Scaling Algorithms for Weighted Matching
in General Graphs

RAN DUAN, Tsinghua University
SETH PETTIE, University of Michigan
HSIN-HAO SU, University of North Carolina, Charlotte

We present a new scaling algorithm for maximum (or minimum) weight perfect matching on general, edge
weighted graphs. Our algorithm runs in O(m+/nlog(nN)) time, O(m+/n) per scale, which matches the running
time of the best cardinality matching algorithms on sparse graphs [16, 20, 36, 37]. Here, m, n, and N bound
the number of edges, vertices, and magnitude, respectively, of any integer edge weight. Our result improves
on a 25-year-old algorithm of Gabow and Tarjan, which runs in O(m+/nlog na(m, n)log(nN)) time.

CCS Concepts: « Mathematics of computing — Matchings and factors; Graph algorithms; « Theory
of computation — Graph algorithms analysis;

Additional Key Words and Phrases: Matching polytope, scaling algorithm, non-bipartite graphs

ACM Reference format:

Ran Duan, Seth Pettie, and Hsin-Hao Su. 2018. Scaling Algorithms for Weighted Matching in General Graphs.
ACM Trans. Algorithms 14, 1, Article 8 (January 2018), 35 pages.

https://doi.org/10.1145/3155301

1 INTRODUCTION

In 1965, Edmonds [7, 8] proposed the complexity class P and proved that on general (non-bipartite)
graphs, both the maximum cardinality matching and maximum weight matching problems could
be solved in polynomial time. Subsequent work on general weighted graph matching focused on
developing faster implementations of Edmonds’ algorithm [12, 14, 15, 17, 21, 27, 28], whereas others
pursued alternative techniques, such as cycle-canceling [3], weight-scaling [13, 20], or an algebraic
approach using fast matrix multiplication [4]. Refer to Table 1 for a survey of weighted matching
algorithms on general graphs. The fastest implementation of Edmonds’ algorithm [15] runs in
O(mn + n?log n) time on arbitrarily weighted graphs. On graphs with integer edge-weights having
magnitude at most N, Gabow and Tarjan’s [20] algorithm runs in O(m+/na(m,n)lognlog(nN))

time, whereas Cygan, Gabow, and Sankowski’s runs in O(Nn®) time with high probability, where

An extended abstract of this work was presented in Barcelona, Spain at the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17). Supported by NSF Grants No. CCF-1217338, No. CNS-1318294, No. CCF-1514383, No. CCF-1637546,
and No. BIO-1455983, and AFOSR Grant No. FA9550-13-1-0042. R. Duan is supported by a China Youth 1000-Talent grant.
Authors’ addresses: R. Duan, Tsinghua University, Institute for Interdisciplinary Information Sciences, FIT 1-208, 100084,
Beijing, China; email: duanran@mail.tsinghua.edu.cn; S. Pettie, University of Michigan, Department of Electrical Engineer-
ing and Computer Science, 2260 Hayward St., Ann Arbor, MI 48109; email: pettie@umich.edu; H.-H. Su, University of North
Carolina, Charlotte, Department of Computer Science, Woodward 210E, Charlotte, NC 28223; email: hsinhao@mit.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1549-6325/2018/01-ART8 $15.00

https://doi.org/10.1145/3155301

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:2 R. Duan et al.

Table 1. Maximum Weight Perfect Matching (mwpm) Algorithms for General Graphs

Year Authors Time Complexity & Notes
1965 Edmonds mn?
1974 | Gabow 3
n
1976 | Lawler
1976 | Karzanov n® + mnlogn
1978 | Cunningham & Marsh poly(n)
1982 Galil, Micali & Gabow mnlogn
1985 | Gabow mn3/*log N INTEGER WEIGHTS
1989 | Gabow, Galil & Spencer mnlogloglog, n + n*logn d=2+m/n
1990 | Gabow mn + n?logn
1991 Gabow & Tarjan my/na(n, m)log nlog(nN) INTEGER WEIGHTS
2012 Cygan, Gabolw Nn® RANDOMIZED, INTEGER WEIGHTS
& Sankowski
Edm -y/nlog(nN)
new INTEGER WEIGHTS
m+/nlog(nN)

Edm is the time for one execution of Edmonds’ search on an integer-weighted graph.

o is the matrix multiplication exponent. For reasonable values of m, n, and N, the Gabow-Tarjan
algorithm is theoretically superior to the others. However, it is an Q(y/log na(m, n)) factor slower
than comparable algorithms for bipartite graphs [6, 19, 22, 30], and even slower than the interior
point algorithm of [2] for sparse bipartite graphs. Moreover, its analysis is rather complex.

In this paper, we present a new scaling algorithm for weighted matching on general graphs
that runs in O(m+/nlog(nN)) time. Each scale of our algorithm runs in O(m+/n) time, which is
asymptotically the same time required to compute a maximum cardinality matching in a sparse
graph [16, 20, 36, 37]. Therefore, it is unlikely that our algorithm could be substantially improved
without first finding a faster algorithm for the manifestly simpler problem of cardinality matching,.
Our algorithm’s time bound also matches that of the best bipartite scaling algorithms [6, 19, 22,
30], but is still slower than Reference [2] on sufficiently sparse bipartite graphs.

1.1 Terminology

The input is a graph G = (V, E, w), where |V| = n, |E| = m, and w : E — R assigns a real weight to
each edge. A matching M is a set of vertex-disjoint edges. A vertex is freeif it is not adjacent to an

M edge. An alternating path is one whose edges alternate between M and E \ M. An alternating

path P is augmenting if it begins and ends with free vertices, which implies that M & P &f (Mu

P) \ (M N P) is also a matching and has one more edge. The maximum cardinality matching (Mcm)
problem is to find a matching M maximizing |M|. The maximum weight perfect matching (MWPM)
problem is to find a perfect matching M (or, in general, one with maximum cardinality) maximizing
w(M) = Y .cpr w(e). The maximum weight matching problem (with no cardinality constraint) is
reducible to MmwPM [5] and may be a slightly easier problem [6, 25]. In this article, we assume that
w:E — {0,..., N} assigns non-negative integer weights bounded by N.!

! Assuming non-negative weights is without loss of generality, since we can simply subtract minecg {W(e)} from every
edge weight, which does not affect the relative weight of two perfect matchings. Moreover, the minimum weight perfect
matching problem is reducible to MwPM, simply by substituting —w for w.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:3

1.2 Edmonds’ Algorithm

Edmonds’ mwpMm algorithm begins with an empty matching M and consists of a sequence of search
steps, each of which performs zero or more dual adjustment, blossom shrinking, and blossom dis-
solution steps until a tight augmenting path emerges or the search detects that |M| is maximum.
(Blossoms, duals, and tightness are reviewed in Section 2.) The overall running time is, therefore,
O(n - Edm), where Edm is the cost of one search. Gabow’s implementation [15] of Edmonds’ search
runs in O(m + nlog n) time, the same as one Hungarian search [10] on bipartite graphs.

1.3 Scaling Algorithms

The problem with Edmonds’ mwpMm algorithm is that it finds augmenting paths one at a time,
apparently dooming it to a running time of Q(mn). The matching algorithms of References [13,
20] take the scaling approach of Edmonds and Karp [9]. The idea is to expose the edge weights
one bit at a time. In the ith scale the goal is to compute an optimum perfect matching with respect
to the i most significant bits of w. Gabow [13] showed that each of log N scales can be solved in
O(mn3/*) time. Gabow and Tarjan [20] observed that it suffices to compute a +O(n)-approximate
solution at each scale, provided there are additional scales; each of their log(nN) scales can be
solved in O(m+/na(m, n) log n) time.

Scaling algorithms for general graph matching face a unique difficulty not encountered by
scaling algorithms for other optimization problems. At the beginning of the ith scale we have
inherited from the (i — 1)th scale a nested set Q' of blossoms and near-optimal duals y’,z’.
(The matching primer in Section 2 reviews y and z duals.) Although y’, z’ are numerically close
to optimal, Q" may be structurally very far from optimal for scale i. The References [13, 20]
algorithms gradually get rid of inherited blossoms in Q’, while simultaneously building up a new
near-optimum solution Q, y, z. They decompose the tree of Q' blossoms into heavy paths and pro-
cess the paths in a bottom-up fashion. Whereas Gabow’s method [13] is slow but moves the dual
objective in the right direction, the Gabow-Tarjan method [20] is faster but may actually widen the
gap between the dual objective and optimum. There are log n layers of heavy paths and processing
each layer widens the gap by up to O(n). Thus, at the final layer the gap is O(nlogn). It is this
gap that is the source of the y/nlogn factor in the running time of [20], not any data structuring
issues.

Broadly speaking, our algorithm follows the scaling approach of References [13, 20], but dis-
mantles old blossoms in a completely new way, and further weakens the goal of each scale. Rather
than compute an optimal [13] or near-optimal [20] perfect matching at each scale, we compute
a near-optimal, near-perfect matching at each scale. The advantage of leaving some vertices un-
matched (or, equivalently, artificially matching them up with dummy mates) is not at all obvious,
but it helps speed up the dismantling of blossoms in the next scale. The algorithms are parameter-
ized by a 7 = 7(n). A blossom is called large if it contains at least 7 vertices and small otherwise.
Each scale of our algorithm produces an imperfect matching M with y, z, Q that (i) leaves O(n/7)
vertices unmatched and (ii) is such that the sum of z(B) of all large B € Q is O(n), independent
of the magnitude of edge weights. After the last scale, the vertices left free by (i) will need to
be matched up in O(Edm -(n/7)) time, at the cost of one Edmonds’ search per vertex. Thus, we
want 7 to be large. Part (ii) guarantees that large blossoms formed in one scale can be efficiently
liquidated in the next scale (see Section 3), but getting rid of small blossoms (whose z-values are
unbounded, as a function of n) is more complicated. Our methods for getting rid of small blossoms
have running times that are increasing with 7z, so we want 7 to be small. In the LIQUIDATIONIST

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:4 R. Duan et al.

algorithm, all inherited small blossoms are processed in O(Edm -7) time, whereas in HYBRID (a
hybrid of LiguipaTIonisT and Gabow’s algorithm [13]) they are processed in O(mz%/*) time.

1.4 Organization

In Section 2, we review Edmonds’ LP formulation of Mmwpm and Edmonds’ search procedure. In
Section 3, we present the LIQUIDATIONIST algorithm running in O(Edm -y/nlog(nN)) time. In
Section 4, we give the HYBRID algorithm running in O(m+/nlog(nN)) time.

Our algorithms depend on a having an efficient implementation of Edmonds’ search procedure.
In Section 5, we give a detailed description of an implementation of Edmonds’ search that is very
efficient on integer-weighted graphs. It runs in linear time when there are a linear number of dual
adjustments. When the number of dual adjustments is unbounded, it runs in O(mloglog n) time
deterministically or O(m+/loglogn) time w.h.p. This implementation is based on ideas suggested
by Gabow [13] and may be considered folklore in some quarters.

We conclude with some open problems in Section 6.

2 A MATCHING PRIMER

The mwpM problem can be expressed as an integer linear program:

maximize Z x(e) - w(e)
ecE

subject to x(e) € {0,1}, foralle € E
and Zx(e) =1, forallveV.

e3v

The integrality constraint lets us interpret x as the membership vector of a set of edges and the
Y esv x(e) = 1 constraint enforces that x represents a perfect matching. Birkhoff’s theorem [1] (see
also von Neumann [38]) implies that in bipartite graphs the integrality constraint can be relaxed
to x(e) € [0, 1]. The basic feasible solutions to the resulting LP correspond to perfect matchings.
However, this is not true of non-bipartite graphs! Edmonds proposed exchanging the integrality
constraint for an exponential number of the following odd set constraints, which are obviously
satisfied for every x that is the membership vector of a matching:

Z x(e) < ||Bl/2], forall Bc V,|B| > 3 odd.
ec€E(B)

Edmonds proved that the basic feasible solutions to the resulting LP are integral and, therefore,
correspond to perfect matchings. Weighted matching algorithms work directly with the dual LP.
Lety:V — Rand z: 2" — R be the vertex duals and odd set duals:

minimize Y y()+ > z(B)- L|Bl/2]
veV BcV:
|B| =3 is odd

subject to z(B) > 0, forallodd B C V,
w(u,v) < yz(u,v) for all (u,v) € E,

where, by definition, yz(u,v) def y(u) +y(v) + Z z(B).

B>{u,v}

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:5

We generalize the synthetic dual yz to an arbitrary set S € V of vertices as follows:

yz(S) = > y(w) + > z(B)- LIBI/2] + > 2(B)- LISI/2].
ues BCS B>S
Note that yz(V) is exactly the dual objective.

Edmonds’ algorithm [7, 8] maintains a dynamic matching M and dynamic laminar set Q c 2V
of odd sets, each associated with a blossom subgraph. Informally, a blossom is an odd-length al-
ternating cycle (w.r.t. M), whose constituents are either individual vertices or blossoms in their
own right. More formally, blossoms are constructed inductively as follows. If v € V, then the odd
set {v} induces a trivial blossom with edge set 0. Suppose that for some odd ¢ > 3, Ay, ..., A1
are disjoint sets associated with blossoms E4,,...,E4, ,. If there are edges ey, ..., e,—; € E such
that e; € A; X A1 (modulo ¢) and e; € M if and only if i is odd, then B = | J; A; is an odd set as-
sociated with the blossom Eg = | J; E4; U {eo, . .., e,—1}. Because ¢ is odd, the alternating cycle on
Ay, ..., Ar-1 has odd length, leaving A, incident to two unmatched edges, ey and e,—;. One can
easily prove by induction that |B| is odd and that Eg N M matches all but one vertex in B, called
the base of B. Remember that E(B) = EN (]23) % the edge set induced by B, may contain many non-
blossom edges not in Ep. Define n(B) = |B| and m(B) = |E(B)| to be the number of vertices and
edges in the graph induced by B.

