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Abstract
The complexity of distributed edge coloring depends heavily
on the palette size as a function of the maximum degree
∆. In this paper we explore the complexity of edge coloring
in the LOCAL model in different palette size regimes. Our
results are as follows.

• We simplify the round elimination technique of Brandt
et al. [9] and prove that (2∆−2)-edge coloring requires
Ω(log∆ log n) time w.h.p. and Ω(log∆ n) time deter-
ministically, even on trees. The simplified technique
is based on two ideas: the notion of an irregular run-
ning time (in which network components terminate the
algorithm at prescribed, but irregular times) and some
general observations that transform weak lower bounds
into stronger ones.

• We give a randomized edge coloring algorithm that
can use palette sizes as small as ∆ + Õ(

√
∆), which

is a natural barrier for randomized approaches. The
running time of the algorithm is at most O(log∆ ·
TLLL), where TLLL is the complexity of a permissive
version of the constructive Lovász local lemma.

• We develop a new distributed Lovász local lemma
algorithm for tree-structured dependency graphs, which
leads to a (1 + ε)∆-edge coloring algorithm for trees
running in O(log log n) time. This algorithm arises
from two new results: a deterministic O(log n)-time
LLL algorithm for tree-structured instances, and a
randomized O(log log n)-time graph shattering method
for breaking the dependency graph into independent
O(log n)-size LLL instances.

• A natural approach to computing (∆ + 1)-edge color-
ings (Vizing’s theorem) is to extend partial colorings by
iteratively re-coloring parts of the graph, e.g., via “aug-
menting paths.” We prove that this approach may be
viable, but in the worst case requires recoloring sub-
graphs of diameter Ω(∆ log n). This stands in con-
trast to distributed algorithms for Brooks’ theorem [32],
which exploit the existence of O(log∆ n)-length aug-
menting paths.
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1 Introduction

We study edge coloring1 problems in the well known
LOCAL2 model of distributed computation [28, 34],
which for clarity we bifurcate into RandLOCAL and
DetLOCAL depending on whether random bits are avail-
able. The distributed complexity of computing a k-edge
coloring depends heavily on the value of k (relative to
the maximum degree ∆) and whether vertices can gen-
erate random bits. In Section 1.1 we review previous
edge coloring algorithms in descending order by palette
size (see Table 1) and in Section 1.4 we summarize our
contributions.

1.1 Edge Coloring Algorithms Edge-coloring can
be interpreted as a vertex coloring problem on the line
graph L(G), in which edges becomes vertices and two
edges are adjacent if they share an endpoint; the line
graph has maximum degree ∆̂ = 2∆ − 2. Applied to
L(G), Linial’s [28] vertex coloring algorithm will com-
pute an O(∆̂2)-edge coloring in O(log∗ n − log∗ ∆̂ + 1)
time. Using the fastest deterministic (∆̂+1)-vertex col-
oring algorithms [33, 20], (2∆−1)-edge coloring is solved
in min{2O(

√
logn), Õ(

√
∆) + log∗ n} time. Barenboim,

Elkin, and Maimon [6] gave deterministic algorithms for
(2k∆)-edge coloring (k ≥ 2) in Õ(k∆1/2k + log∗ n).

Barenboim, Elkin, Pettie, and Schneider [7] proved
that O(log∆) iterations of the natural randomized
(2∆−1)-edge coloring algorithm effectively shatters the
graph into uncolored components of poly(log n) ver-

1A k-edge coloring is a function φ : E → {1, . . . , k} such that
edges sharing an endpoint are colored differently; “k” is called the

palette size.
2The LOCAL model has the following features. The input

graph G = (V,E) is identical to the distributed network; ver-

tices are identified with processors and edges with bi-directional

communication links; each v ∈ V initially knows deg(v), a port-
numbering of its incident edges, and global parameters such as

n = |V | and ∆ = maxv deg(v); time is divided into synchronized

rounds, and in each round each processor can perform unlimited
computation and communicate an unbounded-length message to

each of its neighbors, which is delivered before the next round.
Depending on the problem the vertices may carry additional in-

put labels. The output of a LOCAL algorithm is typically a label-

ing of V or E that satisfies some constraints. In the RandLOCAL

model the output labeling is correct w.h.p. (1 − 1/poly(n)). In

the DetLOCAL model each vertex is assigned a unique O(logn)-bit

ID; the output labeling must always be correct.
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tices, which can then be colored using a determin-
istic algorithm.3 Elkin, Pettie, and Su [17] proved
that when ∆ > (log n)1+γ , (2∆ − 1)-edge color-
ing can be solved in O(log∗ n) time in RandLOCAL.
Very recently Fischer, Ghaffari, and Kuhn proved that
(2∆− 1)-edge coloring can be solved in O(log7 ∆ log n)
time in DetLOCAL. Together with [7] and [17],
this implies a RandLOCAL algorithm running in
min{O((log log n)8), O(log7 ∆ log log n)}) time. By us-
ing a slightly larger palette of (2 + ε)∆ colors, ε >
1/ log∆, Ghaffari et al. [23] (cf. [24]) gave a faster
DetLOCAL edge coloring algorithm running in time
O(ε−1 log2 ∆ log log∆(log log log∆)1.71 log n).

The “2∆−1” arises because it is the smallest palette
size with the property that any partial coloring can
be extended to a total coloring, by the trivial greedy
algorithm. Below the greedy threshold 2∆− 1, iterative
coloring algorithms must be more careful in how they
proceed. In particular, at intermediate stages in the
algorithm, edges must keep their available palettes
relatively large compared to the size of their uncolored
neighborhood.

Using the Rödl nibble technique, Dubhashi, Grable,
and Panconesi [16] gave a RandLOCAL algorithm for
(1 + ε)∆-edge coloring in O(log n) time, provided that
∆ is sufficiently large, e.g., even when ε is constant, ∆ >
(log n)1+γ . Elkin, Pettie, and Su [17] gave RandLOCAL

algorithms for (1 + ε)∆-edge coloring that are faster
when ∆ is large and work for all ∆ via a reduction to the
distributed Lovász local lemma (LLL); see Section 1.3
for a discussion of the distributed LLL. The (1 + ε)∆-

edge coloring problem is solved in O(log∗ n ·
⌈

logn
∆1−o(1)

⌉
)

time via the Chung-Pettie-Su LLL algorithm [13].4 The
running time of the Dubhashi-Grable-Panconesi and
Elkin-Pettie-Su algorithms depend polynomially on ε−1.
In both algorithms it is clear that ε need not be constant,
but it is not self-evident how small it can be made
as a function of ∆. The natural limit for randomized
coloring strategies is a (∆+O(

√
∆))-size palette,5 which

was achieved in 1987 by Karloff and Shmoys [26] in the
context of parallel (PRAM) algorithms, but has never
been achieved in the LOCAL model.

We cannot hope to use fewer than ∆ + 1 colors
on general graphs. Vizing [36] proved that ∆ + 1

3The problem of coloring one of these components is a
(2 deg(v)− 1)-list edge coloring problem, i.e., v’s palette includes

an arbitrary set of 2 deg(v)− 1 colors.
4If ∆ is sufficiently small (∆ � logε n for some specific ε > 0),

this algorithm can be sped up using a recent LLL algorithm of
Fischer and Ghaffari [18].

5This is the threshold at which we have a constant probability

of being able to color e, given a random feasible coloring of its
neighborhood.

suffices for any graph, and Holyer [25] proved that
it is NP-hard to tell if a graph is ∆-colorable. The
best sequential (∆ + 1)-edge coloring algorithms [1, 21]
run in O(min{∆m log n, m

√
n log n}) time and are not

suited for implementation in the LOCAL model. When
the palette size is ∆ + o(

√
∆), a natural way to solve

the problem [1, 21] is to begin with any maximal
partial coloring, and then iteratively recolor portions
of the graph (e.g., along “augmenting paths”) so that
at least one uncolored edge can be legally colored.
This approach was successfully employed by Panconesi
and Srinivasan [32] in their distributed algorithm for
Brooks’ theorem.6 They proved that for any partial
coloring, there exists an augmenting path with length
O(log∆ n), and that given a (∆+1)-vertex coloring, a ∆-
vertex coloring could be computed in O(log2 n log∆ n)
additional time.

1.2 Lower Bounds Linial’s Ω(log∗ n) lower bound
for O(1)-coloring the ring [28, 31] shows that f(∆)-edge
coloring also cannot be computed in o(log∗ n) time, for
any function f .

None of the other published lower bounds apply di-
rectly to the edge coloring problem. Kuhn, Moscibroda,

and Wattenhofer’s Ω(min{ log∆
log log∆ ,

√
logn

log logn}) lower

bounds apply to MIS and maximal matching, but not
to any vertex/edge coloring problem. Linial’s O(log∆ n)
lower bound [28] (see [35, p. 265]) on o(∆/ ln∆)-
vertex coloring trees does not imply anything for edge-
coloring trees. The lower bounds of Brandt et al. [9] (in
RandLOCAL) and Chang, Kopelowitz, and Pettie [11]
(in DetLOCAL) for sinkless orientation and ∆-vertex
coloring trees do not naturally generalize to edge col-
oring. Indeed, Brandt et al.’s lower bound technique
oscillates between sinkless orientation and a closely re-
lated problem called sinkless coloring, whose input al-
ready consists of a ∆-edge colored graph.

1.3 The Distributed Lovász Local Lemma Con-
sider a set of independent random variables V and a
set of bad events E , where each A ∈ E depends on a
subset vbl(A) ⊂ V. Define the dependency graph as
GE = (E , {(A,B) | vbl(A) ∩ vbl(B) 6= ∅)}). Symmetric
versions of the Lovász local lemma are stated in terms of
d, the maximum degree in GE , and p = maxA∈E Pr[A].
A standard version of the LLL says that if ep(d+1) < 1
then Pr[∩A∈EA] > 0. The (constructive) LLL problem
is to assign values to all variables in V such that no
event in E happens.

6Which states that any graph with ∆ ≥ 3 having no (∆ + 1)-
cliques is ∆-vertex colorable.
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Palette Size Time (Rand) Notes References

f(∆) Lower bound: Ω(log∗ n) R ∆ = O(1) [28, 31]

O(∆2) log∗ n− log∗ ∆+ 1 ? Vertex coloring L(G) [28]

∆1+ε Cε log∆ log n Vertex coloring L(G) [4]

∆ log n log4 n [14]

Cε∆ ∆ε log n Vertex coloring L(G) [4]

2k∆ k∆1/2k + log∗ n ? k ≥ 2 [6, 24]

ε−3 log11 n [24]
(2 + ε)∆

ε−1 log∆2+o(1) log n ? ε > 1/ log∆ [23]

2O(
√
logn) Vertex coloring L(G) [33]

Õ(
√
∆) + log∗ n ? Vertex coloring L(G) [20]

log∆ + 2O(
√
log logn) Vertex coloring L(G) [7]

2∆− 1 log∗ n R? ∆ > (log n)1+o(1) [17]

2O(
√
log logn) R [17]

log7 ∆ log n ? [19]

min{(log log n)8, log7 ∆ log log n} R? [7]+[17]+[19]

Lower bound: Ω(log∆ log n) R new
2∆− 2

Lower bound: Ω(log∆ n) new

ε−1 log ε−1 + log n R ∆ > (log n)1+γ(ε) [16]

(1 + ε)∆
(ε−2 log ε−1 + log∗ ∆)

⌈
logn

ε2∆1−o(1)

⌉
R ∆ > ∆ε [17]

log ε−1
⌈

logn
ε2∆1−o(1)

⌉
+ log∗ n R ε∆ > (log n)1+o(1) new

log ε−1
⌈

logn
ε2∆1−o(1)

⌉
+ (log log n)3+o(1) R? ∆ > ∆ε new

∆+ Õ(
√
∆) log∆

⌈
logn

ε2∆1−o(1)

⌉
+ (log log n)3+o(1) R? new

∆+ 1 diameter(G) ? [36]

Table 1: A history of notable edge coloring algorithms and lower bounds, in descending order by palette size.
Some (2∆ − 1)-edge coloring algorithms that follow from vertex coloring L(G), such as [2, 27, 5, 3], have been
omitted for brevity. RandLOCAL algorithms are marked with R; all others work in DetLOCAL. Those algorithms
that are the “best” in any sense are marked with a ?.
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Distributed Lovász Local Lemma. The dis-
tributed LLL problem is to assign values to all variables
in V such that no event in E happens in the LOCAL

model, where the communication network is the depen-
dency graph GE of the LLL system.

