 1).
An illustrative example of this inference is shown in Figure 2.

As the branching ratios between the various formation
channels are highly uncertain, we maintain minimal assump-
tions on our prior knowledge of the model parameters. For the
prior on (3, we use a Dirichlet distribution, which is a
multivariate generalization of the beta distribution. This allows
for minimal prior assumptions while ensuring the values of (8
for all channels sum to unity. Though X-ray binary observa-
tions (Repetto et al. 2017) and the current catalog of BBH
observations (Belczynski et al. 2016) provide moderate
evidence for certain black hole natal kick prescriptions, we
use a uniform prior on the kick prescription, which for this
discrete parameter puts equal weight on each prescription.

12)

3.2. Mock Observations

We represent the chirp mass distributions for our populations
with a Gaussian KDE and draw “observations” from this
model. In practice, the observations themselves are manifested
as a set of samples drawn from a posterior computed for each
candidate event. Instead of employing very accurate, but
computationally expensive, Markovian methods to estimate the
parameter posteriors, we instead use the Fisher matrix as a
proxy for the inverse covariance of a simpler Gaussian
parameter distribution (see Cutler & Flanagan 1994). We are
justified in this procedure in the case of chirp mass (M,),
because it determines the leading-order evolution of GWs from
compact binary coalescence and is therefore the best-measured
physical property from a GW signal (see Abbott et al. 2016d,
and references therein). However, this methodology is less
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Figure 3. Mock observations drawn from a population specified by a kick
prescription and branching ratio. This particular realization draws five
observations from the fallback kick population model with 5 = 0.4. Each
panel shows the distributions for a given kick prescription, where the blue and
orange lines represent the field and cluster models, respectively, and the dashed
black line shows the (normalized) combined population given the value of .
The box-and-whisker plots at the bottom of each panel show the median value
of the posterior samples for an observation with an orange line, the upper and
lower quartile of these samples as the edges of the box, and the maximum and
minimum value of the posterior samples as whiskers. In this case, all
observations are drawn from the fallback population model (dotted line in the
middle panel).

accurate for parameters that are more correlated and less
constrained, such as effective spin and symmetric mass ratio
(see, e.g., Vallisneri 2008; Rodriguez et al. 2013; O’Shaughnessy
et al. 2014).

As the Fisher matrix tends to overestimate the distributional
width in M,, this also provides a conservative estimate for the
true measurement uncertainty. However, as chirp mass
measurements are highly constrained, we find that the inclusion
of measurement uncertainty does not drastically affect our
results. Nonetheless, we draw 100 mock posterior samples
from a Gaussian distribution with a mean centered on the true
value and standard deviation o4, as each “observation”.

N smeared observations are drawn from a “true” distribution,
described by a particular natal kick prescription and a value of
the branching ratio 3 (such that Nuger = ON and Ngeq =
(1 — B)N). Figure 3 shows one realization of this procedure.
We then use these mock observations as the basis behind our
statistical inference through hierarchical modeling.

3.3. Sampling

The technique we use for sampling the posterior on the
model parameters is Reverse Jump Markov Chain Monte Carlo
(RIMCMC; see e.g., Green 1995). In this method, the
calculation of the Bayes factor between two models does not
require the explicit calculation of the evidence integral. Rather,
the model itself becomes a parameter of the chain. Depending
on which value an indexing parameter takes, the likelihood and
prior are evaluated using one of a set of models, which may or
may not be of the same dimensionality. Said another way, the
sampler first “jumps” in model index space, and then estimates
the value for 3 within the particular model it lands. We assume
that all models contain the same set of model parameters with
the same meaning—in other words, the branching ratio 3 is the
fraction between field and cluster in all models. The samples
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Figure 4. Convergence on the true value of (3 as a function of number of observations. The dark and light shadings represent the 68% and 90% credible intervals,
respectively. The black vertical lines show the point in our discrete samplings of Ny at which the 68% credible interval for 3 is constrained to less than 20% of the full
range of (3; due to our discrete sampling this threshold is in fact reached before this point. The left, center, and right panels show the convergence on 3 when the
injected kick prescription is fallback, proportional, and full, respectively. Note that the convergence rate varies depending both on the injected value of 3 and the

injected kick prescription.

can then be sorted by model index at the end in order to
generate posteriors for the individual kick prescriptions. Since
our models have the same number of parameters with the same
priors, the Bayes factor is then simply the ratio of the number
of iterations that the chain spends in each model:

__ # of iterations in model i (13)

v # of iterations in model j

We use the open source MCMC python library emcee
(Foreman-Mackey et al. 2013) for the implementation of this
algorithm.

4. Astrophysical Inference with Chirp Mass Measurements

We now seek to utilize this inference for constraining
branching ratios and properties of stellar evolution, given a
catalog of BBH observations. Because the current number of
BBH observations is likely too few to make any substantial
claim about formation channels or physical prescriptions, we
demonstrate the method using a mock catalog of BBH
observations. We then apply one kick prescription model and
formation channel branching ratio value to be the “correct”
description of nature, and gauge how well one can converge on
these injected values over an increasing number of observed
systems. For the purposes of this study, we consider 100
realizations for each combination of the branching ratio (3, kick
prescription ¢, and number of observations Nyps.