The set Q of active blossoms is represented by rooted trees, where leaves represent vertices and
internal nodes represent nontrivial blossoms. A root blossom is one not contained in any other
blossom. The children of an internal node representing a blossom B are ordered by the odd cycle
that formed B, where the child containing the base of B is ordered first. Edmonds [7, 8] showed
that it is often possible to treat blossoms as if they were single vertices, by shrinking them. We
obtain the shrunken graph G/Q by contracting all root blossoms and removing the edges in those
blossoms. To dissolve a root blossom B means to delete its node in the blossom forest and, in the
contracted graph, to replace B with individual vertices Ao, . .., As_1.

Blossoms have numerous properties. Our algorithms use two in particular.

(1) The subgraph on Ejp is critical, meaning it contains a perfect matching on B\{v}, for each
v € B. Phrased differently, any v € B can be made the base of B by choosing the matching
edges in Ep appropriately.

(2) As a consequence of (1), any augmenting path P’ in G/Q extends to an augmenting
path P in G, by replacing each non-trivial blossom vertex B in P’ with a correspond-
ing path through Eg. Moreover, Q is still valid for the matching M @ P, though the bases
of blossoms intersecting P may be relocated by augmenting along P. See Figure 1 for an
example.

2.1 Relaxed Complementary Slackness

Edmonds’ algorithm maintains a matching M, a nested set Q of blossoms, and duals y : V — Z
and z : 2V — N that satisfy Property 1. Here w is a weight function assigning even integers; it is
generally not the same as the input weights w.

PROPERTY 1 (COMPLEMENTARY SLACKNESS). Assume w assigns only even integers.

1. Granularity. z(B) is a nonnegative even integer and y(u) is an integer.
2. Active Blossoms. |[M N Eg| = ||B|/2] forall B € Q. If B € Q is a root blossom, then z(B) > 0;
if B¢ Q, then z(B) = 0. Non-root blossoms may have zero z-values.

2The notation ()t() refers to the set of all subsets of X of size ¢, so (?) is the set of all possible undirected edges on B.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:6 R. Duan et al.

Uy U2 Uy U2

us Us

(a) (b)

Fig. 1. Matched edges are thick, unmatched edges thin. Left: B is a blossom consisting of seven sub-blossoms,
four of which are trivial (vertices) and the other three non-trivial blossoms. The path P’ = (u3, u2, B, u3) is an
augmenting path in the shrunken graph G/{B}. Right: augmenting along P’ in G/{B} enlarges the matching
and has the effect of moving the base of B to the vertex matched with us.

3. Domination. yz(e) > w(e), for each e = (u,v) € E.
4. Tightness. yz(e) = w(e), for eache € MU |Jgeq EB.

LEmMA 2.1. If Property 1 is satisfied for a perfect matching M, blossom set Q, and duals y, z, then
M is necessarily a MwpM w.r.t. the weight function w.

The proof of Lemma 2.1 follows the same lines as Lemma 2.2, proved below. The Gabow-Tarjan
algorithms and their successors [5, 6, 19, 20, 22, 30] maintain a relaxation of complementary slack-
ness. By using Property 2 in lieu of Property 1, we introduce an additive error as large as n. This
does not prevent us from computing exact MwpMs but it does necessitate additional scales. Be-
fore the algorithm proper begins, we compute the extended weight function w(e) = (5 + 1)w(e).
Note that the weight of every matching w.r.t. w is a multiple of 5 + 1. After the final scale of our
algorithms w = 2w, so if we can find a matching M such that w(M) is additively within n of the
mwpM, then w(M) is additively within 7 of the mwpm, which implies that M is exactly optimum
w.r.t. both w(M) and w(M). These observations motivate the use of Property 2.

PROPERTY 2 (RELAXED COMPLEMENTARY SLACKNESS). Assume w assigns only even integers. Prop-
erty 1(1,2) holds and (3,4) are replaced with

3. Near Domination. yz(e) > w(e) — 2 for each edge e = (u,v) € E.
4. Near Tightness. yz(e) < w(e), for eache € M U |Jgcq EB.

The “~2” in Property 2 is due to the fact that w is always even.®
LEMMA 2.2. If Property 2 is satisfied for some perfect matching M, blossom set Q, and duals y, z,
then w(M) > w(M*) — n, where M* is an MWPM w.r.t. w.

3 An equivalent implementation would be to assume that w is merely integral, and maintain the invariant that z is integral
and y half-integral.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:7

Proor. By Property 2 (near tightness and active blossoms), the definition of yz, and the perfec-
tion of M, we have

wM) = Y yz(e) =)y +) 2(B)- IMNEB) = Y yw) +) =(B) - | 3]

eeM ueV BeQ ueV BeQ

Since the MwpM M™ puts at most | |B|/2] edges in any blossom B € Q,

w(M*) < Z (yz(e) +2) Property 2 (near domination)
eeM*
= Z y(u) + Z z(B) - IM" N E(B)| + 2|M"| Defn. of yz
uev BeQ

< Z y(u) + Z z(B) - L|B|/2] + n. |M*| = n/2, Non-negativity of z
uev BeQ

Therefore, we have w(M) > w(M*) — n. O

2.2 Edmonds’ Search

Suppose we have a matching M, blossom set Q, and duals y, z satisfying Property 1 or 2. The
goal of Edmonds’ search procedure is to manipulate y, z, and Q until an eligible augmenting path
emerges. At this point |M| can be increased by augmenting along such a path (or multiple such
paths), which preserves Property 1 or 2. The definition of eligible needs to be compatible with
the governing invariant (Property 1 or 2) and other needs of the algorithm. In our algorithms, we
use several implementations of Edmonds’ generic search: they differ in their governing invariants,
definition of eligibility, and data structural details. For the time being the reader can imagine that
Property 1 is in effect and that we use Edmonds’ original eligibility criterion [7].

CRITERION 1. An edge e is eligible if it is tight, that is, yz(e) = w(e).

Each scale of our algorithms begins with Property 1 as the governing invariant but switches to
Property 2 when all inherited blossoms are gone. When Property 2 is in effect, we use Criterion 2
if the algorithm aims to find augmenting paths in batches and Criterion 3 when augmenting paths
are found one at a time. The reason for switching from Criterion 2 to 3 is discussed in more detail
in the proof of Lemma 3.3.

CRITERION 2. An edge e is eligible if at least one of the following holds.

1. e € Eg for some B € Q.
2. e¢ M andyz(e) = w(e) — 2.
3. e € M andyz(e) = w(e).

CRITERION 3. An edge is eligible if yz(e) = w(e) oryz(e) = w(e) — 2.
Regardless of which eligibility criterion is used, let Gejig = (V, Eelig) be the eligible subgraph and

Gelig = Gelig/ 2 be obtained from Geyjg by contracting all root blossoms.

We consider a slight variant of Edmonds’ search that looks for augmenting paths only from a
specified set F of free vertices in V, that is, each augmenting path must have at least one end in F
and possibly both. (We also use F to denote the corresponding free vertices in éelig.) The search
iteratively performs Augmentation, Blossom Shrinking, Dual Adjustment, and Blossom Dissolution
steps, halting after the first Augmentation step that discovers at least one augmenting path. We
require that the y-values of all F vertices have the same parity (even/odd). This is needed to keep

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:8 R. Duan et al.

EDMONDSSEARCH(F') Precondition: {y(u) | w € F} must all be of the same parity.
Repeatedly perform Augmentation, Blossom Shrinking, Dual Adjustment, and Blossom
Dissolution steps. Halt after the first Augmentation step that finds at least one
augmenting path.

o Augmentation:

While @elig contains an augmenting path from some free vertex in F, find such a path P
in @ehg and extend P to an augmenting path P in Geig. Set M < M @ P and update
aeligy

Blossom Shrinking:

Let ‘A/Out C V(éehg) be the vertices (that is, root blossoms) reachable from free vertices

in F' by even- length alternating paths in Gel,g, let Qnew be a maximal set of (nested)
blossoms on Vout (That is, if (u,v) € E(Chg)\M and u,v € Vout, then v and v must
be in a common blossom in Quew.) Let Vln - V(Gehg)\Vout be those vertices reachable
from free vertices in F' by odd-length alternating paths. Set z(B) < 0 for B € Qnew and
set 2+ QU Quew. Update @Cng.

Dual Adjustment:
Let Vin, Vour € V be original vertices represented by vertices in Vi, and Voue. The y- and
z-values for some vertices and root blossoms are adjusted:

y(u) < y(u) — 1, for all u € Vous.

y(u) < y(u) + 1, for all u € Vin.

z(B) < z(B) + 2, if B € Q is a root blossom with B C Voyt.
z(B) < z(B) — 2, if B € Q is a root blossom with B C Viy.

Blossom Dissolution:

After dual adjustments some (inner) root blossoms may now have zero z-values. Re-
peatedly dissolve such blossoms (remove them from) as long as they exist. Update
éclig~

Fig. 2. A generic implementation of Edmonds’ search procedure. Data structural issues are ignored, as is the
eligibility criterion, which determines Gejig.

Y, z integral and allow us to perform discrete dual adjustment steps without violating Property 1
or 2. See Figure 2 for the pseudocode.

The main data structure needed to implement EDMONDSSEARCH is a priority queue for sched-
uling events (blossom dissolution, blossom formation, and grow events that add vertices to
Vin U Vout). We refer to PQSEARCH as an implementation of EDMONDSSEARCH when the number
of dual adjustments is unbounded. See Gabow [15] for an implementation of PQSEARCH taking
O(m + nlogn) time, or Section 5 for one taking O(m+/loglogn) time, w.h.p. When the number
of dual adjustments is t = O(m), we can use a trivial array of buckets as a priority queue. Let
BUCKETSEARCH be an implementation of EDMONDSSEARCH running in O(m + t) time; refer to Sec-
tion 5 for a detailed description.

Regardless of what t is or how the dual adjustments are handled, we still have options for how to
implement the Augmentation step. Under Criterion 1 of eligibility, we can make the Augmentation
step extend M to a maximum cardinality matching in the subgraph of Gej;; induced by V(M) U F.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:9

SEARCHONE(F) Precondition: {y(u) | u € F} must all be of the same parity.
e Augmentation:
Find any mazimal set ¥ of vertex-disjoint augmenting paths from F' in @elig. Set
M«Me | P
Pew
e Perform Blossom Shrinking, Dual Adjustment, and Blossom Dissolution steps from F',
exactly as in EDMONDSSEARCH.

Fig. 3.

This can be done in O((p + 1)m) time if p > 0 augmenting paths are found [18], or in O(m+/n)
time, independent of p, using a cardinality matching algorithm, e.g., see References [29, 36, 37]
or Reference [20, §10] or [16].

When eligibility Criterion 2 is in effect the Augmentation step is qualitatively different. Observe
that in the contracted graph G/Q, matched and unmatched edges have different eligibility criteria.
It is easily proved that augmenting along a maximal set of augmenting paths eliminates all eligible
augmenting paths,* quickly paving the way for Blossom Shrinking and Dual Adjustment steps.
Unlike PQSEARCH and BUCKETSEARCH, SEARCHONE only performs one dual adjustment and must
be used with Criterion 2; see Figure 3. Finding a maximal set of augmenting paths in O(m) time is
straightforward with depth first search [20, §8] and a union-find algorithm [18].

The following lemmas establish the correctness of EDMONDSSEARCH (using either Property 1 or
2) and SEARCHONE (using Property 2 and Criterion 2).

LEmMMA 2.3. After the Augmentation step of SEARCHONE(F) (using Criterion 2 for eligibility), é;hg
contains no eligible augmenting paths from an F-vertex.

Proor. Suppose that, after the Augmentation step, there is an augmenting path P from an F-
vertex in éelig. Since ¥ was maximal, P must intersect some P’ € ¥ at a vertex v. However, after
the Augmentation step every edge in P’ will become ineligible, so the matching edge (v,v") € M
is no longer in éelig, contradicting the fact that P consists of eligible edges. O

LEMMA 2.4. If Property 1 is satisfied and the y-values of vertices in F have the same parity, then
EDpMONDSSEARCH(F) (under Criterion 1) preserves Property 1.

PRrooF. Property 1 (granularity) is obviously maintained, since we are always adjusting y-values
by 1 and z-values by 2. Property 1 (active blossoms) is also maintained, since all the new root
blossoms discovered in the Blossom Shrinking step are in Vo, and will have positive z-values after
adjustment. Furthermore, each root blossom whose z-value drops to zero is removed.

Consider the tightness and the domination conditions of Property 1. First, note that if both
endpoints of e lie in the same blossom, yz(e) will not change until the blossom is dissolved. When
the blossom was formed, the blossom edges must be eligible (tight). The augmentation step only
makes eligible edges matched, so tightness is satisfied.

Consider the effect of a dual adjustment on an edge e = (u, v), whose endpoints lie in different
blossoms. We divide the analysis into the following four cases. Refer to Figure 4 for illustrations
of the cases.

4The distinction between a maximal set and maximum set of augmenting paths is, in the context of flow algorithms, entirely
analogous to the distinction between blocking flows and maximum flows.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:10 R. Duan et al.