Randomized coloring algorithms in the LOCAL

model are often composed of O(1)-round routines that
commit to a partial coloring, whose local probability of
failure is small, as a function of ∆. Using a distributed
Lovász local lemma (LLL) algorithm, we can guarantee
global success with probability 1− 1/poly(n) or even 1.
Table 2 summarizes distributed LLL algorithms under
different symmetric criteria p · f(d) < 1, where p is the
local probability of failure and d is the maximum degree
in the dependency graph.7

Chang and Pettie [12] conjectured that the
RandLOCAL complexity of the LLL under some poly-
nomial criterion (e.g., p(ed)c < 1 for some fixed c) is
O(log log n), matching the Brandt et al. [9] lower bound.
If this conjecture were true, the results of [11, Theorem
3] indicate what the optimal algorithm should look like:
it must combine an O(log n)-time DetLOCAL LLL al-
gorithm and an O(log log n)-time graph shattering rou-
tine to break the dependency graph into poly(log n)-size
LLL instances. Fischer and Ghaffari [18] exhibited a de-
terministic n1/λ+o(1)-time algorithm for LLL criterion
p(ed)λ < 1, and an O(d2+log∗ n) routine to shatter the
dependency graph into log n-size components.

1.4 New Results We present new upper and lower
bounds on the complexity of edge coloring in the regimes
between palette size ∆ and 2∆ − 2, i.e., strictly below
the “greedy” threshold 2∆− 1.

Round Elimination. Our first result is a lower
bound on (2∆− 2)-edge coloring using a simplified ver-
sion of Brandt et al.’s [9] round elimination technique.
Roughly speaking, their idea is to convert any ran-
domized t-round algorithm with local error probabil-
ity p into a (t − 1)-round algorithm with error prob-
ability ≈ p1/∆. By iterating the procedure they ob-
tain a 0-round algorithm with error probability ≈ p∆

−t

.
If any 0-round algorithm must have constant proba-
bility of failure, then t = Ω(log∆ log p−1). By set-
ting p = 1/poly(n) we get Ω(log∆ log n) RandLOCAL

lower bounds for some problems, e.g., sinkless orien-
tation. We present a much simplified round elimina-
tion technique that appears to give quantitatively worse
bounds, but which can be automatically strengthened
to match those of [9]. Rather than try to shave one
round off the running time of every processor, it is sig-

7In coloring algorithms it is typical to see d = poly(∆) and
p = exp(−Ω(dΩ(1))).

nificantly simpler to do it piecemeal, which leads us to
the useful concept of an irregular time profile. Sup-
pose that the graph is initially k-edge colored, k be-
ing at least 2∆ − 1 so as not to trivialize the problem.
An algorithm has irregular time profile t = (t1, . . . , tk)
if edges with input color i choose their output color
by examining only their ti-neighborhood. In our sim-
plified round-elimination technique, we show that any
algorithm with time profile (t, t, · · · , t︸ ︷︷ ︸

i

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i

)

and error probability p can be transformed into one with
time profile (t, t, · · · , t︸ ︷︷ ︸

i−1

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i+1

) and error proba-

bility O(p1/3), only by changing the algorithm for edges
initially colored i. By iterating this process we arrive
at Ω(∆−1 log log p−1) lower bounds, which has a weaker
dependence on ∆ than [9]. By following the proofs of
Chang, Kopelowitz, and Pettie [11], any randomized
lower bound of this type implies Ω(log∆ n) lower bounds
in DetLOCAL [11, Theorem 5], and hence Ω(log∆ log n)
lower bounds in RandLOCAL [11, Theorem 3].

Faster (1+ε)∆-edge Coloring. The (1+ε)∆-edge
coloring algorithms of [16, 17] are slow (with a polyno-
mial dependence on ε−1) and have limits on how small
ε can be, as a function of ∆. We prove that the most
“natural” randomized algorithm converges exponen-
tially faster with ε−1 and can achieve palette sizes close
to the minimum of ∆ + Õ(

√
∆) allowed by the nibble

method. In particular, for any ε = Ω̃(1/
√
∆), (1 + ε)∆-

edge coloring is reducible to O(log ε−1) instances of
the Lovász local lemma with local failure probability
exp(−ε2∆1−o(1)), plus one instance of O(∆)-edge col-
oring, which can be solved quickly using [7, 17, 23].
When ε2∆ � log n the error is 1/poly(n); otherwise
we can invoke a distributed LLL algorithm [30, 13, 18].

The weird-looking term
⌈

logn
ε2∆1−o(1)

⌉
in Table 1 is due

to the O(log1/epd2 n)-time LLL algorithm of [13], with

1/epd2 = exp(ε2∆1−o(1)).
Upper Bounds on Trees. Our lower bounds on

(2∆ − 2)-edge coloring apply even to trees. In order
to adapt our randomized (1 + ε)∆-edge coloring algo-
rithms to trees, we need a special LLL algorithm for
tree structured dependency graphs. Using the frame-
work of Fischer and Ghaffari [18], we give a deter-
ministic O(max{logλ n, log n/ log log n})-time LLL algo-
rithm for such instances under criterion p(ed)λ < 1,
λ ≥ 2. The algorithm is based on a special network
decomposition algorithm for tree-structured graphs, in
which one color class has diameter O(logλ n) while the
other color classes have diameter 0. We also present
a new graph shattering routine for tree-structured
LLL instances that runs in time O(logλ log n), improv-
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Symmetric
LLL Criterion Time Rand/Det Notes Reference

O(MIS · log1/ep(d+1) n) Rand also asymmetric criterion [30]

ep(d+ 1) < 1 O(WeakMIS · log1/ep(d+1) n) Rand also asymmetric criterion [13]

O(log d · log1/ep(d+1) n) Rand also asymmetric criterion[22]+[13]

epd2 < 1 O(log1/epd2 n) Rand also asymmetric criterion [13]

poly(d)2d < 1 O(log n/ log log n) Rand [13]

p(ed)λ < 1 O(n1/λ · 2O(
√
logn)) Det Any λ ≥ 1 [18]

p(ed)4λ < 1 O(d2 + (log n)1/λ · 2O(
√
log logn)) Rand Any λ ≥ 8 [18]

p(ed)32 < 1 2O(
√
log logn) Rand Requires d < (log log n)1/5 [18]

p(ed)d
2+1 < 1 O(d2 + log∗ n) Det [18]

Lower Bounds (apply to tree-structured instances)

p · f(d) < 1 Ω(log∗ n) Rand Any f [13]

p · f(d) ≤ 1 Ω(loglog(1/p) log n) Rand Any f(d) ≤ 2d [9]

p · f(d) ≤ 1 Ω(loglog(1/p) n) Det Any f(d) ≤ 2d [11]

LLL for Tree-Structured Instances
p(ed)2 < 1 O(log n) Det new

p(ed)λ < 1 O(max{logλ n, logn
log logn}) Det λ ≥ 2 new

p(ed)λ < 1 O(max{logλ log n, log logn
log log logn}) Rand λ ≥ 2(4r + 8r) new

Table 2: A survey of distributed LLL algorithms. MIS = O(min{d + log∗ n, log d + 2O(
√
log logn)}) [5, 22] is the

complexity of computing a maximal independent set in a graph with maximum degree d. WeakMIS = O(log d) [22]
is the task of finding an independent set I such that the probability that v is not in/adjacent to I is 1/poly(d).
All lower bounds apply even to tree-structured instances. The lower bounds of [9, 11] (Ω(logd log n) randomized,
Ω(logd n) deterministically) were for an LLL instance satisfying p2d ≤ 1. By a change of parameters, they also
imply stronger lower bounds (substituting log(1/p) for d) under any LLL criterion p · f(d) ≤ p2d ≤ 1.
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ing the O(d2 + log∗ n)-time shattering routine of [18]
when d is not too small. (The new graph shatter-
ing method can be viewed as an algorithm that com-
putes the final state of a certain contagion dynamic
exponentially faster than simulating the actual conta-
gion.) By composing these results we obtain a random-
ized O(max{logλ log n, log log n/ log log log n}) LLL al-
gorithm for trees, which essentially matches the lower
bound of [9] and the conjectured upper bound for gen-
eral instances [12, Conjecture 1]. See Table 2. We do
not optimize the requirement λ ≥ 2(4r + 8r).

A Distributed Vizing’s Theorem? Suppose
that a distributed (∆ + 1)-edge coloring algorithm be-
gins with a partial coloring and iteratively recolors sub-
graphs, always increasing the subset of colored edges.
If this algorithm works correctly given any partial col-
oring, we prove that it takes Ω(∆ log n) time in any
LOCAL model, and more generally, (∆ + c)-coloring
takes Ω(∆c log n) time. This establishes a quantitative
difference between the “locality” of Vizing’s theorem
and Brooks’ theorem [32].

Organization of the paper. In Section 2 we give
lower bounds on (2∆ − 2)-edge coloring. In Section 3
we give a randomized (1+ ε)∆-edge coloring algorithm,
In Section 4 we give new LLL algorithms for tree-
structured dependency graphs. In Section 5 we show
some results on edge-coloring trees deterministically,
which may be folklore. In Section 6 we present the
network decomposition algorithms on trees used in
Section 4. In Section 7 we give lower bounds on a class
of “recoloring” algorithms for Vizing’s theorem. We
conclude in Section 8. Some proof details in Section 3
and Section 5 are omitted; see [10] for the full proofs.

2 Lower Bound for (2∆− 2)-Edge Coloring

The sinkless orientation problem is to orient (direct)
the edges such that no vertex has out-degree zero. Since
this problem becomes harder with fewer edges, we let
∆ denote the minimum degree in this problem, whereas
in the edge-coloring problem ∆ is still the maximum
degree. We first observe that sinkless orientation on 2-
colored bipartite graphs is reducible to (2∆ − 2)-edge
coloring.

Theorem 2.1. Suppose Ae.c. is a t-round (2∆−2)-edge
coloring algorithm with local failure probability p. There
is a (t + 1)-round sinkless orientation algorithm As.o.

for 2-colored bipartite graphs with minimum degree ∆
whose local failure probability is p.