4.1. Branching Ratios

Convergence to the true branching ratio is a strong function
of the number of observations drawn from the true population,
and is also sensitive to the injected branching ratio itself. To
summarize the convergence as a function of observations, we
plot the marginalized posterior on 3 for different values of 3 in

Figure 4. To demonstrate this convergence in another way,
Figure 5 shows the injected value of (3 for different
combinations of 3 and Ny, (i.e., many realizations of the
sampling visualized in Figure 2), as well as the median value of
the 100 realizations for each combination. As expected, there is
rapid convergence on the true value of 3 as the number of
observations increases, as well as smaller variance in the
individual realizations. From Figure 5, it is also noted that the
inference on (3 is unbiased.

Other model parameters aside, with only chirp mass
measurements we converge on the true branching ratio to an
accuracy of £10% with O(100) observations of BBH systems.
This convergence on branching ratio is similar to that found in
Vitale et al. (2017) and Stevenson et al. (2017a) using
population models with varied spin distributions; with dozens
to a hundred observations, we will begin to see strong
convergence on the true value of the branching ratio if BBH
observations are dominated by the two canonical channels.
Cumulative distribution functions of the searched intervals for
{8 are shown in Figure 6. When only one mode in the
distribution is present, the searched interval refers to the
distance between the mode of the distribution and its true value.
Quantitatively, when one channel dominates the overall event
rate, convergence on the true value is noticeably better.

4.2. Natal Kick Model Selection

Our methodology also provides inference on the model
index—that is, the underlying physical prescriptions assumed
in the models. For the purposes of this study, the only physical
prescription altered between models was the black hole natal
kick magnitude. Since all models have the same parameters and
prior ranges, the Bayes factor for one model compared to
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Figure 6. Cumulative distribution function on searched area for various
injected values of 3 and number of observations (colored lines). The searched
area represents the distance between the mode of the distribution and its true
value. The searched area for significant Nyps is notably smaller when one
channel dominates, e.g., 3 ~ 1 or 3 ~ 0.

another can be simply computed as the ratio of the number of
iterations the chain spends in each model.

As the kick prescription has a noticeably different effect on
the distribution of chirp masses in detectable cluster models
relative to detectable field models (see Figure 1), the confidence
for one prescription relative to another is a strong function of
the branching ratio, as well as the number of observations. For
example, branching ratios closer to =1 draw more
observations from the cluster models, which have more
distinctive features in the physical parameter distributions of
detectable binaries compared to field models and allow for
easier discrimination between populations. Furthermore, the
growth of Bayes factors as a function of Nyps is expedited when
comparing two kick prescriptions with dramatically different
effects on the physical parameter distributions. This can also be
seen in Figure 7: the Bayes factor between fallback kick and
full kick increases much more rapidly than the Bayes factor
between fallback kick and proportional kick.

We achieve Bayes factors between natal kick prescriptions
of ~20 as the number of observations reaches O(100), though,
as can be seen in Figure 7, the rate of increase of Bayes factors
is extremely sensitive to the injected value of the branching
ratio. Given the predicted discovery rates and projected
interferometer sensitivity increases in the next few years, this
indicates that we can begin to confidently infer the natal kick
from supernovae within the lifetime of a design-sensitivity
interferometer network. Even if the detection rate remains low,
ruling out one physical model compared to others is within
reach, especially given the conservative assumptions we have
made. As population models are parameterized by many other
discrete and continuous variables, we can expand this analysis
to constrain other uncertain physical prescriptions of popula-
tion synthesis using upcoming GW observations. Furthermore,
this hierarchical approach does not require the models to be
parameterized in the exact same way.
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Figure 7. Bayes factors between different models as a function of the number
of observations. The dark lines show the median value, and shaded regions a
68% credible interval derived from the 100 realizations. For this figure,
observations were drawn from the “fallback” kick prescription, and various
injected values of § are shown with different colors. The top and bottom panels
show the Bayes factor between fallback kicks and proportional kicks, and the
Bayes factor between fallback kicks and full neutron star kicks, respectively.
The upper limit of the plot is the maximum Bayes factor calculable given our
number of samples, and leads to the apparent flattening of the function near this
maximal value. The Bayes factor between fallback and full kick models
increases much more rapidly than the Bayes factor between fallback and
proportional kick models as a function of Ny, since the chirp mass
distributions produced by fallback and full kick models are morphologically
much more distinct.

5. Discussion and Conclusions

With the detection rates predicted for the advanced network
of GW observatories, we can look forward to dozens to
hundreds of BBH observations in the next decade. These
systems provide a unique tool for studying massive-star
evolution and the environments in which BBH systems arise,
and by pairing a catalog of detections with detailed population
models we can begin to constrain many of the uncertain
processes driving binary stellar evolution.