Fig. 4. Thick edges are matched, thin unmatched. Dashed edges (whether thick or thin) are ineligible. Solid
vertices are in Vip U Voyut; all other vertices are dashed. Case (3) can only occur under Criteria 2 or 3 of
eligibility.

1. Both u and v are in Vi, U Vo and e € M. We cannot have both u, v € Vot (otherwise they
would be in a common blossom, since e is eligible) nor can both be in Vi,, sou € Vi, v €
Vout, and yz(e) is unchanged.

2. Both u and v are in Vi, UV, and e ¢ M. If at least one of u or v is in Vj,, then yz(e)
cannot decrease and domination holds. Otherwise, we must have u, v € V. In this case,
e must be ineligible, for otherwise an augmenting path or a blossom would have been
found. Ineligibility implies yz(e) > w(e) + 1 but something stronger can be inferred. Since
the y-values of free vertices have the same parity, all vertices reachable from free vertices
by eligible alternating paths also have the same parity. Since w(e) is even (by assumption)
and yz(e) is even (by parity), we can conclude that yz(e) > w(e) + 2 before dual adjustment
and, therefore, yz(e) > w(e) after dual adjustment.

3. u but not v is in Vi, U Vot and e € M. This case cannot happen, since in this case, u € Vi,
and e must be ineligible, but we know all matched edges are tight.

4. ubutnotvisin Vi, U Vo ande ¢ M. If u € Vi, then yz(e) increases and domination holds.
Otherwise, u € Vo and e must be ineligible. In this case, we have yz(e) > w(e) + 1 before
the dual adjustment and yz(e) > w(e) afterwards. O

LEMMA 2.5. If Property 2 is satisfied and the y-values of vertices in F have the same par-
ity, then SEARCHONE(F) (under Criterion 2) or EDMONDSSEARCH(F) (under Criterion 3) preserves
Property 2.

Proor. The proof is similar to that of the previous lemma, except that we replace the tightness
and domination by near tightness and near domination. We point out the differences in the fol-
lowing. An edge e can be included in a blossom only if it is eligible. An eligible edge must have
yz(e) = w(e) or yz(e) = w(e) — 2. Augmentations only make eligible edges matched. Therefore,
near tightness is satisfied after the Augmentation step.

When doing the dual adjustment, the following are the cases when yz(e) is modified after the
dual adjustment. In Case 2 of the previous proof, when u,v € Vo, but e is ineligible, we have
yz(e) > w(e) — 1. By parity this implies that yz(e) > w(e) before the dual adjustment and yz(e) >
w(e) — 2 afterwards. Case 3 may happen in this situation. It is possible that u € Vi, and e € M
is ineligible. Then, we must have yz(e) < w(e) — 1 before the dual adjustment and yz(e) < w(e)
afterwards. In Case 4, when u € Vg, we have yz(e) > w(e) — 1 before the dual adjustment and
yz(e) > w(e) — 2 afterwards. O

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:11

3 THE LIQUIDATIONIST ALGORITHM

The most expedient way to get rid of an inherited blossom is to liquidate it (our term) by distribut-
ing its z-value over its constituents’ y-values, preserving Property 1 (domination).

L1QUIDATE(B) :
y(u) < y(u) + z(B)/2, foreachu € B
z(B) « 0 (and dissolve B)

From the perspective of a single edge, liquidation has no effect on yz(e) if e is fully inside B or
outside B, but it increases yz(e) by z(B)/2 if e straddles B. From a global perspective, liquidation
increases the dual objective yz(V) by |B| - z(B)/2 — ||B|/2] - z(B) = z(B)/2. Since z(B) is generally
unbounded (as a function of n), this apparently destroys the key advantage of scaling algorithms,
that yz(V) is within O(n) of optimum. It is for this reason that References [13, 20] did not pursue
liquidation.

The LiQuiDATIONIST algorithm (see Figure 5) is so named because it liquidates all inherited
blossoms. Let w’, y’,z’, M’, Q' be the edge weights, dual variables, matching, and blossom set at
the end of the (i — 1)th scale.’ Recall that a blossom is large if it contains at least 7 vertices and
small otherwise.

The first step is to compute the even weight function w for the ith scale and starting duals vy, z,
as follows.

w(e) « 2(w’(e) + the ith bit of w(e)),
y(u) < 2y'(u) +3,
z(B) « 2Z'(B).

Lemma 3.1 proves that if w’,y’,z’ satisfy Property 2 w.r.t. M’, then w,y, z satisfy Property 1
w.r.t. M = 0, except for the Active Blossom property, a point that will be moot once we liquidate
all blossoms in Q. It will be guaranteed that YLarge Ber Z2(B) = O(n), so liquidating all large blos-
soms increases yz(V) by a tolerable O(n). After liquidating large blossoms, but before liquidating
small blossoms, we reweight the graph, setting

w(u,v) «— w(u,v) —y(u) —y(v) for each edge (u,v)
y(u) « 0 for each vertex u.

Reweighting is a conceptual trick that simplifies the presentation and some proofs. A practical
implementation would simulate this step without actually modifying the edge weights.
Liquidating small blossoms increases y(u) from 0 to Y.gman peq, uep 2(B)/2, which temporarily
destroys the property that yz(V') is within O(n) of optimal. Let B’ be a maximal former small blos-
som. We repeatedly execute PQSEARCH(F) from the set F of free vertices in B’ with maximum
y-value Y until one of three events occurs (i) |F| decreases, because an augmenting path is discov-
ered, (ii) |F| increases because Y — Y’ dual adjustments have been performed, where Y’ is the 2nd
largest y-value of a free vertex in B, or (iii) the y-values of all vertices in F become zero. Because
B’ is small there can be at most O(|B’[) = O(r) executions that stop due to (i) and (ii). We prove
that conducting Edmonds’ searches in exactly this way has two useful properties. First, no edge

>In the first scale, w’, ', z’ = 0 and M’, Q" = 0, which satisfies Property 2.

6 At this point we continue to use the term “blossom” to refer to a B € Q' with z(B) > 0. Of course, since M = 0, Eg no
longer satisfies the structural definition of a blossom, i.e., consisting of an odd-length cycle of vertices/subblossoms that
alternates between M and E\M.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:12 R. Duan et al.

LIQUIDATIONIST(G,)
o Gop+ G,y 0,2+ 0,w <+ 0, Q<+ 0.

e For scales i = 1,---, [log((5 + 1)N)], execute steps Initialization-Perfection.

Initialization
1. Set Gi + Gi—1, 9y + 1y, 2 2z, w +—w, M < 0, Q' < Q, and Q + 0.

Scaling
2. Set w(e) < 2(w’(e) + (the i*™ bit of w(e))) for each edge e; set y(u) + 2y (u) + 3 for
each vertex u; and set z(B’) <+ 22'(B’) for each B’ € Q'.

Large Blossom Liquidation and Reweighting
3. LIQUIDATE(B') for each large B’ € Q.
4. Reweight the graph:
w(u,v) w(u,v) —y(u) — y(v) for each edge (u,v) € E
y(u) <0 for each vertex u € V

Small Blossom Liquidation
5. LIQUIDATE(B’) for each small B’ € .
6. For each mazimal old small blossom B':
While max{y(u) | u € B’ is free} > 0,
Y + max{y(u) | u € B is free}
F <+ {u€ B is free | y(u) = Y}
Y’ < max{0, max{y(u) | u € B'\F is free}}

Run PQSEARCH(F') (Criterion 1) until an augmenting path is found and
the matching is augmented or Y — Y’ dual adjustments have been performed.

Free Vertex Reduction
7. Run SEARCHONE(F') (Criterion 2) 7 times, where F' is the set of free vertices.

Perfection
8. Delete all free dummy vertices. For each remaining free vertex u, create a dummy
with y(4) = 7 and a zero-weight matched edge (u, @) € M.

e Finalization
Delete all dummy vertices from Griog((z+1)n)1- Repeatedly call PQSEARCH(F) (Crite-
rion 3) on the set F' of free vertices until F' = ().

Fig. 5.

straddling B” ever becomes eligible, so the search is confined to the subgraph induced by B’, and
second, when the y-values of free vertices are zero, yz(V) is restored to be within O(n) of optimal.
Each of these Edmonds’ searches can form new weighted blossoms, but because of the first prop-
erty they all must be small. The second property is essential for the next step: efficiently finding a
near-perfect matching,.

After inherited blossoms have been dealt with, we switch from satisfying Property 1 to
Property 2 and call SEARCHONE(F) 7 times using eligibility Criterion 2, where F is the set of all
free vertices. We prove that this leaves at most O(n/7) free vertices. Note that large blossoms can

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:13

only be introduced during the calls to SEARCHONE. Since we only perform r dual adjustments, we
can bound the sum of z-values of all new large blossoms by O(n).

To end the ith scale, we artificially match up all free vertices with dummy vertices and zero-
weight edges, yielding a perfect matching. Thus, the input graph G;,; to scale i + 1 is always G
supplemented with some dummy pendants (degree one vertices) that have accrued over scales 1
through i. Pendants can never appear in a blossom.

After the last scale, we have a perfect matching M in Grlog((gﬂ) ~)1>» which includes up to
O(n/7) - log((5 + 1)N) dummy vertices acquired over all the scales. We delete all dummy ver-
tices and repeatedly call PQSEARCH(F) on the current set of free vertices until F = (. Since these
calls make many dual adjustments, we switch from Criterion 2 (which is only suitable for use with
SEARCHONE) to Criterion 3 of eligibility. Each call to PQSEARCH matches at least two vertices, so
the total time for finalization is O(Edm -(n/7) log(nN)). See Figure 5 for a compact summary of
the whole algorithm.

3.1 Correctness

We first show that rescaling w, y, z at the beginning of a scale restores Property 1 (except for Active
Blossoms) assuming Property 2 held at the end of the previous scale.

LEMMA 3.1. Consider an edge e € E(G;) at scale i.

o After Step 2 (Scaling), w(e) < yz(e). Moreover, ife € M" U Uprcqr Ep’, then w(e) > yz(e) — 6.
(In the first scale, w(e) > yz(e) — 6 for everye.)

o After Step 4 (Large Blossom Liquidation and Reweighting), w(e) is even for all e € E(G;) and
y(u) = 0 for ally € V(G;). Furthermore,

w(e) < yz(e) = Z z(B').
Small B'eQ)’ :
ecE(B')

Therefore, after Large Blossom Liquidation and Reweighting, (M, Q,y, z, w) satisfy Property 1, ex-
cluding Active Blossoms.
PROOF. At the end of the previous scale, by Property 2(near domination), y’z’(e) > w’(e) — 2.
After the Scaling step,
yz(e) = 2y’z’(e) + 6 > 2w'(e) + 2 > w(e).
If e € M" U Upeq Epr was an old matching or blossom edge, then
yz(e) = 2y’z’'(e) + 6 < 2w'(e) + 6 < w(e) + 6.

In the first scale, yz(e) = 6 and w(e) € {0, 2}. Step 3 will increase some yz-values and w(e) < yz(e)
will be maintained. After Step 4 (reweighting), w(u, v) will be reduced by y(u) + y(v), so

w(u,v) < Z z(B').
Small B'eQ)’ :
(u, v)€E(B’)

From Property 2(1) (granularity) in the previous scale, after Step 2 all y-values are odd and z-values
are multiples of 4. Therefore, y-values remain odd after Step 3. Since w(u, v) is even initially, it
remains even after subtracting off odd y(u), y(v) in Step 4. O

LEMMA 3.2. After Step 5 in Small Blossom Liquidation, w(u,v) < 2 - min{y(u),y(v)} for all edges
(u,v), hence, w(u,v) < y(u) + y(v). Furthermore, Property 1 holds after Small Blossom Liquidation.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:14 R. Duan et al.

Proor. Fix any edge (u,v). According to Lemma 3.1, after Step 5, we have

yw = > zB)2 =) zB)2 = wwv)/.
Small B'€Q)’ : Small B’ €Q’ :
uepB’ (u, v)€EE(B’)
Therefore, w(u,v) < 2y(u) and by symmetry, w(u, v) < 2y(v). After Step 5, z = 0 and Q =0, so
Property 1 (including Active Blossoms) holds. In Step 6 of Small Blossom Liquidation, PQSEARCH
is always searching from the free vertices with the same y-values and the edge weights are even.
Therefore, by Lemma 2.4, Property 1 holds afterwards. O

LEMMA 3.3. The LIQUIDATIONIST algorithm returns a maximum weight perfect matching of G.

Proor. First, we claim that at the end of each scale i, M is a perfect matching in G; and Property 2
is satisfied. By Lemma 3.2, Property 1 is satisfied after the Small Blossom Liquidation step. The calls
to SEARCHONE in the Free Vertex Reduction step always search from free vertices with the same
y-values. Therefore, by Lemma 2.5, Property 2 holds afterwards. The perfection step adds/deletes
dummy free vertices and edges to make the matching M perfect. The newly added edges have
w(e) = yz(e), and so Property 2 is maintained at the end of scale i.