Proof. Ae.c. produces a proper partial (2∆ − 2)-edge
coloring φ : E → {1, . . . , 2∆ − 2,⊥} such that for all
v ∈ V , Pr(∃(u, v) : φ(u, v) =⊥) ≤ p, i.e., a vertex
errs if not all of its edges are colored. Suppose we are

given a bipartite graph G = (V,E) with a 2-coloring
V → {0, 1} and minimum degree ∆. In the first round
of As.o., each vertex selects ∆ of its incident edges
arbitrarily and notifies the other endpoint whether it
was selected. Let G′ = (V,E′) be the subgraph of
edges selected by both endpoints. The algorithm As.o.

runs Ae.c. on G′ for t rounds to get a partial coloring
φ : E′ → {1, . . . , 2∆ − 2,⊥}, then orients the edges
(in the direction 0 → 1 or 0 ← 1) as follows. Let
{u0, u1} ∈ E be an edge with uj colored j ∈ {0, 1}.

As.o.({u0, u1}) = 0 → 1 if {u0, u1} ∈ E′ and
φ(u0, u1) ∈ {1, 2, . . . ,∆ − 1,⊥}, or if only u0 se-
lected {u0, u1}.

As.o.({u0, u1}) = 1 → 0 if {u0, u1} ∈ E′ and
φ(u0, u1) ∈ {∆, . . . , 2∆ − 2}, or if only u1 selected
{u0, u1}.

The only way a vertex v can be a sink is if (i) v has
degree exactly ∆ in G′, (ii) v is colored 1, and (iii) each
edge e incident to v has φ(e) ∈ {1, 2, . . . ,∆ − 1,⊥}.
Criterion (iii) only occurs with probability at most p.

Thus, any lower bound for sinkless orientation on
2-colored graphs also applies to (2∆− 2)-edge coloring.
Define T∆ to be an infinite ∆-regular tree whose ver-
tices are properly 2-colored by {0, 1} and whose edges
are assigned a proper (2∆ − 1)-coloring uniformly at
random.8

For simplicity we suppose that the edges host pro-
cessors (not vertices), and that two edges can commu-
nicate if they are adjacent in the line graph L(T∆). De-
fine N t(e) to be all edges within distance t of e in the
line graph; we also use N t(e) to refer to all informa-
tion (edge coloring, vertex coloring, random bits, etc.)
stored in their processors. By definition, a time-t algo-
rithm has time profile (t, t, t, · · · , t).

Lemma 2.1. (Round Elimination Lemma) Suppose
As.o. is a sinkless orientation algorithm for T∆ with er-
ror probability p and time profile (t, t, · · · , t︸ ︷︷ ︸

i

, t−1, · · · , t−

1), i.e., edges colored {1, . . . , i} halt after t rounds and
the others after t − 1 rounds. There exists a sinkless

8One could generate such a coloring as follows: pick an edge

and assign it a random color, then iteratively pick any vertex u
with one incident edge colored, choose ∆ − 1 colors at random

from the
(2∆−2
∆−1

)

possibilities, then assign them to u’s remaining

uncolored edges uniformly at random. Randomized algorithms
that run on T∆ know the edge coloring and how it was generated.

Thus, the probability of failure depends on the random bits

generated by the algorithm, and those used to generate the edge-
coloring.
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orientation algorithm A′
s.o. with error probability 3p1/3

and time profile (t, t, · · · , t︸ ︷︷ ︸
i−1

, t− 1, · · · , t− 1).

Proof. Only edges colored i modify their algorithm; all
others behave identically under A′

s.o. and As.o.. Let
e0 = {u0, u1} be an edge colored i with uj colored
j ∈ {0, 1} and let the remaining edges incident to u0 and
u1 be {e1, . . . , e∆−1} and {e∆, . . . , e2∆−2}, respectively.
Consider the following two events regarding the output
of As.o..

E0 : ∀j ∈ [1,∆− 1],As.o.(ej) = 0← 1

That is, u0 has outdegree 0 in G− {e0}.
E1 : ∀j ∈ [∆, 2∆− 2],As.o.(ej) = 0→ 1

That is, u1 has outdegree 0 in G− {e0}.

If both events hold, then either u0 or u1 must be a sink,
so

(2.1) Pr(E0 ∩ E1) ≤ 2p

On edge e0, A′
s.o. runs for t− 1 rounds and determines

whether the following events occur.

E?0 :
[
Pr(E0 |N t−1(e0)) ≥ p1/3

]

E?1 :
[
Pr(E1 |N t−1(e0)) ≥ p1/3

]

Note that if we inspect N t−1(e0) (and condition on
the information seen), the events E0 and E1 become
independent since they now depend on disjoint sets of
random variables.9 Thus,

Pr(E0 ∩ E1 | N t−1(e0))(2.2)

= Pr(E0 |N t−1(e0)) · Pr(E1 |N t−1(e0))

Since E?0 , E?1 are determined by N t−1(e0), (2.2) implies
that Pr(E0 ∩ E1 | E?0 ∩ E?1 ) ≥ p2/3, and with (2.1) we
deduce that

Pr(E?0 ∩ E?1 ) ≤ 2p1/3(2.3)

The algorithm A′
s.o. orients e0 as follows.

A′
s.o.(e0) =

{
0→ 1 if E?0 holds
0← 1 otherwise

The failure probability at a vertex not adjacent to
any edge colored i is the same under As.o. and A′

s.o..

9E0 depends on
⋃

j∈[1,∆−1] N
t(ej)\Nt−1(e0) and E1 depends

on
⋃

j∈[∆,2∆−2] N
t(ej)\Nt−1(e0).

We calculate the failure probabilities of the remaining
vertices now.

Pr(u0 is a sink) = Pr(E?0 ∩ E0)
≤ Pr(E0 | E?0 ) ≤ p1/3,

which follows from the definition of E?0 .

Pr(u1 is a sink) = Pr(E?0 ∩ E1)
≤ Pr(E?0 ∩ E?1 ) + Pr(E1 ∩ E?1 )
≤ 2p1/3 + p1/3 = 3p1/3,

which follows from (2.3) and the definition of E?1 .

Lemma 2.2. Any sinkless orientation algorithm for
T∆ with local error probability p has time complexity
Ω(∆−1 log log p−1).

Proof. Let As.o. be a t-round algorithm with error prob-
ability p, i.e., it has time profile (t, t, . . . , t). Apply-
ing Lemma 2.1 t(2∆ − 1) times we get an algorithm
A′

s.o. with time profile (0, 0, . . . , 0) and error probabil-

ity p0 = O(p3
−t(2∆−1)

). We now claim that p0 must also
be at least 8−∆. Any 0-round orientation algorithm
can be characterized by a real vector (q1, . . . , q2∆−1),
where qi is the probability that an edge colored i is ori-
ented as 0 → 1. Without loss of generality, suppose
that q1, . . . , q∆ ≥ 1/2. Fix any v ∈ V (T∆) labeled 1.
The probability that v is a sink is at least the prob-
ability that its edges are initially colored {1, . . . ,∆}
and that they are all oriented away from v, hence

p0 ≥
(
2∆−1

∆

)−1 · 2−∆ ≥ 2−3∆. Combining the upper
and lower bounds on p0 we have

23∆ ≥ p−1
0 = Ω((p−1)3

−t(2∆−1)

)

and taking logs twice we have

log(3∆) ≥ log log p−1 − t(2∆− 1) log 3−O(1)

which implies that t = Ω(∆−1 log log p−1).

Theorem 2.2. Even on 2-colored trees or 2-colored
graphs of girth Ω(log∆ n), sinkless orientation and
(2∆ − 2)-edge coloring require Ω(log∆ log n) time in
RandLOCAL and Ω(log∆ n) time in DetLOCAL.

Proof. Consider any sinkless orientation/(2∆− 2)-edge
coloring algorithm with local probability of failure p.
Lemma 2.2 applies to any vertex v and any radius t such
that N t(v) is consistent with a subgraph of T∆. Thus,
on degree-∆ trees or graphs of girth Ω(log∆ n) [15, 8],
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we get Ω(min{∆−1 log log p−1, log∆ n}) lower bounds.
Following the same proof as [11, Theorem 5], this
implies an Ω(log∆ n) lower bound in DetLOCAL, which,
according to [11, Theorem 3], implies an Ω(log∆ log n)
lower bound in RandLOCAL. In other words, the
weak RandLOCAL lower bound Ω(∆−1 log log n) implied
by Lemma 2.2 automatically implies a stronger lower
bound.

3 Randomized Edge Coloring Algorithm

Elkin, Pettie, and Su [17] showed that for any constant
ε > 0, there is a number ∆ε such that for ∆ > ∆ε,
∆(1 + ε)-edge coloring can be solved in

O(TLLL(n, poly(∆), exp(−ε2∆/poly(log∆)))

+ T ∗(n,O(∆)))

rounds in the RandLOCAL model, where

TLLL(n, d, p) is the RandLOCAL complexity for con-
structive LLL with the parameters d and p on an
n-vertex dependency graph.

T ∗(n,∆′) is the RandLOCAL complexity for 5∆′-edge
coloring on an n-vertex graph of maximum degree
∆′.

It is unclear to what extent the algorithm of [17] still
works if we allow ε = o(1). For instance, it is unknown
whether (∆ + ∆0.7)-edge coloring can be solved in
RandLOCAL.

The algorithm of [17] is based on the Rödl Nib-
ble method as follows. After the ith iteration of the
algorithm, a certain invariant Hi+1 holds at each ver-
tex w.h.p. in ∆, given that Hi holds everywhere be-
forehand. To ensure that the invariant Hi+1 is met, a
distributed Lovász Local Lemma algorithm is applied
in each iteration of the algorithm. Their algorithm re-
quires O( 1

ε2 log(
1
ε )) iterations,

10 which is inefficient if ε
is small, e.g., 1/poly(∆). In this section, we prove the
following theorem, which improves upon the algorithm
of [17].

Theorem 3.1. Let ε = ω
(

log2.5 ∆√
∆

)
be a function of ∆.

If ∆ > ∆ε is sufficiently large there is a RandLOCAL

10To design a ∆(1 + ε)-edge coloring algorithm for very small
ε, one cannot to afford to have too many iterations. Observe that

each iteration necessarily incur at least a 1± O(1/
√
∆) factor of

drift to the parameters (e.g., palette size), since these parameters
are upper bounded by O(∆). If the number of iterations is

much higher than
√
∆, then the effect of the drift becomes non-

negligible. For instance, if the number of iterations is Ω(1/ε2)
(which is the case of [17]), then we cannot make ε = o(∆−1/4).

algorithm for (1 + ε)∆-edge coloring in time

O (log(1/ε)) · TLLL

(
n, poly(∆), exp

( −ε2∆
log4+o(1) ∆

))

+ T ∗ (n,O(ε∆)) .

Notice that exp(−ε2∆/ log4+o(1) ∆) = exp(−ω(log∆)),
so we may use a distributed LLL algorithm under any
criterion p(ed)λ < 1. There is an inherent tradeoff be-
tween the palette size and the runtime in Theorem 3.1.
Selecting smaller ε allows us to use fewer colors, but
it leads to a higher p = exp(−ε2∆/ log4+o(1) ∆), which
may increase the runtime of an LLL algorithm.

Runtime of 5∆′-edge Coloring. It is known that
T ∗(n,∆′) is at most O(log∆′) plus the DetLOCAL com-
plexity of 3∆′-edge coloring on poly(log n)-size graphs.
This is achieved by applying the (∆̃+1)-vertex coloring
algorithm of [7] to the line graph, where ∆̃ = 2∆′− 2 is
the maximum degree of the line graph.