This work investigates how hierarchical modeling can infer the
parameters of binary stellar evolution from multiple formation
channels using solely chirp mass measurements. We find that
with O(100) observations, we will see convergence on the value
for the branching ratio and the preferred natal kick prescription,
provided the two channels considered dominate BBH rates.
Furthermore, “extreme” values of 3 (i.e., domination by a single
formation channel) facilitate quicker convergence on both the
branching ratio and natal kick prescription.

Notably, we find a trade-off between inference on the
branching ratio and inference on the natal kick prescription.
This effect is dependent on the injected kick prescription itself;
models with the fallback prescription shows the largest
disparity between field and cluster models, thereby allowing
quicker convergence on branching ratio, whereas models using
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Figure 8. Bayes factors between different models as a function of Ny, With
observations drawn from models with different injected kick prescriptions.
Dotted lines, dashed lines, and solid lines represent full kicks, proportional
kicks, and fallback kicks as the correct distribution from which observations are
drawn, respectively. All models in this plot have an injected value of 3 = 0.8.
The median values and credible regions are indicated as in Figure 7.
Interestingly, we find that when the proportional kick model is injected as the
“true” model, our inference does not necessarily prefer proportional kicks as a
function of Nyps. This is particularly apparent when comparing the Bayes factor
between proportional kicks and fallback kicks, when observations are drawn
from the proportional kick model. Though the populations are strikingly
similar, we believe this issue arises from our conservative approximation of
measurement uncertainty. Our approximations, which rely on Fisher matrix
formalism for determining the spread of the posterior distribution, provide
symmetric widths in our sampled posterior to both lower and higher values for
M_.. This may be unrealistically bolstering posterior samples in the low-mass
peak of the fallback models (see Figure 3). Furthermore, as we limit to
é-function observations, this effect disappears.

the full kick prescription are less distinguishable and require
more observations to converge on the branching ratio, as seen
in Figure 4. However, as full kicks predict drastically different
combined distributions of field and cluster populations relative
to fallback and proportional kicks, comparisons with this model
allow for accelerated inference on kick prescription, as we
demonstrate in Figure 8.

Using our methodology, the current number of GW
observations from BBH systems is far fewer than the number
of observations needed to make any meaningful statement
about kick prescription and branching ratio. Nonetheless, we
inject the chirp masses of the three current GW events and one
GW candidate from the first and second aLIGO observing runs
of as our observations, using the 90% credible intervals for
chirp mass measurements cited in Abbott et al. (2016a) and The
LIGO Scientific Collaboration et al. (2017) to generate mock
posterior samples. As expected, our analysis recovers the priors
for both quantities and provides no discernment on branching
ratio and true natal kick prescription.

The methodologies in this paper provide a framework for
many extensions and refinements, both in the context of
inferring additional parameters of population models and
including more measured properties of BBH systems. One
very simple extension, for example, is to measure the actual
physical event rates, and compare with the rates derived from
GW observations. Another possibility would be to constrain
parameters that define a mass gap, either at low masses,
between the maximum observed neutron star mass and
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minimum observed black hole mass, or at high masses due to
pair instability supernovae.

Multiple studies, such as Stevenson et al. (2017a) and Vitale
et al. (2017), have also found that inference using spin
distributions can converge on branching ratios with a similar
number of GW observations. Though subject to higher
measurement uncertainty and highly influenced by an unknown
spin magnitude distribution, the inclusion of spin parameters in
our analysis could help distinguish models, as dynamical
formation predicts an isotropic distribution in spin-tilts,
whereas isolated field binaries are believed to preserve the
memory of their initial spin alignment and can further align
their spins through mass transfer, common envelope evolution,
and tidal torquing. Furthermore, kick prescriptions have a large
effect on spin distributions and the inclusion of spin parameters
could act to bolster the confidence of one kick model compared
to another. Notably, the detection of a single outlier event, such
as those described in Rodriguez et al. (2016c), could go a long
way toward discriminating between models.

The inclusion of spins would also allow inference on other
poorly constrained model parameters of population synthesis;
though they have minimal impact on the mass distribution, the
direction of the natal kick or partial realignment of the binary
after the first supernova, for example, strongly affect the
resultant spin distributions in population synthesis models. As
the models used in this study are equipped with spin-tilts for
the BBH systems, we plan to include spin measurements for
purposes of model selection in future work. However, we note
that other mechanisms unaccounted for in our models likely
affect the spin-tilts of the binary components as well, and may
act to contaminate the information we extract about the
physical processes that are accounted for.

Besides taking a hierarchical approach to model selection
using chirp mass distributions, this study provides the frame-
work for determining Bayes factors between a discrete set of
population models. In future work, we plan to expand this
methodology to include other population synthesis model
parameters, such as common envelope efficiency, natal kick
direction, and the rate of binary coalescences as a function of
redshift. Furthermore, the framework is extensible, allowing
the inclusion of other proposed formation channel models, such
as young stellar clusters, galactic nuclei, and chemically
homogeneous evolution. As more BBHs are observed by the
advanced network of GW detectors, this type of inference will
evolve into a powerful tool for constraining the correct physical
prescriptions in population synthesis models, thereby improv-
ing our understanding of the physical processes governing
binary stellar evolution.
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