Therefore, Property 2 is satisfied at the end of the last scale [log((§ + 1)N)]. Consider the
shrunken blossom edges at this point in the algorithm. Each edge e was made a blossom edge
when it was eligible according to Criterion 1 (in Step 6) or Criterion 2 (in Step 7) and may have
participated in augmenting paths while its blossom was still shrunken. Thus, all we can claim is
that yz(e) — w(e) € {0,—2}. In the calls to PQSEARCH in the Finalization step, we switch to eli-
gibility Criterion 3 to ensure that edges inside shrunken blossoms remain eligible whenever the
blossoms are dissolved in the course of the search.’ By Lemma 2.5, each call to PQSEARCH main-
tains Property 2 while making the matching perfect. After Finalization, w(M) > w(M*) — n. Note
that in the last scale w(e) = 2w(e) for each edge e, so w(M) > w(M*) — n/2. By definition of w,
w(M) is a multiple of 5 + 1, so M maximizes w(M) and hence w(M) as well.]

3.2 Running time

Next, we analyze the running time.

LeEmMA 3.4. In Step 6, we only need to consider the edges within small blossoms of the previous
scale. The total time needed for Step 6 in one scale is O((m + nlogn)t) (using Reference [15]) or
O(m+/loglogn - 7) w.h.p. (see Section 5).

Proor. We first analyze the behavior of Step 6 assuming we only consider edges with both
endpoints in the same maximal small blossom, i.e., straddling edges are ignored. Then, we argue
that straddling edges can never become eligible in Step 6, so a correct implementation may ignore
them.

Let Y denote the current maximum y-value of a free vertex in a maximal small blossom B pro-
cessed in Step 6. We prove that the y-values of all vertices in Vi, U Vo are at least Y. The proofis by
induction. After Initialization, since M = 0, we have Vi, U Vout = F. Suppose that it is true before a
dual adjustment in PQSEARCH(F). After the dual adjustment, the maximum y-value of a free ver-
tex is now Y — 1. Vertices can have their y-values decreased by at most one, which may cause new
edges straddling Vi, U Vi, to become eligible. Suppose that (u, v) € E(B) becomes eligible after the
dual adjustment, adding v € Bto the set Vi, U V. The eligibility criterion is tightness (Criterion 1),
so we must have w(u,v) = y(u) + y(v) > (Y — 1) + y(v). On the other hand, by Lemma 3.2, and
since y(v) has not been changed since Step 5, we have w(u, v) < 2y(v). Therefore, y(v) > Y — 1.

7 Alternatively, we could use Criterion 2 but allow all formerly shrunken blossom edges to be automatically eligible.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:15

Now consider an edge (u, v) with u and v in different maximal small blossoms. Just before we lig-
uidate small blossoms, w(u,v) < yz(u,v) = y(u) + y(v) = 0; after liquidation, we have yz(u,v) =
Yy + Y, where Yy = Y gmall Bear:xen 2(B)/2. As argued above, when we process u’s (respectively,
v’s) maximal small blossom, u (respectively, v) will participate in at most Y;, (respectively, Y,,) dual
adjustments before the free vertices’ y-values reach zero. Thus, (u,v) will never become eligible
during any search in Step 6.

Thus, we only consider the edge set E(B’) when processing B’ in Step 6. Sorting the y-
values takes O(nlogn) time. Before Y reaches 0, each call to PQSEARcH(F) takes O(m(B’) +
n(B’) log n(B’)) time (using Reference [15]) or O(m(B’)+/loglog n(B’)) time w.h.p. (Section 5) and
either matches at least two more vertices in B’ or enlarges the set F of free vertices with maxi-
mum y-value in B". Thus, there can be at most O(n(B’)) = O(r) calls to PQSEARCH on B’. Summed
over all maximal small B” € Q’, the total time for Step 6 is O((m + nlogn)z) or O(m+/loglogn - 7)
w.h.p. O

LEMMA 3.5. The sum of z-values of large blossoms at the end of a scale is at most 2n.

Proor. By Lemma 3.4, Small Blossom Liquidation only operates on subgraphs of at most 7
vertices and, therefore, cannot create any large blossoms. Every dual adjustment performed in
the Free Vertex Reduction step increases the z-values of at most n/z large root blossoms, each
by exactly 2. (The dummy vertices introduced in the Perfection step of scales 1 through i — 1 are
pendants and cannot be in any blossom. Thus, the “n” here refers to the number of original vertices,
not [V(G;)|.) There are at most 7 dual adjustments in Free Vertex Reduction, which implies the
lemma. O

LEMMA 3.6. Let M’ be the perfect matching obtained in the previous scale. Let M"' be any (not
necessarily perfect) matching. After Large Blossom Liquidation, we have w(M'") < w(M’) + 8n.

Proor. Consider the perfect matching M’ obtained in the previous scale, whose blossom set Q’
is partitioned into small and large blossoms. (For the first scale, M’ is any perfect matching and
Q' = (.) Define K to be the increase in the dual objective due to Large Blossom Liquidation,

K = Z z(B))/2 = Z 7 (B).
Large B’ €’ Large B’ €’

By Lemma 3.5, K < 2n. Let y;, z; denote the duals after Step i of LiQuipATIONIST. Let wy be the
weight function before Step 4 (reweighting) and w be the weight afterwards. We have

wo(M') > —6|M’| + Z y2z2(e) Lemma 3.1
eehl’
=—6|M'| -K + Z Y323 (e) see above,
een
w(M’) > —=6|M’| — 2n + Z ysz4(€)
eeM’
> —6|M’| - 2n + Z z4(B’) - LIB'l/2] Since y4 = 0
Small B’ e’
> —8n+ Z z4(B") - ||B|/2] (#dummy vertices) < n
Small B'eQ’

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:16 R. Duan et al.

>-8n+ > > uB) IM” NE(B')| < ||B'|/2]
¢eM” Small B'eQ’ :
ecE(B')
> -8n+ Z w(e) = —-8n+w(M”) by Lemma 3.1.
eenl”

Observe that this Lemma would not be true as stated without the Reweighting step, which allows
us to directly compare the weight of perfect and imperfect matchings.]

The next lemma is stated in a more general fashion than is necessary so that we can apply it
again later, in Section 4. In the LIQUIDATIONIST algorithm, after Step 6 all y-values of free vertices
are zero, so the sum 3,4y (ar) ys(u) seen below vanishes.

LEMMA 3.7. Let ys, z¢ be the duals after Step 6, just before the Free Vertex Reduction step. Let M
be the matching after Free Vertex Reduction and f be the number of free vertices with respect to M.
Suppose that there exists some perfect matching M’ such that w(M) < w(M’) +8n — 3 ,av () Ys (1)
Then, f < 10n/z.

Proor. Lety;, z7, Q denote the duals and blossom set after Free Vertex Reduction. By Property 2,
w(M’) < Z (yrz7(e) + 2) near domination

eeM’

Dy + Y > z(B) +2AM|

ueV eeM’ BeQ:
e€E(B)

< Z yr(u) + Z z7(B) - LIBl/2] + 2n (#dummy vertices) < n
uev BeQ

<| D w+ D mB) - UBl/2) |+ Y yiw) +2n

ueV (M) BeQ ugV (M)

= Z yrz7(e) + Z y7(u) +2n

eeM ugV (M)

< w(M) + Z y7(u) + 2n near tightness
ugV(M)
=w(M) + Z ys(u) — fT +2n y7(u) = ye(u) — 7
ugV (M)
<w(M’)+10n- fr by assumption of M’.
Therefore, fr < 10n and f < 10n/7. |

THEOREM 3.8. The LIQUIDATIONIST algorithm runs in O((m + nlogn)v/nlog(nN)) time, or
O(m+/nloglognlog(nN)) time w.h.p.

Proor. Initialization, Scaling, and Large Blossom Liquidation take O(n) time. By Lemma 3.4, the
time needed for Small Blossom Liquidation is O(Edm -7), where Edm is the cost of one Edmonds’
search. Each iteration of SEARCHONE takes O(m) time, so the time needed for Free Vertex Reduc-
tion is O(mr). By Lemmas 3.6 and 3.7, at most 10(n/7)[log((5 + 1)N)] free vertices emerge after
deleting dummy vertices. Since we have rescaled the weights many times, we cannot bound the
weighted length of augmenting paths by O(m). The cost for rematching vertices in the Finaliza-
tion step is O(Edm - (n/7) log(nN))). The total time is, therefore, O((mz + Edm -(r + n/7)) log(nN)),

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:17

HYBRID(G, w)

e Gy G, y+ 0,2+ 0,w<+ 0,0+ 0.

e For scales i+ = 1,---,[log((§ + 1)N)], execute steps Initialization through
Perfection. Initialization, Scaling, and Large Blossom Liquidation are
performed exactly as in LIQUIDATIONIST. (There is no need to do Reweighting
after Large Blossom Liquidation.) The remaining steps are as follows:

Small Blossom Dissolution
1. Run Gabow’s algorithm on each maximal small blossom B’ € §)'.

Free Vertex Reduction
Let F' always denote the current set of free vertices and § the number of dual
adjustments performed so far in Steps 2 and 3.

2. Run SEARCHONE(F') (Criterion 2) y/n times.

3. While 6 < 7 and M is not perfect, call BUCKETSEARCH(F') (Criterion 3),
terminating when an augmenting path is found and the matching is augmented
or when § = 7.

Perfection is performed as in LIQUIDATIONIST.
e Finalization is performed as in LIQUIDATIONIST.

Fig. 6.

which is minimized when t = v/n. Depending on the implementation of PQSEARcH this is O((m +

nlog n)y/nlog(nN)) or O(m4/nloglognlog(nN)) w.h.p. O

4 THE HYBRID ALGORITHM

In this section, we describe an Mmwpm algorithm called HyBRID that runs in O(m+/nlog(nN)) time
even on sparse graphs. In the L1QUuIDATIONIST algorithm, the Small Blossom Liquidation and the
Free Vertex Reduction steps contribute O(Edm -7) and O(mr) to the running time. If we could do
these steps faster, then it would be possible for us to choose a slightly larger 7, thereby reducing
the number of vertices that emerge free in the Finalization step. The time needed to rematch these
vertices is O(Edm -(n/7) log(nN)), which is at most O(m+/nlog(nN)) for, say, T = y/nlogn.

The pseudocode for HyBRID is given in Figure 6. It differs from the LiguipaTionisT algorithm in
two respects. Rather than do Small Blossom Liquidation, it uses Gabow’s method on each maximal
small blossom B’ € Q’ to dissolve B’ and all its sub-blossoms. (Lemma 4.1 lists the salient prop-
erties of Gabow’s algorithm; it is proved in Section 4.2.) The Free Vertex Reduction step is now
done in two stages, since we cannot afford to call SEARCHONE 7 = w(4/n) times. The first y/n dual
adjustments are performed by SEARCHONE with eligibility Criterion 2 and the remaining 7 — v/n
dual adjustments are performed in calls to BUCKETSEARCH with eligibility Criterion 3.2

LEMMA 4.1. Fix a B € Q'. Suppose that Property 1 holds, that all free vertices in B have the same
parity, and that yz(e) < w(e) + 6 for all e € Eg. After calling Gabow’s algorithm on B the following
hold.

8We switch to Criterion 3 to ensure that formerly shrunken blossom edges remain eligible when the blossom is dissolved
in the course of a search. See the discussion in the proof of Lemma 3.3.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:18 R. Duan et al.

o All the old blossoms B’ C B are dissolved.
e Property 1 holds and the y-values of free vertices in B have the same parity.
e yz(V) does not increase.

Furthermore, Gabow’s algorithm runs in O(m(B)(n(B))3/*) time.

4.1 Correctness and Running Time

We first argue scale i functions correctly. Assuming Property 2 holds at the end of scale i — 1,
Property 1 (except Active Blossoms) holds after Initialization at scale i. Note that Lemma 3.5 was
not sensitive to the value of 7, so it holds for HYBRID as well as LIQUIDATIONIST. We can con-
clude that Large Blossom Liquidation increases the dual objective by ¥ rge preqr 2’ (B') < 2n. By
Lemma 4.1, the Small Blossom Dissolution step dissolves all remaining old blossoms and restores
Property 1. By Lemma 2.5, the Free Vertex Reduction step maintains Property 2. The rest of the
argument is the same as in Section 3.1.

To bound the running time, we need to prove that the Free Vertex Reduction step runs in O(m+/n)
time, independent of 7, and that afterwards there are at most O(n/7) free vertices.

We now prove a lemma similar to Lemma 3.6 that allows us to apply Lemma 3.7.

LEMMA 4.2. Let M’ be the perfect matching obtained in the previous scale and M"' be any match-
ing, not necessarily perfect. We have w(M"") < w(M') + 8n — ¥ ¢v () y(u) after the Small Blossom
Dissolution step of HYBRID.

Proor. Let yy, z¢ denote the duals immediately before Small Blossom Dissolution and y, z, Q de-
note the duals and blossom set after Small Blossom Dissolution. Similar to the proof of Lemma 3.6,
we have, for K = }arge prear 2'(B'),

w(M') > —6|M'| - K + Z Yozo(e) Lemma 3.1
cenr
> —8n + yozo(V) K <2n
> —8n +yz(V) By Lemma 4.1
=—sn+) y(u) +) z(B) - LIB|/2]
uev BeQ
>-gn+ . yw+| D, yw+ Y z(B)-LIBI/2]
ugV (M”) uev(M”) B'eQ
> —8n+ Z y(u) + Z yz(e)
ugV(M”) ceM”
> —8n + Z y(u) + w(M") Property 1 (domination).
ugV(M”) o

Therefore, because Lemma 4.2 holds for any matching M"’, we can apply Lemma 3.7 to show
the number of free vertices after Free Vertex Reduction is bounded by O(n/7).

THEOREM 4.3. HYBRID computes an MWPM in time:
O([mvn + mz>/* + Edm -(n/7)] log(nN)).