For the special case of ∆′ = log1+Ω(1) n, (2∆′ − 1)-
edge coloring can be solved in RandLOCAL O(log∗ n)
rounds [17]. The state-of-the-art DetLOCAL algo-
rithm [23] for (2 + x)∆′-edge coloring has complexity

O(log2 ∆′ · x−1 · log log∆′ · log1.71 log log∆′ · log n)

for any x > 1/ log∆′. Thus, combining [17, 7, 23], we
have

T ∗(n,∆′)

= O(log3 log n · log log log n · log1.71 log log log n)
= (log log n)3+o(1).

This is achieved as follows. If ∆′ = Ω(log2 n), we
run the O(log∗ n)-time RandLOCAL algorithm of [17].
Otherwise, we run the RandLOCAL graph shattering
phase of [7] (using the first 2∆′ colors) followed by the
DetLOCAL algorithm of [23] (using the remaining 3∆′

colors) on each component.
Runtime on Trees. Consider running our algo-

rithm on a tree with palette size (1 + ε)∆, where

ε = Ω
(

log2.5+x ∆√
∆

)
, for some positive constant x.

Then the LLL parameters are d = poly(∆) and p =

exp(−ε2∆/ log4+o(1) ∆) in Theorem 3.1, which satisfy
the criterion p(ed)λ < 1 with λ = Ω(logx ∆). Using
our randomized LLL algorithm for trees (Section 4), we
have

TLLL

(
n, poly(∆), exp(−ε2∆/ log4+o(1))

)

= O
(
max{ log logn

log log logn , loglog∆ log n}
)
.

We claim that T ∗(n,∆′) = O(log∗ ∆′ + log∆′ log n)
on trees. This is achieved as follows. First, do
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a O(log∗ ∆′)-time randomized procedure to partially
color the graph using the first 2∆′ colors so that the
remaining uncolored components have size poly(log n).
This can be done using the algorithm of [17] without
invoking distributed LLL. Then, apply our deterministic
O(log∆′ ñ)-time algorithm for ∆′-edge coloring trees
(Section 5) to each uncolored component separately,
using a set of ∆′ fresh colors.

To sum up, the time complexity of (1 + ε)∆-edge
coloring trees is

O

(
log(1/ε) ·max{ log logn

log log logn , loglog∆ log n}

+ log∗ ∆+ log∆ log n

)

= O
(
log(1/ε) ·max{ log logn

log log logn , loglog∆ log n}
)
.

This matches our Ω(log∆ log n) lower bound (Section 2)
when 1/ε,∆ = O(1).

3.1 Main Algorithm Our algorithm has two
phases. The goal of the first phase is to color a subset of

the edges using the colors from C1 def
= {1, . . . ,∆(1 + ξ)}

such that the subgraph induced by the uncolored edges
has degree less than ∆′ = 1

5 (ε − ξ)∆ = Θ(ε∆). The
first phase consists of O(log(1/ε)) executions of a dis-
tributed Lovász Local Lemma algorithm. The second
phase colors the remaining edges using the colors from

C2 def
= {∆(1+ξ)+1, . . . ,∆(1+ε)} using the fastest avail-

able coloring algorithm, which takes T ∗(n,∆′) time.
Algorithm. In what follows we focus on the first

phase. We write Gi to denote the graph induced by
the set of uncolored edges at the beginning of the ith
iteration. Each edge e in Gi has a palette Ψi(e) ⊆ C1.
We write degi(v) to denote the number of edges incident
to v in Gi and degc,i(v) to denote the number of edges
incident to v that have color c in their palettes. For the
base case, we set G1 = G and Ψi(e) = C1 for all edges.
In the graph Gi, for each vertex v, each edge e, and each
color c, we maintain the following invariant Hi.

Invariant Hi: (i) degi(v) ≤ di, (ii) degc,i(v) ≤ ti, and
(iii) |Ψi(e)| ≥ pi.

Parameters. Given two numbers η ≥ 1 and ξ ∈
(0, ε) (which are functions of ∆), we define three se-
quences of numbers {di}, {ti}, and {pi} as follows.

Base case (i = 1):

d1
def
= ∆ t1

def
= ∆ p1

def
= ∆(1 + ξ)

Inductive step (i > 1):

di
def
= (1 + δi−1)d

�
i−1

ti
def
= (1 + δi−1)t

�
i−1

pi
def
= (1− δi−1)p

�
i−1

d�i−1
def
= di−1 ·

(
1− (1− 1/pi−1)

2(ti−1−1)
)

t�i−1
def
= ti−1 ·

(
1− ti−1

pi−1
(1− 1/pi−1)

2ti−1

)

(
1− (1− 1/pi−1)

2ti−1
)

p�i−1
def
= pi−1 ·

(
1− ti−1

pi−1
(1− 1/pi−1)

2ti−1

)2

Drifts (all i):

δi
def
=

βi

η
βi

def
=

pi
ti
− 1 (Notice that β1 = ξ)

The choice of parameters are briefly explained as
follows. Consider an ideal situation where degi−1(v) =
di−1, degc,i−1(v) = ti−1, and |Ψi−1(e)| = pi−1 for all
c, e, and v. Consider a very simple experiment called
OneShotColoring, in which each (uncolored) edge at-
tempts to color itself by selecting a color uniformly at
random from its available palette. An edge e success-
fully colors itself with probability (1− 1/pi−1)

2(ti−1−1),
since there are 2(ti−1 − 1) edges competing with e for
c ∈ Ψi−1(e), and each of these 2(ti−1 − 1) edges selects
c with probability 1/pi−1. Thus, by linearity of expec-
tation, the expected degree of v after OneShotColoring

is d�i−1, and the parameter di is simply d�i−1 with some
slack. The parameters {t�i−1, ti, p

�
i−1, pi} carry analo-

gous meanings. The term βi represents the second-order
error. We need control over {βi} since it influences the
growth of the three sequences {di}, {ti}, and {pi}.

For the base case, it is straightforward to see that
we have deg1(v) = ∆, degc,1(v) = ∆, and |Ψ1(e)| =
∆(1 + ξ), and thus G1 satisfies the invariant H1. For
the inductive step, given that Hi is met in Gi, we use a
distributed LLL algorithm (based on OneShotColoring)
to color a subset of edges inGi so that the graph induced
by the uncolored edges (i.e., Gi+1) satisfies Hi+1. We
repeat this procedure until the terminating condition
di ≤ 1

5 (ε − ξ)∆ is met, and then we proceed to the
second phase.

Analysis. Recall that ε = ω( log
2.5 ∆√
∆

). We set η to

be any function of ∆ that is ω(log∆) such that ε ≥ η2.5

√
∆
.

We set ξ = ε
6η . The following lemma shows that under

certain criteria, the parameters {di}, {ti}, {pi}, and
{βi} are very close to their “ideal” values. See [10] for
a proof.
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Lemma 3.1. Consider an index i > 1. Suppose
min{di−1, ti−1, pi−1} = ω(log∆), βi−1 = o(1/ log∆),
and δi−1 = o(βi−1/ log∆). Then the following four
equations hold.

di = di−1 · (1± o(1/ log∆))(1− e−2)

ti = ti−1 · (1± o(1/ log∆))(1− e−2)2

pi = pi−1 · (1± o(1/ log∆))(1− e−2)2

βi = βi−1 · (1± o(1/ log∆))/(1− e−2)

Based on Lemma 3.1, we have the following lemma.

Lemma 3.2. Let i? = O(log(1/ε)) = O(log∆) be the
largest index such that βi?−1 ≤ 1/η. Then the following
four equations hold for any 1 < i ≤ i?.

di = (1± o(1/ log∆))i−1∆(1− e−2)i−1

= (1± o(1))∆(1− e−2)i−1

ti = (1± o(1/ log∆))i−1∆(1− e−2)2(i−1)

= (1± o(1))∆(1− e−2)2(i−1)

pi = (1± o(1/ log∆))i−1∆(1− e−2)2(i−1)

= (1± o(1))∆(1− e−2)2(i−1)

βi = (1± o(1/ log∆))i−1ξ/(1− e−2)i−1

= (1± o(1))ξ/(1− e−2)i−1

Proof. To prove the lemma, it suffices to show that the
condition of Lemma 3.1 is met for all indices 1 < i ≤ i?.
We prove this by an induction on i. Suppose by the
induction hypothesis the four equations hold at index
i − 1. We show that the condition of Lemma 3.1 is
met for the index i, and so the four equations also
hold for index i. Due to 1/η = o(1/ log∆), we already
have βi−1 = o(1/ log∆) and δi−1 = o(βi−1/ log∆). It
remains to prove that min{di−1, ti−1, pi−1} = ω(log∆).

min{di−1, ti−1, pi−1}
≥ (1± o(1))∆(1− e−2)2(i−1)

(Induction hypothesis for di−1, ti−1, pi−1)

= (1± o(1))∆ ·
(

(1±o(1))ξ
βi−1

)2

(Induction hypothesis for βi−1)

≥ (1± o(1))ξ2η2∆ (βi−1 ≤ 1/η)

= Ω(η5) = ω(log∆)

It remains to show that (i) the number of it-
erations it takes to reach the terminating condi-
tion is O(log 1/ε), and (ii) in each iteration, in

TLLL

(
n, poly(∆), exp(−ε2∆/ log4+o(1) ∆)

)
time, in-

variant Hi can be maintained. By Lemma 3.2, we have:

di? = (1± o(1))∆(1− e−2)i
?−1 (Lemma 3.2 for di?)

= (1± o(1))∆ · ξ/βi? (Lemma 3.2 for βi?)

≤ (1± o(1))ξη∆ (βi? > 1/η)

For our choices of η and ξ, we have di? ≈ ξη∆ = ε∆
6 .

Thus, the terminating condition di ≤ 1
5 (ε − ξ)∆ must

be reached before the i?-iteration (since 1
5 (ε − ξ)∆ >

ε∆
6 ). The number of iterations it takes to reach the
terminating condition is O(log 1/ε) by Lemma 3.2 for
di. For each 1 < i ≤ i?, we have:

δ2i ·min{di, ti, pi}
= β2

i ti/η
2 (Definition of δi)

= (1± o(1)) ·
(
ξ/(1− e−2)i−1

)2

·
(
∆(1− e−2)2(i−1)

)
/η2 (Lem. 3.2 for ti, βi)

= (1± o(1)) ·∆(ξ/η)2

= Ω(ε2∆/η4) (Definition of ξ)

= ω(log∆). (Definition of ε)

We will later see in Section 3.2 that this implies that any
LLL algorithm with parameters d = poly(∆) and p =
exp(−Ω(∆ε2/η4)) suffices to maintain the invariant in

each iteration. Notice that if we select η = log1+o(1) ∆,
then p = exp(−ε2∆/ log4+o(1) ∆), as desired.

3.2 Maintenance of Invariant In this section
we show how to apply a distributed LLL algo-
rithm, with parameters d = poly(∆) and p =
exp(−Ω

(
δ2i ·min{di, ti, pi}

)
, to achieve the following

task: given a graph Gi meeting the property Hi, color a
subset of edges of Gi so that the graph induced by the
remaining uncolored edges satisfies the property Hi+1.
We write Ψ(e) = Ψi(e) for notational simplicity. Con-
sider the following modification to the underlying graph
Gi:

• Each edge e discards colors from its palette to
achieve uniform palette size pi.

• Each vertex v locally simulates some imaginary
subtrees attached to v and obeying Hi to achieve
uniform color degree ti. That is, if a color c appears
in the palette of some edge incident to a vertex v,
then c must appear in the palette of exactly ti edges
incident to v.