Proor. Initialization, Scaling, and Large Blossom Liquidation still take O(n) time. By Lemma 4.1,
the Small Blossom Dissolution step takes O(m(B)(n(B))>/*) time for each maximal small blossom
B e Q, for a total of O(mz3/*). We now turn to the Free Vertex Reduction step. After v/ itera-
tions of SEARCHONE(F), we have performed [v/n] units of dual adjustment from all the remaining

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:19

free vertices. By Lemmas 4.2 and 3.7, there are at most 10n/[v/n] = O(+/n) free vertices. Through-
out the Free Vertex Reduction step, the difference w(M) —yz(V) is O(n), since w(M) — w(M’)
is O(n) by Lemma 3.6 for the perfect matching M’ of the previous scale, and w(M’) — yz(V) is
O(n) by domination. Since each dual adjustment reduces yz(V) by at least 1, we can implement
BUCKETSEARCH with an array of O(n) buckets for the priority queue. See Section 5 for details. A
call to BUCKETSEARCH(F) that finds p > 0 augmenting paths takes O(m(p + 1)) time. Only the last
call to BUCKETSEARCH may fail to find at least one augmenting path, so the total time for all such
calls is O(m+/n).

By Lemma 3.7 again, after Free Vertex Reduction, there can be at most 10n/7 free vertices. There-
fore, in the Finalization step, at most (10n/7)[log((5 + 1)N)] free vertices emerge after deleting
dummy vertices. It takes O(Edm -(n/7) log(nN)) time to rematch them with Edmonds’ search. O

Here, we can afford to use any reasonably fast O(mlog n) implementation of PQSEARCH, such
as [15, 17, 21] or the one presented in Section 5. Setting 7 € [v/nlog n, n?/?], we get a running time
of O(m+/nlog(nN)) with any O(m log n) implementation of PQSEARCH.

4.2 Gabow’s Algorithm

The input is a maximal old small blossom B € Q' containing no matched edges, where yz(e) > w(e)
for all e € Band yz(e) < w(e) + 6 for all e € Eg. Let T denote the old blossom subtree rooted at B.
The goal is to dissolve all the old blossoms in T and satisfy Property 1without increasing the dual
objective value yz(V'). Gabow’s algorithm achieves this in O(m(B)(n(B))*/*) time. This is formally
stated in Lemma 4.1.

Gabow’s algorithm decomposes T into major paths. Recall that a child B; of B; is a major child
if [B1| > |Bz|/2. A node R is a major path root if R is not a major child, so B is a major path root.
The major path P(R) rooted at R is obtained by starting at R and moving to the major child of the
current node, so long as it exists.

Gabow’s algorithm is to traverse each node R in T in postorder, and if R is a major path root, to call
DisMANTLEPATH(R). The outcome of DiISMANTLEPATH(R) is that all remaining old sub-blossoms of
R are dissolved, including R. Define the rank of R to be [log n(R)]. Suppose that DisMANTLEPATH(R)
takes O(m(R)(n(R))*/*) time. If blossoms R and R’ correspond to major path roots with the same
rank, then RN R’ = . In particular, each edge has its endpoints in at most one major path root
of each rank. Thus, summing over all ranks, the total time to dissolve B and its sub-blossoms is,
therefore,

Llog n(B)]

of Y m®): @ = 0((mB)nE)).
r=1

Thus, our focus will be on the analysis of DISMANTLEPATH(R). In this algorithm inherited blossoms

from Q’ coexist with new blossoms in Q. We enforce a variant of Property 1 that additionally

governs how old and new blossoms interact.

PROPERTY 3. Property 1(1,3,4) holds and (2) (Active Blossoms) is changed as follows. Let Q' de-
note the set of as-yet undissolved blossoms from the previous scale and Q, M be the blossom set and
matching from the current scale.

2a. Q" U Q is a laminar (hierarchically nested) set.

2b. There do not exist B € Q,B’ € Q' with B’ C B.

2c. No e € M has exactly one endpoint in some B’ € Q.

2d. If Be Q and z(B) > 0, then |[Eg N M| = | |B|/2]. An Q-blossom is called a root blossom if
it is not contained in any other Q-blossom. All root blossoms have positive z-values.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:20 R. Duan et al.

DisMANTLEPATH(R): R is a major path root.

Let F be the set of free vertices that are still in undissolved blossoms of P(R).

1. While P(R) contains undissolved blossoms and |F| > 2,

e Sort the undissolved atomic shells in non-increasing order by the number of free
vertices, excluding those with less than 2 free vertices. Let S, Sy, ..., Sk be the
resulting list.

e Fori« 1...k, call SHELLSEARCH(S;) (Criterion 1).

2. If P(R) contains undissolved blossoms (implying |F| = 1)
e Let w be the free vertex in R. Let B; C B, C --- C By be the undissolved blossoms
in P(R) and T = }; z(B;)/2.
e Fori=1,2,...,(, LIQUIDATE(B;)
e Call PQSEARCH({w}) (Criterion 1), halting after T dual adjustments.

4.2.1 The procedure DisMANTLEPATH(R). Because DISMANTLEPATH is called on the sub-
blossoms of B in postorder, upon calling DisMANTLEPATH(R) the only undissolved blossoms in
R are those in P(R). Let C,D € P(R) U {0} with C D> D. The subgraph induced by C\D is called
a shell, denoted G(C, D). Since all blossoms have an odd number of vertices, G(C, D) is an even
size shell if D # () and an odd size shell if D = (). Moreover, the number of free vertices in an even
(odd) shell is always even (odd). It is an undissolved shell if both C and D are undissolved, or C
is undissolved and D = (). We call an undissolved shell atomic if there is no undissolved blossom
C'eQ withDc(C' cC.

The procedure DiIsMANTLEPATH(R) has two stages. The first consists of iterations. Each iteration
begins by surveying the undissolved blossoms in P(R), say they are By D Bx_; D - - - D Bj. Let the

corresponding atomic shells be S; = G(B;, B;—1), where By dof (. We sort the set of atomic shells
{S;} in non-increasing order by their number of free vertices and call SHELLSEARCH(S;) in this
order, but refrain from making the call unless S; contains at least two free vertices.

The procedure SHELLSEARCH(C, D) (see Figure 7) is simply an instantiation of EDMONDSSEARCH
with the following features and differences.

1. There is a current atomic shell G(C*, D*), which is initially G(C, D), and the Augmentation,
Blossom Shrinking, and Dual Adjustment steps only search from the set of free vertices in
the current atomic shell. By definition C* is the smallest undissolved blossom containing
C and D" the largest undissolved blossom contained in D, or 0 if no such blossom exists.

2. An edge is eligible if it is tight (Criterion 1) and in the current atomic shell. Tight edges
that straddle the shell are specifically excluded.

3. Each unit of dual adjustment is accompanied by a unit translation of C* and D*, if D* # 0.
This may cause either/both of C* and D* to dissolve if their z-values become zero, which
then causes the current atomic shell to be updated.” See Figure 8.

4. Like EDMONDSSEARCH, SHELLSEARCH halts after the first Augmentation step that discovers
an augmenting path. However, it halts in two other situations as well. If C* is the out-
ermost undissolved blossom in P(R) and C* dissolves, then SHELLSEARCH halts immedi-
ately. If the current shell G(C*, D*) ever intersects a shell searched in the same iteration
of DisMANTLEPATH(R), then SHELLSEARCH halts immediately. Therefore, at the end of an

9To translate a blossom B by one unit means to decrement z(B) by 2 and increment y(u) by 1 for each u € B.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:21

SHELLSEARCH(C, D)

Let C* 2 C be the smallest undissolved blossom containing C.
Let D* C D be the largest undissolved blossom contained in D, or () if none exists.
Let F* be the set of free vertices in G(C*, D*).

Repeat Augmentation, Blossom Shrinking, Dual Adjustment, and Blossom Disso-
lution steps until a halting condition occurs (enumerated below).

o Augmentation:
Augment M to contain an MCM in the eligible subgraph of G(C*, D*) and update
F*. (This step may find zero augmenting paths and not change M.)

e Blossom Shrinking:
Find and shrink blossoms reachable from F*, exactly as in Edmonds’ algorithm.

e Dual Adjustment:
Peform dual adjustments (from F*) as in Edmonds’ algorithm, and perform a
unit translation on C* and D* as follows:

2(C7) < 2(C7) -

z(D)(—z(D*) if D* #0
y(u) < y(u) + for all w € D*
y(u) + y(u) + for all uw € C*\ D*

e Blossom Dissolution:
Dissolve root blossoms in) with zero z-values as long as they exist. In addition,

If 2(C*) =0, set Q < \{C*} and update C*.
If z2(D*) =0, set @ + Q'\{D*} and update D*.
Update F™* to be the set of free vertices in G(C*, D*).

z

u

Halting Conditions:

1. The Augmentation step discovers at least one augmenting path.

2. G(C*,D*) absorbs vertices already searched in the same iteration of
DISMANTLEPATH.

3. C* was the outermost undissolved blossom and dissolves in Blossom Dissolution.

Fig. 7. SHELLSEARCH(C, D).

iteration of DISMANTLEPATH(R), every undissolved atomic shell contains at least two ver-
tices that were matched (via an augmenting path) in the iteration.

Blossom translations are used to preserve Property 1(domination) for all edges, specifically those
crossing the shell boundaries. We implement SHELLSEARCH(C, D) using an array of buckets for
the priority queue, as in BUCKETSEARCH, and execute the Augmentation step using a cardinality
matching algorithm such as References [29, 36, 37] or Reference [20, §10] or [16]. Let ¢ be the
number of dual adjustments, G(C*, D*) be the current atomic shell before the last dual adjustment,
and p > 0 be the number of augmenting paths discovered before halting. The running time of

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:22 R. Duan et al.

Fig. 8. Left: a dual adjustment performed in a shell G(C,D) decrements some y-values and may violate
Property 1 (domination) for edges (u, v) crossing the shell, with u € C\D and v ¢ C or v € D. Right: a unit-
translation of C and D decreases z(C) and z(D) by 2 and increases the y-values of vertices in C as indicated.
This increases yz(u, v) for each crossing edge (u,v) and preserves domination.

SHELLSEARCH(C, D) is O(t + m(C*, D*) - min{p + 1, y/n(C*, D*)}). We will show that ¢ is bounded
by O(n(C*, D*))) as long as the number of free vertices inside G(C*, D*) is at least 2. See Corol-
lary 4.8.

The first stage of DisMANTLEPATH(R) ends when either all old blossoms in P(R) have dissolved
(in which case it halts immediately) or there is exactly one free vertex remaining in an undissolved
blossom. In the latter case, we proceed to the second stage of DiISMANTLEPATH(R) and liquidate
all remaining old blossoms. This preserves Property 1 but screws up the dual objective yz(R),
which must be corrected before we can halt. Let w be the last free vertex in an undissolved blos-
somin Rand T = }; z(B;)/2 be the aggregate amount of translations performed when liquidating
the blossoms. We perform PQSEARCH({w}), halting after exactly T dual adjustments. The search
is guaranteed not to find an augmenting path. It runs in O(m(R) + n(R) logn(R)) time [15] or
O(m(R)+/loglogn(R)) w.h.p.; see Section 5.

To summarize, DisMANTLEPATH(R) dissolves all old blossoms in P(R), either in stage 1, through
gradual translations, or in stage 2 through liquidation. Moreover, Property 1 is maintained
throughout DiSMANTLEPATH(R). In the following, we will show that DisMANTLEPATH(R) takes
O(m(R)(n(R))>'*) time and the dual objective value yz(S) does not increase for every S such that
R C S. In addition, we will show that at all times, the y-values of all free vertices have the same

parity.

4.2.2 Properties. We show the following lemmas to complete the proof of Lemma 4.1. Let yj, 2o
denote the initial duals, before calling Gabow’s algorithm.

LEMMA 4.4. After the call to DISMANTLEPATH(R), we have y(u) > yo(u) for all u € R. Moreover,
the y-values of free vertices in R are always odd.

Proor. We will assume inductively that the claim holds after every recursive call of
DisMANTLEPATH(R’) for every R’ that is a non-major child of a P(R) node. Then, it suffices
to show y(u) does not decrease and the parity of free vertices always stays the same during
Di1sMANTLEPATH(R). Consider doing a unit of dual adjustment inside the shell G(C*, D*). Due to
the translations of C* and D, every vertex in D* has its y-value increased by 2 and every vertex

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:23

in C* either has its y-value unchanged or increased by 1 or 2. The y-values of the free vertices in
C*\D* remain unchanged. (The dual adjustment decrements their y-values and the translation of
C* increments them again.)

Consider the second stage of DISMANTLEPATH(R). In SHELLSEARCH(C, D), only augmenting
paths within atomic shells can be found, so only the smallest atomic shell can contain odd num-
ber of free vertices. Therefore, w is in By, the smallest undissolved blossom. When liquidat-

ing blossoms {B;}, y(w) increases by T def > z(B;)/2 before the call to PQSEARCH({w}). Define
w’(u,v) = yz(u,v) — w(u, v). The eligible edges must have w’(u,v) = 0. We can easily see that
when we dissolve B; and increase the y-values of vertices in B;, the w’-distance from w to any ver-
tex outside the largest undissolved blossom B, increases by z(B;)/2. Therefore, the total distance
from w to any vertex outside By increases by T after dissolving all the blossoms, since w € By. Ev-
ery other vertex inside By is matched, so PQSEARCH({w}) will perform T dual adjustments and halt
before finding an augmenting path. We conclude that y(w) is restored to the value it had before
the second stage of DisMANTLEPATH(R). O

LEmMA 4.5. If Property 3 holds and y-values of free vertices have the same parity, then Property 3
holds after calling SHELLSEARCH(C, D).

Proor. The current atomic shell G(C*, D*) cannot contain any old undissolved blossoms, since
we are calling DiISMANTLEPATH(R) in postorder. Because we are simulating EDMONDSSEARCH (F*)
from the set F* of free vertices in G(C*, D*), whose y-values have the same parity, by Lemma 2.4,
Property 3 holds within G(C*, D*). It is easy to check that Property 3(1) (granularity) holds in G.
Now, we consider Property 3(3,4) (domination and tightness) for the edges crossing C* or D*. By
Property 3(2c) there are no crossing matched edges and all the newly created blossoms lie entirely
in G(C*, D*). Therefore, tightness must be satisfied. The translations on blossoms C* and D* keep
the yz-values of edges straddling C*\D* non-decreasing, thereby preserving domination.

Now, we claim Property 3(2) holds. We only consider the effect on the creation of new blos-
soms, since the dissolution of C* or D* cannot violate Property 3(2). Since edges straddling the
atomic shell G(C*, D*) are automatically ineligible, we will only create new blossoms inside
G(C*, D). Since G(C*, D*) does not contain any old undissolved blossoms and the new blossoms
in G(C*, D*) form a laminar set, Property 3(2a,2b) holds. Similarly, the augmentation only takes
place in G(C*, D*), which does not contain old undissolved blossoms, Property 3(2c) holds. O

LEmMA 4.6. The value of yz(V) is non-increasing after the call to DISMANTLEPATH(R).

Proor. Consider a dual adjustment in SHELLSEARCH(C, D) in which F* is the set of free vertices
in the current atomic shell G(C*, D*). By Property 3(tightness), each dual adjustment within the
shell decreases yz(R) by |F*|, since free vertices’ y-values are decremented and yz(e) is unchanged
for each matched edge e. The translation on C* increases yz(R) by 1, and if D* # 0, the translation
of D* also increases yz(R) by 1. Therefore, a dual adjustment in SHELLSEARCH decreases yz(R) by
|F*| = 2,if D* # 0, and by |F*| — 1 if D = 0. Since G(C*, D*) contains at least 2 free vertices, yz(R)
does not increase during the first stage of DisMANTLEPATH(R).

Suppose the second stage of DisMANTLEPATH(R) is reached, that is, there is exactly one free
vertex « in an undissolved blossom in R. When we liquidate all remaining blossoms in R,
yz(R) increases by T. As shown in the proof of Lemma 4.4, PQSEARCH({w}) cannot stop until
it reduces yz(w) by T. Since Property 3(tightness) is maintained, this also reduces yz(R) by T,
thereby restoring yz(R) back to its value before the second stage of DIsSMANTLEPATH(R). Since
Di1sMANTLEPATH(R) only affects the graph induced by R, the arguments above show that yz(S) is
non-increasing, for every S 2 R. O

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:24 R. Duan et al.

The following lemma considers a not necessarily atomic undissolved shell G(C, D) at some point
in time, which may, after blossom dissolutions, become an atomic shell. Specifically, C and D are
undissolved but there could be many undissolved C* € Q' for which D c C’ c C.

LeEmMA 4.7. Consider a call to DISMANTLEPATH(R) and any shell G(C, D) in R. Throughout the
call to DISMANTLEPATH, so long as C and D are undissolved (or C is undissolved and D = () yz(C) —
yz(D) = 102z0(C) — yozo(D) — 3n(C \ D).

Proor. If D = 0, then we let D’ be the singleton set consisting of an arbitrary vertex in C.
Otherwise, we let D’ = D. Let w be a vertex in D’. Since blossoms are critical, we can find a perfect
matching M, that is also perfect when restricted to D’ \ {w} or C’\ D’, for any C’ € Q' with
C’ > D'. (M, can be derived from the matching M’ from the previous scale, by changing the base
of R to w. We only case about the part of M,, within C.) By Lemma 3.1, every e € M,, N Eg has
yozo(e) < w(e) + 6. Therefore,

w(e)
eeM,NE(C\D’)

> Z yozo(e) — 6n(C\ D’)/2

eeM,,NE(C\D’)

, |C, N Cl - |D,| 77 C” ’
= D, wwr Y al)—————+) alC)|5|-3n(C\D)
ueV(C\D’) Ceq Creq
D'cC’ Cc’cC\ D'
= 1020(C) — yozo(D') — 3n(C \ D).
On the other hand, by Property 3 (domination), we have
w(e)

e€M,NE(C\D’)

< Z yz(e)
eeM,,NE(C\D’)

Z y(u) + Z z(C’)-M+ZZ(B)-IMwOE(BOC\D')I

ueV(C\D) Ceq 2 BeQ
D'cC’
IC"NC| - |D’] |B| - [BND'|
’
< D vwr Y A T+ Y 2(B) [|
ueV(C\D’) C'e: BeQ:
D'cC’ BcC

Consider a B € Q that contributes a non-zero term to the last sum. By Property 3, Q U Q’ is laminar,
so either B C Dor B C C\ D.In the first case, B contributes nothing to the sum. In the second case,
we have [BN D’| <1 (it can only be 1 when D = 0 and D’ is a singleton set intersecting B), so it
contributes exactly z(B) - ||B|/2]. Also, since Q U Q' is laminar and D’ ¢ C’, C’ N C is either C’ or
C,s0 |C’ N C| and |D’| are odd. Continuing on,

> v Y owe) QTR S | |

ueV(C\D’) C'eQ) BeQ:
D'cC’ Bc(C\ D)

=yz(C) — yz(D’).

Therefore, yz(C) — yz(D’) = yoz0(C) — yozo(D’) —3n(C \ D’). When D =0, we have yz(D’) =
y(w) = yo(w). Therefore, regardless of D, yz(C) — yz(D) > yoz0(C) — yozo(D) — 3n(C \ D). O

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:25

COROLLARY 4.8. The number of dual adjustments in SHELLSEARCH(C, D) is bounded by O(n(C* \
D*)) where G(C*, D¥) is the current atomic shell when the last dual adjustment is performed.

Proor. We first claim that the recursive calls to DisMANTLEPATH(R’) on the descendants
R” of P(R) do not decrease yz(C*) — yz(D*). If R” c D*, then any dual adjustments done in
DisMANTLEPATH(R’) changes yz(C*) and yz(D*) by the same amount. Otherwise, R” ¢ G(C*, D*).
In this case, DisMANTLEPATH(R’) has no effect on yz(D*) and does not increase yz(C*) by
Lemma 4.6. Therefore, yz(C*) — yz(D*) < yoz0(C*) — yozo(D").

First, consider the period in the execution of SHELLSEARCH(C, D) when D* # (. During this
period SHELLSEARCH performs some number of dual adjustments, say k. There must exist at least
two free vertices in G(C*, D*) that participate in all k dual adjustments. Note that a unit translation
on an old blossom C”” € Q’, where D* C C” C C*, has no net effect on yz(C*) — yz(D*), since it
increases both yz(C*) and yz(D*) by 1. Thus, each dual adjustment reduces yz(C*) — yz(D*) by
the number of free vertices in the given shell, that is, by at least 2k over k dual adjustments. (See
the proof of Lemma 4.6.) By Lemma 4.7, yz(C*) — yz(D*) decreases by at most 3n(C* \ D*) overall,
which implies that k < 3/2 - n(C* \ D¥).

Now consider the period when D* = (0. Let G(C’, D) to be the current atomic shell just before the
smallest undissolved blossom D’ dissolves and let k” be the number of dual adjustments performed
in this period, after D’ dissolves. By Lemma 4.6, all prior dual adjustments have not increased
yz(C*). There exists at least 3 free vertices in C* that participate in all k" dual adjustments. Each
translation of C* increases yz(C*) by 1. According to the proof of Lemma 4.6, yz(C*) decreases by
at least 3k’ — k’ = 2k’ due to the k’ dual adjustments and translations performed in tandem. By
Lemma 4.7, yz(C*) can decrease by at most 3n(C*), so k’ < 3/2 - n(C*). The total number of dual
adjustments is, therefore, k + k” < 3/2(n(C’ \ D’) + n(C")) < 3n(C"). O

The following two lemmas are adapted from [13].

LEMMA 4.9. Let F be the set of free vertices in an undissolved blossom of P(R), at some point in the
execution of DISMANTLEPATH(R). For any fixed e > 0, the number of iterations of DISMANTLEPATH(R)
with |F| > (n(R))€ is O((n(R))'~¢).

Proor. Consider an iteration in DiISMANTLEPATH(R). Let f be the number of free vertices before
this iteration. Call an atomic shell big if it contains strictly more than 2 free vertices. We consider
two cases depending on whether more than f/2 vertices are in big atomic shells or not. Suppose
big shells do contain more than f/2 free vertices. The free vertices in an atomic shell will not
participate in any dual adjustment only if some adjacent shells have dissolved into it. Suppose a
shell containing f” free vertices dissolves into (at most 2) adjacent shells and, simultaneously, the
call to SHELLSEARCH finds an augmenting path and halts. This prevents at most 2f” free vertices
in the formerly adjacent atomic shells from participating in a dual adjustment, since we sorted the
shells in non-increasing order by number of free vertices. Since there are more than f/2 vertices
in big atomic shells, at least f/6 free vertices in the big shells participate in at least one dual
adjustment. Let S; be a big even shell with f; free vertices. If they are subject to a dual adjustment,
then, according to the proof of Lemma 4.6, yz(R) decreases by at least (f; —2) > fi/2, since the
shell is big. If S; is a big odd shell, then the situation is even better. In this case yz(R) is reduced
by (fi—1) > % fi. Therefore, when f/2 free vertices are in big shells, yz(R) decreases by at least
f/12.

The case when more than f/2 free vertices are in small atomic shells can only happen O(log n)
times. In this case, there are at least | f/4] small shells. In each shell, there must be vertices
that were matched during the previous iteration, which implies that there must have been at

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:26 R. Duan et al.

least f + 2| f/4] free vertices in the previous iteration. Thus, we can only be in this situation
[logs/, n(R)] times, since the number of free vertices shrinks by a 3/2 factor each time.

By Lemma 4.6, yz(R) does not increase in the calls to DISMANTLEPATH on the descendants of
P(R). By Lemma 4.7, since yz(R) decreases by at most 3n(R), the number of iterations with |F| >
(n(R))€ is at most O(n(R)!~¢ + log n(R)) = O(n(R)7¢). o

LEMMA 4.10. DisMANTLEPATH(R) takes at most O(m(R)(n(R))>/*) time.

Proor. Recall that SHELLSEARCH is implemented like BUCKETSEARCH, using an array for a pri-
ority queue; see Section 5. This allows all operations (insert, deletemin, decreasekey) to be imple-
mented in O(1) time, but incurs an overhead linear in the number of dual adjustments/buckets
scanned. By Corollary 4.8 this is };; O(n(S;)) = O(n(R)) per iteration. By Lemma 4.9, there are
at most O((n(R))'/*) iterations with |F| > (n(R))*/*. Consider one of these iterations. Let {S;}
be the shells at the end of the iteration. The augmentation step takes ;; O(m(S;)y/n(S;i)) =
O(m(R)+/n(R)) time. Therefore, the total time of these iterations is O(m(R)(n(R))*/*). There
can be at most (n(R))** more iterations afterwards, since each iteration matches at least 2
free vertices. Therefore, the cost for all subsequent Augmentation steps is O(m(R)(n(R))%/*).
Finally, the second stage of DisMANTLEPATH(R), when there is exactly one free vertex in an
undissolved blossom, involves a single Edmonds search. This takes O(m(R) + n(R) logn(R))
time [15] or O(m(R)+/loglogn(R)) time w.h.p.; see Section 5. Therefore, the total running time
of D1SMANTLEPATH(R) is O(m(R) (n(R))3/%). |

Let us summarize what has been proved. By the inductive hypothesis, all calls to
DisMANTLEPATH preceding DISMANTLEPATH(R) have (i) dissolved all old blossoms in R exclud-
ing those in P(R), (ii) kept the y-values of all free vertices in R the same parity (odd) and kept
yz(R) non-increasing, and (iii) maintained Property 3. If these preconditions are met, then the
call to DisMANTLEPATH(R) dissolves all remaining old blossoms in P(R) while satisfying (ii) and
(iii). Futhermore, DISMANTLEPATH(R) runs in O(m(R)(n(R))*#) time. This concludes the proof of
Lemma 4.1.

5 IMPLEMENTING EDMONDS’ SEARCH

This section gives the details of a reasonably efficient implementation of Edmonds’ search. Previ-
ous algorithms for real-weighted inputs, such as Galil et al.’s [21] and Gabow’s [15], implement
specialized priority queues for dealing with blossom formulation/dissolution. These data struc-
tures do not benefit from having integer-valued duals. Indeed, their per-operation running times
are Q(log n) for reasons that have nothing to do with the nlog n lower bound on comparison-based
sorting.

The implementation of Edmonds’ algorithm presented here was suggested by Gabow [13]. It
uses an “off the shelf” priority queue (among other data structures), and can, therefore, be sped up
when the graph happens to be integer-weighted. When the duals are integers and the number of
dual adjustments is t it runs in O(m + t) time using a bucket array for the priority queue; this is
called BuCKETSEARCH. When the number of dual adjustments is unbounded, we call it PQSEARCH;
it runs in O(mgq) time, given a priority queue supporting insert and delete-min in O(q) amortized
time.