Consider the following 1-round coloring procedure on
the modified graph.
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OneShotColoring.

(1) Each edge e selects a color Color?(e) ∈ Ψ(e)
uniformly at random.

(2) An edge e successfully colors itself Color?(e) if
no neighboring edge also selects Color?(e).

We write S(v) to denote the set of real edges
incident to v, and we write Nc(v) to denote the set of
real and imaginary edges incident to v that have c in
their palettes. Let S�(v) (resp., N�

c (v)) be the subset
of S(v) (resp., N�

c (v)) that are still uncolored after
OneShotColoring. Let Ψ�(e) be the result of removing
all colors c from Ψ(e) such that some edge incident to e
successfully colors itself by c.

The following concentration bound implies that
Hi+1 holds with high probability in the graph induced
by the real uncolored edges after OneShotColoring, and
thus we can apply a distributed LLL algorithm to obtain
Gi+1 that meets the invariantHi+1. See [10] for a proof.

Lemma 3.3. Suppose that Hi holds. The following
concentration bounds hold for any δ > 0.

Pr [|S�(v)| > (1 + δ)d�i ] < exp
(
−Ω(δ2di)

)

Pr [|N�
c (v)| > (1 + δ)t�i | N�

c (v) 6= ∅] < exp
(
−Ω(δ2ti)

)

Pr [|Ψ�(e)| < (1− δ)p�i | e remains uncolored ]

< exp
(
−Ω(δ2pi)

)

We write Nk(v) to denote the set of all vertices
within distance k of v. It is straightforward to see that
(i) S�(v) depends only on the colors selected by the
edges whose endpoints both are in N2(v), (ii) N�

c (v)
depends only on the colors selected by the edges whose
endpoints are both in N3(v), and (iii) Ψ�(e) depends
only on the colors selected by the edges whose endpoints
are both in N2(u)∪N2(v), where e = {u, v}. Thus, the
parameters for the distributed LLL are d = poly(∆) and
p = exp

(
−Ω

(
δ2i ·min{di, ti, pi}

))
, as desired.

4 Lovász Local Lemma on Trees

In this section, we study distributed LLL on tree-
structured instances. Let T be a tree. Each vertex
v holds some variables V(v) and is associated with a
bad event E(v) that depends only on variables within
distance r/2 of v, i.e., vbl(E(v)) =

⋃
u∈Nr/2(v) V(u).

If S is a subset of the vertices, we use vbl(S) to be
short for

⋃
v∈S vbl(E(v)) =

⋃
v∈S

⋃
u∈Nr/2(v) V(u). The

dependency graph for this set E of bad events is exactly
T r, obtained by connecting vertices at distance at most

r in T , so d ≤ (∆(T ))r. Tree-structured dependency
graphs arise naturally from any constant-time (r/2
time) RandLOCAL experiment that is run on a tree
topology.

4.1 Deterministic LLL Algorithms A (λ, γ)-
network decomposition is a partition of the vertex set
into V1, . . . , Vλ such that connected components induced
by Vi have diameter at most γ. Fischer and Ghaffari [18]
showed that given a (λ, γ)-decomposition of G2

E , an LLL
instance satisfying p(ed)λ < 1 is solvable in O(λ(γ+1))
time. We use a slight generalization of network decom-
positions. A (λ1, γ1, λ2, γ2)-network decomposition is
a partition of the vertices into V1, . . . , Vλ1

, U1, . . . , Uλ2

such that connected components induced by Vi have di-
ameter at most γ1 and those induced by Ui have diam-
eter at most γ2.

Lemma 4.1. (Fischer and Ghaffari [18]) Suppose
that a (λ1, γ1, λ2, γ2)-network decomposition of G2

E
is given. Any LLL instance on GE satisfying
p(ed)λ1+λ2 < 1 can be solved in DetLOCAL in
O(λ1(γ1 + 1) + λ2(γ2 + 1)) time.

The proof of Theorem 4.1 uses new network decom-
positions for trees; see Section 6.

Theorem 4.1. Any tree-structured LLL satisfying
p(ed)λ < 1 with λ ≥ 2 can be solved in DetLOCAL in
O(max{logλ s, log s

log log s}) time, where s ≤ n is the size of

any distance-O(1) dominating set of the tree.

Proof. Recall that the dependency graph is T r for some
tree T and constant r. In Section 6 we show that a
standard (2, O(log s))-decomposition for (T r)2 = T 2r is
computable in O(log s) time, and if λ = Ω(1) is suf-
ficiently large, a (1, O(logλ s), O(λ2), 0)-decomposition
for T 2r is computable in O(logλ s) time.

When λ = O(1) is sufficiently small, we apply
Lemma 4.1 with the first network decomposition. Be-
cause the decomposition has two parts, this works with
LLL criterion p(ed)2 < 1. When λ is sufficiently large

we compute a (1, O(logλ̂ s), O(λ̂2), 0)-decomposition in

O(logλ̂ s) time, where λ̂ = min{λ,
√

log s
log log s}. We solve

the LLL by applying Lemma 4.1, which takes time
O(λ̂2+logλ̂ s) = O(max{logλ s, log s

log log s}). Observe that

because of the λ̂2 term, we cannot benefit from LLL

instances with λ�
√

log s
log log s .

Combining Theorem 4.1 with the O(d2 + log∗ n)
graph shattering routine of [18] we obtain a O(d2 +
max{logλ log n, log logn

log log logn})-time RandLOCAL LLL al-

gorithm for criterion p(ed)λ < 1, λ ≥ 4, which is ef-
ficient only when d is very small. In Section 4.2 we
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give a new method for computing a partial assignment
to the variables that effectively shatters a large depen-
dency graph into many independent subproblems, each
satisfying a polynomial LLL criterion w.r.t. the unas-
signed variables.

4.2 Shattering the Dependency Graph In this
section we prove the following efficient shattering
lemma.

Lemma 4.2. Suppose we are given a tree-structured
LLL instance T r satisfying LLL criterion p(ed)λ < 1,
where λ ≥ 2(4r+8r). There is a RandLOCAL algorithm
that computes a partial assignment in O(logλ log n) time
with the following properties.

1. No bad event occurs under the assignment.

2. The connected components of T r induced by
events with unassigned variables have size at most
poly(d) log n. Moreover, each such component con-
tains a distance- 3r2 dominating set (in the tree T )
with size at most log n.

3. Conditioned on the partial assignment, the proba-
bility of any bad event is at most p′ =

√
p and each

component satisfies LLL criterion p′(ed)λ/2 < 1.

By applying Lemma 4.2 and then Theorem 4.1
to each component, we can now efficiently solve tree-
structured LLL instances in O(log log n) time or faster,
independent of the dependency graph degree d.

Theorem 4.2. Let T r be a tree-structured LLL in-
stance satisfying criterion p(ed)λ < 1 with λ ≥
2(4r + 8r). This LLL can be solved in RandLOCAL in
O(max{logλ log n, log logn

log log logn}) time.

The statement of Lemma 4.2 suggests an algorithm
to compute such a partial assignment φ. First, draw a
total assignment φ to V according to the distribution
of the variables. If any bad event E(v) occurs under
φ, update φ by unsetting all variables in vbl(E(v)). In
general, whenever Pr[E(v)|φ] exceeds √p, update φ by
unsetting all variables in vbl(E(v)). This can be viewed
as a contagion dynamic played out on the dependency
graph. Bad events that occur under the initial total
assignment are infected, and infected vertices can cause
nearby neighbors to become infected.

If this contagion process were actually simulated, it
would take Ω(log n) parallel steps to stablize. We give
an algorithm that computes a stable set (satisfying the
other requirements of Lemma 4.2) exponentially faster,
by avoiding a direct simulation.

Let u be a vertex in the unoriented tree T . Define
Cu(k, [i, j]) to be the set of vertices that belong to

kth subtree of u such that the distance to u lies in
the interval [i, j]. For example, Cu(k, [1, 1]) is the kth

neighbor of u. For any vertex set S, define d̂egS(u) to
be the number of different k s.t. Cu(k, [1, r]) ∩ S 6= ∅.

Choose µ ≥ 4 and λ′ ≥ 1 to be any integers such
that λ ≥ 2(µr + λ′). The following bad events are
defined with respect to a fixed total assignment φ to
the variables.

B(S, v) : Pr [E(v) | vbl(E(v))\ vbl(S)] ≥ (ed)−λ/2

B(v) :
⋃

S⊂Nr(v),|S|≤µr

B(S, v).

In other words, B(S, v) is the event that, if we
were to resample vbl(S) (but leave other variables in
vbl(E(v)) set according to φ), the probability that E(v)
occurs is at least (ed)−λ/2. The event B(v) occurs if it is
possible to find a subset S of the right cardinality such
that B(S, v) occurs.

We can now consider the probability that these
events occur, over a randomly selected total assignment
φ.

Pr
φ
[B(S, v)] ≤ Prφ[E(v)]

Prφ[E(v) | B(S, v)]

≤ (ed)−λ

(ed)−λ/2
≤ (ed)−(µr+λ′)

and, by a union bound over the dµ
r

choices of S,

Pr
φ
[B(v)] ≤

∑

S

Pr
φ
[B(S, v)] ≤ (ed)−λ′

.

Intuitively B(v) is the event that E(v) is too close
to happening, i.e., relatively few variables need to be
resampled to give E(v) a likely probability of happening.
We imagine a contagion process that samples a total
variable assignment φ, and initially infects S consisting
of all v such that B(v) occurs. An uninfected vertex

w becomes infected (joins S) if d̂egS(w) > µ until S is
stable. Lemma 4.3 proves that the criterion for infection

“d̂egS(v) > µ” is a good proxy for the harder-to-analyze
criterion “E(v) is dangerously close to happening.”

Lemma 4.3. Fix a total variable assignment φ, and let
S be any vertex set such that (i) v ∈ S if B(v) occurs

under φ, and (ii) v ∈ S if d̂egS(v) > µ. Then for any
v, Pr[E(v) | vbl(E(v))\ vbl(S)] < (ed)−λ/2.

Proof. If v ∈ S, then the probability of seeing E(v) after
resampling vbl(S) is p < (ed)−λ, so assume v 6∈ S.

To prove the lemma, it suffices to show that there
exists a vertex set S′ such that (i) S′ ⊂ Nr(v), (ii)
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|S′| ≤ µr, and (iii) vbl(S′) ∩ vbl(E(v)) = vbl(S) ∩
vbl(E(v)), i.e., (iii) says that resampling vbl(S′) is
equivalent to resampling vbl(S), from v’s point of view.
Since v 6∈ S, we know B(S′, v) does not occur, and so
Pr[E(v) | vbl(E(v))\ vbl(S′)] < (ed)−λ/2.

Root the tree at v. We call a vertex u ∈ S “highest”
if u is in Nr(v) and no ancestor of u is in S. If H is
the set of highest vertices, then vbl(S) ∩ vbl(E(v)) =
vbl(H)∩vbl(E(v)), so we only need to bound |H| by µr.
Suppose, for the sake of contradiction, that |H| ≥ µr+1.
Define the path (v = v0, v1, . . . , vr) by selecting vi be
the child of vi−1 whose subtree contains the largest
number of vertices in H. We prove by induction that
vi contains at least µr−i + 1 H-vertices in its subtree.
The base case i = 0 holds by assumption. If vi has
µ + 1 subtrees containing H-vertices, then vi would be
infected, so by the pigeonhole principle vi+1 must have
at least

⌈
(µr−i + 1)/µ

⌉
= µr−(i+1) + 1 H-vertices in its

subtree. Hence the subtree of vr contains µ0+1 = 2 H-
vertices, which is a contradiction since the only vertex
eligible to be in H is vr itself.