Let us first walk through a detailed execution of the search for an augmenting path, which
illustrates some of the unusual data structural challenges of implementing Edmonds’ algorithm.
In Figure 9, edges are labeled by their initial slacks and blossoms are labeled by their initial z-
values; we are performing a search from the set F = {u}. All matched and blossom edges are tight,
and we are using Criterion 1 (tightness) for eligibility. It is convenient to conflate the number of
units of dual adjustment performed by Edmonds’ algorithm with time.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:27

0 5 10 15 20
| | | 1 | | | | | | | | | | | | | | | | |
T T T T T T T T K T T T T T T T T T T T 1
T uq outer T By dissolves I By dissolves T By forms
u outer B i | Bs inner
1 1nner Bs inner u t
ug outer 7 outer .
ug outer ug outer augmentation

Fig. 9. Edges are labeled with their initial slack; blossoms are labeled with their z-values.

At time zero, u is outer and all other vertices are not in the search structure.

At time 2, u; becomes outer and the edges (uy, u3) and (uy, us) are scanned. Both edges connect
to blossom B; and (ug, u3) has less slack, but, as we shall see, (11, u4) cannot be discarded at this
point.

At time 4, B; becomes an inner blossom and u, becomes outer, causing (uz, us) and (uz, us) to
be scanned. Note that since uy is inner (as part of By), further dual adjustments will not change
the slack on (uy, uy) (slack 4) or (uy, us) (now slack 8). Nonetheless, in the future u, may not be in
the search structure, so we note that the edge with least slack incident to it is (uz, u4) and discard
(1, ug).

At time 6, By dissolves: the path from u; to B;’s base enters the search structure and everything
else (B, and ug) are split off. At this point further dual adjustments do change the slack on edges
incident to B,.

At time 10, (up, u4) becomes tight, B, becomes inner and us becomes outer. At time 12, B, dis-
solves. At this point, us has experienced two dual adjustments as an inner vertex (as part of By)
and two dual adjustments as an outer vertex, while u; has experienced four dual adjustments as an
inner vertex (as part of By and B;). Thus, the slacks on (us, ug) and (u7, ug) are 4 and 6, respectively.

At time 16, (up, us) and (ug, ug) become tight, making Bs inner and u; and uy outer. The edge
(u7,uo) still has slack 6. At time 19, (u7, ug) becomes tight, forming a new blossom B, based at u;.
At time 20, the final edge on the augmenting path from u to v becomes tight.

Observe that a vertex can enter into and exit from the search structure an unbounded number
of times. Merely calculating a vertex’s current y-value requires that we consider the entire history

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:28 R. Duan et al.

of the vertex’s involvement in the search structure. For example, us participated as an inner vertex
in dual adjustments during the intervals [4,6), [10, 12), and [16, 19) and as an outer vertex during
[19, 20).

5.1 An Overview of the Data Structures

To implement Edmonds’ algorithm efficiently, we need to address three data structuring problems:

1. a union-find type data structure for maintaining the (growing) outer blossoms. This data
structure is used to achieve two goals. First, whenever an outer-outer edge e = (u,u’) is
scanned (like (u7,uy) in the example), we need to tell whether u, u’ are in the same outer
blossom, in which case e is ignored, or whether they are in different blossoms, in which
case we must schedule a blossom formation event after slack(e)/2 further dual adjustments.
Second, when forming an outer blossom, we need to traverse its odd cycle in time propor-
tional to its length in the contracted graph. For example, when (u7, ug) triggers the formation
of By, we walk up from u; and ug to the base u; enumerating the vertices/root blossoms
encountered. The walk must “hop” from u; to us (representing Bs), without spending time
proportional to |Bs].

2. a split-findmin data structure for maintaining the (dissolving) inner blossoms. The data
structure must be able to dissolve an inner blossom into the components along its odd cycle.
It must be able to determine the edge with minimum slack connecting an inner blossom
to an outer vertex, and to do the same for individual vertices in the blossom. For example,
when (uy, uy) is scanned, we must check whether its slack is better than the other edges
incident to uy, namely (uq, uq).

3. a priority queue for scheduling three types of events: blossom dissolutions, blossom forma-
tions, and grow steps, which add a new (tight) edge and vertex to the search structure.!

Before we get into the implementation details let us first make some remarks on the existing
options for problems (1)—(3).

A standard union-find algorithm will solve problem (1) in O(ma(m, n) + n) time. Gabow and
Tarjan [18] observed that a special case of union-find can be solved in O(m + n) time if the data
structure gets commitments on future union operations. Let {{1}, {2}, ..., {n}} be the initial set
partition and T = () be an edge set on the vertex set {1,...,n}. We must maintain the invariant
that T is a single connected tree at all times. The data structure handles intermixed sequences of
three operations.

addedge(u,v): T « T U {(u,v)}.
T must be a connected tree. If v was previously not in T, record u as the parent of v.

unite(u, v): Replace the sets containing u and v with their union.
This is only permitted if (u,v) € T.

find(u): Find the representative of ©’s set.
It is not too difficult to cast Edmonds’ search in this framework. We explain exactly how in

Section 5.2.

10 Augmenting paths are discovered in the course of processing a blossom formation step or grow step, depending on whether
both ends or just one end of the augmenting path is in F. In particular, blossom formation events record an outer-outer type
edge to be processed, whereas a grow step records an edge to be processed with one endpoint having no inner/outer type.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:29

Gabow introduced the split-findmin structure in Reference [13] to manage blossom dissolutions
in Edmonds’ algorithm, but did not fully specify how it should be applied. The data structure main-
tains a set £ of lists of elements, each associated with a key. It supports the following operations:

init(ug, ..., up): Set L « {(uy,...,uy)} and key(u;) « oo for all i.
list(u): Return a pointer to the list in £ containing u.

split(u): Suppose list(u) = (v, ..., u,u”,...,u””). Update L as follows:
L L\ {listw) U{(W',...,u), ",u")}

decreasekey(u, x): Set key(u) « min{key(u), x}.
findmin(L € £): Return min, ¢, key(u).

The idea is that init should be called with a permutation of the vertex set such that each ini-
tial blossom (maximal or not) is contiguous in the list. Splits are performed whenever necessary
to maintain the invariant that non-outer root blossoms are identified with lists in £. The value
key(u) is used to encode the minimum slack of any edge (v, u) (v outer) incident to u. We associate
other useful information with elements and lists; for example, u stores a pointer to the edge (v, u)
corresponding to key(u).

Pettie [32] improved the running time of Gabow’s split-findmin structure from O(ma(m, n) + n)
to O(mlog a(m,n) + n), m being the number of decreasekey operations. Thorup [33] showed that
with integer keys, split-findmin could be implemented in optimal O(m + n) time using atomic
heaps [11].

For problem (3), we can use a standard priority queue supporting insert and deletemin. Note,
however, that although there are ultimately only O(n) events, we may execute @(n + m) prior-
ity operations. The algorithm may schedule Q(m) blossom formation events but, when each is
processed, discover that the endpoints of the edge in question have already been contracted into
the same outer blossom. (A decreasekey operation, if it is available, is useful for rescheduling
grow events but cannot directly help with blossom formation events.) Gabow’s specialized prior-
ity queue [15] schedules all blossom formation events in O(m + nlogn) time. Unfortunately, the
Q(nlogn) term in Gabow’s data structure cannot be reduced if the edge weights happen to be
small integers. Let tp,x be the maximum number of dual adjustments performed by a search. In
the BUCKETSEARCH implementation, we shall allocate an array of ty,x buckets to implement the
priority queue, bucket i being a linked list of events scheduled for time i. With this implementation
all priority queue operations take O(1) time, plus O(fyax) for scanning empty buckets. When fpa«
is unknown/unbounded, we use a general integer priority queue [23, 24, 35] and call the imple-
mentation PQSEARCH.

In the remainder of this section, we explain how to implement Edmonds’ search procedure us-
ing the data structures mentioned above. This is presumably close to the implementation that
Gabow [13] had in mind, but it is quite different from the other O(m) implementations of Refer-
ences [15, 17, 21]. Theorem 5.1 summarizes the properties of this implementation.

THEOREM 5.1. The time to perform Edmonds’ search procedure on an integer-weighted graph, us-
ing specialized union-find [18], split-findmin [33], and priority queue [23, 24, 35] data structures, is
O(m + t) (wheret is the number of dual adjustments, using a trivial priority queue) or O(mloglog n)
(using References [23, 35]) or O(m+/loglogn) with high probability (using References [24, 35]).
On real-weighted graphs the time is O(m + nlogn) using Reference [15], or O(mlogn) using any
O(log n)-time priority queue.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:30 R. Duan et al.

5.2 Implementation Details
We explicitly maintain the following quantities, for each v and each blossom B. A vertex B not in
any blossom is considered a root blossom, trivially.
thow = The current time. (The number of dual adjustments performed so far.)
yo(v) = The initial value of y(v).
zo(B) = The initial value of z(B) (B not necessarily a root blossom).
troot (B) = The time B became a root blossom.

(
(
tin(B) = The time B became an inner root blossom.
tout(B) = The time B became (part of) an outer root blossom.
(

)
A(B)

The number of dual adjustments experienced by vertices in B as inner vertices,
in the interval [0, max{t;o0t(B), tout(B)}].

It is straightforward to keep these values up to date. To give a sense of what is involved, we
illustrate how they change in two cases: when an inner blossom dissolves and when an outer
blossom is formed. Whenever an inner blossom B’ is dissolved, we visit each subblossom B on its
odd-cycle and set

troot (B) — tnow

A(B) « A(B') + (tnow — tin(B')),

and if B is immediately inserted into the search structure as an inner or outer blossom, we set
tin(B) ¢ thow OF tout(B) < thow accordingly. When an outer blossom B’ is created, we visit each
subblossom B on its odd-cycle. For each formerly inner B, we update its values as follows:

tout (B) — tnow
A(B) < A(B) + (tnow — tin(B)).
From these quantities, we can calculate the current y- and z-values as follows. Remember that

splits are performed so that list(v) = B was the last root blossom containing v just before v
became outer, or the current root blossom containing v if it is non-outer.

A(B) + thow — tin(B) if B = list(v) is an inner rt. blossom
y(v) = yo(v) + 3 A(B) = (thow — tout(B)) if B = list(v) is in an outer blossom
A(B) otherwise
0 if tro0t(B) is undefined
z(B) = zo(B) + 4 —2A(B) — 2(thow — tin(B)) if B is an inner root blossom
—2A(B) + 2(thow — tout(B)) if B is in an outer blossom

Note that if B was not a weighted blossom at time zero, zo(B) = A(B) = 0. The slack of an edge
(u, v) not in any blossom is calculated as slack(u, v) = y(u) + y(v) — w(u, v). However, when using
Criteria 2 or 3 of eligibility, we really want to measure the distance from the edge being eligible.
Define slack™* (u, v) as follows:

slack(e) Criterion 1
slack(e) + 2 Criterion 2 and e ¢ M
slack* (e) = { —slack(e) Criterion 2 and e € M

slack(e) Criterion 3 and slack(e) > 0
slack(e) + 2 Criterion 3 and slack(e) € {—1,-2}.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:31

Dual adjustments can change the slack of many edges, but we can only afford to update the
split-findmin structure when edges are scanned. We maintain the invariant that if u is not in an
outer blossom, key () is equal to mingyer o slack™ (v, u), up to some offset that is common to all
vertices in list(u). Consider an edge (v,u) with v outer and u non-outer. When u is not in the
search structure each dual adjustment reduces the slack on (v, u) whereas when u is inner each
dual adjustment has no effect. We maintain the following invariant for each non-outer element u
in the split-findmin structure:

min slack* (v, u) =
outer v

key(u) — (tin(B) — A(B)), if B = list(u) is inner;
key(u) — (thow — A(B)), if B = list(u) is neither inner nor outer.

Let F be the set of free vertices that we are conducting the search from. In accordance with
our earlier assumptions, we assume that {yo(v) | v € F} have the same parity and that all edge
weights are even. We will grow a forest T of |F| trees, each rooted at an F-vertex, such that the outer
blossoms form connected subtrees of T, thereby allowing us to apply the union-find algorithm [18]
to each tree. Let rt(u) be the free vertex at the root of u’s tree. We initialize the split-findmin
structure to reflect the structure of initial blossoms at time t,0w = 0 and call grow(v, L) for each
v € F. In general, we iteratively process any events scheduled for t,oy, incrementing 0y, when
there are no such events. Eventually, an augmenting path will be discovered (during the course of
processing a grow or blossom formation event) or the priority queue becomes empty, in which case
we conclude that there are no augmenting paths from any vertices in F.

The grow(v, e) procedure. The first argument (v) is a new vertex to be added to the search struc-
ture. The second argument e = (u,v) is an edge with slack*(e) = 0 connecting v to an existing u
in the search structure, or L if v is free. If e #.1, then we begin by calling addedge(e).

We first consider the case when e € M or e =, so v is designated outer. If v is not contained
in any blossom, then we call schedule(v) to schedule grow and blossom formation events for
all unmatched edges incident to v. If B = list(v) is a non-trivial (outer) blossom, then we call
addedge(v’, v) and unite(v’, v), for each v’ € B\{v}, then call schedule(v’) for each v’ € B. (Recall
that to apply Reference [18], the members of every outer blossom must form a contiguous subset
of T.)