4.3 Contagion Process A (q0, r, µ)-contagion pro-
cess on an n-vertex tree T is defined as follows. Initially
each vertex is infected with probability q0 and these
events are independent for vertices at distance greater
than r. If S is the set of infected vertices at some time
and d̂egS(v) > µ, then v becomes infected. Our goal
is to quickly compute a set S that is both stable and
small.

Definition 1. A set S is stable if it causes no more
infection and small if each connected component induced
by Nr/2(S) contains a distance- 3r2 dominating set (in
the tree T ) of size at most log n.

Lemma 4.4 connects the contagion problem to
finding a partial assignment satisfying the criteria of
Lemma 4.2. Theorem 4.3 shows that one can efficiently
compute small stable sets in contagion processes.

Lemma 4.4. Suppose there is a τ -round RandLOCAL

algorithm for finding a small stable set for a
((ed)−λ′

, r, µ)-contagion process. Then there exists a
(τ + O(1))-round RandLOCAL algorithm for finding a
partial assignment to a tree-structured LLL instance sat-
isfying Lemma 4.2(1–3), under criterion p(ed)λ < 1,
where λ ≥ 2(µr + λ′).

Proof. Consider the contagion process defined by choos-
ing a partial assignment to the variables and initially
infecting any vertex v where B(v) occurs. The lower
bound on λ implies Pr[B(v)] ≤ q0 = (ed)−λ′

and accord-
ing to Lemma 4.3, any stable set satisfies Lemma 4.2(3).

Theorem 4.3. Consider a (q0, r, µ)-contagion process
played on an n-vertex tree T with maximum degree ∆.
In RandLOCAL, we can compute a small stable set S in
O(logµ log n) time, where r is constant, q0 ≤ e−1d−8r,
d = ∆r and µ ≥ 4.

Combining Lemma 4.4 and Theorem 4.3 together,
Lemma 4.2 is proved as follows. Pick the largest µ such
that λ ≥ 2(µr+8r). By Lemma 4.4 we only need to show
a O(logλ log n)-round RandLOCAL algorithm to find a
small stable set for a ((ed)−8r, r, µ)-contagion process.
Since λ ≥ 2(4r + 8r) and µ ≥ 4, by Theorem 4.3, a
small stable set can be computed in O(logµ log n) =
O(logλ log n) rounds.

Theorem 4.3 is proved in the remainder of this
section. The algorithm for Theorem 4.3 simulates
a more virulent contagion process for τ steps using
threshold µ/2 rather than µ, then simulates a reverse-
contagion for τ steps, where vertices become uninfected
if they were not initially infected and they have nearby
infected vertices in at most µ subtrees. We prove that
when τ = O(logµ log n), the final infected set Lτ is both
stable and small. This process is called Find Small Stable

Set. Observe that the sets generated by this process
have the following containment.

U0 ⊆ · · · ⊆ Uτ = L0 ⊇ · · · ⊇ Lτ .

Find Small Stable Set.

(1) U0 ← {u ∈ V | u is initially infected}. That
is, u ∈ U0 if B(u) occurs initially.

(2) For 1 ≤ i ≤ τ , do Ui ← Ui−1 ∪ {u ∈
V | d̂egUi−1

(u) > µ/2}.

(3) L0 ← Uτ .

(4) For 1 ≤ i ≤ τ , do Li ← Li−1\{u ∈
Li−1\U0 | d̂egLi−1

(u) ≤ µ}.

(5) Return Lτ .

Lemma 4.5. For each vertex v /∈ Lτ , d̂egLτ
(v) ≤ µ

with high probability, and so Lτ is stable.

Proof. Root the tree at v. Define S(u) to be the subtree
rooted at u. Define C ′

u(k, [i, j]) to be Cu(k, [i, j])∩S(u)
and deg′S(u) to be d̂egS∩S(u)(u). Let Lτ+1 be the

set of all vertices u s.t. d̂egLτ
(u) > µ. In general,

if {X(u)} is an ensemble of events associated with
vertices and S a subset of vertices, we define X(S)
to be the event

⋃
u∈S X(u) and X to be the set of
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vertices {v | X(v) occurs}. Consider the following
three sequences of events {Fi}0≤i≤τ , {Hi}0≤i≤τ , and

{F̃i}0≤i≤τ .

Fi(u) : (u /∈ Ui) ∧ (u ∈ Li+1),

H0(u) : (u ∈ U0),

Hi+1(u) : H0(u) ∨ (deg′Hi
(u) ≥ µ/2),

F̃0(u) : Hτ (u),

F̃i+1(u) : deg′F̃i
(u) ≥ µ/2.

Notice that v cannot belong to both Uτ\Lτ and Lτ+1,
since otherwise v is contained in L1, . . . , Lτ . Therefore,
Fτ (v) = (v /∈ Lτ ) ∧ (v ∈ Lτ+1), and so it suffices
to bound the probability of event Fτ (v) by 1/poly(n)
to prove this lemma. We make the following two
observations.

Observation 1: (u ∈ Ui)⇒ Hi(u).

The base case (i = 0) follows from the definition of
Hi. Assume that (u ∈ Ui−1)⇒ Hi−1(u). We have:

u ∈ Ui\U0 =⇒ d̂egUi−1
(u) > µ/2

=⇒ deg′Ui−1
(u) ≥ µ/2

=⇒ deg′Hi−1
(u) ≥ µ/2,

and this implies (u ∈ Ui)⇒ Hi(u).

Observation 2: Fi(u)⇒ F̃i(u).

The base case (i = 0) follows from Observation 1:
F0(u) ⇒ (u ∈ L1) ⇒ (u ∈ Uτ ) ⇒ Hτ (u) ⇒ F̃0(u).
Assume that Fi−1(u) ⇒ F̃i−1(u). By definition,

u ∈ Li+1 implies d̂egLi
(u) > µ while u /∈ Ui implies

d̂egUi−1
(u) ≤ µ/2. That is,

Fi(u) =⇒ d̂egFi−1
(u) > µ/2

=⇒ deg′Fi−1
(u) ≥ µ/2

=⇒ deg′F̃i−1
(u) ≥ µ/2,

and so Fi(u)⇒ F̃i(u).

Since Fτ (u) ⇒ F̃τ (u), it remains to bound the prob-
ability of event F̃τ (v) by 1/poly(n). For convenience,
we write pi = maxu Pr[F̃i(u)] and qi = maxu Pr[Hi(u)].

We will show that (i) pτ ≤ (∆2(r2+1)p0)
(µ
2 )τ/r

and (ii)

p0 = qτ ≤ ∆r2+2q0. Therefore,

pτ ≤ (∆2(r2+1)p0)
(µ
2 )τ/r

≤ (∆3r2+4q0)
(µ
2 )τ/r ≤ 1/poly(n),

as desired. In the remainder of the proof we derive these
two inequalities.

Upper Bound of pτ . Notice that the event
F̃i(u) is contained in the following event: “there ex-
ist µ/2 many different k such that F̃i−1(C

′
u(k, [1, r]))

occurs”. A consequence of this observation is that
F̃i(C

′
u(k, [1, r])) ⇒ F̃i−1(C

′
u(k, [2, 2r])). Similarly, we

have:

F̃i−1(C
′
u(k, [1, r])) =⇒ F̃i−2(C

′
u(k, [2, 2r]))

=⇒ · · ·
=⇒ F̃i−r(C

′
u(k, [r, r

2])).

Thus, the F̃i(u) is contained in the following
event: “there exists µ/2 many different k such
that F̃i−r(C

′
k(r, r

2)) occurs”. Notice that the events

F̃i−r(C
′
u(k, [r, r

2])) for all k are independent, since F̃i(u)
only depends on variables associated with vertices in
Nr(u). By a union bound, Pr[F̃i−r(C

′
u(k, [r, r

2]))] ≤
∆r2pi−r. Taking a union bound over all

(
∆
µ/2

)
choices

of indices for k, we have

pi ≤ ∆µ/2(∆r2pi−r)
µ/2 ≤ (∆r2+1pi−r)

µ/2.

Since µ/2 ≥ 2, we have

∆2(r2+1)pi ≤ (∆2(r2+1)pi−r)
µ/2

≤ · · ·
≤ (∆2(r2+1)p0)

(µ
2 )i/r ,

which implies pτ ≤ (∆2(r2+1)p0)
(µ
2 )τ/r

.
Upper Bound of p0. We use a similar argument

to derive the bound of p0 = qτ . Notice that Hi(u) is
contained in the event (u ∈ U0) ∨ (deg′Hi−1

(u) ≥ µ/2).
A simple consequence of this is that Hi(C

′
u(k, [1, r]))⇒

H0(C
′
u(k, [1, 1]) ∨ Hi−1(C

′
u(k, [2, 2r])). Similarly, we

have:

Hi(C
′
u(k, [1, r]))

=⇒ H0(C
′
u(k, [1, 1]) ∨Hi−1(C

′
u(k, [2, 2r]))

=⇒ · · ·
=⇒ H0(C

′
u(k, [1, r − 1]) ∨Hi−r(C

′
u(k, [r, r

2])).

Thus, Hi(u) is contained in the union of the event
H0(N

r(u)) and the following event: “there exist µ/2
many different k such that Hi−r(C

′
k(r, r

2)) occurs”.
The events Hi−r(C

′
u(k, [r, r

2])) for all k are indepen-
dent, since F̃i(u) only depends on the variables as-
sociated with vertices in Nr(u). By a union bound,

Pr[Hi−r(C
′
u(k, [r, r

2]))] ≤ ∆r2qi−r. By taking a union
bound over Nr(u) and another union bound over all(

∆
µ/2

)
choices of indices for k, we have:

qi ≤ ∆r+1q0 +∆µ/2(∆r2qi−r)
µ/2.
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We show by induction that qi ≤ ∆r2+2q0 for each i.
Suppose that qi−r ≤ ∆r2+2q0, then

qi ≤ ∆r+1q0 +∆µ/2(∆r2qi−r)
µ/2

≤ ∆r2+1q0 + (∆2r2+3q0)
µ/2.

Since q0 ≤ e−1∆−8r2 and µ ≥ 4, we have
(∆2r2+3q0)

µ/2 � ∆r2+1q0, and so qi ≤ 2∆r2+1q0 ≤
∆r2+2q0.

Lemma 4.6. With high probability, each connected
component in the subgraph of T induced by Nr/2(Uτ )
contains a distance- 3r2 dominating set (in the tree T ) of
size at most log n, and so Lτ is small.

Proof. Define H = T [r+1,3r] to be the graph obtained
by connecting vertices in T at distance in the range
[r + 1, 3r]. We first show that, with high probability,
H has no connected component D such that (i) |D| ≥
log n, and (ii) at least half of vertices in D belong to
U0. The existence of such a component implies that H
contains a subtree of log n vertices with at least half
of them in U0. There are at most 4logn different such
tree topologies and each can be embedded into H in
less that n ·∆2r logn ways. Moreover, there are at most
2logn ways of choosing the positions of vertices in U0

on trees and the probability that such a particular tree

occurs in H is at most q
logn/2
0 . A union bound over all

trees lets us conclude that such component exists with
probability at most

4logn · n ·∆2r logn · 2logn · qlogn/2
0 ≤ 1/poly(n).