Suppose e = (u,v) ¢ M and that v is not contained in any blossom. If v is free, then we have
found an augmenting path and are done. Otherwise, we call schedule(v) to schedule the grow step
for v’s matched edge.!! If B = list(v) is a non-trivial (inner) blossom, then find the base b of B and
the even-length path P from v to b in Eg, in O(|P|) time.'? For each edge e € P call addedge(e)
to include P in T." If b is free, then we have found an augmenting path; if not, then we call
schedule(d) to schedule B’s blossom dissolution event and the grow event for b’s matched edge.

The schedule(u) procedure. The purpose of this procedure is to schedule future events associated
with u or edges incident to u. First, consider the case when u is inner. If B = list(u) is a non-trivial
blossom, then we schedule a dissolve(B) event at time t,oy + 29(B)/2. Let e = (u,v) € M be the
matched edge incident to u. If v is neither inner nor outer, then schedule a grow(v, e) event at

1Under Criterion 1 this would always happen immediately, but under the other Criteria it could happen after 0, 1, or 2
dual adjustments.

2The data structures involved in generating even-length paths through blossoms and finding the current base are well
understood. See Gabow [12], for example.

3The idea here is to include the minimal portion of Ep necessary to ensure connectivity. The rest of B cannot be included
in T yet, because parts of it may break off when B is dissolved.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:32 R. Duan et al.

time t,ow + slack™(e). If v is currently inner, then we cancel the existing event for grow(u, e) and
schedule a blossom(e) event at time t,0, + slack™(e)/2.1

When u is outer, we perform the following steps for each unmatched edge e = (u,v) € E(G).
If find(u) = find(v), then (u,v) can be discarded. If v is also outer and find(u) # find(v), then
schedule a blossom(e) event at time t,4w + slack™(e)/2. If v is inner, then let (u’,v) be the exist-
ing edge with v’ outer minimizing slack* (v’, v). If slack* (e) < slack* (v, v), then we perform a
decreasekey(v, x) operation with the new key x corresponding to slack™ (e). If B = list(v) is nei-
ther inner nor outer and updating key(v) causes findmin(B) to change, then we cancel the existing
grow event associated with B and schedule grow(v, e) for time t,,,y + slack™ (e).

The dissolve(B) procedure. Let P = T N Ep be the even-length alternating path from some v € B
to the base b of B. For each subblossom B’ on B’s odd cycle, we call split(u’) on the last vertex
u’ € B, thereby splitting B into its constituents. The subblossoms B’ are of three kinds: they either
(i) intersect P as inner vertices/blossoms, (ii) intersect P as outer vertices/blossoms, or (iii) do not
intersect P. If B’ is of type (i), then subsequent dual adjustments will reduce z(B’). We schedule
a dissolve(B’) event for time t,oy + zo(B’)/2. If B’ is type (ii), then let b’ be its base. Every vertex
v’ € B’ is now outer. For each v’ € B’\{b’}, we call addedge(v’, b’), unite(v’, b’) and for each v’ €
B’, we call schedule(v’) to schedule events for unmatched edges incident to v’. When B’ is type
(iii), we call findmin(B’) to determine the unmatched edge e = (u, v) (u outer, v € B’) minimizing
slack™ (u, v). We schedule a grow(v,) event at time t,y + slack™ (u, v).

The blossom(u, v) procedure. When a blossom(u, v) event occurs either slack* (1, v) = 0 or u and
v have already been contracted into a common outer blossom. If find(u) = find(v), then we are
done. If rt(u) # rt(v), then we have discovered an eligible augmenting path from rt(u) to rt(v)
via (u,v). If rt(u) = rt(v), then a new blossom B must be formed. The base of b will be the least
common ancestor of v and v in T. We walk from u up to b and from v up to b, making sure that
all members of B are in the same set defined by unite operations. Here, we must be more specific
about which vertex in a blossom is the “representative” returned by find(:). The representative of
a blossom is its most ancestral node in T. For outer blossoms this is always the base; for inner
blossoms this is the vertex v in the call to grow(v, (1, v)) that caused v’s blossom to become inner.

Let u” be the current vertex under consideration on the path from u to b. If ¥’ is outer, in a
non-trivial blossom, but not the base of the blossom, then set u” < find(u”) to be the base of the
blossom and continue. Suppose u’ is the base of an outer blossom and v’ is its (inner) parent.
Call unite(u’,v’); set u’ < v’ and continue. If ¥’ is inner, not in any blossom, and v’ is its par-
ent, then call unite(u’,v’); set u’ < v’ and continue. Suppose u’ is in a non-trivial inner blossom
B’ = list(u’). Let P’ = Egr N T be the (possibly empty) path from u’ to the representative v’ of B’
and let u”” be the parent of v’. Call unite(e) for each e € P’ then, for each v"” € B’\V(P’), call
addedge(v”,v’) and unite(v”, v”). Call unite(v’,u”’); set u” « u’’ and continue. The same proce-
dure is repeated on the path from v up to b. Note that the time required to construct B is linear
in the number of B-vertices that make the transition from inner to outer. Thus, the total time for
forming all outer blossoms is O(n).

For each v’ € B that was not already outer before the formation of B, call schedule(v’) to sched-
ule events for unmatched edges incident to v’.

14Recall that all y-values of F-nodes have the same parity, and that any nodes reachable from an F-node by a path of
eligible edges also have the same parity. If u and v have both been reached, then slack(u, v) and slack* (u, v) are both
even, since y(u) + y(v) and w(u, v) are both even.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:33

5.3 Postprocessing

Once a single augmenting path is found, we explicitly record all y- and z-values, in O(n) time.
At this moment the (relaxed) complementary slackness invariants (Property 1 or 2) are satisfied,
except possibly the Active Blossom invariant. Any blossoms that were formed at the same time that
the first augmenting path was discovered will have zero z-values. Also, a non-root blossom with
zero z-value may become a root blossom just as the first augmenting path is found. Thus, we must
dissolve root blossoms with zero z-values as long as they exist.

6 CONCLUSION

We have presented a new scaling algorithm for MmwpMm on general graphs that runs in
O(m+/nlog(nN)) time. This algorithm improves slightly on the running time of the Gabow-
Tarjan algorithm [20]. However, its analysis is simpler than Reference [20] and is generally more
accessible. Historically there were two barriers to computing weighted matching in less than
O(m+y/nlog(nN)) time. The first barrier was that the best cardinality matching algorithms took
O(m+/n) time [16, 20, 36, 37, and cardinality matching seems easier than a single scale of weighted
matching. The second barrier was that even on bipartite graphs, where blossoms are not an issue,
the best matching algorithms took O(m+/nlog(nN)) time [6, 19, 22, 30]. Recent work by Cohen,
Madry, Sankowski, and Vladu [2] has broken the second barrier on sufficiently sparse graphs.
They showed that several problems, including weighted bipartite matching, can be computed in
O(m'/7 log N) time.
We highlight several problems left open by this work.

e The LIQUIDATIONIST MWPM algorithm is relatively simple and streamlined, and among the
scaling algorithms for MmwpM so-far proposed [13, 20], the one with the clearest potential
for practical impact. However, on sparse graphs it is theoretically an O(q/loglog n) factor
slower than the HYBRID algorithm. Can the efficiency of HYBRID be matched by an algorithm
that is as simple as LIQUIDATIONIST?

e There is now some evidence that the maximum weight (not necessarily perfect) matching
problem [6, 25, 26, 31] may be slightly easier than mwpM. Is it possible to compute a max-
imum weight matching of a general graph in O(m+/nlog N) time, matching the bound of
Duan and Su [6] for bipartite graphs?

e The implementation of Edmonds’ algorithm described in Section 5 uses an (integer) priority
queue supporting insert and delete-min, but does not take advantage of fast decrease-keys.
Given an integer priority queue supporting O(1) time decrease-key and O(q) time insert
and delete-min, is it possible to implement Edmonds’ search in O(m + nq) time, matching
the bound for a Hungarian search [10, 34] on a bipartite graph?

ACKNOWLEDGMENT

We thank the two anonymous reviewers, whose careful reading lead to numerous improvements
to the presentation.

REFERENCES

[1] G. Birkhoff. 1946. Tres observaciones sobre el elgebra lineal. Universidad Nacional de Tucuman, Revista A 5, 1-2,
147-151.

[2] M.B.Cohen, A. Madry, P. Sankowski, and A. Vladu. 2017. Negative-weight shortest paths and unit capacity minimum
cost flow in O(m'%/7 log W) time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’17). 752-771.

[3] W.H. Cunningham and A. B. Marsh, III. 1978. A primal algorithm for optimum matching. Math. Program. Study 8,
50-72.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

8:34

R. Duan et al.

M. Cygan, H. N. Gabow, and P. Sankowski. 2015. Algorithmic applications of Baur-Strassen’s theorem: Shortest
cycles, diameter, and matchings. 7. ACM 62, 4, 28.

R. Duan and S. Pettie. 2014. Linear-time approximation for maximum weight matching. J. ACM 61, 1, 1.

R. Duan and H.-H. Su. 2012. A scaling algorithm for maximum weight matching in bipartite graphs. In Proceedings
of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1413-1424.

J. Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices. . Res. Nat. Bur. Stand. Sect. B 69B, 125—
130.

J. Edmonds 1965. Paths, trees, and flowers. Can. J. Math. 17, 449-467.

J. Edmonds and R. M. Karp 1972. Theoretical improvements in algorithmic efficiency for network flow problems. 7.
ACM 19, 2, 248-264.

M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms.
J. ACM 34, 3, 596-615.

M. L. Fredman and D. E. Willard. 1994. Trans-dichotomous algorithms for minimum spanning trees and shortest
paths. 7. Comput. Syst. Sci. 48, 3, 533-551.

H. N. Gabow. 1976. An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM
23, 221-234.

H. N. Gabow. 1985. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS’85). 90—-100.

H.N. Gabow. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings
of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’90). 434-443.

H. N. Gabow. 2016. Data structures for weighted matching and extensions to b-matching and f-factors. CoRR,
abs/1611.07541.

H. N. Gabow. 2017. The weighted matching approach to maximum cardinality matching. Fundam. Inform. 154, 1-4,
109-130.

H. N. Gabow, Z. Galil, and T. H. Spencer. 1989. Efficient implementation of graph algorithms using contraction. J.
ACM 36, 3, 540-572.

H. N. Gabow and R. E. Tarjan. 1985. A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst.
Sci. 30, 2, 209-221.

H.N. Gabow and R. E. Tarjan. 1989. Faster scaling algorithms for network problems. SIAM J. Comput. 18,5, 1013-1036.
H. N. Gabow and R. E. Tarjan. 1991. Faster scaling algorithms for general graph-matching problems. J. ACM 38, 4,
815-853.

Z. Galil, S. Micali, and H. N. Gabow. 1986. An O(EV log V') algorithm for finding a maximal weighted matching in
general graphs. SIAM §. Comput. 15, 1, 120-130.

A. V. Goldberg and R. Kennedy. 1997. Global price updates help. SIAM J. Discr. Math. 10, 4, 551-572.

Y. Han. 2002. Deterministic sorting in O (n loglog n) time and linear space. In Proceedings of the 34th ACM Symposium
on Theory of Computers (STOC’02). ACM Press, 602-608.

Y. Han and M. Thorup. 2002. Integer sorting in O(n4/loglog n) expected time and linear space. In Proceedings of the
43rd Symposium on Foundations of Computer Science (FOCS’02). 135-144.

C.-C. Huang and T. Kavitha. 2012. Efficient algorithms for maximum weight matchings in general graphs with small
edge weights. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1400-1412.
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. 2001. A decomposition theorem for maximum weight bipartite
matchings. SIAM J. Comput. 31, 1, 18-26.

A. V. Karzanov. 1976. Efficient implementations of Edmonds’ algorithms for finding matchings with maximum car-
dinality and maximum weight. In Studies in Discrete Optimization, A. A. Fridman (Eds.). Nauka, Moscow, 306-327.
E. Lawler. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York.

S. Micali and V. Vazirani. 1980. An O(y/[V] - |E|) algorithm for finding maximum matching in general graphs. In
Proceedings of the 21st IEEE Symposium on Foundations of Computer Science (FOCS’80). 17-27.

J. B. Orlin and R. K. Ahuja. 1992. New scaling algorithms for the assignment and minimum mean cycle problems.
Math. Program. 54, 41-56.

S. Pettie. 2012. A simple reduction from maximum weight matching to maximum cardinality matching. Inf. Process.
Lett. 112, 23, 893-898.

S. Pettie. 2015. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. J. Graph Algor. Appl.
19, 1, 375-391.

M. Thorup. 1999. Undirected single-source shortest paths with positive integer weights in linear time. 7. ACM 46, 3,
362-394.

M. Thorup. 2003. Integer priority queues with decrease key in constant time and the single source shortest paths
problem. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC’03). 149-158.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

Scaling Algorithms for Weighted Matching in General Graphs 8:35

[35] M. Thorup. 2007. Equivalence between priority queues and sorting. 7. ACM 54, 6.

[36] V. V. Vazirani. 2012. An improved definition of blossoms and a simpler proof of the MV matching algorithm. CoRR,
abs/1210.4594.

[37] V. V. Vazirani. 2014. A proof of the MV matching algorithm. Unpublished manuscript.

[38] J. von Neumann. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem. In
Contributions to the Theory of Games, vol. II, H. W. Kuhn and A. W. Tucker (Eds.). Princeton University Press, 5-12.

Received February 2017; revised October 2017; accepted October 2017

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 8. Publication date: January 2018.