Let S be a connected component in T induced by
Nr/2(Uτ ). We pick a distance- 3r2 dominating set D
of S (in the tree T ) greedily, preferring vertices in U0

over U1, and U1 over U2, etc. Each time a vertex is
picked we remove from consideration all vertices in its
r-neighborhood. Recall that U0 ⊆ . . . ⊆ Uτ , and notice
that D does not contain any vertex not in Uτ . The
reason that D is a distance- 3r2 dominating set is as
follows. The set D is obviously a distance-r dominating
set of Uτ ∩S (in the tree T ), and Uτ ∩S is a distance-r/2
dominating set of S (in the tree T ).

We write ui to denote the ith vertex added to
D, and write Di = {u1, . . . , ui}. Let mi denote
the number of connected components induced by Di

in the graph T [r+1,2r] (which is the graph obtained by
connecting vertices in T at distance in the range [r +
1, 2r]). We claim that if ui /∈ U0, then mi < mi−1. This
implies that at least half of the vertices in D belong to
U0. Observe that the set D is connected in H, and so
|D| < log n with high probability.

We prove this claim in the remainder of the proof.
Consider the moment some ui /∈ U0 is added to D. We
will show that the connected component of Di in the
graph T [r+1,2r] that contains u is formed by merging ui

with at least two connected components of Di−1 in the
graph T [r+1,2r].

The algorithm Find Small Stable Set added u to Uj

because u had at least µ/2 ≥ 2 subtrees containing
Ui−1-vertices that are within distance-r to u. Let T1

and T2 be any two such subtrees. For each k = 1, 2, let
vk be a Uj−1-vertex contained in both Tk and Nr(u).
Then there must be a vertex wk ∈ Nr(vk) such that wk

has been already added to D, since otherwise we should
pick vk instead of u. Observe that w1 and w2 belong
to separate connected components of Di−1 in the graph
T [r+1,2r], but w1, w2, and u are in the same component
ofDi in the graph T [r+1,2r] since wk ∈ Nr(vk) ⊆ N2r(u)
for k = 1, 2.

5 Deterministic Algorithms for Edge-coloring
Trees

Let T = (V,E) be a tree with n vertices and N+(v)
be the inclusive neighborhood of v. We decompose T
using two operations inspired by Miller and Reif [29], the
second of which is parameterized by an integer k ≥ 2.

Rake: Remove all leaves and isolated vertices from T .

Compress: Remove the following set from T :

{v ∈ V | for every u ∈ N+(v), degT (u) ≤ k}.

Theorem 5.1. Alternately applying compress and rake
logk n+ 1 times removes all vertices from any n-vertex
tree.

Proof. Root T at an arbitrary vertex and let size(v)
be the number of vertices in the subtree rooted at v.
We prove by induction that if size(v) ≤ ki, v will be
removed after the first i + 1 rounds of compress and
rake. The claim is trivially true when i = 0. Assume
the claim is true for i − 1. Let v be any vertex with
size(v) ∈ (ki−1, ki] and define V ′ to be the set of u
such that (i) size(u) ∈ (ki−1, ki] and (ii) u is in the
subtree rooted at v. Notice that each vertex u ∈ V ′

has degV ′(u) ≤ k, since otherwise size(u) > ki. By
the inductive hypothesis, all descendants of v except V ′

have been removed after i rounds of compress/rake. The
(i + 1)th compress will remove any remaining vertices
in V ′−{v} (the degree of the parent of v is unbounded,
so v may not be removed), and if v still remains, the
(i+ 1)th rake will remove it.

Theorem 5.2. There is an O(log∆ n)-time DetLOCAL

algorithm for ∆-edge coloring a tree, where ∆ ≥ 3.
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Proof. Let β be the constant such that Linial’s al-
gorithm [28] finds a β∆2-edge coloring in O(log∗ n −
log∗ ∆ + 1) time. We begin by decomposing T
with compress/rake steps, using parameter k =
max{2, b(∆/β)1/3c}. Define Ti = (Vi, Ei) to be the
forest before the ith round of compress and rake, and
let V c

i and V r
i be those vertices removed by the ith com-

press and rake, respectively.
We edge-color the trees Tlogk n, . . . , T0 = T in this

order. Given a coloring of Ti+1, we need to color the
remaining uncolored edges in Ti. Let u ∈ Ti+1 be a
vertex and v1, . . . , vx ∈ V r

i be the vertices incident to u
removed by a rake. At this point u is incident to at most
∆ − x colored edges. It assigns to {u, v1}, . . . , {u, vx}
distinct available colors from its palette. We now
turn to the vertices removed by a compress operation.
First suppose that ∆ is large enough such that k =
b(∆/β)1/3c. Let φ be a βk2-edge coloring of the (as yet
uncolored) subgraph of Ti incident to V c

i . Partition the
palette {1, . . . ,∆} into βk2 parts P1, . . . , Pβk2 . Each
part has size ∆/(βk2) ≥ k. Each v ∈ V c

i colors
each edge {v, u} any available color in Pφ({v,u}). Since
degTi

(u) ≤ k, at most k − 1 of its incident edges
may already be colored. All calls to Linial’s βk2-edge
coloring algorithm can be executed in parallel, so the
overall time is O(logk n+ log∗ n− log∗ k) = O(log∆ n).

When k = 2, the subgraph induced by V c
0 ∪ · · · ∪

V c
logk n consists of a set of paths. In O(log∗ n) time,

find an initial 3-edge coloring of these paths. We now
color Tlogk n, . . . , T0 in this order. Coloring the edges
removed during a rake is done as before. The set
V c
i removed in one compress induces some paths, each

end-edge of which may be adjacent to one (previously
colored) edge in Ti+1. If the initial color of an end-
edge conflicts with the coloring of Ti+1, recolor it any
available color. When k = 2 this procedure takes
O(log∗ n+ logk n) = O(log∆ n) time.

The proof of the following two theorems are omitted
due to space limitation. See [10] for the proofs.

Theorem 5.3. Any oriented tree T can be (∆+1)-edge
colored in O(log∗ n) time.

Theorem 5.4. Any ∆-edge coloring algorithm for ori-
ented trees takes Ω(log∆ n) time in RandLOCAL.

6 Network Decomposition of Trees

Recall that a (λ, γ)-network decomposition is a decom-
position of the vertices of a graph into λ parts V1, . . . , Vλ

such that each connected component in the graph in-
duced by each Vi has diameter at most γ. We generalize
this notation as follows. A (λ1, γ1, λ2, γ2)-network de-
composition is a decomposition of the vertices of a graph

into λ1+λ2 parts V1, . . . , Vλ1
, U1, . . . , Uλ2

such that each
connected component in the graph induced by each Vi

has diameter at most γ1 and each connected component
in the graph induced by each Ui has diameter at most
γ2.

A distance-d dominating set of a graph G is a vertex
set S such that for each vertex v in the graph G, there
exists u ∈ S such that dist(u, v) ≤ d. In this section
we give two network decomposition algorithms for T k

where T = (V,E) is an n-vertex tree that contains a
distance-d dominating set S of size s. In our application
d and k are constants. We assume all vertices agree
on the numbers (d, k, s). We do not need a specific
dominating set S be given as an input.

6.1 A (2, O(k log s+ d))-Network Decomposition

Theorem 6.1. Let T be a tree containing a distance-
d dominating set of size s. There is a DetLOCAL

algorithm A that computes a (2, O(k log s+ d))-network
decomposition of T k in O(k log s+ d+ k log∗ n) time.

In what follows we prove Theorem 6.1. Consider
the following two tree operations. They are similar to
the ones described in [12], which are inspired by Miller
and Reif [29]. The second operation is parameterized
by an integer ` ≥ 2. In our application we set ` = 3k.

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices that belong to some
path P such that (i) all vertices in P have degree
at most 2, and (ii) the number of vertices in P is
at least `.

Let A′ be the algorithm on the tree T defined as follows:
(1) do 3d+1 rakes; (2) repeat log s times: do 1 compress
and then `− 1 rakes.

Lemma 6.1. Algorithm A′ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set of
T . Root T at an arbitrary vertex and let size(v) be the
number of vertices in the subtree rooted at v that belong
to S. For any vertex v ∈ V , we prove by induction that
(i) if size(v) ≤ 1, then v is removed in Step (1) of A′,
and (ii) if 1 < size(v) ≤ 2i, then v is removed on or
before the ith iteration of Step (2) of A′.

For the case size(v) ≤ 1, the height of the subtree
rooted at v is at most 3d, and so the entire subtree
(including v) must be removed after 3d + 1 rakes. For
the case 2i−1 < size(v) ≤ 2i, we assume by inductive
hypothesis that all vertices u with size(u) ≤ 2i−1 have
been removed before the ith iteration of Step (2). With
respect to the vertex v, define V ′ to be the set of all
vertices u such that (i) size(u) > 2i−1, and (ii) u is in the
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subtree rooted at v. The set V ′ induces a path such that
v is an endpoint, since otherwise size(v) > 2 · 2i−1 = 2i.
Let C be a connected component induced by vertices
in V ′ that are not removed yet. If |C| ≥ `, then all
vertices in C are removed after 1 compress. Otherwise,
all vertices in C are removed after `− 1 rakes.

Notice that a (2, ·)-network decomposition of T k

is simply a partition V = V1 ∪ V2 such that for both
c = 1, 2, any two vertices u and v in two separate
components of Vc must have distT (u, v) > k. Recall
that A′ performs L = (3d + 1) + ` log s rake/compress
operations. We write Ui to denote the set of all
vertices that are removed during the ith rake/compress

operation. For any labeling
⋃L

j=i Uj → {1, 2}, define
the property Pi as follows.

• Each connected component induced by vertices of
the same label have diameter at most 2tir + (6k −
2)tic, where t

i
r (resp., t

i
c) is the total number of rakes

(resp., compresses) after the ith tree operation.

• Let u and v be any two vertices in
⋃L

j=i Uj with
the same label c ∈ {1, 2}. If u and v belong to
separate components induced by the vertices in⋃L

j=i Uj labeled c, then the distance between u and

v in
⋃L

j=i Uj is strictly more than k.

Notice that any labeling V → {1, 2} with the property
P1 is a (2, O(k log s+ d))-network decomposition of T k.
This is because 2t1r +(6k− 2)t1c ≤ 6kL = O(k log s+ d).

We are now in a position to present the algorithm
A. The algorithm A begins by computing V =

⋃L
i=1 Ui

using A′. Then, for i = L down to 1, label all vertices
v ∈ Ui as follows.

• (Case: the ith operation is rake) Let v ∈ Ui. For

the case that v is a leaf of
⋃L

j=i Uj , let u be the

unique neighbor of v in
⋃L

j=i Uj . If u /∈ Ui, then
v adopts the same label as u. Otherwise, u ∈ Ui

must also be a leaf of
⋃L

j=i Uj , and we label both
u and v the same by any c ∈ {1, 2}. For the case

that v is an isolated vertex of
⋃L

j=i Uj , we label v
by any c ∈ {1, 2}.

• (Case: the ith operation is compress) Let P be a
path that is a connected component of Ui. Notice
that the number of vertices in P is at least ` = 3k.
Compute a labeling of the vertices in P meeting the
following conditions: (i) each connected component
induced by vertices of the same label has size within
[k, 3k), (ii) if v is an endpoint of P that is adjacent

to a vertex u ∈ ⋃L
j=i+1 Uj , then the label of v is

the same as the label of u. If a (2k + 1, 2k)-ruling

set of P is given, such a labeling can be computed
in O(k) time.

It is straightforward to prove by an induction that the
above labeling for

⋃L
j=i Uj has the property Pi. The

total running time of A is O(k log s + d + k log∗ n),
since the ruling set computation of paths removed by
compress operation can be computed in O(k log∗ n) time
in parallel.

6.2 A (1, O(k logλ s + d), O(λ2), 0)-Network De-
composition

Theorem 6.2. Let T be a tree containing a distance-d
dominating set of size s. There is a DetLOCAL algo-
rithm A that computes a (1, O(k logλ s + d), O(λ2), 0)-
network decomposition of T k in O(k logλ s+d+k log∗ s)
time, where λ = Ω(k) is sufficiently large (i.e., λ ≥ ck
for some universal constant c).

In what follows we prove Theorem 6.2. Consider the
following two tree operations. We denote the underlying
graph before the ith tree operation as Ti.

Rake: Remove all leaves and isolated vertices.

Compress: Remove every v such that |N2.5k
Ti

(v)| ≤ λ.

Set m = λ/(2.5k). Let A∗ be the algorithm on the
tree T defined as follows: (1) do 3d+1 rakes; (2) repeat
logm s times: do 1 compress and then 2.5k rakes.

Lemma 6.2. Algorithm A∗ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set
of T . Root T at an arbitrary vertex and let size(v)
be the number of vertices in the subtree rooted at v
that belong to S. We prove by induction that (i) if
size(v) ≤ 1, then v is removed in Step (1) of A∗, and
(ii) if 1 < size(v) ≤ mi, v is removed within the first i
iterations in Step (2) of A∗.

For the case size(v) ≤ 1, the height of subtree rooted
at v is at most 3d, and so the entire subtree (including v)
must be removed after 3d+1 rakes. For the case mi−1 <
size(v) ≤ mi, Assume the claim is true for i−1. Let v be
any vertex with size(v) ∈ (mi−1,mi] and define V ′ to be
the set of u such that (i) size(u) > mi−1 and (ii) u is in
the subtree rooted at v. By the inductive hypothesis, all
descendants of v except those in V ′ have been removed
after i − 1 iterations of Step (2). Therefore, the set V ′

induces a subtree rooted at v having at most m − 1
leaves, which means the degree of each vertex in V ′ is
at most m. For those vertices u ∈ V ′ whose depth is
at least 2.5k from v, |N2.5k(u)| ≤ m(2.5k) ≤ λ, so they
will be removed after one compress. Then the rest will
also be removed during the next 2.5k rakes.
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Now we present our algorithm A for network de-
composition. First apply A∗ to T , decomposing it with
rakes and compresses. Next, for any vertex v removed
by compress, we mark all vertices in Nk/2(v), i.e.,

M = {u | ∃v removed by compress, u ∈ Nk/2(v)}
is the set of all marked vertices. For any two vertices u,
v ∈ M, add an edge between them if d(u, v) ≤ k in T .
Denote the resulting graph by G.

The (1, O(k logλ s+d), O(λ2), 0) network decompo-
sition of T k is computed by assigning color 0 to all un-
marked vertices, and color the remaining vertices in G
with {1, . . . , O(λ2)}. We will show that (i) ∆(G) ≤ λ,
and so the coloring can be computed using Linial’s algo-
rithm [28] in O(k log∗ s) time, (ii) each connected com-
ponent induced by unmarked vertices (in T k) has diam-
eter O(k logλ s+ d).

• After deleting those vertices removed by compress
from T , the diameter of each connected component
(in T ) is O(k logλ s+ d), since the total number of
rakes is O(k logλ s) + 3d+ 1. We show that the di-
ameter of each connected component of unmarked
vertices in T k is still O(k logλ s+ d). Consider any
pair of unmarked vertices u and v. Notice that u
and v must be removed by rake. Suppose that u
and v are not connected in T after deleting those
vertices removed by compress from T . Assume the
first time they become disconnected is iteration i,
which is due to the removal of a vertex w in com-
press. Since all vertices in Nk/2(w) are marked,
any path in T connecting u and v must has a sub-
path consisting of at least 2(k/2) + 1 > k marked
vertices. Thus, u and v are also disconnected in T k

after deleting all marked vertices.

• For any marked vertex v, we claim that |Nk(v) ∩
M| ≤ λ (in T ), and so ∆(G) ≤ λ. Let u be
the first vertex marked in Nk(v). The vertex u
is added to M due to the removal of a vertex
w ∈ Nk/2(u) in a compress operation (it is possible
that u = w). Suppose that w was removed in
iteration i. Then we have |N2.5k

Ti
(w)| ≤ λ. Notice

that Nk(v) ∩ M ⊆ Nk
Ti
(v) ⊆ N2.5k

Ti
(w), since

d(v, w) ≤ d(v, u) + d(u,w) ≤ 1.5k, and since
Nk

Ti
(v) contains all possible marked vertices within

distance-k of v.

7 Lower Bounds for Augmenting Path-Type
Algorithms

In this section, we show that for c ∈ [1, ∆
3 ], any

algorithm for (∆+ c)-edge coloring based on recoloring
subgraphs to extend partial colorings needs Ω(∆c log n)
rounds.

Theorem 7.1. Let ∆ be the maximum degree and c ∈
[1, ∆

3 ]. For any n, there exist an n-vertex graph G =
(V,E) and a partial edge coloring φ : E → {1, . . . ,∆+
c,⊥} with the following property. For any coloring
φ′ : E → {1, . . . ,∆+ c,⊥} that colors a strict superset
of the edges colored by φ, φ and φ′ differ on a subgraph
of diameter Ω(∆c log n).

As a special case, suppose that G is a partially
(∆+ c)-edge colored graph, with exactly one uncolored
edge e0. A natural approach to color G is to find
an “augmenting path” e0e1 · · · e`, and then recolor the
path. That is, for 0 ≤ i ≤ ` − 1, let the new color
of ei be the old color of ei+1, and then color the last
edge e` by choosing any available color (if possible).
This approach leads to a distributed algorithm for
Brooks’ theorem [33]. However, Theorem 7.1 implies
the existence of a graph where any augmenting path
has length Ω(∆c log n), and so any “augmenting paths”-
based algorithm for constructive Vizing’s theorem must
take at least Ω(∆c log n) time, which is inefficient for
large ∆.

Construction. The construction of the partially
edge-colored graph for Theorem 7.1 is as follows. With-
out loss of generality, assume that ∆+ c is even, and let
k = ∆+c

2 . Divide the color palette {1, · · · ,∆ + c} into
two sets S1 = {1, · · · , k} and S2 = {k + 1, · · · ,∆+ c}.
Let k′ = ∆ − k. Let e0 = {u0, v0} be the uncolored
edge. We construct a graph consists of ` layers of ver-
tices, which is denoted as G∗(`,∆, c).

Layer 0 consists of only u0 and v0. The vertex u0

has k neighbors other than v0, which form layer 1. The
edges between u0 and these k vertices are colored by
S1 = {1, · · · , k}. Suppose that layers 0 . . . i have been
constructed. Layer i+ 1 is constructed as follows.

Let ni be the current number of vertices in layer
i. We divide these ni vertices into bni

k′
c groups of size

k′, and the remaining ni mod k′ vertices are ungrouped.
Each group forms a complete bipartite graph Kk′,k with
k corresponding new vertices in layer i + 1. In total,
bni

k′
ck new vertices are added to layer i+1. Notice that

a complete bipartite graph Kk′,k can be properly k-edge
colored. If i is even, we use the palette S1 to color these
complete bipartite graphs; otherwise we use S2. The
ni mod k′ ungrouped vertices in layer i are promoted
to layer i+2. When we assigning groups to the vertices
in layer i+2, we prioritize these vertices to ensure that
each vertex is promoted at most twice. We have the
formula:

ni+1 =
⌊(
bni

k′
ck + (ni−1 mod k′)

)
/k′

⌋
· k′, i ≥ 2.

The construction of v0’s side is similar. The only
difference is that we switch the roles of S1 and S2 for
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coloring complete bipartite graphs. We call the partial
edge coloring φ. See Figure 1 for a concrete example
which shows the construction of layers 0, . . . , 5. Notice
that some vertices in layer 4 have been promoted to
layer 6 (during the construction of layer 5).

Notice that the ratio of the number of vertices in
two consecutive layers is Θ(logk/k′ n) = Θ(∆c log n),

and so we can set ` = Θ(∆c log n). The distance from
the uncolored edge to any vertex in layer ` is at least
`
3 = Θ(∆c log n), since any edge can skip at most two
layers. To prove Theorem 7.1, it suffices to prove the
following lemma.

Lemma 7.1. It is impossible to extend the partial edge
coloring φ of G∗(`,∆, c) to a total edge coloring by only
recoloring edges within layer 0 to layer `− 1.

Proof. Without loss of generality, we only consider u0’s
side. Let us refer to the edges connecting layer i and
higher layers as the edges of layer i. For an odd (resp.,
even) `, fix the colors of edges of layer ` using only the
color palette S1 (resp., S2). Consider the case ` is odd
(the other case is similar). Observe that each grouped
vertex in layer `−1 has k neighbors in layer `. Therefore,
the edges of layer `−1 must have their colors picked from
S2. By an induction, edges of layer 1 must be colored
using S1. Similarly, edges of layer 1 at v0’s side must
be colored using S2, and so no available color is left for
e0 = {u0, v0}. Thus, even if all edges within layer 0 to
layer `−1 are allowed to be recolored, we cannot obtain
a proper edge coloring of G∗(`,∆, c).

8 Conclusion

Consider this strange phenomenon. The black-box
transformations of [11] and [12] imply the existence of ef-
ficient algorithms that are not entirely constructive, i.e.,
they do not have short, coherent descriptions. For ex-
ample, Fischer and Ghaffari’s randomized 2O(

√
log logn)

LLL algorithm (for d < (log log n)1/5) implies [11, The-
orem 3] that the deterministic complexity of LLL (for

d < (log n)1/5) is 2O(
√
logn). One could then apply the

transformation of [12, Theorem 5] to obtain a determin-
istic O(log n)-time LLL algorithm for tree-structured
dependency graphs (for d = O(1)). Algorithms con-
structed in this way are neither useful nor enlightening,
but they exist and suggest that humanly comprehensi-
ble algorithms for these problems also exist. (See, e.g.,
our O(log n)-time LLL algorithm for trees in Section 4
and Section 6.)

Our randomized (1 + ε)∆-edge coloring algorithm,
together with [18, 11], implies the existence of a deter-
ministic algorithm for ∆ < (log n)α, α > 0, running in

2O(
√
logn) time. This suggests the existence of a simple,

Figure 1: An example of the construction, where ∆ = 5,
c = 1, k = 3 and k′ = 2. Edges with palette
S1 = {1, 2, 3} are colored in red, and edges with palette
S2 = {4, 5, 6} are colored in blue.

direct algorithm using network decompositions [32], but
to date, network decompositions have only been used for
problems that admit “greedy” algorithms, e.g., MIS or
(∆+1)-vertex coloring, but not more difficult problems
like k-edge coloring, k < 2∆ − 1. Finding simple, ex-
plicit, and deterministic algorithms for (1+ε)∆-coloring
is a challenging open problem.

We have proved that the LLL on tree-structured
dependency graphs can be solved in O(log log n) time
w.h.p. (or faster), confirming [12, Conjecture 1] for this
case. It is unclear if there is any hope of extending this
type of algorithm to general LLL instances, absent a
breakthrough in network decomposition technology [18,
33].
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